1
|
Damiani D, Baggiani M, Della Vecchia S, Naef V, Santorelli FM. Pluripotent Stem Cells as a Preclinical Cellular Model for Studying Hereditary Spastic Paraplegias. Int J Mol Sci 2024; 25:2615. [PMID: 38473862 DOI: 10.3390/ijms25052615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Hereditary spastic paraplegias (HSPs) comprise a family of degenerative diseases mostly hitting descending axons of corticospinal neurons. Depending on the gene and mutation involved, the disease could present as a pure form with limb spasticity, or a complex form associated with cerebellar and/or cortical signs such as ataxia, dysarthria, epilepsy, and intellectual disability. The progressive nature of HSPs invariably leads patients to require walking canes or wheelchairs over time. Despite several attempts to ameliorate the life quality of patients that have been tested, current therapeutical approaches are just symptomatic, as no cure is available. Progress in research in the last two decades has identified a vast number of genes involved in HSP etiology, using cellular and animal models generated on purpose. Although unanimously considered invaluable tools for basic research, those systems are rarely predictive for the establishment of a therapeutic approach. The advent of induced pluripotent stem (iPS) cells allowed instead the direct study of morphological and molecular properties of the patient's affected neurons generated upon in vitro differentiation. In this review, we revisited all the present literature recently published regarding the use of iPS cells to differentiate HSP patient-specific neurons. Most studies have defined patient-derived neurons as a reliable model to faithfully mimic HSP in vitro, discovering original findings through immunological and -omics approaches, and providing a platform to screen novel or repurposed drugs. Thereby, one of the biggest hopes of current HSP research regards the use of patient-derived iPS cells to expand basic knowledge on the disease, while simultaneously establishing new therapeutic treatments for both generalized and personalized approaches in daily medical practice.
Collapse
Affiliation(s)
- Devid Damiani
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
| | - Matteo Baggiani
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
| | - Stefania Della Vecchia
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Valentina Naef
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
| | - Filippo Maria Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
| |
Collapse
|
2
|
Gragnaniello V, Gueraldi D, Puma A, Commone A, Cazzorla C, Loro C, Porcù E, Stornaiuolo M, Miglioranza P, Salviati L, Wanders RJA, Burlina A. Abnormal activation of MAPKs pathways and inhibition of autophagy in a group of patients with Zellweger spectrum disorders and X-linked adrenoleukodystrophy. Orphanet J Rare Dis 2023; 18:358. [PMID: 37974207 PMCID: PMC10652488 DOI: 10.1186/s13023-023-02940-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/01/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Zellweger spectrum disorders (ZSD) and X-linked adrenoleukodystrophy (X-ALD) are inherited metabolic diseases characterized by dysfunction of peroxisomes, that are essential for lipid metabolism and redox balance. Oxidative stress has been reported to have a significant role in the pathogenesis of neurodegenerative diseases such as peroxisomal disorders, but little is known on the intracellular activation of Mitogen-activated protein kinases (MAPKs). Strictly related to oxidative stress, a correct autophagic machinery is essential to eliminated oxidized proteins and damaged organelles. The aims of the current study are to investigate a possible implication of MAPK pathways and autophagy impairment as markers and putative therapeutic targets in X-ALD and ZSDs. METHODS Three patients with ZSD (2 M, 1 F; age range 8-17 years) and five patients with X-ALD (5 M; age range 5- 22 years) were enrolled. A control group included 6 healthy volunteers. To evaluate MAPKs pathway, p-p38 and p-JNK were assessed by western blot analysis on peripheral blood mononuclear cells. LC3II/LC3I ratio was evaluated ad marker of autophagy. RESULTS X-ALD and ZSD patients showed elevated p-p38 values on average 2- fold (range 1.21- 2.84) and 3.30-fold (range 1.56- 4.26) higher when compared with controls, respectively. p-JNK expression was on average 12-fold (range 2.20-19.92) and 2.90-fold (range 1.43-4.24) higher in ZSD and X-ALD patients than in controls. All patients had altered autophagic flux as concluded from the reduced LC3II/I ratio. CONCLUSIONS In our study X-ALD and ZSD patients present an overactivation of MAPK pathways and an inhibition of autophagy. Considering the absence of successful therapies and the growing interest towards new therapies with antioxidants and autophagy inducers, the identification and validation of biomarkers to monitor optimal dosing and biological efficacy of the treatments is of prime interest.
