1
|
Abdollahzadeh Hamzekalayi MR, Hooshyari Ardakani M, Moeini Z, Rezaei R, Hamidi N, Rezaei Somee L, Zolfaghar M, Darzi R, Kamalipourazad M, Riazi G, Meknatkhah S. A systematic review of novel cannabinoids and their targets: Insights into the significance of structure in activity. Eur J Pharmacol 2024; 976:176679. [PMID: 38821167 DOI: 10.1016/j.ejphar.2024.176679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/26/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
To provide a comprehensive framework of the current information on the potency and efficacy of interaction between phyto- and synthetic cannabinoids and their respective receptors, an electronic search of the PubMed, Scopus, and EMBASE literature was performed. Experimental studies included reports of mechanistic data providing affinity, efficacy, and half-maximal effective concentration (EC50). Among the 108 included studies, 174 structures, and 16 targets were extracted. The most frequent ligands belonged to the miscellaneous category with 40.2% followed by phytocannabinoid-similar, indole-similar, and pyrrole-similar structures with an abundance of 17.8%, 16.6%, and 12% respectively. 64.8% of structures acted as agonists, 17.1 % appeared as inverse agonists, 10.8% as antagonists, and 7.2% of structures were reported with antagonist/inverse agonist properties. Our outcomes identify the affinity, EC50, and efficacy of the interactions between cannabinoids and their corresponding receptors and the subsequent response, evaluated in the available evidence. Considering structures' significance and very important effects of on the activities, the obtained results also provide clues to drug repurposing.
Collapse
Affiliation(s)
| | | | - Zahra Moeini
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Reza Rezaei
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Negin Hamidi
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Leila Rezaei Somee
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mahdis Zolfaghar
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Raheleh Darzi
- Department of Plant Science, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Kamalipourazad
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modarres University, Tehran, Iran
| | - Gholamhossein Riazi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Sogol Meknatkhah
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
2
|
Ötvös F, Szűcs E, Urai Á, Köteles I, Szabó PT, Varga ZK, Gombos D, Hosztafi S, Benyhe S. Synthesis and biochemical evaluation of 17-N-beta-aminoalkyl-4,5α-epoxynormorphinans. Sci Rep 2023; 13:20305. [PMID: 37985681 PMCID: PMC10660610 DOI: 10.1038/s41598-023-46317-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
Opiate alkaloids and their synthetic derivatives are still widely used in pain management, drug addiction, and abuse. To avoid serious side effects, compounds with properly designed pharmacological profiles at the opioid receptor subtypes are long needed. Here a series of 17-N-substituted derivatives of normorphine and noroxymorphone analogues with five- and six-membered ring substituents have been synthesized for structure-activity study. Some compounds showed nanomolar affinity to MOR, DOR and KOR in in vitro competition binding experiments with selective agonists [3H]DAMGO, [3H]Ile5,6-deltorphin II and [3H]HS665, respectively. Pharmacological characterization of the compounds in G-protein signaling was determined by [35S]GTPγS binding assays. The normorphine analogues showed higher affinity to KOR compared to MOR and DOR, while most of the noroxymorphone derivatives did not bind to KOR. The presence of 14-OH substituent resulted in a shift in the pharmacological profiles in the agonist > partial agonist > antagonist direction compared to the parent compounds. A molecular docking-based in silico method was also applied to estimate the pharmacological profile of the compounds. Docking energies and the patterns of the interacting receptor atoms, obtained with experimentally determined active and inactive states of MOR, were used to explain the observed pharmacological features of the compounds.
Collapse
Affiliation(s)
- Ferenc Ötvös
- Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary.
| | - Edina Szűcs
- Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
| | - Ákos Urai
- Institute of Pharmaceutical Chemistry, Semmelweis Medical University, Hőgyes Endre Utca 9, 1092, Budapest, Hungary
| | - István Köteles
- Institute of Pharmaceutical Chemistry, Semmelweis Medical University, Hőgyes Endre Utca 9, 1092, Budapest, Hungary
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 19, 41390, Göteborg, Sweden
| | - Pál T Szabó
- Research Centre for Natural Sciences, MS Metabolomics Research Laboratory, Magyar Tudósok Krt. 2, 1117, Budapest, Hungary
| | - Zsuzsanna Katalin Varga
- Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
- Theoretical Medical Doctoral School, Faculty of Medicine, University of Szeged, 6726, Szeged, Hungary
| | - Dávid Gombos
- Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
- Theoretical Medical Doctoral School, Faculty of Medicine, University of Szeged, 6726, Szeged, Hungary
| | - Sándor Hosztafi
- Institute of Pharmaceutical Chemistry, Semmelweis Medical University, Hőgyes Endre Utca 9, 1092, Budapest, Hungary
| | - Sándor Benyhe
- Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary.
| |
Collapse
|
3
|
Kozsurek M, Király K, Gyimesi K, Lukácsi E, Fekete C, Gereben B, Mohácsik P, Helyes Z, Bölcskei K, Tékus V, Pap K, Szűcs E, Benyhe S, Imre T, Szabó P, Gajtkó A, Holló K, Puskár Z. Unique, Specific CART Receptor-Independent Regulatory Mechanism of CART(55-102) Peptide in Spinal Nociceptive Transmission and Its Relation to Dipeptidyl-Peptidase 4 (DDP4). Int J Mol Sci 2023; 24:ijms24020918. [PMID: 36674439 PMCID: PMC9865214 DOI: 10.3390/ijms24020918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
Cocaine- and amphetamine-regulated transcript (CART) peptides are involved in several physiological and pathological processes, but their mechanism of action is unrevealed due to the lack of identified receptor(s). We provided evidence for the antihyperalgesic effect of CART(55-102) by inhibiting dipeptidyl-peptidase 4 (DPP4) in astrocytes and consequently reducing neuroinflammation in the rat spinal dorsal horn in a carrageenan-evoked inflammation model. Both naturally occurring CART(55-102) and CART(62-102) peptides are present in the spinal cord. CART(55-102) is not involved in acute nociception but regulates spinal pain transmission during peripheral inflammation. While the full-length peptide with a globular motif contributes to hyperalgesia, its N-terminal inhibits this process. Although the anti-hyperalgesic effects of CART(55-102), CART(55-76), and CART(62-76) are blocked by opioid receptor antagonists in our inflammatory models, but not in neuropathic Seltzer model, none of them bind to any opioid or G-protein coupled receptors. DPP4 interacts with Toll-like receptor 4 (TLR4) signalling in spinal astrocytes and enhances the TLR4-induced expression of interleukin-6 and tumour necrosis factor alpha contributing to inflammatory pain. Depending on the state of inflammation, CART(55-102) is processed in the spinal cord, resulting in the generation of biologically active isoleucine-proline-isoleucine (IPI) tripeptide, which inhibits DPP4, leading to significantly decreased glia-derived cytokine production and hyperalgesia.
