1
|
Ren Y, Guo F, Wang L. Imaging Findings and Toxicological Mechanisms of Nervous System Injury Caused by Diquat. Mol Neurobiol 2024; 61:9272-9283. [PMID: 38619744 PMCID: PMC11496334 DOI: 10.1007/s12035-024-04172-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Diquat (DQ) is a nonselective bipyridine herbicide with a structure resembling paraquat (PQ). In recent years, the utilization of DQ as a substitute for PQ has grown, leading to an increase in DQ poisoning cases. While the toxicity mechanism of DQ remains unclear, it is primarily attributed to the intracellular generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) through the process of reduction oxidation. This results in oxidative stress, leading to a cascade of clinical symptoms. Notably, recent reports on DQ poisoning have highlighted a concerning trend: an upsurge in cases involving neurological damage caused by DQ poisoning. These patients often present with severe illness and a high mortality rate, with no effective treatment available thus far. Imaging findings from these cases have shown that neurological damage tends to concentrate on the brainstem. However, the specific mechanisms behind this poisoning remain unclear, and no specific antidote exists. This review summarizes the research progress on DQ poisoning and explores potential mechanisms. By shedding light on the nerve damage associated with DQ poisoning, we hope to raise awareness, propose new avenues for investigating the mechanisms of DQ poisoning, and lay the groundwork for the development of treatment strategies for DQ poisoning. Trial registration number: 2024PS174K.
Collapse
Affiliation(s)
- Yanguang Ren
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Tiexi District, No. 39 Huaxiang Road, Shenyang, 110000, Liaoning, People's Republic of China
| | - Feng Guo
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Tiexi District, No. 39 Huaxiang Road, Shenyang, 110000, Liaoning, People's Republic of China.
| | - Lin Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Tiexi District, No. 39 Huaxiang Road, Shenyang, 110000, Liaoning, People's Republic of China.
| |
Collapse
|
2
|
Cheng J, Yang L, Zhang Z, Xu D, Hua R, Chen H, Li X, Duan J, Li Q. Diquat causes mouse testis injury through inducing heme oxygenase-1-mediated ferroptosis in spermatogonia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116562. [PMID: 38850704 DOI: 10.1016/j.ecoenv.2024.116562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Diquat dibromide (DQ) is a globally used herbicide in agriculture, and its overuse poses an important public health issue, including male reproductive toxicity in mammals. However, the effects and molecular mechanisms of DQ on testes are limited. In vivo experiments, mice were intraperitoneally injected with 8 or 10 mg/kg/ day of DQ for 28 days. It has been found that heme oxygenase-1 (HO-1) mediates DQ-induced ferroptosis in mouse spermatogonia, thereby damaging testicular development and spermatogenesis. Histopathologically, we found that DQ exposure caused seminiferous tubule disorders, reduced germ cells, and increased sperm malformation, in mice. Reactive oxygen species (ROS) staining of frozen section and transmission electron microscopy (TEM) displayed DQ promoted ROS generation and mitochondrial morphology alterations in mouse testes, suggesting that DQ treatment induced testicular oxidative stress. Subsequent RNA-sequencing further showed that DQ treatment might trigger ferroptosis pathway, attributed to disturbed glutathione metabolism and iron homeostasis in spermatogonia cells in vitro. Consistently, results of western blotting, measurements of MDA and ferrous iron, and ROS staining confirmed that DQ increased oxidative stress and lipid peroxidation, and accelerated ferrous iron accumulation both in vitro and in vivo. Moreover, inhibition of ferroptosis by deferoxamine (DFO) markedly ameliorated DQ-induced cell death and dysfunction. By RNA-sequencing, we found that the expression of HO-1 was significantly upregulated in DQ-treated spermatogonia, while ZnPP (a specific inhibitor of HO-1) blocked spermatogonia ferroptosis by balancing intracellular iron homeostasis. In mice, administration of the ferroptosis inhibitor ferrostatin-1 effectively restored the increase of HO-1 levels in the spermatogonia, prevented spermatogonia death, and alleviated the spermatogenesis disorders induced by DQ. Overall, these findings suggest that HO-1 mediates DQ-induced spermatogonia ferroptosis in mouse testes, and targeting HO-1 may be an effective protective strategy against male reproductive disorders induced by pesticides in agriculture.