Collapse
Affiliation(s)
- Vincenza Gragnaniello
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University - Hospital of Padova, Padua, Italy
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Daniela Gueraldi
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University - Hospital of Padova, Padua, Italy
| | - Andrea Puma
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University - Hospital of Padova, Padua, Italy
| | - Anna Commone
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University - Hospital of Padova, Padua, Italy
| | - Chiara Cazzorla
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University - Hospital of Padova, Padua, Italy
| | - Christian Loro
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University - Hospital of Padova, Padua, Italy
| | - Elena Porcù
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University - Hospital of Padova, Padua, Italy
| | - Maria Stornaiuolo
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University - Hospital of Padova, Padua, Italy
| | - Paolo Miglioranza
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University - Hospital of Padova, Padua, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women's and Children's Health, and Myology Center, University of Padova, Padua, Italy
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Alberto Burlina
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University - Hospital of Padova, Padua, Italy.
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University of Padua, Padua, Italy.
| |
Collapse
|
3
|
Semikasev E, Ahlemeyer B, Acker T, Schänzer A, Baumgart-Vogt E. Rise and fall of peroxisomes during Alzheimer´s disease: a pilot study in human brains. Acta Neuropathol Commun 2023; 11:80. [PMID: 37170361 PMCID: PMC10176950 DOI: 10.1186/s40478-023-01567-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
Peroxisomes are eukaryotic organelles that rapidly change in number depending on the metabolic requirement of distinct cell types and tissues. In the brain, these organelles are essential for neuronal migration and myelination during development and their dysfunction is associated with age-related neurodegenerative diseases. Except for one study analysing ABCD3-positive peroxisomes in neurons of the frontal neocortex of Alzheimer disease (AD) patients, no data on other brain regions or peroxisomal proteins are available. In the present morphometric study, we quantified peroxisomes labelled with PEX14, a metabolism-independent peroxisome marker, in 13 different brain areas of 8 patients each either with low, intermediate or high AD neuropathological changes compared to 10 control patients. Classification of patient samples was based on the official ABC score. During AD-stage progression, the peroxisome density decreased in the area entorhinalis, parietal/occipital neocortex and cerebellum, it increased and in later AD-stage patients decreased in the subiculum and hippocampal CA3 region, frontal neocortex and pontine gray and it remained unchanged in the gyrus dentatus, temporal neocortex, striatum and inferior olive. Moreover, we investigated the density of catalase-positive peroxisomes in a subset of patients (> 80 years), focussing on regions with significant alterations of PEX14-positive peroxisomes. In hippocampal neurons, only one third of all peroxisomes contained detectable levels of catalase exhibiting constant density at all AD stages. Whereas the density of all peroxisomes in neocortical neurons was only half of the one of the hippocampus, two thirds of them were catalase-positive exhibiting increased levels at higher ABC scores. In conclusion, we observed spatiotemporal differences in the response of peroxisomes to different stages of AD-associated pathologies.
Collapse
Affiliation(s)
- Eugen Semikasev
- Division of Medical Cell Biology, Institute for Anatomy and Cell Biology, Justus-Liebig University, Aulweg 123, 35385, Giessen, Germany
- Department of Neurosurgery, University Hospital of Giessen, Klinikstr. 33, 35392, Giessen, Germany
| | - Barbara Ahlemeyer
- Division of Medical Cell Biology, Institute for Anatomy and Cell Biology, Justus-Liebig University, Aulweg 123, 35385, Giessen, Germany.
| | - Till Acker
- Institute of Neuropathology, Justus-Liebig University, Arndtstr. 16, 35392, Giessen, Germany
| | - Anne Schänzer
- Institute of Neuropathology, Justus-Liebig University, Arndtstr. 16, 35392, Giessen, Germany
| | - Eveline Baumgart-Vogt
- Division of Medical Cell Biology, Institute for Anatomy and Cell Biology, Justus-Liebig University, Aulweg 123, 35385, Giessen, Germany.