Collapse
Affiliation(s)
- Márk Kozsurek
- Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094 Budapest, Hungary
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Klára Gyimesi
- Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094 Budapest, Hungary
- Department of Anaesthesiology, Uzsoki Hospital, H-1145 Budapest, Hungary
| | - Erika Lukácsi
- Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094 Budapest, Hungary
| | - Csaba Fekete
- Laboratory of Integrative Neuroendocrinology, Institute of Experimental Medicine, Eötvös Loránd Research Network, H-1083 Budapest, Hungary
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Balázs Gereben
- Laboratory of Integrative Neuroendocrinology, Institute of Experimental Medicine, Eötvös Loránd Research Network, H-1083 Budapest, Hungary
| | - Petra Mohácsik
- Laboratory of Integrative Neuroendocrinology, Institute of Experimental Medicine, Eötvös Loránd Research Network, H-1083 Budapest, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, University of Pécs, H-7624 Pécs, Hungary
- National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
- Chronic Pain Research Group, Eötvös Loránd Research Network, H-7624 Pécs, Hungary
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, University of Pécs, H-7624 Pécs, Hungary
| | - Valéria Tékus
- Department of Pharmacology and Pharmacotherapy, University of Pécs, H-7624 Pécs, Hungary
- National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| | - Károly Pap
- Department of Orthopaedics and Traumatology, Uzsoki Hospital, H-1145 Budapest, Hungary
| | - Edina Szűcs
- Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, H-6726 Szeged, Hungary
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, H-6726 Szeged, Hungary
| | - Tímea Imre
- MS Metabolomics Laboratory, Instrumentation Centre, Research Centre for Natural Sciences, Eötvös Loránd Research Network, H-1117 Budapest, Hungary
| | - Pál Szabó
- MS Metabolomics Laboratory, Instrumentation Centre, Research Centre for Natural Sciences, Eötvös Loránd Research Network, H-1117 Budapest, Hungary
| | - Andrea Gajtkó
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Krisztina Holló
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Zita Puskár
- Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094 Budapest, Hungary
- Correspondence:
| |
Collapse
|
4
|
Lipiński PFJ, Matalińska J. Fentanyl Structure as a Scaffold for Opioid/Non-Opioid Multitarget Analgesics. Int J Mol Sci 2022; 23:ijms23052766. [PMID: 35269909 PMCID: PMC8910985 DOI: 10.3390/ijms23052766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
One of the strategies in the search for safe and effective analgesic drugs is the design of multitarget analgesics. Such compounds are intended to have high affinity and activity at more than one molecular target involved in pain modulation. In the present contribution we summarize the attempts in which fentanyl or its substructures were used as a μ-opioid receptor pharmacophoric fragment and a scaffold to which fragments related to non-opioid receptors were attached. The non-opioid ‘second’ targets included proteins as diverse as imidazoline I2 binding sites, CB1 cannabinoid receptor, NK1 tachykinin receptor, D2 dopamine receptor, cyclooxygenases, fatty acid amide hydrolase and monoacylglycerol lipase and σ1 receptor. Reviewing the individual attempts, we outline the chemistry, the obtained pharmacological properties and structure-activity relationships. Finally, we discuss the possible directions for future work.
Collapse
|
5
|
Pharmacological Evidence on Augmented Antiallodynia Following Systemic Co-Treatment with GlyT-1 and GlyT-2 Inhibitors in Rat Neuropathic Pain Model. Int J Mol Sci 2021; 22:ijms22052479. [PMID: 33804568 PMCID: PMC7957511 DOI: 10.3390/ijms22052479] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
The limited effect of current medications on neuropathic pain (NP) has initiated large efforts to develop effective treatments. Animal studies showed that glycine transporter (GlyT) inhibitors are promising analgesics in NP, though concerns regarding adverse effects were raised. We aimed to study NFPS and Org-25543, GlyT-1 and GlyT-2 inhibitors, respectively and their combination in rat mononeuropathic pain evoked by partial sciatic nerve ligation. Cerebrospinal fluid (CSF) glycine content was also determined by capillary electrophoresis. Subcutaneous (s.c.) 4 mg/kg NFPS or Org-25543 showed analgesia following acute administration (30-60 min). Small doses of each compound failed to produce antiallodynia up to 180 min after the acute administration. However, NFPS (1 mg/kg) produced antiallodynia after four days of treatment. Co-treatment with subanalgesic doses of NFPS (1 mg/kg) and Org-25543 (2 mg/kg) produced analgesia at 60 min and thereafter meanwhile increased significantly the CSF glycine content. This combination alleviated NP without affecting motor function. Test compounds failed to activate G-proteins in spinal cord. To the best of our knowledge for the first time we demonstrated augmented analgesia by combining GlyT-1 and 2 inhibitors. Increased CSF glycine content supports involvement of glycinergic system. Combining selective GlyT inhibitors or developing non-selective GlyT inhibitors might have therapeutic value in NP.
Collapse
|
6
|
Ruz-Maldonado I, Liu B, Atanes P, Pingitore A, Huang GC, Choudhary P, Persaud SJ. The cannabinoid ligands SR141716A and AM251 enhance human and mouse islet function via GPR55-independent signalling. Cell Mol Life Sci 2020; 77:4709-4723. [PMID: 31925452 PMCID: PMC7599183 DOI: 10.1007/s00018-019-03433-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/02/2019] [Accepted: 12/18/2019] [Indexed: 12/16/2022]
Abstract
AIMS Endocannabinoids are lipid mediators involved in the regulation of glucose homeostasis. They interact with the canonical cannabinoid receptors CB1 and CB2, and it is now apparent that some cannabinoid receptor ligands are also agonists at GPR55. Thus, CB1 antagonists such as SR141716A, also known as rimonabant, and AM251 act as GPR55 agonists in some cell types. The complex pharmacological properties of cannabinoids make it difficult to fully identify the relative importance of CB1 and GPR55 in the functional effects of SR141716A, and AM251. Here, we determine whether SR141716A and AM251 regulation of mouse and human islet function is through their action as GPR55 agonists. METHODS Islets isolated from Gpr55+/+ and Gpr55-/- mice and human donors were incubated in the absence or presence of 10 µM SR141716A or AM251, concentrations that are known to activate GPR55. Insulin secretion, cAMP, IP1, apoptosis and β-cell proliferation were quantified by standard techniques. RESULTS Our results provide the first evidence that SR141716A and AM251 are not GPR55 agonists in islets, as their effects are maintained in islets isolated from Gpr55-/- mice. Their signalling through Gq-coupled cascades to induce insulin secretion and human β-cell proliferation, and protect against apoptosis in vitro, indicate that they have direct beneficial effects on islet function. CONCLUSION These observations may be useful in directing development of peripherally restricted novel therapeutics that are structurally related to SR141716A and AM251, and which potentiate glucose-induced insulin secretion and stimulate β-cell proliferation.
Collapse
Affiliation(s)
- Inmaculada Ruz-Maldonado
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 1UL, UK.