Collapse
Affiliation(s)
- Jianyong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Li Yang
- Health Management Center, Shenzhen University General Hospital, Shenzhen 518055, China
| | - Zelin Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Dejun Xu
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Rongmao Hua
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518000, China
| | - Huali Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China
| | - Xiaoya Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiaxin Duan
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030801, China
| | - Qingwang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
3
|
Ghosh S, Kumar V, Mukherjee H, Saini S, Gupta S, Chauhan S, Kushwaha K, Lahiri D, Sircar D, Roy P. Assessment of the mechanistic role of an Indian traditionally used ayurvedic herb Bacopa monnieri (L.)Wettst. for ameliorating oxidative stress in neuronal cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:117899. [PMID: 38341111 DOI: 10.1016/j.jep.2024.117899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/23/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE This study has important ethnopharmacological implications since it systematically investigated the therapeutic potential of Bacopa monnieri(L.) Wettst. (Brahmi) in treating neurological disorders characterized by oxidative stress-a growing issue in the aging population. Bacopa monnieri, which is strongly rooted in Ayurveda, has long been recognized for its neuroprotective and cognitive advantages. The study goes beyond conventional wisdom by delving into the molecular complexities of Bacopa monnieri, particularly its active ingredient, Bacoside-A, in countering oxidative stress. The study adds to the ethnopharmacological foundation for using this herbal remedy in the context of neurodegenerative disorders by unravelling the scientific underpinnings of Bacopa monnieri's effectiveness, particularly at the molecular level, against brain damage and related conditions influenced by oxidative stress. This dual approach, which bridges traditional wisdom and modern investigation, highlights Bacopa monnieri's potential as a helpful natural remedy for oxidative stress-related neurological diseases. AIM OF THE STUDY The aim of this study is to investigate the detailed molecular mechanism of action (in vitro, in silico and in vivo) of Bacopa monnieri (L.) Wettst. methanolic extract and its active compound, Bacoside-A, against oxidative stress in neurodegenerative disorders. MATERIALS AND METHODS ROS generation activity, mitochondrial membrane potential, calcium deposition and apoptosis were studied through DCFDA, Rhodamine-123, FURA-2 AM and AO/EtBr staining respectively. In silico study to check the effect of Bacoside-A on the Nrf-2 and Keap1 axis was performed through molecular docking study and validated experimentally through immunofluorescence co-localization study. In vivo antioxidant activity of Bacopa monnieri extract was assessed by screening the oxidative stress markers and stress-inducing hormone levels as well as through histopathological analysis of tissues. RESULTS The key outcome of this study is that the methanolic extract of Bacopa monnieri (BME) and its active component, Bacoside-A, protect against oxidative stress in neurodegenerative diseases. At 100 and 20 μg/ml, BME and Bacoside-A respectively quenched ROS, preserved mitochondrial membrane potential, decreased calcium deposition, and inhibited HT-22 mouse hippocampus cell death. BME and Bacoside-A regulated the Keap1 and Nrf-2 axis and their downstream antioxidant enzyme-specific genes to modify cellular antioxidant machinery. In vivo experiments utilizing rats subjected to restrained stress indicated that pre-treatment with BME (50 mg/kg) downregulated oxidative stress markers and stress-inducing hormones, and histological staining demonstrated that BME protected the neuronal cells of the Cornu Ammonis (CA1) area in the hippocampus. CONCLUSIONS Overall, the study suggests that Bacopa monnieri(L.) Wettst. has significant potential as a natural remedy for neurodegenerative disorders, and its active compounds could be developed as new drugs for the prevention and treatment of oxidative stress-related diseases.
Collapse
Affiliation(s)
- Souvik Ghosh
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India; Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India; Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Viney Kumar
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Haimanti Mukherjee
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Saakshi Saini
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Sumeet Gupta
- Department of Pharmacy, Maharshi Markandeshwar University (Deemed to Be University), Mullana, Haryana, 133207, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Komal Kushwaha
- Plant Molecular Biology Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Debrupa Lahiri
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India; Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Debabrata Sircar
- Plant Molecular Biology Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
4
|
Duan M, Yang B, Cheng X, Shen F, Lu X, Wang F. Two cases of diquat poisoning in adolescent children. Ital J Pediatr 2024; 50:80. [PMID: 38644498 PMCID: PMC11034119 DOI: 10.1186/s13052-024-01640-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/04/2024] [Indexed: 04/23/2024] Open
Abstract
Diquat (DQ) is among the most widely used herbicides, and its intake can cause severe systemic toxicity that manifests rapidly. The resultant symptoms can cause the dysfunction of a range of tissues and organs,. As there is no specific antidote for diquat poisoning and the efficacy of extant treatments is suboptimal, physicians must acquire a more comprehensive understanding of the most effective approaches to managing affected patients. Relative few studies have been published to date focused on diquat poisoning in pediatric patients. In this report, we compare two similar cases of juvenile diquat poisoning with dynamic changes in clinical manifestations, laboratory values, and imaging results. For the first time, the difference in whether to perform blood flow perfusion and the time difference of initiation of hemoperfusion had a clear clinical difference in the subsequent effects of diquat poisoning in children with diquat poisoning. Limited evidence is available regarding the efficacy of early hemoperfusion for diquat poisoning; however, the differences in clinical outcomes articulated here highlight the benefits of early and timely hemoperfusion therapy in the treatment of DQ toxicity in children, in conjunction with primary supportive care in the management of DQ poisoning in children.
Collapse
Affiliation(s)
- Mengtao Duan
- The Second Clinical Medical College of Lanzhou University, 199 Donggang West Road, Chengguan District, 730030, Lanzhou City, Gansu Province, China
| | - Baowang Yang
- Lanzhou University Second Hospital , No.82 Cuiyingmen, Linxia Road, Chengguan District, 730030, Lanzhou City, Gansu Province, China
| | - Xiaohang Cheng
- The Second Clinical Medical College of Lanzhou University, 199 Donggang West Road, Chengguan District, 730030, Lanzhou City, Gansu Province, China
| | - Fuhui Shen
- The Second Clinical Medical College of Lanzhou University, 199 Donggang West Road, Chengguan District, 730030, Lanzhou City, Gansu Province, China
| | - Xia Lu
- The Second Clinical Medical College of Lanzhou University, 199 Donggang West Road, Chengguan District, 730030, Lanzhou City, Gansu Province, China
| | - Fan Wang
- Lanzhou University Second Hospital , No.82 Cuiyingmen, Linxia Road, Chengguan District, 730030, Lanzhou City, Gansu Province, China.
| |
Collapse
|
5
|
He T, Lin X, Su A, Zhang Y, Xing Z, Mi L, Wei T, Li Z, Wu W. Mitochondrial dysfunction-targeting therapeutics of natural products in Parkinson's disease. Front Pharmacol 2023; 14:1117337. [PMID: 37234707 PMCID: PMC10206024 DOI: 10.3389/fphar.2023.1117337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disease worldwide, often occurs in middle-aged and elderly individuals. The pathogenesis of PD is complex and includes mitochondrial dysfunction, and oxidative stress. Recently, natural products with multiple structures and their bioactive components have become one of the most important resources for small molecule PD drug research targeting mitochondrial dysfunction. Multiple lines of studies have proven that natural products display ameliorative benefits in PD treatment by regulating mitochondrial dysfunction. Therefore, a comprehensive search of recent published articles between 2012 and 2022 in PubMed, Web of Science, Elesvier, Wliey and Springer was carried out, focusing on original publications related to natural products against PD by restoring mitochondrial dysfunction. This paper presented the mechanisms of various kinds of natural products on PD-related mitochondrial dysfunction regulation and provided evidence that natural products are promising to be developed as drugs for PD therapeutics.