| |
Collapse
|
4
|
Nuebel E, Morgan JT, Fogarty S, Winter JM, Lettlova S, Berg JA, Chen YC, Kidwell CU, Maschek JA, Clowers KJ, Argyriou C, Chen L, Wittig I, Cox JE, Roh-Johnson M, Braverman N, Bonkowsky J, Gygi SP, Rutter J. The biochemical basis of mitochondrial dysfunction in Zellweger Spectrum Disorder. EMBO Rep 2021; 22:e51991. [PMID: 34351705 DOI: 10.15252/embr.202051991] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 06/21/2021] [Accepted: 07/12/2021] [Indexed: 01/09/2023] Open
Abstract
Peroxisomal biogenesis disorders (PBDs) are genetic disorders of peroxisome biogenesis and metabolism that are characterized by profound developmental and neurological phenotypes. The most severe class of PBDs-Zellweger spectrum disorder (ZSD)-is caused by mutations in peroxin genes that result in both non-functional peroxisomes and mitochondrial dysfunction. It is unclear, however, how defective peroxisomes contribute to mitochondrial impairment. In order to understand the molecular basis of this inter-organellar relationship, we investigated the fate of peroxisomal mRNAs and proteins in ZSD model systems. We found that peroxins were still expressed and a subset of them accumulated on the mitochondrial membrane, which resulted in gross mitochondrial abnormalities and impaired mitochondrial metabolic function. We showed that overexpression of ATAD1, a mitochondrial quality control factor, was sufficient to rescue several aspects of mitochondrial function in human ZSD fibroblasts. Together, these data suggest that aberrant peroxisomal protein localization is necessary and sufficient for the devastating mitochondrial morphological and metabolic phenotypes in ZSDs.
Collapse
Affiliation(s)
- Esther Nuebel
- Howard Hughes Medical Institute, Salt Lake City, UT, USA.,Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.,Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, USA
| | - Jeffrey T Morgan
- Howard Hughes Medical Institute, Salt Lake City, UT, USA.,Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Sarah Fogarty
- Howard Hughes Medical Institute, Salt Lake City, UT, USA.,Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Jacob M Winter
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Sandra Lettlova
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Jordan A Berg
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Yu-Chan Chen
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Chelsea U Kidwell
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - J Alan Maschek
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.,Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA.,Metabolomics, Proteomics and Mass Spectrometry Core Research Facilities, University of Utah, Salt Lake City, UT, USA
| | - Katie J Clowers
- Department of Cell Biology, Harvard University School of Medicine, Boston, MA, USA
| | | | - Lingxiao Chen
- Department of Pathology, McGill University, Montreal, ON, Canada
| | - Ilka Wittig
- Functional Proteomics, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - James E Cox
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.,Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA.,Metabolomics, Proteomics and Mass Spectrometry Core Research Facilities, University of Utah, Salt Lake City, UT, USA
| | - Minna Roh-Johnson
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Nancy Braverman
- Department of Human Genetics, McGill University, Montreal, ON, Canada.,Department of Pediatrics, Research Institute of the McGill University Health Centre, Montreal, ON, Canada
| | - Joshua Bonkowsky
- Primary Children's Hospital, University of Utah, Salt Lake City, UT, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard University School of Medicine, Boston, MA, USA
| | - Jared Rutter
- Howard Hughes Medical Institute, Salt Lake City, UT, USA.,Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.,Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
5
|
Zaki MS, Issa MY, Thomas MM, Elbendary HM, Rafat K, Al Menabawy NM, Selim LA, Ismail S, Abdel-Salam GM, Gleeson JG. A founder mutation in PEX12 among Egyptian patients in peroxisomal biogenesis disorder. Neurol Sci 2020; 42:2737-2745. [PMID: 33123925 DOI: 10.1007/s10072-020-04843-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/17/2020] [Indexed: 10/23/2022]
Abstract
At least 14 distinctive PEX genes function in the biogenesis of peroxisomes. Biallelic alterations in the peroxisomal biogenesis factor 12 (PEX12) gene lead to Zellweger syndrome spectrum (ZSS) with variable clinical expressivity ranging from early lethality to mildly affected with long-term survival. Herein, we define 20 patients derived from 14 unrelated Egyptian families, 19 of which show a homozygous PEX12 in-frame (c.1047_1049del p.(Gln349del)) deletion. This founder mutation, reported rarely outside of Egypt, was associated with a uniformly severe phenotype. Patients showed developmental delay in early life followed by motor and mental regression, progressive hypotonia, unsteadiness, and lack of speech. Seventeen patients had sparse hair or partial alopecia, a striking feature that was not noted previously in PEX12. Neonatal cholestasis was manifested in 2 siblings. Neurodiagnostics showed consistent cerebellar atrophy and variable white matter demyelination, axonal neuropathy in about half, and cardiomyopathy in 10% of patients. A single patient with a compound heterozygous PEX12 mutation exhibited milder features with late childhood onset with gait disturbance and learning disability. Thus, the PEX12 relatively common founder mutation accounts for the majority of PEX12-related disease in Egypt and delineates a uniform clinical and radiographic phenotype.