| | - Bo Liu
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 1UL, UK
| | - Patricio Atanes
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 1UL, UK
| | - Attilio Pingitore
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 1UL, UK
| | - Guo Cai Huang
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 1UL, UK
| | - Pratik Choudhary
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 1UL, UK
| | - Shanta J Persaud
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
7
|
Zádor F, Nagy-Grócz G, Dvorácskó S, Bohár Z, Cseh EK, Zádori D, Párdutz Á, Szűcs E, Tömböly C, Borsodi A, Benyhe S, Vécsei L. Long-term systemic administration of kynurenic acid brain region specifically elevates the abundance of functional CB 1 receptors in rats. Neurochem Int 2020; 138:104752. [PMID: 32445659 DOI: 10.1016/j.neuint.2020.104752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022]
Abstract
Kynurenic acid (KYNA) is one of the most significant metabolite of the kynurenine pathway both in terms of functional and potential therapeutic value. It is an N-methyl-D-aspartate (NMDA) receptor antagonist, but it can also activate the G-protein coupled receptor 35 (GPR35), which shares several structural and functional properties with cannabinoid receptors. Previously our group demonstrated that systemic chronic KYNA treatment altered opioid receptor G-protein activity. Opioid receptors also overlap in many features with cannabinoid receptors. Thus, our aim was to examine the direct in vitro and systemic, chronic in vivo effect of KYNA on type 1 cannabinoid receptor (CB1R) binding and G-protein activity. Based on competition and [35S]GTPγS G-protein binding assays in rat brain, KYNA alone did not show significant binding towards the CB1R, nor did it alter CB1R ligand binding and agonist activity in vitro. When rats were chronically treated with KYNA (single daily, i.p., 128 mg/kg for 9 days), the KYNA plasma and cerebrospinal fluid levels significantly increased compared to vehicle treated group. Furthermore, in G-protein binding assays, in the whole brain the amount of G-proteins in basal and in maximum activity coupled to the CB1R also increased due to the treatment. At the same time, the overall stimulatory properties of the receptor remained unaltered in vehicle and KYNA treated samples. Similar observations were made in rat hippocampus, but not in the cortex and brainstem. In saturation binding assays the density of CB1Rs in rat whole brain and hippocampus were also significantly enhanced after the same treatment, without significantly affecting ligand binding affinity. Thus, KYNA indirectly and brain region specifically increases the abundance of functional CB1Rs, without modifying the overall binding and activity of the receptor. Supposedly, this can be a compensatory mechanism on the part of the endocannabinoid system induced by the long-term KYNA exposure.
Collapse
Affiliation(s)
- Ferenc Zádor
- Institute of Biochemistry, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726, Hungary.
| | - Gábor Nagy-Grócz
- Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Temesvári krt. 31, H-6726, Hungary; Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Semmelweis u. 6, H-6725, Hungary
| | - Szabolcs Dvorácskó
- Institute of Biochemistry, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726, Hungary; Department of Medical Chemistry University of Szeged, Szeged, Dóm tér 8, H-6720, Hungary
| | - Zsuzsanna Bohár
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Semmelweis u. 6, H-6725, Hungary; MTA-SZTE Neuroscience Research Group, University of Szeged, H-6725, Szeged, Hungary
| | - Edina Katalin Cseh
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Semmelweis u. 6, H-6725, Hungary
| | - Dénes Zádori
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Semmelweis u. 6, H-6725, Hungary
| | - Árpád Párdutz
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Semmelweis u. 6, H-6725, Hungary
| | - Edina Szűcs
- Institute of Biochemistry, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726, Hungary; Doctoral School of Theoretical Medicine, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720, Szeged, Hungary
| | - Csaba Tömböly
- Institute of Biochemistry, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726, Hungary
| | - Anna Borsodi
- Institute of Biochemistry, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726, Hungary
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726, Hungary
| | - László Vécsei
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Semmelweis u. 6, H-6725, Hungary; MTA-SZTE Neuroscience Research Group, University of Szeged, H-6725, Szeged, Hungary
| |
Collapse
|
8
|
Comparisons of In Vivo and In Vitro Opioid Effects of Newly Synthesized 14-Methoxycodeine-6- O-sulfate and Codeine-6- O-sulfate. Molecules 2020; 25:molecules25061370. [PMID: 32192229 PMCID: PMC7144380 DOI: 10.3390/molecules25061370] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 12/13/2022] Open
Abstract
The present work represents the in vitro (potency, affinity, efficacy) and in vivo (antinociception, constipation) opioid pharmacology of the novel compound 14-methoxycodeine-6-O-sulfate (14-OMeC6SU), compared to the reference compounds codeine-6-O-sulfate (C6SU), codeine and morphine. Based on in vitro tests (mouse and rat vas deferens, receptor binding and [35S]GTPγS activation assays), 14-OMeC6SU has µ-opioid receptor-mediated activity, displaying higher affinity, potency and efficacy than the parent compounds. In rats, 14-OMeC6SU showed stronger antinociceptive effect in the tail-flick assay than codeine and was equipotent to morphine, whereas C6SU was less efficacious after subcutaneous (s.c.) administration. Following intracerebroventricular injection, 14-OMeC6SU was more potent than morphine. In the Complete Freund’s Adjuvant-induced inflammatory hyperalgesia, 14-OMeC6SU and C6SU in s.c. doses up to 6.1 and 13.2 µmol/kg, respectively, showed peripheral antihyperalgesic effect, because co-administered naloxone methiodide, a peripherally acting opioid receptor antagonist antagonized the measured antihyperalgesia. In addition, s.c. C6SU showed less pronounced inhibitory effect on the gastrointestinal transit than 14-OMeC6SU, codeine and morphine. This study provides first evidence that 14-OMeC6SU is more effective than codeine or C6SU in vitro and in vivo. Furthermore, despite C6SU peripheral antihyperalgesic effects with less gastrointestinal side effects the superiority of 14-OMeC6SU was obvious throughout the present study.
Collapse
|
9
|
Szűcs E, Stefanucci A, Dimmito MP, Zádor F, Pieretti S, Zengin G, Vécsei L, Benyhe S, Nalli M, Mollica A. Discovery of Kynurenines Containing Oligopeptides as Potent Opioid Receptor Agonists. Biomolecules 2020; 10:biom10020284. [PMID: 32059524 PMCID: PMC7072329 DOI: 10.3390/biom10020284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 12/17/2022] Open
Abstract
Kynurenine (kyn) and kynurenic acid (kyna) are well-defined metabolites of tryptophan catabolism collectively known as "kynurenines", which exert regulatory functions in host-microbiome signaling, immune cell response, and neuronal excitability. Kynurenine containing peptides endowed with opioid receptor activity have been isolated from natural organisms; thus, in this work, novel opioid peptide analogs incorporating L-kynurenine (L-kyn) and kynurenic acid (kyna) in place of native amino acids have been designed and synthesized with the aim to investigate the biological effect of these modifications. The kyna-containing peptide (KA1) binds selectively the m-opioid receptor with a Ki = 1.08 ± 0.26 (selectivity ratio m/d/k = 1:514:10000), while the L-kyn-containing peptide (K6) shows a mixed binding affinity for m, d, and k-opioid receptors, with efficacy and potency (Emax = 209.7 + 3.4%; LogEC50 = -5.984 + 0.054) higher than those of the reference compound DAMGO. This novel oligopeptide exhibits a strong antinociceptive effect after i.c.v. and s.c. administrations in in vivo tests, according to good stability in human plasma (t1/2 = 47 min).
Collapse
Affiliation(s)
- Edina Szűcs
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt. 62., H-6726 Szeged, Hungary; (E.S.); (F.Z.); (S.B.)
- Doctoral School of Theoretical Medicine, Faculty of Medicine, University of Szeged, Dómtér 10, H-6720 Szeged, Hungary
| | - Azzurra Stefanucci
- Department of Pharmacy, University of Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy; (M.P.D.); (A.M.)