Collapse
|
6
|
Ferrucci M, Busceti CL, Lazzeri G, Biagioni F, Puglisi-Allegra S, Frati A, Lenzi P, Fornai F. Bacopa Protects against Neurotoxicity Induced by MPP+ and Methamphetamine. Molecules 2022; 27:molecules27165204. [PMID: 36014442 PMCID: PMC9414486 DOI: 10.3390/molecules27165204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
The neurotoxins methamphetamine (METH) and 1-methyl-4-phenylpyridinium (MPP+) damage catecholamine neurons. Although sharing the same mechanism to enter within these neurons, METH neurotoxicity mostly depends on oxidative species, while MPP+ toxicity depends on the inhibition of mitochondrial activity. This explains why only a few compounds protect against both neurotoxins. Identifying a final common pathway that is shared by these neurotoxins is key to prompting novel remedies for spontaneous neurodegeneration. In the present study we assessed whether natural extracts from Bacopa monnieri (BM) may provide a dual protection against METH- and MPP+-induced cell damage as measured by light and electron microscopy. The protection induced by BM against catecholamine cell death and degeneration was dose-dependently related to the suppression of reactive oxygen species (ROS) formation and mitochondrial alterations. These were measured by light and electron microscopy with MitoTracker Red and Green as well as by the ultrastructural morphometry of specific mitochondrial structures. In fact, BM suppresses the damage of mitochondrial crests and matrix dilution and increases the amount of healthy and total mitochondria. The present data provide evidence for a natural compound, which protects catecholamine cells independently by the type of experimental toxicity. This may be useful to counteract spontaneous degenerations of catecholamine cells.
Collapse
Affiliation(s)
- Michela Ferrucci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | | | - Gloria Lazzeri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | | | | | - Alessandro Frati
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
- Neurosurgery Division, Department of Human Neurosciences, Sapienza University, 00135 Rome, Italy
| | - Paola Lenzi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
- Correspondence: or ; Tel.: +39-050-221-8667
| |
Collapse
|
7
|
Xiao Y, Lin X, Zhou M, Ren T, Gao R, Liu Z, Shen W, Wang R, Xie X, Song Y, Hu W. Metabolomics analysis of the potential toxicological mechanisms of diquat dibromide herbicide in adult zebrafish (Danio rerio) liver. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1039-1055. [PMID: 35831485 DOI: 10.1007/s10695-022-01101-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Although diquat is a widely used water-soluble herbicide in the world, its sublethal adverse effects to fish have not been well characterised. In this study, histopathological examination and biochemical assays were applied to assess hepatotoxicity and combined with gas chromatography-mass spectrometry (GC-MS)-based metabolomics analysis to reveal overall metabolic mechanisms in the liver of zebrafish (Danio rerio) after diquat exposure at concentrations of 0.34 and 1.69 mg·L-1 for 21 days. Results indicated that 1.69 mg·L-1 diquat exposure caused cellular vacuolisation and degeneration with nuclear abnormality and led to the disturbance of antioxidative system and dysfunction in the liver. No evident pathological injury was detected, and changes in liver biochemistry were not obvious in the fish exposed to 0.34 mg·L-1 diquat. Multivariate statistical analysis revealed differences between profiles obtained by GC-MS spectrometry from control and two treatment groups. A total of 17 and 22 metabolites belonging to different classes were identified following exposure to 0.34 and 1.69 mg·L-1 diquat, respectively. The metabolic changes in the liver of zebrafish are mainly manifested as inhibition of energy metabolism, disorders of amino acid metabolism and reduction of antioxidant capacity caused by 1.69 mg·L-1 diquat exposure. The energy metabolism of zebrafish exposed to 0.34 mg·L-1 diquat was more inclined to rely on anaerobic glycolysis than that of normal zebrafish, and interference effects on lipid metabolism were observed. The metabolomics approach provided an innovative perspective to explore possible hepatic damages on fish induced by diquat as a basis for further research.
Collapse
Affiliation(s)
- Ye Xiao
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
| | - Xiang Lin
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
| | - Meilan Zhou
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
| | - Tianyu Ren
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
| | - Ruili Gao
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
| | - Zhongqun Liu
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
| | - Wenjing Shen
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
| | - Rong Wang
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
| | - Xi Xie
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
| | - Yanting Song
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China
| | - Wenting Hu
- School of Pharmaceutical Sciences, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China.
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Rd, Haikou, 570228, People's Republic of China.
| |
Collapse
|
8
|
Chen J, Su Y, Lin F, Iqbal M, Mehmood K, Zhang H, Shi D. Effect of paraquat on cytotoxicity involved in oxidative stress and inflammatory reaction: A review of mechanisms and ecological implications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112711. [PMID: 34455184 DOI: 10.1016/j.ecoenv.2021.112711] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/07/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Paraquat (PQ) is a cheap and an effective herbicide, which is widely being used worldwide to remove weeds in cultivated crop fields. However, it can cause soil and water pollution, and pose serious harm to the environment and organisms. Several countries have started to limit or prohibit the use of PQ because of the increasing number of human deaths. Its toxicity can damage the organisms with a multi-target mechanism, which has not been fully understood yet. That is why it is hard to treat as well. The current research on PQ focuses on its targeted organ, the lungs, in which PQ mostly trigger pulmonary fibrosis. While there is a lack of systematic research, there are few studies published discussing its toxic effects at systematic level. This review summarizes the major damages caused by PQ in different organisms and partial mechanisms by which it causes these damages. For this purpose, we consulted several research articles that studied the toxicity of PQ in various tissues. We also listed some drugs that can be used to alleviate the toxicity of PQ. However, at present, the effectiveness of these drugs is still being explored in animal experiments and the study of their mechanism will also help in understanding the poisoning mechanism of PQ, which will ultimately lead to effective treatment in future.