Collapse
Affiliation(s)
- Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, El-Tahrir Street, Dokki, Cairo, 12311, Egypt.
| | - Mahmoud Y Issa
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, El-Tahrir Street, Dokki, Cairo, 12311, Egypt
| | - Manal M Thomas
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, El-Tahrir Street, Dokki, Cairo, 12311, Egypt
| | - Hasnaa M Elbendary
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, El-Tahrir Street, Dokki, Cairo, 12311, Egypt
| | - Karima Rafat
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, El-Tahrir Street, Dokki, Cairo, 12311, Egypt
| | - Nihal M Al Menabawy
- Neurology and Metabolic Division, Cairo University Children Hospital, Cairo, Egypt
| | - Laila A Selim
- Neurology and Metabolic Division, Cairo University Children Hospital, Cairo, Egypt
| | - Samira Ismail
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, El-Tahrir Street, Dokki, Cairo, 12311, Egypt
| | - Ghada M Abdel-Salam
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, El-Tahrir Street, Dokki, Cairo, 12311, Egypt
| | - Joseph G Gleeson
- Department of Neurosciences, University of California and Rady Children's Institute for Genomic Medicine, Rady Children's Hospital San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
6
|
Jo DS, Park NY, Cho DH. Peroxisome quality control and dysregulated lipid metabolism in neurodegenerative diseases. Exp Mol Med 2020; 52:1486-1495. [PMID: 32917959 PMCID: PMC8080768 DOI: 10.1038/s12276-020-00503-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
In recent decades, the role of the peroxisome in physiology and disease conditions has become increasingly important. Together with the mitochondria and other cellular organelles, peroxisomes support key metabolic platforms for the oxidation of various fatty acids and regulate redox conditions. In addition, peroxisomes contribute to the biosynthesis of essential lipid molecules, such as bile acid, cholesterol, docosahexaenoic acid, and plasmalogen. Therefore, the quality control mechanisms that regulate peroxisome biogenesis and degradation are important for cellular homeostasis. Current evidence indicates that peroxisomal function is often reduced or dysregulated in various human disease conditions, such as neurodegenerative diseases. Here, we review the recent progress that has been made toward understanding the quality control systems that regulate peroxisomes and their pathological implications. Systematic studies of cellular organelles called peroxisomes are needed to determine their influence on the progression of neurodegenerative diseases. Peroxisomes play vital roles in biological processes including the metabolism of lipids and reactive oxygen species, and the synthesis of key molecules, including bile acid and cholesterol. Disruption to peroxisome activity has been linked to metabolic disorders, cancers and neurodegenerative conditions. Dong-Hyung Cho at Kyungpook National University in Daegu, South Korea, and coworkers reviewed current understanding of peroxisome regulation, with a particular focus on brain disorders. The quantity and activity of peroxisomes alter according to environmental and stress cues. The brain is lipid-rich, and even small changes in fatty acid composition may influence neuronal function. Changes in fatty acid metabolism are found in early stage Alzheimer’s and Parkinson’s diseases, but whether peroxisome disruption is responsible requires clarification.
Collapse
Affiliation(s)
- Doo Sin Jo
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Na Yeon Park
- School of Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Dong-Hyung Cho
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, Republic of Korea. .,School of Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
7
|
Abe Y, Tamura S, Honsho M, Fujiki Y. A Mouse Model System to Study Peroxisomal Roles in Neurodegeneration of Peroxisome Biogenesis Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1299:119-143. [PMID: 33417212 DOI: 10.1007/978-3-030-60204-8_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fourteen PEX genes are currently identified as genes responsible for peroxisome biogenesis disorders (PBDs). Patients with PBDs manifest as neurodegenerative symptoms such as neuronal migration defect and malformation of the cerebellum. To address molecular mechanisms underlying the pathogenesis of PBDs, mouse models for the PBDs have been generated by targeted disruption of Pex genes. Pathological phenotypes and metabolic abnormalities in Pex-knockout mice well resemble those of the patients with PBDs. The mice with tissue- or cell type-specific inactivation of Pex genes have also been established by using a Cre-loxP system. The genetically modified mice reveal that pathological phenotypes of PBDs are mediated by interorgan and intercellular communications. Despite the illustrations of detailed pathological phenotypes in the mutant mice, mechanistic insights into pathogenesis of PBDs are still underway. In this chapter, we overview the phenotypes of Pex-inactivated mice and the current understanding of the pathogenesis underlying PBDs.