- Correspondence:
| | - Marilisa Pia Dimmito
- Department of Pharmacy, University of Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy; (M.P.D.); (A.M.)
| | - Ferenc Zádor
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt. 62., H-6726 Szeged, Hungary; (E.S.); (F.Z.); (S.B.)
| | - Stefano Pieretti
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42250 Konya, Turkey;
| | - László Vécsei
- MTA-SZTE Neuroscience Research Group, Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary;
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt. 62., H-6726 Szeged, Hungary; (E.S.); (F.Z.); (S.B.)
| | - Marianna Nalli
- Laboratory affiliated with the Institute Pasteur Italy-Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Roma, Italy;
| | - Adriano Mollica
- Department of Pharmacy, University of Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy; (M.P.D.); (A.M.)
| |
Collapse
|
10
|
Discovery of Novel µ-Opioid Receptor Inverse Agonist from a Combinatorial Library of Tetrapeptides through Structure-Based Virtual Screening. Molecules 2019; 24:molecules24213872. [PMID: 31717871 PMCID: PMC6865014 DOI: 10.3390/molecules24213872] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 11/18/2022] Open
Abstract
Morphine, oxycodone, fentanyl, and other µ-opioid receptors (MOR) agonists have been used for decades in antinociceptive therapies. However, these drugs are associated with numerous side effects, such as euphoria, addiction, respiratory depression, and adverse gastrointestinal reactions, thus, circumventing these drawbacks is of extensive importance. With the aim of identifying novel peptide ligands endowed with MOR inhibitory activity, we developed a virtual screening protocol, including receptor-based pharmacophore screening, docking studies, and molecular dynamics simulations, which was used to filter an in-house built virtual library of tetrapeptide ligands. The three top-scored compounds were synthesized and subjected to biological evaluation, revealing the identity of a hit compound (peptide 1) endowed with appreciable MOR inverse agonist effect and selectivity over δ-opioid receptors. These results confirmed the reliability of our computational approach and provided a promising starting point for the development of new potent MOR modulators.
Collapse
|
11
|
Balogh M, Zádor F, Zádori ZS, Shaqura M, Király K, Mohammadzadeh A, Varga B, Lázár B, Mousa SA, Hosztafi S, Riba P, Benyhe S, Gyires K, Schäfer M, Fürst S, Al-Khrasani M. Efficacy-Based Perspective to Overcome Reduced Opioid Analgesia of Advanced Painful Diabetic Neuropathy in Rats. Front Pharmacol 2019; 10:347. [PMID: 31024314 PMCID: PMC6465774 DOI: 10.3389/fphar.2019.00347] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/20/2019] [Indexed: 12/20/2022] Open
Abstract
Reduction of the opioid analgesia in diabetic neuropathic pain (DNP) results from μ-opioid receptor (MOR) reserve reduction. Herein, we examined the antinociceptive and antiallodynic actions of a novel opioid agonist 14-O-methymorphine-6-O-sulfate (14-O-MeM6SU), fentanyl and morphine in rats with streptozocin-evoked DNP of 9–12 weeks following their systemic administration. The antinociceptive dose-response curve of morphine but not of 14-O-MeM6SU or fentanyl showed a significant right-shift in diabetic compared to non-diabetic rats. Only 14-O-MeM6SU produced antiallodynic effects in doses matching antinociceptive doses obtained in non-diabetic rats. Co-administered naloxone methiodide (NAL-M), a peripherally acting opioid receptor antagonist failed to alter the antiallodynic effect of test compounds, indicating the contribution of central opioid receptors. Reduction in spinal MOR binding sites and loss in MOR immunoreactivity of nerve terminals in the spinal cord and dorsal root ganglia in diabetic rats were observed. G-protein coupling assay revealed low efficacy character for morphine and high efficacy character for 14-O-MeM6SU or fentanyl at spinal or supraspinal levels (Emax values). Furthermore, at the spinal level only 14-O-MeM6SU showed equal efficacy in G-protein activation in tissues of diabetic- and non-diabetic animals. Altogether, the reduction of spinal opioid receptors concomitant with reduced analgesic effect of morphine may be circumvented by using high efficacy opioids, which provide superior analgesia over morphine. In conclusion, the reduction in the analgesic action of opioids in DNP might be a consequence of MOR reduction, particularly in the spinal cord. Therefore, developing opioids of high efficacy might provide analgesia exceeding that of currently available opioids.
Collapse
Affiliation(s)
- Mihály Balogh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ferenc Zádor
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Zoltán S Zádori
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Mohammed Shaqura
- Department of Anaesthesiology and Intensive Care Medicine, Charité University Berlin, Berlin, Germany
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Amir Mohammadzadeh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Bence Varga
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Bernadette Lázár
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Shaaban A Mousa
- Department of Anaesthesiology and Intensive Care Medicine, Charité University Berlin, Berlin, Germany
| | - Sándor Hosztafi
- Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, Hungary
| | - Pál Riba
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Klára Gyires
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Michael Schäfer
- Department of Anaesthesiology and Intensive Care Medicine, Charité University Berlin, Berlin, Germany
| | - Susanna Fürst
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
12
|
Porcu A, Melis M, Turecek R, Ullrich C, Mocci I, Bettler B, Gessa GL, Castelli MP. Rimonabant, a potent CB1 cannabinoid receptor antagonist, is a Gα i/o protein inhibitor. Neuropharmacology 2018; 133:107-120. [PMID: 29407764 DOI: 10.1016/j.neuropharm.2018.01.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 01/10/2018] [Accepted: 01/18/2018] [Indexed: 12/25/2022]
Abstract
Rimonabant is a potent and selective cannabinoid CB1 receptor antagonist widely used in animal and clinical studies. Besides its antagonistic properties, numerous studies have shown that, at micromolar concentrations rimonabant behaves as an inverse agonist at CB1 receptors. The mechanism underpinning this activity is unclear. Here we show that micromolar concentrations of rimonabant inhibited Gαi/o-type G proteins, resulting in a receptor-independent block of G protein signaling. Accordingly, rimonabant decreased basal and agonist stimulated [35S]GTPγS binding to cortical membranes of CB1- and GABAB-receptor KO mice and Chinese Hamster Ovary (CHO) cell membranes stably transfected with GABAB or D2 dopamine receptors. The structural analog of rimonabant, AM251, decreased basal and baclofen-stimulated GTPγS binding to rat cortical and CHO cell membranes expressing GABAB receptors. Rimonabant prevented G protein-mediated GABAB and D2 dopamine receptor signaling to adenylyl cyclase in Human Embryonic Kidney 293 cells and to G protein-coupled inwardly rectifying K+ channels (GIRK) in midbrain dopamine neurons of CB1 KO mice. Rimonabant suppressed GIRK gating induced by GTPγS in CHO cells transfected with GIRK, consistent with a receptor-independent action. Bioluminescent resonance energy transfer (BRET) measurements in living CHO cells showed that, in presence or absence of co-expressed GABAB receptors, rimonabant stabilized the heterotrimeric Gαi/o-protein complex and prevented conformational rearrangements induced by GABAB receptor activation. Rimonabant failed to inhibit Gαs-mediated signaling, supporting its specificity for Gαi/o-type G proteins. The inhibition of Gαi/o protein provides a new site of rimonabant action that may help to understand its pharmacological and toxicological effects occurring at high concentrations.