Collapse
Affiliation(s)
- Jiaxin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yalin Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Fei Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Mujahid Iqbal
- Department of Pathology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan
| | - Khalid Mehmood
- Department of Clinical Medicine and Surgery, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Dayou Shi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
9
|
Xing J, Chu Z, Han D, Jiang X, Zang X, Liu Y, Gao S, Sun L. Lethal diquat poisoning manifesting as central pontine myelinolysis and acute kidney injury: A case report and literature review. J Int Med Res 2021; 48:300060520943824. [PMID: 32734801 PMCID: PMC7401049 DOI: 10.1177/0300060520943824] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diquat is a nonselective herbicide that is used as a contact and preharvest desiccant to control terrestrial and aquatic vegetation. Increasing numbers of cases of diquat poisoning have recently been reported. Organs commonly affected by diquat poisoning include the kidney, liver, and lung. Neurological involvement of diquat poisoning is relatively rare. A 21-year-old man ingested 100 mL of diquat (20 g/100 mL) 5 hours before admission. Fifteen minutes after ingestion, he developed nausea and vomiting. The patient was sent to the emergency intensive care unit, and gastric lavage was performed. Continuous renal replacement therapy and continuous venovenous hemodiafiltration with hemoperfusion were performed, and methylprednisolone was administered. Five days after admission, the patient developed disturbance of consciousness and positive bilateral Babinski signs. Head computed tomography demonstrated hypodensity in the pons. At 11 days after admission, brain magnetic resonance imaging showed acute pontine demyelination. At 15 days after admission, the patient died of multiple organ dysfunction syndrome. We encountered a case of diquat poisoning with central pontine myelinolysis and acute kidney injury. This case highlights the clinical value of neuroimaging examination for early diagnosis of central pontine myelinolysis.
Collapse
Affiliation(s)
- Jihong Xing
- Emergency Department of Internal Medicine, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhe Chu
- Emergency Department of Internal Medicine, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Dongfeng Han
- Emergency Department of Internal Medicine, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaoming Jiang
- Emergency Department of Internal Medicine, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiuxian Zang
- Emergency Department of Internal Medicine, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Yajie Liu
- Emergency Department of Internal Medicine, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Song Gao
- Emergency Department of Internal Medicine, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Lichao Sun
- Emergency Department of Internal Medicine, the First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
10
|
Neuroprotection with Bacopa monnieri-A review of experimental evidence. Mol Biol Rep 2021; 48:2653-2668. [PMID: 33675463 DOI: 10.1007/s11033-021-06236-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/12/2021] [Indexed: 01/17/2023]
Abstract
Brahmi or aindri is a popular herb in the vast and rich compendium of herbs of Ayurveda and is botanically identified as Bacopa monnieri Linn. (BM). It is extensively used in Ayurveda and other traditional systems of medicine in the management of neurological psychiatric disorders. BM possess active principles belonging to alkaloids, glycosides, flavonoids, saponins categories. Numerous research have been undertaken across the globe to evaluate the neuroprotective potential of this herb. This review collates and summarises current (as on May 2020) published literature on Brahmi as a neuroprotective in neurological and psychiatric disorders. English language articles from databases PubMed, Scopus and Google scholar were searched using appropriate free keywords and MeSH terms related to the topic. The review demonstrates the neuroprotective potential of the Ayurveda herb Brahmi in several disorders including Alzheimer's disease, epilepsy, Parkinson's disease, Huntington's disease, cerebral ischemia and infarct and neoplasms.
Collapse
|
11
|
Krishna G, Hosamani R, Muralidhara. Bacopa monnieri Supplements Offset Paraquat-Induced Behavioral Phenotype and Brain Oxidative Pathways in Mice. Cent Nerv Syst Agents Med Chem 2019; 19:57-66. [PMID: 30644349 DOI: 10.2174/1871524919666190115125900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/03/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Parkinson's Disease (PD) is characterized by alterations in cerebellum and basal ganglia functioning with corresponding motor deficits and neuropsychiatric symptoms. Involvement of oxidative dysfunction has been implicated for the progression of PD, and environmental neurotoxin exposure could influence such behavior and psychiatric pathology. Assessing dietary supplementation strategies with naturally occurring phytochemicals to reduce behavioral anomalies associated with neurotoxin exposure would have major clinical importance. The present investigation assessed the influence of Bacopa monneri (BM) on behaviors considered to reflect anxiety-like state and motor function as well as selected biochemical changes in brain regions of mice chronically exposed to ecologically relevant herbicide, paraquat (PQ). MATERIALS & METHODS Male mice (4-week old, Swiss) were daily provided with oral supplements of standardized BM extract (200 mg/kg body weight/day; 3 weeks) and PQ (10 mg/kg, i.p. three times a week; 3 weeks). RESULTS We found that BM supplementation significantly reversed the PQ-induced reduction of exploratory behavior, gait abnormalities (stride length and mismatch of paw placement) and motor impairment (rotarod performance). In a separate study, BM administration prevented the reduction in dopamine levels and reversed cholinergic activity in brain regions important for motor (striatum) pathology. Further, in mitochondria, PQ-induced decrease in succinate dehydrogenase (SDH) activity and energy charge (MTT reduction), was restored with BM supplementation. CONCLUSION These findings suggest that BM supplementation mitigates paraquat-induced behavioral deficits and brain oxidative stress in mice. However, further investigations would enable us to identify specific molecular mechanism by which BM influences behavioural pathology.