Collapse
Affiliation(s)
- Yuichi Abe
- Faculty of Arts and Science, Kyushu University, Fukuoka, Japan
| | | | | | - Yukio Fujiki
- Institute of Rheological Functions of Food, Fukuoka, Japan. .,Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
8
|
Docosahexaenoic acid,22:6n-3: Its roles in the structure and function of the brain. Int J Dev Neurosci 2019; 79:21-31. [PMID: 31629800 DOI: 10.1016/j.ijdevneu.2019.10.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
Docosahexaenoic acid,22:6n-3 (DHA) and its metabolites are vital for the structure and functional brain development of the fetus and infants, and also for maintenance of healthy brain function of adults. DHA is thought to be an essential nutrient required throughout the life cycle for the maintenance of overall brain health. The mode of actions of DHA and its derivatives at both cellular and molecular levels in the brain are emerging. DHA is the major prevalent fatty acid in the brain membrane. The brain maintains its fatty acid levels mainly via the uptake of plasma free fatty acids. Therefore, circulating plasma DHA is significantly related to cognitive abilities during ageing and is inversely associated with cognitive decline. The signaling pathways of DHA and its metabolites are involved in neurogenesis, antinociceptive effects, anti-apoptotic effect, synaptic plasticity, Ca2+ homeostasis in brain diseases, and the functioning of nigrostriatal activities. Mechanisms of action of DHA metabolites on various processes in the brain are not yet well known. Epidemiological studies support a link between low habitual intake of DHA and a higher risk of brain disorders. A diet characterized by higher intakes of foods containing high in n-3 fatty acids, and/or lower intake of n-6 fatty acids was strongly associated with a lower Alzheimer's Disease and other brain disorders. Supplementation of DHA improves some behaviors associated with attention deficit hyperactivity disorder, bipolar disorder, schizophrenia, and impulsive behavior, as well as cognition. Nevertheless, the outcomes of trials with DHA supplementation have been controversial. Many intervention studies with DHA have shown an apparent benefit in brain function. However, clinical trials are needed for definitive conclusions. Dietary deficiency of n-3 fatty acids during fetal development in utero and the postnatal state has detrimental effects on cognitive abilities. Further research in humans is required to assess a variety of clinical outcomes, including quality of life and mental status, by supplementation of DHA.
Collapse
|
9
|
Fu Z, Chen CT, Cagnone G, Heckel E, Sun Y, Cakir B, Tomita Y, Huang S, Li Q, Britton W, Cho SS, Kern TS, Hellström A, Joyal JS, Smith LE. Dyslipidemia in retinal metabolic disorders. EMBO Mol Med 2019; 11:e10473. [PMID: 31486227 PMCID: PMC6783651 DOI: 10.15252/emmm.201910473] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/10/2019] [Accepted: 08/15/2019] [Indexed: 12/24/2022] Open
Abstract
The light‐sensitive photoreceptors in the retina are extremely metabolically demanding and have the highest density of mitochondria of any cell in the body. Both physiological and pathological retinal vascular growth and regression are controlled by photoreceptor energy demands. It is critical to understand the energy demands of photoreceptors and fuel sources supplying them to understand neurovascular diseases. Retinas are very rich in lipids, which are continuously recycled as lipid‐rich photoreceptor outer segments are shed and reformed and dietary intake of lipids modulates retinal lipid composition. Lipids (as well as glucose) are fuel substrates for photoreceptor mitochondria. Dyslipidemia contributes to the development and progression of retinal dysfunction in many eye diseases. Here, we review photoreceptor energy demands with a focus on lipid metabolism in retinal neurovascular disorders.