Collapse
Affiliation(s)
- Alessandra Porcu
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy; Department of Biomedicine, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Miriam Melis
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Rostislav Turecek
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Celine Ullrich
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Ignazia Mocci
- Institute of Translational Pharmacology, National Research Council of Italy (CNR) U.O.S. of Cagliari, 09010, Pula, Italy
| | - Bernhard Bettler
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Gian Luigi Gessa
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy; Guy Everett Laboratory, University of Cagliari, 09042, Monserrato, Italy; Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy; Center of Excellence "Neurobiology of Addiction", University of Cagliari, 09042, Monserrato, Italy
| | - M Paola Castelli
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy; Center of Excellence "Neurobiology of Addiction", University of Cagliari, 09042, Monserrato, Italy.
| |
Collapse
|
13
|
Dadam F, Zádor F, Caeiro X, Szűcs E, Erdei AI, Samavati R, Gáspár R, Borsodi A, Vivas L. The effect of increased NaCl intake on rat brain endogenous μ-opioid receptor signalling. J Neuroendocrinol 2018; 30:e12585. [PMID: 29486102 DOI: 10.1111/jne.12585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 01/20/2023]
Abstract
Numerous studies demonstrate the significant role of central β-endorphin and its receptor, the μ-opioid receptor (MOR), in sodium intake regulation. The present study aimed to investigate the possible relationship between chronic high-NaCl intake and brain endogenous MOR functioning. We examined whether short-term (4 days) obligatory salt intake (2% NaCl solution) in rats induces changes in MOR mRNA expression, G-protein activity and MOR binding capacity in brain regions involved in salt intake regulation. Plasma osmolality and electrolyte concentrations after sodium overload and the initial and final body weight of the animals were also examined. After 4 days of obligatory hypertonic sodium chloride intake, there was clearly no difference in MOR mRNA expression and G-protein activity in the median preoptic nucleus (MnPO). In the brainstem, MOR binding capacity also remained unaltered, although the maximal efficacy of MOR G-protein significantly increased. Finally, no significant alterations were observed in plasma osmolality and electrolyte concentrations. Interestingly, animals that received sodium gained significantly less weight than control animals. In conclusion, we found no significant alterations in the MnPO and brainstem in the number of available cell surface MORs or de novo syntheses of MOR after hypertonic sodium intake. The increased MOR G-protein activity following acute sodium overconsumption may participate in the maintenance of normal blood pressure levels and/or in enhancing sodium taste aversion and sodium overload-induced anorexia.
Collapse
Affiliation(s)
- F Dadam
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - F Zádor
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - X Caeiro
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - E Szűcs
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - A I Erdei
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - R Samavati
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - R Gáspár
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - A Borsodi
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - L Vivas
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
14
|
Erdei AI, Borbély A, Magyar A, Taricska N, Perczel A, Zsíros O, Garab G, Szűcs E, Ötvös F, Zádor F, Balogh M, Al-Khrasani M, Benyhe S. Biochemical and pharmacological characterization of three opioid-nociceptin hybrid peptide ligands reveals substantially differing modes of their actions. Peptides 2018; 99:205-216. [PMID: 29038035 DOI: 10.1016/j.peptides.2017.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 12/23/2022]
Abstract
In an attempt to design opioid-nociceptin hybrid peptides, three novel bivalent ligands, H-YGGFGGGRYYRIK-NH2, H-YGGFRYYRIK-NH2 and Ac-RYYRIKGGGYGGFL-OH were synthesized and studied by biochemical, pharmacological, biophysical and molecular modelling tools. These chimeric molecules consist of YGGF sequence, a crucial motif in the N-terminus of natural opioid peptides, and Ac-RYYRIK-NH2, which was isolated from a combinatorial peptide library as an antagonist or partial agonist that inhibits the biological activity of the endogenously occurring heptadecapeptide nociceptin. Solution structures for the peptides were studied by analysing their circular dichroism spectra. Receptor binding affinities were measured by equilibrium competition experiments using four highly selective radioligands. G-protein activating properties of the multitarget peptides were estimated in [35S]GTPγS binding tests. The three compounds were also measured in electrically stimulated mouse vas deferens (MVD) bioassay. H-YGGFGGGRYYRIK-NH2 (BA55), carrying N-terminal opioid and C-terminal nociceptin-like sequences interconnected with GGG tripeptide spacer displayed a tendency of having either unordered or β-sheet structures, was moderately potent in MVD and possessed a NOP/KOP receptor preference. A similar peptide without spacer H-YGGFRYYRIK-NH2 (BA62) exhibited the weakest effect in MVD, more α-helical periodicity was present in its structure and it exhibited the most efficacious agonist actions in the G-protein stimulation assays. The third hybrid peptide Ac-RYYRIKGGGYGGFL-OH (BA61) unexpectedly displayed opioid receptor affinities, because the opioid message motif is hidden within the C-terminus. The designed chimeric peptide ligands presented in this study accommodate well into a group of multitarget opioid compounds that include opioid-non-opioid peptide dimer analogues, dual non-peptide dimers and mixed peptide- non-peptide bifunctional ligands.
Collapse
Affiliation(s)
- Anna I Erdei
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726, Szeged, Temesvári krt. 62., Hungary
| | - Adina Borbély
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, H-1117, Budapest, Pázmány Péter sétány 1/A, Hungary
| | - Anna Magyar
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, H-1117, Budapest, Pázmány Péter sétány 1/A, Hungary
| | - Nóra Taricska
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány P. sétány 1/A, Budapest, H-1117, Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány P. sétány 1/A, Budapest, H-1117, Hungary; MTA-ELTE Protein Modelling Research Group, Institute of Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, H-1117, Budapest, Pázmány Péter sétány 1/A, Hungary
| | - Ottó Zsíros
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, H-6726, Szeged, Temesvári krt. 62., Hungary
| | - Győző Garab
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, H-6726, Szeged, Temesvári krt. 62., Hungary
| | - Edina Szűcs
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726, Szeged, Temesvári krt. 62., Hungary
| | - Ferenc Ötvös
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726, Szeged, Temesvári krt. 62., Hungary
| | - Ferenc Zádor
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726, Szeged, Temesvári krt. 62., Hungary
| | - Mihály Balogh
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1445, Budapest, Nagyvárad tér 4., Hungary
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1445, Budapest, Nagyvárad tér 4., Hungary
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726, Szeged, Temesvári krt. 62., Hungary.
| |
Collapse
|
15
|
Abstract
The opioid receptor system plays a major role in the regulation of mood, reward, and pain. The opioid receptors therefore make attractive targets for the treatment of many different conditions, including pain, depression, and addiction. However, stimulation or blockade of any one opioid receptor type often leads to on-target adverse effects that limit the clinical utility of a selective opioid agonist or antagonist. Literature precedent suggests that the opioid receptors do not act in isolation and that interactions among the opioid receptors and between the opioid receptors and other proteins may produce clinically useful targets. Multifunctional ligands have the potential to elicit desired outcomes with reduced adverse effects by allowing for the activation of specific receptor conformations and/or signaling pathways promoted as a result of receptor oligomerization or crosstalk. In this chapter, we describe several classes of multifunctional ligands that interact with at least one opioid receptor. These ligands have been designed for biochemical exploration and the treatment of a wide variety of conditions, including multiple kinds of pain, depression, anxiety, addiction, and gastrointestinal disorders. The structures, pharmacological utility, and therapeutic drawbacks of these classes of ligands are discussed.