Collapse
Affiliation(s)
- Gokul Krishna
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ 85004, United States.,Department of Biochemistry, Council of Scientific & Industrial Research (CSIR)-Central Food Technological Research Institute (CFTRI), Mysore, Karnataka, India
| | - Ravikumar Hosamani
- Department of Biochemistry, Council of Scientific & Industrial Research (CSIR)-Central Food Technological Research Institute (CFTRI), Mysore, Karnataka, India
| | - Muralidhara
- Department of Biochemistry, Council of Scientific & Industrial Research (CSIR)-Central Food Technological Research Institute (CFTRI), Mysore, Karnataka, India
| |
Collapse
|
12
|
Limanaqi F, Biagioni F, Busceti CL, Ryskalin L, Polzella M, Frati A, Fornai F. Phytochemicals Bridging Autophagy Induction and Alpha-Synuclein Degradation in Parkinsonism. Int J Mol Sci 2019; 20:ijms20133274. [PMID: 31277285 PMCID: PMC6651086 DOI: 10.3390/ijms20133274] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022] Open
Abstract
Among nutraceuticals, phytochemical-rich compounds represent a source of naturally-derived bioactive principles, which are extensively studied for potential beneficial effects in a variety of disorders ranging from cardiovascular and metabolic diseases to cancer and neurodegeneration. In the brain, phytochemicals produce a number of biological effects such as modulation of neurotransmitter activity, growth factor induction, antioxidant and anti-inflammatory activity, stem cell modulation/neurogenesis, regulation of mitochondrial homeostasis, and counteracting protein aggregation through modulation of protein-folding chaperones and the cell clearing systems autophagy and proteasome. In particular, the ability of phytochemicals in restoring proteostasis through autophagy induction took center stage in recent research on neurodegenerative disorders such as Parkinson’s disease (PD). Indeed, autophagy dysfunctions and α-syn aggregation represent two interdependent downstream biochemical events, which concur in the parkinsonian brain, and which are targeted by phytochemicals administration. Therefore, in the present review we discuss evidence about the autophagy-based neuroprotective effects of specific phytochemical-rich plants in experimental parkinsonism, with a special focus on their ability to counteract alpha-synuclein aggregation and toxicity. Although further studies are needed to confirm the autophagy-based effects of some phytochemicals in parkinsonism, the evidence discussed here suggests that rescuing autophagy through natural compounds may play a role in preserving dopamine (DA) neuron integrity by counteracting the aggregation, toxicity, and prion-like spreading of α-syn, which remains a hallmark of PD.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa (PI), Italy
| | | | | | - Larisa Ryskalin
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa (PI), Italy
| | - Maico Polzella
- Aliveda Laboratories, Crespina Lorenzana, 56042 Pisa (PI), Italy
| | | | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa (PI), Italy.
- I.R.C.C.S Neuromed, Via Atinense, 86077 Pozzilli (IS), Italy.
| |
Collapse
|
13
|
Wang QL, Guo C, Qi J, Ma JH, Liu FY, Lin SQ, Zhang CY, Xie WD, Zhuang JJ, Li X. Protective effects of 3β-angeloyloxy-8β, 10β-dihydroxyeremophila-7(11)-en-12, 8α-lactone on paraquat-induced oxidative injury in SH-SY5Y cells. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2019; 21:364-376. [PMID: 29355039 DOI: 10.1080/10286020.2017.1423057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/28/2017] [Indexed: 06/07/2023]
Abstract
3β-Angeloyloxy-8β,10β-dihydroxyeremophila-7(11)-en-12,8α-lactone (FJ1) inhibited effectively paraquat (PQ)-induced injury in SH-SY5Y cells. In this way, FJ1 was shown to reverse the PQ-induced activation of caspase-9 and caspase-3, the increase in Bax/Bcl-2 ratio, and the release of cytochrome c. The mechanism was associated with a reduction of oxidative stress, including the decrease in the levels of ROS and MDA and maintaining the activity of SOD and GSH. Taken together, findings revealed that FJ1 had protective effects against PQ-induced injury via attenuating the oxidative stress in SH-SY5Y cells, which suggested that FJ1 might be a candidate for further evaluation against neurodegeneration in Parkinson's disease.
Collapse
Affiliation(s)
- Qi-Lin Wang
- a Marine College, Shandong University , Weihai 264209 , China
| | - Chao Guo
- a Marine College, Shandong University , Weihai 264209 , China
| | - Jie Qi
- a Marine College, Shandong University , Weihai 264209 , China
| | - Jia-Hui Ma
- a Marine College, Shandong University , Weihai 264209 , China
| | - Fang-Yuan Liu
- a Marine College, Shandong University , Weihai 264209 , China
| | - Shi-Qi Lin
- a Marine College, Shandong University , Weihai 264209 , China
| | - Cai-Yun Zhang
- a Marine College, Shandong University , Weihai 264209 , China
| | - Wei-Dong Xie
- a Marine College, Shandong University , Weihai 264209 , China
| | | | - Xia Li
- a Marine College, Shandong University , Weihai 264209 , China
- b School of Pharmaceutical Science , Shandong University , Jinan 250012 , China
| |
Collapse
|
14
|
Calabrese V, Santoro A, Trovato Salinaro A, Modafferi S, Scuto M, Albouchi F, Monti D, Giordano J, Zappia M, Franceschi C, Calabrese EJ. Hormetic approaches to the treatment of Parkinson's disease: Perspectives and possibilities. J Neurosci Res 2018; 96:1641-1662. [PMID: 30098077 DOI: 10.1002/jnr.24244] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 01/17/2023]
Abstract
Age-related changes in the brain reflect a dynamic interaction of genetic, epigenetic, phenotypic, and environmental factors that can be temporally restricted or more longitudinally present throughout the lifespan. Fundamental to these mechanisms is the capacity for physiological adaptation through modulation of diverse molecular and biochemical signaling occurring from the intracellular to the network-systemic level throughout the brain. A number of agents that affect the onset and progression of Parkinson's disease (PD)-like effects in experimental models exhibit temporal features, and mechanisms of hormetic dose responses. These findings have particular significance since the hormetic dose response describes the amplitude and range of potential therapeutic effects, thereby affecting the design and conduct of studies of interventions against PD (and other neurodegenerative diseases), and may also be important to a broader consideration of hormetic processes in resilient adaptive responses that might afford protection against the onset and/or progression of PD and related disorders.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania.,IBREGENS, Nutraceuticals and Functional Food Biotechnologies Research Associated, University of Catania, Italy
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania
| | - Ferdaous Albouchi
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania
| | - Daniela Monti
- Department of Experimental, Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - James Giordano
- Departments of Neurology and Biochemistry, and Neuroethics Studies Program, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Mario Zappia
- Department of Medical Sciences, Surgical and Advanced Technologies G.F. Ingrassia, Section of Neurosciences, University of Catania, Italy
| | | | - Edward J Calabrese
- Environmental Health Sciences Division, School of Public Health, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
15
|
Bhardwaj P, Jain CK, Mathur A. Comparative evaluation of four triterpenoid glycoside saponins of bacoside A in alleviating sub-cellular oxidative stress of N2a neuroblastoma cells. J Pharm Pharmacol 2018; 70:1531-1540. [PMID: 30073654 DOI: 10.1111/jphp.12993] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 07/07/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To examine the neuroprotective property of triterpenoid glycoside saponins of Bacopa monnieri (L.) Wettst. bacoside A and its components against H2 O2 -induced oxidative stress on neuronal (N2a) cells. METHODS The cytoprotective effects of individual bacoside A components were evaluated towards oxidative stressed neuronal cells. Bacoside A was screened for neuronal cell viability (MTT assay) and change in intracellular reactive oxygen species (ROS), anti-apoptotic properties and mitochondrial membrane potential (MMP) using fluorescence microscopy. KEY FINDINGS Different bacoside A components showed decrease in N2a cell viability below 100 (%) after bacoside A concentration of 0.4 mg/ml. Further, cytoprotective effect of optimized dose of bacoside A was analysed for alleviating oxidative stressed, apoptosis and MMP in H2 O2 stressed neuronal cells. Results showed increase in MMP, and decrease in apoptotic induction, without much change in nuclear integrity in stressed neuronal cells. Results showed bacoside A3 and bacopaside II have comparatively higher cytoprotective ability whilst isomer of bacopasponin C, bacopasaponin C and mixture showed comparatively less response. CONCLUSIONS Amongst four different bacoside A components, bacoside A3 and bacopaside II showed comparatively higher neuroprotective response analysed as higher cell viability and decreased intracellular ROS, suggesting better regulation of cyto-(neuronal) protection of N2a cells.