Collapse
Affiliation(s)
- Zhongjie Fu
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA.,Manton Center for Orphan Disease, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Chuck T Chen
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Gael Cagnone
- Department of Pediatrics, Pharmacology and Ophthalmology, CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada.,Department of Pharmacology and Therapeutics, University of Montreal, Montreal, QC, Canada
| | - Emilie Heckel
- Department of Pediatrics, Pharmacology and Ophthalmology, CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada.,Department of Pharmacology and Therapeutics, University of Montreal, Montreal, QC, Canada
| | - Ye Sun
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Bertan Cakir
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Yohei Tomita
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Shuo Huang
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Qian Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - William Britton
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Steve S Cho
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Timothy S Kern
- Center for Translational Vision Research, Gavin Herbert Eye Institute, Irvine, CA, USA
| | - Ann Hellström
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Jean-Sébastien Joyal
- Department of Pediatrics, Pharmacology and Ophthalmology, CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada.,Department of Pharmacology and Therapeutics, University of Montreal, Montreal, QC, Canada
| | - Lois Eh Smith
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
10
|
Ascaroside Pheromones: Chemical Biology and Pleiotropic Neuronal Functions. Int J Mol Sci 2019; 20:ijms20163898. [PMID: 31405082 PMCID: PMC6719183 DOI: 10.3390/ijms20163898] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 07/26/2019] [Accepted: 08/07/2019] [Indexed: 12/21/2022] Open
Abstract
Pheromones are neuronal signals that stimulate conspecific individuals to react to environmental stressors or stimuli. Research on the ascaroside (ascr) pheromones in Caenorhabditis elegans and other nematodes has made great progress since ascr#1 was first isolated and biochemically defined in 2005. In this review, we highlight the current research on the structural diversity, biosynthesis, and pleiotropic neuronal functions of ascr pheromones and their implications in animal physiology. Experimental evidence suggests that ascr biosynthesis starts with conjugation of ascarylose to very long-chain fatty acids that are then processed via peroxisomal β-oxidation to yield diverse ascr pheromones. We also discuss the concentration and stage-dependent pleiotropic neuronal functions of ascr pheromones. These functions include dauer induction, lifespan extension, repulsion, aggregation, mating, foraging and detoxification, among others. These roles are carried out in coordination with three G protein-coupled receptors that function as putative pheromone receptors: SRBC-64/66, SRG-36/37, and DAF-37/38. Pheromone sensing is transmitted in sensory neurons via DAF-16-regulated glutamatergic neurotransmitters. Neuronal peroxisomal fatty acid β-oxidation has important cell-autonomous functions in the regulation of neuroendocrine signaling, including neuroprotection. In the future, translation of our knowledge of nematode ascr pheromones to higher animals might be beneficial, as ascr#1 has some anti-inflammatory effects in mice. To this end, we propose the establishment of pheromics (pheromone omics) as a new subset of integrated disciplinary research area within chemical ecology for system-wide investigation of animal pheromones.
Collapse
|
11
|
Jo DS, Cho DH. Peroxisomal dysfunction in neurodegenerative diseases. Arch Pharm Res 2019; 42:393-406. [PMID: 30739266 DOI: 10.1007/s12272-019-01131-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/03/2019] [Indexed: 01/06/2023]
Abstract
Peroxisomes and their (patho-)physiological importance in heath and disease have attracted increasing interest during last few decades. Together with mitochondria, peroxisomes comprise key metabolic platforms for oxidation of various fatty acids and redox regulation. In addition, peroxisomes contribute to bile acid, cholesterol, and plasmalogen biosynthesis. The importance of functional peroxisomes for cellular metabolism is demonstrated by the marked brain and systemic organ abnormalities occuring in peroxisome biogenesis disorders and peroxisomal enzyme deficiencies. Current evidences indicate that peroxisomal function is declined with aging, with peroxisomal dysfunction being linked to early onset of multiple age-related diseases including neurodegenerative diseases. Herein, we review recent progress toward understanding the physiological roles and pathological implications of peroxisomal dysfunctions, focusing on neurodegenerative disease.
Collapse
Affiliation(s)
- Doo Sin Jo
- School of Life Sciences, Kyungpook National University, 80 Daehakro Bukgu, Daegu, 41566, Republic of Korea
| | - Dong-Hyung Cho
- School of Life Sciences, Kyungpook National University, 80 Daehakro Bukgu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
12
|
Fransen M, Lismont C. Redox Signaling from and to Peroxisomes: Progress, Challenges, and Prospects. Antioxid Redox Signal 2019; 30:95-112. [PMID: 29433327 DOI: 10.1089/ars.2018.7515] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Peroxisomes are organelles that are best known for their role in cellular lipid and hydrogen peroxide (H2O2) metabolism. Emerging evidence suggests that these organelles serve as guardians and modulators of cellular redox balance, and that alterations in their redox metabolism may contribute to aging and the development of chronic diseases such as neurodegeneration, diabetes, and cancer. Recent Advances: H2O2 is an important signaling messenger that controls many cellular processes by modulating protein activity through cysteine oxidation. Somewhat surprisingly, the potential involvement of peroxisomes in H2O2-mediated signaling processes has been overlooked for a long time. However, recent advances in the development of live-cell approaches to monitor and modulate spatiotemporal fluxes in redox species at the subcellular level have opened up new avenues for research in redox biology and boosted interest in the concept of peroxisomes as redox signaling platforms. CRITICAL ISSUES This review first introduces the reader to what is known about the role of peroxisomes in cellular H2O2 production and clearance, with a focus on mammalian cells. Next, it briefly describes the benefits and drawbacks of current strategies used to investigate the complex interplay between peroxisome metabolism and cellular redox state. Furthermore, it integrates and critically evaluates literature dealing with the interrelationship between peroxisomal redox metabolism, cell signaling, and human disease. FUTURE DIRECTIONS As the precise molecular mechanisms underlying many of these associations are still poorly understood, a key focus for future research should be the identification of primary targets for peroxisome-derived H2O2.