Collapse
Affiliation(s)
- Jessica P Anand
- Department of Pharmacology, Medical School and the Edward F. Domino Research Center, University of Michigan, Ann Arbor, MI, USA.
| | - Deanna Montgomery
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
16
|
Soderstrom K, Soliman E, Van Dross R. Cannabinoids Modulate Neuronal Activity and Cancer by CB1 and CB2 Receptor-Independent Mechanisms. Front Pharmacol 2017; 8:720. [PMID: 29066974 PMCID: PMC5641363 DOI: 10.3389/fphar.2017.00720] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/25/2017] [Indexed: 12/29/2022] Open
Abstract
Cannabinoids include the active constituents of Cannabis or are molecules that mimic the structure and/or function of these Cannabis-derived molecules. Cannabinoids produce many of their cellular and organ system effects by interacting with the well-characterized CB1 and CB2 receptors. However, it has become clear that not all effects of cannabinoid drugs are attributable to their interaction with CB1 and CB2 receptors. Evidence now demonstrates that cannabinoid agents produce effects by modulating activity of the entire array of cellular macromolecules targeted by other drug classes, including: other receptor types; ion channels; transporters; enzymes, and protein- and non-protein cellular structures. This review summarizes evidence for these interactions in the CNS and in cancer, and is organized according to the cellular targets involved. The CNS represents a well-studied area and cancer is emerging in terms of understanding mechanisms by which cannabinoids modulate their activity. Considering the CNS and cancer together allow identification of non-cannabinoid receptor targets that are shared and divergent in both systems. This comparative approach allows the identified targets to be compared and contrasted, suggesting potential new areas of investigation. It also provides insight into the diverse sources of efficacy employed by this interesting class of drugs. Obtaining a comprehensive understanding of the diverse mechanisms of cannabinoid action may lead to the design and development of therapeutic agents with greater efficacy and specificity for their cellular targets.
Collapse
Affiliation(s)
- Ken Soderstrom
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Eman Soliman
- Department of Pharmacology and Toxicology, Zagazig University, Zagazig, Egypt
| | - Rukiyah Van Dross
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
- Center for Health Disparities, East Carolina University, Greenville, NC, United States
| |
Collapse
|
17
|
Zádor F, Balogh M, Váradi A, Zádori ZS, Király K, Szűcs E, Varga B, Lázár B, Hosztafi S, Riba P, Benyhe S, Fürst S, Al-Khrasani M. 14-O-Methylmorphine: A Novel Selective Mu-Opioid Receptor Agonist with High Efficacy and Affinity. Eur J Pharmacol 2017; 814:264-273. [PMID: 28864212 DOI: 10.1016/j.ejphar.2017.08.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 12/18/2022]
Abstract
14-O-methyl (14-O-Me) group in morphine-6-O-sulfate (M6SU) or oxymorphone has been reported to be essential for enhanced affinity, potency and antinociceptive effect of these opioids. Herein we report on the pharmacological properties (potency, affinity and efficacy) of the new compound, 14-O-methylmorphine (14-O-MeM) in in vitro. Additionally, we also investigated the antinociceptive effect of the novel compound, as well as its inhibitory action on gastrointestinal transit in in vivo. The potency and efficacy of test compound were measured by [35S]GTPγS binding, isolated mouse vas deferens (MVD) and rat vas deferens (RVD) assays. The affinity of 14-O-MeM for opioid receptors was assessed by radioligand binding and MVD assays. The antinociceptive and gastrointestinal effects of the novel compound were evaluated in the rat tail-flick test and charcoal meal test, respectively. Morphine, DAMGO, Ile5,6 deltorphin II, deltorphin II and U-69593 were used as reference compounds. 14-O-MeM showed higher efficacy (Emax) and potency (EC50) than morphine in MVD, RVD or [35S]GTPγS binding. In addition, 14-O-MeM compared to morphine showed higher affinity for μ-opioid receptor (MOR). In vivo, in rat tail-flick test 14-O-MeM proved to be stronger antinociceptive agent than morphine after peripheral or central administration. Additionally, both compounds inhibited the gastrointestinal peristalsis. However, when the antinociceptive and antitransit doses for each test compound are compared, 14-O-MeM proved to have slightly more favorable pharmacological profile. Our results affirm that 14-O-MeM, an opioid of high efficacy and affinity for MOR can be considered as a novel analgesic agent of potential clinical value.
Collapse
Affiliation(s)
- Ferenc Zádor
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62., H- 6726 Szeged, Hungary
| | - Mihály Balogh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - András Váradi
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre u., 9. H-1092 Budapest, Hungary
| | - Zoltán S Zádori
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Edina Szűcs
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62., H- 6726 Szeged, Hungary
| | - Bence Varga
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Bernadette Lázár
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Sándor Hosztafi
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre u., 9. H-1092 Budapest, Hungary
| | - Pál Riba
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62., H- 6726 Szeged, Hungary
| | - Susanna Fürst
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary.
| |
Collapse
|
18
|
Mollica A, Pelliccia S, Famiglini V, Stefanucci A, Macedonio G, Chiavaroli A, Orlando G, Brunetti L, Ferrante C, Pieretti S, Novellino E, Benyhe S, Zador F, Erdei A, Szucs E, Samavati R, Dvrorasko S, Tomboly C, Ragno R, Patsilinakos A, Silvestri R. Exploring the first Rimonabant analog-opioid peptide hybrid compound, as bivalent ligand for CB1 and opioid receptors. J Enzyme Inhib Med Chem 2017; 32:444-451. [PMID: 28097916 PMCID: PMC6009935 DOI: 10.1080/14756366.2016.1260565] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Cannabinoid (CB) and opioid systems are both involved in analgesia, food intake, mood and behavior. Due to the co-localization of µ-opioid (MOR) and CB1 receptors in various regions of the central nervous system (CNS) and their ability to form heterodimers, bivalent ligands targeting to both these systems may be good candidates to investigate the existence of possible cross-talking or synergistic effects, also at sub-effective doses. In this work, we selected from a small series of new Rimonabant analogs one CB1R reverse agonist to be conjugated to the opioid fragment Tyr-D-Ala-Gly-Phe-NH2. The bivalent compound (9) has been used for in vitro binding assays, for in vivo antinociception models and in vitro hypothalamic perfusion test, to evaluate the neurotransmitters release.