Collapse
Affiliation(s)
- Pragya Bhardwaj
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Chakresh Kumar Jain
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Ashwani Mathur
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| |
Collapse
|
16
|
Chen X, Qian J, Wang L, Li J, Zhao Y, Han J, Khan Z, Chen X, Wang J, Liang G. Kaempferol attenuates hyperglycemia-induced cardiac injuries by inhibiting inflammatory responses and oxidative stress. Endocrine 2018; 60:83-94. [PMID: 29392616 DOI: 10.1007/s12020-018-1525-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/09/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE Suppression of inflammation and oxidative stress is an attractive strategy to against diabetic cardiomyopathy (DCM). Kaempferol (KPF) exerts both anti-inflammatory and antioxidant pharmacological properties. However, little is known about the effect of KPF on protecting myocardial injury in diabetes. The present study aimed to investigate the effect of KPF on DCM and underlying mechanism. METHODS Anti-inflammation and anti-oxidative stress activities of KPF were evaluated in H9c2 cells or primary cardiomyocytes by real-time quantitate PCR, immunoblotting, immunofluorescence, ELISA, and FACS. Streptozotocin (STZ)-induced type 1 diabetes mellitus mice were constructed. Corresponding to experiments in vitro, the therapeutic effect of KPF was also assessed using heart tissues from mice. RESULTS KPF significantly inhibited high glocose (HG) induced expression of inflammatory cytokines and generation of ROS, leading to reduced fibrotic responses and cell apoptosis in vitro. KPF mediated DCM protective effects through inhibiting nuclear factor-κB (NF-κB) nucleus translocation and activating nuclear factor-erythroid 2 p45-related factor-2 (Nrf-2). In STZ-induced type 1 diabetic mouse model, KPF prevented diabetes-induced cardiac fibrosis and apoptosis. These changes were also accompanied by reducing inflammation and oxidative stress in diabetic mice hearts. CONCLUSION KPF is a potential therapeutic agent for the treatment of DCM, mechanically linked to inhibition of NF-κB and Nrf-2 activation.
Collapse
Affiliation(s)
- Xuemei Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Jianchang Qian
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Lintao Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Jieli Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Yunjie Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Jibo Han
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
- Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Zia Khan
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A5C1, Canada
| | - Xiaojun Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Jingying Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China.
| |
Collapse
|
17
|
Magalhães N, Carvalho F, Dinis-Oliveira RJ. Human and experimental toxicology of diquat poisoning: Toxicokinetics, mechanisms of toxicity, clinical features, and treatment. Hum Exp Toxicol 2018; 37:1131-1160. [PMID: 29569487 DOI: 10.1177/0960327118765330] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Diquat (1,1'-ethylene-2,2'-bipyridinium ion; DQ) is a nonselective quick-acting herbicide, which is used as contact and preharvest desiccant to control terrestrial and aquatic vegetation. Several cases of human poisoning were reported worldwide mainly due to intentional ingestion of the liquid formulations. Its toxic potential results from its ability to produce reactive oxygen and nitrogen species through redox cycling processes that can lead to oxidative stress and potentially cell death. Kidney is the main target organ due to DQ toxicokinetics and redox cycling. There is no antidote against DQ intoxications, and the efficacy of treatments currently applied is still unsatisfactory. The aim of this work was to review the most relevant human and experimental findings related to DQ, characterizing its chemistry, activity as herbicide, mechanisms of toxicity, consequences of poisoning, and potential therapeutic approaches taking into account previous experience in developing antidotes for paraquat, a more toxic bipyridinium herbicide.