Collapse
Affiliation(s)
- Marc Fransen
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven-University of Leuven , Leuven, Belgium
| | - Celien Lismont
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven-University of Leuven , Leuven, Belgium
| |
Collapse
|
13
|
Abe Y, Honsho M, Itoh R, Kawaguchi R, Fujitani M, Fujiwara K, Hirokane M, Matsuzaki T, Nakayama K, Ohgi R, Marutani T, Nakayama KI, Yamashita T, Fujiki Y. Peroxisome biogenesis deficiency attenuates the BDNF-TrkB pathway-mediated development of the cerebellum. Life Sci Alliance 2018; 1:e201800062. [PMID: 30519675 PMCID: PMC6277683 DOI: 10.26508/lsa.201800062] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 01/22/2023] Open
Abstract
Peroxisome biogenesis disorders (PBDs) manifest as neurological deficits in the central nervous system, including neuronal migration defects and abnormal cerebellum development. However, the mechanisms underlying pathogenesis remain enigmatic. Here, to investigate how peroxisome deficiency causes neurological defects of PBDs, we established a new PBD model mouse defective in peroxisome assembly factor Pex14p, termed Pex14 ΔC/ΔC mouse. Pex14 ΔC/ΔC mouse manifests a severe symptom such as disorganization of cortical laminar structure and dies shortly after birth, although peroxisomal biogenesis and metabolism are partially defective. The Pex14 ΔC/ΔC mouse also shows malformation of the cerebellum including the impaired dendritic development of Purkinje cells. Moreover, extracellular signal-regulated kinase and AKT signaling are attenuated in this mutant mouse by an elevated level of brain-derived neurotrophic factor (BDNF) together with the enhanced expression of TrkB-T1, a dominant-negative isoform of the BDNF receptor. Our results suggest that dysregulation of the BDNF-TrkB pathway, an essential signaling for cerebellar morphogenesis, gives rise to the pathogenesis of the cerebellum in PBDs.
Collapse
Affiliation(s)
- Yuichi Abe
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Masanori Honsho
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Ryota Itoh
- Graduate School of Systems Life Sciences and Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka, Japan
| | - Ryoko Kawaguchi
- Graduate School of Systems Life Sciences and Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka, Japan
| | - Masashi Fujitani
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kazushirou Fujiwara
- Graduate School of Systems Life Sciences and Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka, Japan
| | - Masaaki Hirokane
- Graduate School of Systems Life Sciences and Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka, Japan
| | - Takashi Matsuzaki
- Graduate School of Systems Life Sciences and Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka, Japan
| | - Keiko Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Division of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryohei Ohgi
- Graduate School of Systems Life Sciences and Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka, Japan
| | - Toshihiro Marutani
- Graduate School of Systems Life Sciences and Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| | - Yukio Fujiki
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
14
|
Galvez-Ruiz A, Galindo-Ferreiro A, Alkatan H. A clinical case of Zellweger syndrome in a patient with a previous history of ocular medulloepithelioma. Saudi J Ophthalmol 2018; 32:241-245. [PMID: 30224891 PMCID: PMC6137698 DOI: 10.1016/j.sjopt.2017.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 05/02/2017] [Accepted: 09/18/2017] [Indexed: 12/02/2022] Open
Abstract
Peroxisomal biogenesis disorders (PBDs) are autosomal recessive diseases caused by mutations in one of the 14 PEX genes described in the scientific literature. All of these syndromes may be associated with different mutations in the PEX genes, the most frequent being PEX1 for patients with Zellweger syndrome (ZS). In this paper, we present the case of a patient with a peculiar clinical history: evisceration of the left eye (LE) at 4 years of age because of a benign ocular teratoid medulloepithelioma and a progressive loss of visual acuity (VA) in the right eye (RE) beginning at 9 years of age, leading to the diagnosis of ZS. In addition, the patient presented a mutation in the PEX14 gene that has not been previously described in the literature. This case broadens the spectrum of clinical expression in ZS patients because of not only the presence of a benign ocular teratoid medulloepithelioma at 4 years of age but also the late clinical expression of ZS (at 9 years of age).