Collapse
Affiliation(s)
- Adriano Mollica
- a Dipartimento di Farmacia , Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | - Sveva Pelliccia
- b Dipartimento di Chimica e Tecnologie del Farmaco , Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma , Roma , Italy
| | - Valeria Famiglini
- b Dipartimento di Chimica e Tecnologie del Farmaco , Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma , Roma , Italy
| | - Azzurra Stefanucci
- a Dipartimento di Farmacia , Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | - Giorgia Macedonio
- a Dipartimento di Farmacia , Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | - Annalisa Chiavaroli
- a Dipartimento di Farmacia , Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | - Giustino Orlando
- a Dipartimento di Farmacia , Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | - Luigi Brunetti
- a Dipartimento di Farmacia , Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | - Claudio Ferrante
- a Dipartimento di Farmacia , Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | - Stefano Pieretti
- c Dipartimento del Farmaco , Istituto Superiore di Sanità , Rome , Italy
| | - Ettore Novellino
- d Dipartimento di Farmacia , Università di Napoli "Federico II" , Naples , Italy
| | - Sandor Benyhe
- e Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Ferenc Zador
- e Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Anna Erdei
- e Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Edina Szucs
- e Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Reza Samavati
- e Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Szalbolch Dvrorasko
- e Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Csaba Tomboly
- e Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Rino Ragno
- f Dipartimento di Chimica e Tecnologie del Farmaco , Rome Center for Molecular Design, Sapienza Università di Roma , Roma , Italy.,g Alchemical Dynamics s.r.l , Roma , Italy
| | - Alexandros Patsilinakos
- f Dipartimento di Chimica e Tecnologie del Farmaco , Rome Center for Molecular Design, Sapienza Università di Roma , Roma , Italy.,g Alchemical Dynamics s.r.l , Roma , Italy
| | - Romano Silvestri
- b Dipartimento di Chimica e Tecnologie del Farmaco , Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma , Roma , Italy
| |
Collapse
|
19
|
Hajagos-Toth J, Bota J, Ducza E, Csanyi A, Tiszai Z, Borsodi A, Samavati R, Benyhe S, Gaspar R. The effects of estrogen on the α2-adrenergic receptor subtypes in rat uterine function in late pregnancy in vitro. Croat Med J 2017; 57:100-9. [PMID: 27106352 PMCID: PMC4856191 DOI: 10.3325/cmj.2016.57.100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM To assess the effect of 17β-estradiol pretreatment on the function and expression of α2- adrenergic receptors (ARs) subtypes in late pregnancy in rats. METHODS Sprague-Dawley rats (n=37) were treated with 17β-estradiol for 4 days starting from the 18th day of pregnancy. The myometrial expression of the α2-AR subtypes was determined by real time polymerase chain reaction and Western blot analysis. In vitro contractions were stimulated with (-)-noradrenaline, and its effect was modified with the selective antagonists BRL 44408 (α2A), ARC 239 (α2B/C), and spiroxatrine (α2A). The cyclic adenosine monophosphate (cAMP) accumulation was also measured. The activated G-protein level was investigated by guanosine 5'-O-[gamma-thio]triphosphate (GTPγS) binding assay. RESULTS 17β-estradiol pretreatment decreased the contractile effect of (-)-noradrenaline via the α2-ARs, and abolished the contractile effect via the α2B-ARs. All the α2-AR subtypes' mRNA was significantly decreased. 17β-estradiol pretreatment significantly increased the myometrial cAMP level in the presence of BRL 44408 (P=0.001), ARC 239 (P=0.007), and spiroxatrine (P=0.045), but did not modify it in the presence of spiroxatrine + BRL 44408 combination (P=0.073). It also inhibited the G-protein-activating effect of (-)-noradrenaline by 25% in the presence of BRL 44408 + spiroxatrine combination. CONCLUSIONS The expression of the α2-AR subtypes is sensitive to 17β-estradiol, which decreases the contractile response of (-)-noradrenaline via the α2B-AR subtype, and might cause changes in G-protein signaling pathway. Estrogen dysregulation may be responsible for preterm labor or uterine inertia via the α2-ARs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Robert Gaspar
- Robert Gaspar, Szeged, H-6701, P.O. Box 121, Hungary,
| |
Collapse
|
20
|
Dvorácskó S, Tömböly C, Berkecz R, Keresztes A. Investigation of receptor binding and functional characteristics of hemopressin(1-7). Neuropeptides 2016; 58:15-22. [PMID: 26895730 DOI: 10.1016/j.npep.2016.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 02/01/2016] [Accepted: 02/01/2016] [Indexed: 11/23/2022]
Abstract
The orally active, α-hemoglobin derived hemopressin (PVNFKFLSH, Hp(1-9)) and its truncated (PVNFKFL, Hp(1-7) and PVNFKF, Hp(1-6)) and extended ((R)VDPVNFKFLSH, VD-Hp(1-9) and RVD-Hp(1-9)) derivatives have been postulated to be the endogenous peptide ligands of the cannabinoid receptor type 1 (CB1). In an attempt to create a versatile peptidic research tool for the direct study of the CB1 receptor-peptide ligand interactions, Hp(1-7) was radiolabeled and in vitro characterized in rat and CB1 knockout mouse brain membrane homogenates. In saturation and competition radioligand binding studies, [(3)H]Hp(1-7) labeled membrane receptors with high densities and displayed specific binding to a receptor protein, but seemingly not to the cannabinoid type 1, in comparison the results with the prototypic JWH-018, AM251, rimonabant, Hp(1-9) and RVD-Hp(1-9) (pepcan 12) ligands in both rat brain and CB1 knockout mouse brain homogenates. Furthermore, functional [(35)S]GTP γS binding studies revealed that Hp(1-7) and Hp(1-9) only weakly activated G-proteins in both brain membrane homogenates. Based on our findings and the latest literature data, we assume that the Hp(1-7) peptide fragment may be an allosteric ligand or indirect regulator of the endocannabinoid system rather than an endogenous ligand of the CB1 receptor.
Collapse
Affiliation(s)
- Szabolcs Dvorácskó
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Csaba Tömböly
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Róbert Berkecz
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Attila Keresztes
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary.
| |
Collapse
|
21
|
Hajagos-Tóth J, Bóta J, Ducza E, Samavati R, Borsodi A, Benyhe S, Gáspár R. The effects of progesterone on the alpha2-adrenergic receptor subtypes in late-pregnant uterine contractions in vitro. Reprod Biol Endocrinol 2016; 14:33. [PMID: 27301276 PMCID: PMC4908715 DOI: 10.1186/s12958-016-0166-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/09/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The adrenergic system and progesterone play major roles in the control of the uterine function. Our aims were to clarify the changes in function and expression of the α2-adrenergic receptor (AR) subtypes after progesterone pretreatment in late pregnancy. METHODS Sprague Dawley rats from pregnancy day 15 were treated with progesterone for 7 days. The myometrial expressions of the α2-AR subtypes were determined by RT-PCR and Western blot analysis. In vitro contractions were stimulated with (-)-noradrenaline, and its effect was modified with the selective antagonists BRL 44408 (α2A), ARC 239 (α2B/C) and spiroxatrine (α2A). The accumulation of myometrial cAMP was also measured. The activated G-protein level was investigated via GTPγS binding assays. RESULTS Progesterone pretreatment decreased the contractile effect of (-)-noradrenaline through the α2-ARs. The most significant reduction was found through the α2B-ARs. The mRNA of all of the α2-AR subtypes was increased. Progesterone pretreatment increased the myometrial cAMP level in the presence of BRL 44408 (p < 0.001), spiroxatrine (p < 0.001) or the spiroxatrine + BRL 44408 combination (p < 0.05). Progesterone pretreatment increased the G-protein-activating effect of (-)-noradrenaline in the presence of the spiroxatrine + BRL 44408 combination. CONCLUSIONS The expression of the α2-AR subtypes is progesterone-sensitive. It decreases the contractile response of (-)-noradrenaline through the α2B-AR subtype, blocks the function of α2A-AR subtype and alters the G protein coupling of these receptors, promoting a Gs-dependent pathway. A combination of α2C-AR agonists and α2B-AR antagonists with progesterone could be considered for the treatment or prevention of preterm birth.