Collapse
Affiliation(s)
- N Magalhães
- 1 UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - F Carvalho
- 1 UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - R J Dinis-Oliveira
- 1 UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,2 IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS-CESPU), Gandra, Portugal.,3 Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
18
|
Guo Y, Zhuang X, Huang Z, Zou J, Yang D, Hu X, Du Z, Wang L, Liao X. Klotho protects the heart from hyperglycemia-induced injury by inactivating ROS and NF-κB-mediated inflammation both in vitro and in vivo. Biochim Biophys Acta Mol Basis Dis 2017; 1864:238-251. [PMID: 28982613 DOI: 10.1016/j.bbadis.2017.09.029] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 09/10/2017] [Accepted: 09/28/2017] [Indexed: 12/23/2022]
Abstract
Cardiac inflammation and oxidative stress play a key role in the pathogenesis of diabetic cardiomyopathy (DCM). The anti-aging protein Klotho has been found to protect cells from inflammation and oxidative stress. The current study aimed to explore the cardioprotective effects of Klotho on DCM and the underlying mechanisms. H9c2 cells and neonatal cardiomyocytes were incubated with 33mM glucose in the presence or absence of Klotho. Klotho pretreatment effectively inhibited high glucose-induced inflammation, ROS generation, apoptosis, mitochondrial dysfunction, fibrosis and hypertrophy in both H9c2 cells and neonatal cardiomyocytes. In STZ-induced type 1 diabetic mice, intraperitoneal injection of Klotho at 0.01mg/kg per 48h for 3months completely suppressed cardiac inflammatory cytokines and oxidative stress and prevented cardiac cell death and remodeling, which subsequently improved cardiac dysfunction without affecting hyperglycemia. This study revealed that Klotho may exert its protective effects by augmenting nuclear factor erythroid 2-related factor 2 (Nrf2) expression and inactivating nuclear factor κB (NF-κB) activation both in vitro and in vivo. Thus, this work demonstrated for the first time that the anti-aging protein Klotho may be a potential therapeutic agent to treat DCM by inhibiting oxidative stress and inflammation. We also demonstrated the critical roles of the Nrf2 and NF-κB pathways in diabetes-stimulated cardiac injuries and indicated that they may be key therapeutic targets for diabetic complications.
Collapse
Affiliation(s)
- Yue Guo
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China; Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, PR China
| | - Xiaodong Zhuang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Zena Huang
- Department of Critical Care Medicine and Emergency, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China
| | - Jing Zou
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, PR China
| | - Daya Yang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Xun Hu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Zhimin Du
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Lichun Wang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China; Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, PR China.
| | - Xinxue Liao
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China; Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, PR China.
| |
Collapse
|
19
|
Sengupta A, Manna K, Datta S, Das U, Biswas S, Chakrabarti N, Dey S. Herbicide exposure induces apoptosis, inflammation, immune modulation and suppression of cell survival mechanism in murine model. RSC Adv 2017. [DOI: 10.1039/c6ra27883c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present study demonstrates paraquat induced cellular toxicity in spleen and associated ROS generation, mitochondria dependent cellular apoptosis, inflammation and splenomegaly inSwiss Albinomice.
Collapse
Affiliation(s)
- Aaveri Sengupta
- Department of Physiology
- DST-PURSE & UGC-CPEPA Supported Department
- Centre for Research in Nanoscience & Nanotechnology (CRNN)
- University of Calcutta
- Kolkata – 700009
| | - Krishnendu Manna
- Department of Physiology
- DST-PURSE & UGC-CPEPA Supported Department
- Centre for Research in Nanoscience & Nanotechnology (CRNN)
- University of Calcutta
- Kolkata – 700009
| | - Siddhartha Datta
- Department of Physiology
- DST-PURSE & UGC-CPEPA Supported Department
- Centre for Research in Nanoscience & Nanotechnology (CRNN)
- University of Calcutta
- Kolkata – 700009
| | - Ujjal Das
- Department of Physiology
- DST-PURSE & UGC-CPEPA Supported Department
- Centre for Research in Nanoscience & Nanotechnology (CRNN)
- University of Calcutta
- Kolkata – 700009
| | - Sushobhan Biswas
- Department of Physiology
- DST-PURSE & UGC-CPEPA Supported Department
- Centre for Research in Nanoscience & Nanotechnology (CRNN)
- University of Calcutta
- Kolkata – 700009
| | - Nilkanta Chakrabarti
- Department of Physiology
- DST-PURSE & UGC-CPEPA Supported Department
- Centre for Research in Nanoscience & Nanotechnology (CRNN)
- University of Calcutta
- Kolkata – 700009
| | - Sanjit Dey
- Department of Physiology
- DST-PURSE & UGC-CPEPA Supported Department
- Centre for Research in Nanoscience & Nanotechnology (CRNN)
- University of Calcutta
- Kolkata – 700009
| |
Collapse
|
20
|
Das DN, Naik PP, Nayak A, Panda PK, Mukhopadhyay S, Sinha N, Bhutia SK. Bacopa monnieri
-Induced Protective Autophagy Inhibits Benzo[a]pyrene-Mediated Apoptosis. Phytother Res 2016; 30:1794-1801. [DOI: 10.1002/ptr.5682] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/08/2016] [Accepted: 06/20/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Durgesh Nandini Das
- Department of Life Science; National Institute of Technology; Rourkela India
| | | | - Aditi Nayak
- Department of Life Science; National Institute of Technology; Rourkela India
| | | | | | - Niharika Sinha
- Department of Life Science; National Institute of Technology; Rourkela India
| | - Sujit K Bhutia
- Department of Life Science; National Institute of Technology; Rourkela India
| |
Collapse
|
21
|
Hosamani R, Krishna G, Muralidhara. Standardized Bacopa monnieri extract ameliorates acute paraquat-induced oxidative stress, and neurotoxicity in prepubertal mice brain. Nutr Neurosci 2016; 19:434-446. [PMID: 25153704 DOI: 10.1179/1476830514y.0000000149] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Bacopa monnieri (BM), an ayurvedic medicinal plant, has attracted considerable interest owing to its diverse neuropharmacological properties. Epidemiological studies have shown significant correlation between paraquat (PQ) exposure and increased risk for Parkinson's disease in humans. In this study, we examined the propensity of standardized extract of BM to attenuate acute PQ-induced oxidative stress, mitochondrial dysfunctions, and neurotoxicity in the different brain regions of prepubertal mice. METHODS To test this hypothesis, prepubertal mice provided orally with standardized BM extract (200 mg/kg body weight/day for 4 weeks) were challenged with an acute dose (15 mg/kg body weight, intraperitoneally) of PQ after 3 hours of last dose of extract. Mice were sacrificed after 48 hours of PQ injection, and different brain regions were isolated and subjected to biochemical determinations/quantification of central monoamine (dopamine, DA) levels (by high-performance liquid chromatography). RESULTS Oral supplementation of BM for 4 weeks resulted in significant reduction in the basal levels of oxidative markers such as reactive oxygen species (ROS), malondialdehyde (MDA), and hydroperoxides (HP) in various brain regions. PQ at the administered dose elicited marked oxidative stress within 48 hours in various brain regions of mice. However, BM prophylaxis significantly improved oxidative homeostasis by restoring PQ-induced ROS, MDA, and HP levels and also by attenuating mitochondrial dysfunction. Interestingly, BM supplementation restored the activities of cholinergic enzymes along with the restoration of striatal DA levels among the PQ-treated mice. DISCUSSION Based on these findings, we infer that BM prophylaxis renders the brain resistant to PQ-mediated oxidative perturbations and thus may be better exploited as a preventive approach to protect against oxidative-mediated neuronal dysfunctions.