Collapse
Affiliation(s)
- Judit Hajagos-Tóth
- />Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, H-6701 P.O. Box 121, Hungary
| | - Judit Bóta
- />Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, H-6701 P.O. Box 121, Hungary
| | - Eszter Ducza
- />Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, H-6701 P.O. Box 121, Hungary
| | - Reza Samavati
- />Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvari krt 62, Szeged, H-6726 Hungary
| | - Anna Borsodi
- />Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvari krt 62, Szeged, H-6726 Hungary
| | - Sándor Benyhe
- />Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvari krt 62, Szeged, H-6726 Hungary
| | - Róbert Gáspár
- />Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, H-6701 P.O. Box 121, Hungary
| |
Collapse
|
22
|
Monti L, Stefanucci A, Pieretti S, Marzoli F, Fidanza L, Mollica A, Mirzaie S, Carradori S, De Petrocellis L, Schiano Moriello A, Benyhe S, Zádor F, Szűcs E, Ötvös F, Erdei AI, Samavati R, Dvorácskó S, Tömböly C, Novellino E. Evaluation of the analgesic effect of 4-anilidopiperidine scaffold containing ureas and carbamates. J Enzyme Inhib Med Chem 2016; 31:1638-47. [DOI: 10.3109/14756366.2016.1160902] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Ludovica Monti
- Dipartimento di Chimica e Tecnologia del Farmaco, Sapienza Università di Roma, Rome, Italy,
| | | | - Stefano Pieretti
- Istituto Superiore di Sanità, Dipartimento del Farmaco, Rome, Italy,
| | - Francesca Marzoli
- Istituto Superiore di Sanità, Dipartimento del Farmaco, Rome, Italy,
| | - Lorenzo Fidanza
- Istituto Superiore di Sanità, Dipartimento del Farmaco, Rome, Italy,
| | - Adriano Mollica
- Dipartimento di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Chieti, Italy,
| | - Sako Mirzaie
- Department of Biochemistry, Islamic Azad University, Sanandaj, Iran,
| | - Simone Carradori
- Dipartimento di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Chieti, Italy,
| | - Luciano De Petrocellis
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Naples, Italy,
| | - Aniello Schiano Moriello
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Naples, Italy,
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary, and
| | - Ferenc Zádor
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary, and
| | - Edina Szűcs
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary, and
| | - Ferenc Ötvös
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary, and
| | - Anna I. Erdei
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary, and
| | - Reza Samavati
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary, and
| | - Szabolcs Dvorácskó
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary, and
| | - Csaba Tömböly
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary, and
| | - Ettore Novellino
- Dipartimento di Farmacia, Università di Napoli “Federico II”, Naples, Italy
| |
Collapse
|
23
|
Bóta J, Hajagos-Tóth J, Ducza E, Samavati R, Borsodi A, Benyhe S, Gáspár R. The effects of female sexual hormones on the expression and function of α1A- and α1D-adrenoceptor subtypes in the late-pregnant rat myometrium. Eur J Pharmacol 2015; 769:177-84. [PMID: 26593425 DOI: 10.1016/j.ejphar.2015.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 11/04/2015] [Accepted: 11/12/2015] [Indexed: 02/02/2023]
Abstract
The aim of the study was to investigate the roles of α1-adrenoceptor subtypes in the last-day pregnant rat uterus in vitro by the administration of subtype-specific antagonists (the α1A-adrenoceptor antagonist WB 4101 and the α1D-adrenoceptor antagonist BMY 7378) after 17β-estradiol or progesterone pretreatment. In isolated organ bath studies, contractions were elicited with (-)-noradrenaline (10(-8)-10(-5)M) in the presence of propranolol (10(-5)M) and yohimbine (10(-6)M) in order to avoid β-, and α2-adrenergic action. The myometrial expressions of the α1-adrenoceptor subtypes were determined by means of the real time reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting techniques. The activated G protein levels were investigated through radiolabelled GTP binding assays. Both 17β-estradiol and progesterone pretreatment changed the myometrial contracting effect of (-)-noradrenaline. In the presence of WB 4101, progesterone pretreatment decreased the (-)-noradrenaline-induced myometrial contraction. In the presence of BMY 7378, both the 17β-estradiol and the progesterone pretreatment reduced the effect of (-)-noradrenaline. The mRNA and protein expressions of the α1A-adrenoceptors were decreased after 17β-estradiol pretreatment. (-)-Noradrenaline increased the [(35)S]GTPγS binding of the α1-adrenoceptors, which was most markedly elevated by progesterone. Pertussis toxin inhibited the [(35)S]GTPγS binding-stimulating effect of (-)-noradrenaline, indicating the role of Gi proteins in the signal mechanisms. 17β-estradiol pretreatment blocks the expression of the α1A-adrenoceptors, whereas it does not influence the expression of the α1D-adrenoceptors. Progesterone pretreatment does not have any effect on the myometrial mRNA and protein expressions of the α1-adrenoceptors, but it alters the G protein coupling of these receptors, promoting a Gi-dependent pathway.
Collapse
Affiliation(s)
- Judit Bóta
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary.
| | - Judit Hajagos-Tóth
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary.
| | - Eszter Ducza
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary.
| | - Reza Samavati
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary.
| | - Anna Borsodi
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary.
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary.
| | - Róbert Gáspár
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary.
| |
Collapse
|
24
|
Zádor F, Wollemann M. Receptome: Interactions between three pain-related receptors or the "Triumvirate" of cannabinoid, opioid and TRPV1 receptors. Pharmacol Res 2015; 102:254-63. [PMID: 26520391 DOI: 10.1016/j.phrs.2015.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 12/27/2022]
Abstract
A growing amount of data demonstrates the interactions between cannabinoid, opioid and the transient receptor potential (TRP) vanilloid type 1 (TRPV1) receptors. These interactions can be bidirectional, inhibitory or excitatory, acute or chronic in their nature, and arise both at the molecular level (structurally and functionally) and in physiological processes, such as pain modulation or perception. The interactions of these three pain-related receptors may also reserve important and new therapeutic applications for the treatment of chronic pain or inflammation. In this review, we summarize the main findings on the interactions between the cannabinoid, opioid and the TRPV1 receptor regarding to pain modulation.
Collapse
Affiliation(s)
- Ferenc Zádor
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary.
| | - Maria Wollemann
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary
| |
Collapse
|
25
|
Krug RG, Clark KJ. Elucidating cannabinoid biology in zebrafish (Danio rerio). Gene 2015; 570:168-79. [PMID: 26192460 DOI: 10.1016/j.gene.2015.07.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 07/11/2015] [Indexed: 02/01/2023]
Abstract
The number of annual cannabinoid users exceeds 100,000,000 globally and an estimated 9% of these individuals will suffer from dependency. Although exogenous cannabinoids, like those contained in marijuana, are known to exert their effects by disrupting the endocannabinoid system, a dearth of knowledge exists about the potential toxicological consequences on public health. Conversely, the endocannabinoid system represents a promising therapeutic target for a plethora of disorders because it functions to endogenously regulate a vast repertoire of physiological functions. Accordingly, the rapidly expanding field of cannabinoid biology has sought to leverage model organisms in order to provide both toxicological and therapeutic insights about altered endocannabinoid signaling. The primary goal of this manuscript is to review the existing field of cannabinoid research in the genetically tractable zebrafish model-focusing on the cannabinoid receptor genes, cnr1 and cnr2, and the genes that produce enzymes for synthesis and degradation of the cognate ligands anandamide and 2-arachidonylglycerol. Consideration is also given to research that has studied the effects of exposure to exogenous phytocannabinoids and synthetic cannabinoids that are known to interact with cannabinoid receptors. These results are considered in the context of either endocannabinoid gene expression or endocannabinoid gene function, and are integrated with findings from rodent studies. This provides the framework for a discussion of how zebrafish may be leveraged in the future to provide novel toxicological and therapeutic insights in the field of cannabinoid biology, which has become increasingly significant given recent trends in cannabis legislation.
Collapse
Affiliation(s)
- Randall G Krug
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Mayo Graduate School, Neurobiology of Disease Track, Mayo Clinic, Rochester, MN, USA
| | - Karl J Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
26
|
Low dosage of rimonabant leads to anxiolytic-like behavior via inhibiting expression levels and G-protein activity of kappa opioid receptors in a cannabinoid receptor independent manner. Neuropharmacology 2015; 89:298-307. [DOI: 10.1016/j.neuropharm.2014.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/19/2014] [Accepted: 10/04/2014] [Indexed: 12/15/2022]
|