Collapse
Affiliation(s)
- Ravikumar Hosamani
- a Biochemistry and Nutrition Department , CSIR-Central Food Technological Research Institute , Mysore , Karnataka , India.,b Space Bioscience Division , NASA Ames Research Center , Moffett Field , CA , USA
| | - Gokul Krishna
- a Biochemistry and Nutrition Department , CSIR-Central Food Technological Research Institute , Mysore , Karnataka , India
| | - Muralidhara
- a Biochemistry and Nutrition Department , CSIR-Central Food Technological Research Institute , Mysore , Karnataka , India
| |
Collapse
|
22
|
Mondal P, Trigun SK. Bacopa monnieri Extract (CDRI-08) Modulates the NMDA Receptor Subunits and nNOS-Apoptosis Axis in Cerebellum of Hepatic Encephalopathy Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:535013. [PMID: 26413124 PMCID: PMC4564645 DOI: 10.1155/2015/535013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/09/2015] [Accepted: 02/09/2015] [Indexed: 02/07/2023]
Abstract
Hepatic encephalopathy (HE), characterized by impaired cerebellar functions during chronic liver failure (CLF), involves N-methyl-D-aspartate receptor (NMDAR) overactivation in the brain cells. Bacopa monnieri (BM) extract is a known neuroprotectant. The present paper evaluates whether BM extract is able to modulate the two NMDAR subunits (NR2A and NR2B) and its downstream mediators in cerebellum of rats with chronic liver failure (CLF), induced by administration of 50 mg/kg bw thioacetamide (TAA) i.p. for 14 days, and in the TAA group rats orally treated with 200 mg/kg bw BM extract from days 8 to 14. NR2A is known to impart neuroprotection and that of NR2B induces neuronal death during NMDAR activation. Neuronal nitric oxide synthase- (nNOS-) apoptosis pathway is known to mediate NMDAR led excitotoxicity. The level of NR2A was found to be significantly reduced with a concomitant increase of NR2B in cerebellum of the CLF rats. This was consistent with significantly enhanced nNOS expression, nitric oxide level, and reduced Bcl2/Bax ratio. Moreover, treatment with BM extract reversed the NR2A/NR2B ratio and also normalized the levels of nNOS-apoptotic factors in cerebellum of those rats. The findings suggest modulation of NR2A and NR2B expression by BM extract to prevent neurochemical alterations associated with HE.
Collapse
Affiliation(s)
- Papia Mondal
- Biochemistry Section, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Surendra Kumar Trigun
- Biochemistry Section, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
23
|
Zhong P, Wu L, Qian Y, Fang Q, Liang D, Wang J, Zeng C, Wang Y, Liang G. Blockage of ROS and NF-κB-mediated inflammation by a new chalcone L6H9 protects cardiomyocytes from hyperglycemia-induced injuries. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1230-41. [PMID: 25736300 DOI: 10.1016/j.bbadis.2015.02.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 01/09/2023]
Abstract
Increased oxidative stress and cardiac inflammation have been implicated in the pathogenesis of diabetic cardiomyopathy (DCM). We previously found that a novel chalcone derivative, L6H9, was able to reduce LPS-induced inflammatory response in macrophages. This study was designed to investigate its protective effects on DCM and the underlying mechanisms. H9C2 cells were cultured with DMEM containing 33 mmol/L of glucose in the presence or absence of L6H9. Pretreatment with L6H9 significantly reduced high glucose-induced inflammatory cytokine expression, ROS level increase, mitochondrial dysfunction, cell apoptosis, fibrosis, and hypertrophy in H9c2 cells, which may be mediated by NF-κB inhibition and Nrf2 activation. In mice with STZ-induced diabetes, oral administration of L6H9 at 20 mg/kg/day for 8 weeks significantly decreased the cardiac cytokine and ROS level, accompanied by decreasing cardiac apoptosis and hypertrophy, and, finally, improved histological abnormalities and fibrosis, without affecting the hyperglycemia. L6H9 also attenuated the diabetes-induced NF-κB activation and Nrf2 decrease in diabetic hearts. These results strongly suggest that L6H9 may have great therapeutic potential in the treatment of DCM via blockage of inflammation and oxidative stress. This study also provides a deeper understanding of the regulatory role of Nrf2 and NF-κB in DCM, indicating that they may be important therapeutic targets for diabetic complications.
Collapse
Affiliation(s)
- Peng Zhong
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Cardiology, the 5th Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Lianpin Wu
- Department of Cardiology, the 2nd Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuanyuan Qian
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qilu Fang
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dandan Liang
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingying Wang
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chunlai Zeng
- Department of Cardiology, the 5th Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
24
|
Solid-Phase Microextraction Combined with GC–MS for Determination of Diquat and Paraquat Residues in Water. Chromatographia 2014. [DOI: 10.1007/s10337-014-2809-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
25
|
Siddique YH, Mujtaba SF, Faisal M, Jyoti S, Naz F. The effect of Bacopa monnieri leaf extract on dietary supplementation in transgenic Drosophila model of Parkinson's disease. Eur J Integr Med 2014. [DOI: 10.1016/j.eujim.2014.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|