Collapse
Affiliation(s)
| | | | - Hind Alkatan
- King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Wali G, Sue CM, Mackay-Sim A. Patient-Derived Stem Cell Models in SPAST HSP: Disease Modelling and Drug Discovery. Brain Sci 2018; 8:E142. [PMID: 30065201 PMCID: PMC6120041 DOI: 10.3390/brainsci8080142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/18/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023] Open
Abstract
Hereditary spastic paraplegia is an inherited, progressive paralysis of the lower limbs first described by Adolph Strümpell in 1883 with a further detailed description of the disease by Maurice Lorrain in 1888. Today, more than 100 years after the first case of HSP was described, we still do not know how mutations in HSP genes lead to degeneration of the corticospinal motor neurons. This review describes how patient-derived stem cells contribute to understanding the disease mechanism at the cellular level and use this for discovery of potential new therapeutics, focusing on SPAST mutations, the most common cause of HSP.
Collapse
Affiliation(s)
- Gautam Wali
- Department of Neurogenetics, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW 2065, Australia.
| | - Carolyn M Sue
- Department of Neurogenetics, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW 2065, Australia.
| | - Alan Mackay-Sim
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| |
Collapse
|
16
|
Quintas-Neves M, Carvalho R, Soares-Fernandes JP. Brain MRI in a newborn with Zellweger syndrome: ADC quantitation in white matter disease. Childs Nerv Syst 2018; 34:1103-1104. [PMID: 29619570 DOI: 10.1007/s00381-018-3791-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/28/2018] [Indexed: 10/17/2022]
Affiliation(s)
- Miguel Quintas-Neves
- Department of Neuroradiology, Hospital de Braga, Serviço de Imagiologia, 4710-243, Braga, Portugal.
| | - Raquel Carvalho
- Department of Neuroradiology, Hospital de Braga, Serviço de Imagiologia, 4710-243, Braga, Portugal
| | | |
Collapse
|
17
|
Miro-Working beyond Mitochondria and Microtubules. Cells 2018; 7:cells7030018. [PMID: 29510535 PMCID: PMC5870350 DOI: 10.3390/cells7030018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/02/2018] [Accepted: 03/03/2018] [Indexed: 12/19/2022] Open
Abstract
The small GTPase Miro is best known for its regulation of mitochondrial movement by engaging with the microtubule-based motor proteins kinesin and dynein. Very recent findings have now showed that Miro also targets peroxisomes and regulates microtubule-dependent peroxisome motility. Moreover, Miro recruits and stabilizes the myosin motor Myo19 at the mitochondria to enable actin-based mitochondria movement, which is important for mitochondrial segregation during mitosis. Miro thus has much broader functions that previously known, and these new findings may have important implications on disease pathology.
Collapse
|
18
|
Park S, Paik YK. Genetic deficiency in neuronal peroxisomal fatty acid β-oxidation causes the interruption of dauer development in Caenorhabditis elegans. Sci Rep 2017; 7:9358. [PMID: 28839231 PMCID: PMC5571181 DOI: 10.1038/s41598-017-10020-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/02/2017] [Indexed: 11/11/2022] Open
Abstract
Although peroxisomal fatty acid (FA) β-oxidation is known to be critical for animal development, the cellular mechanisms that control the manner in which its neuronal deficiency causes developmental defects remain unclear. To elucidate the potential cellular consequences of neuronal FA metabolic disorder for dauer development, an alternative developmental process in Caenorhabditis elegans that occurs during stress, we investigated the sequential effects of its corresponding genetic deficiency. Here, we show that the daf-22 gene in peroxisomal FA β-oxidation plays a distinct role in ASK neurons, and its deficiency interrupts dauer development even in the presence of the exogenous ascaroside pheromones that induce such development. Un-metabolized FAs accumulated in ASK neurons of daf-22 mutants stimulate the endoplasmic reticulum (ER) stress response, which may enhance the XBP-1 activity that promotes the transcription of neuronal insulin-like peptides. These sequential cell-autonomous reactions in ASK neurons then activate insulin/IGF-1 signaling, which culminates in the suppression of DAF-16/FOXO activity. This suppression results in the interruption of dauer development, independently of pheromone presence. These findings suggest that neuronal peroxisomal FA β-oxidation is indispensable for animal development by regulating the ER stress response and neuroendocrine signaling.
Collapse
Affiliation(s)
- Saeram Park
- Department of Integrated OMICS for Biomedical Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Young-Ki Paik
- Department of Integrated OMICS for Biomedical Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Department of Biochemistry, College of Life Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Yonsei Proteome Research Center, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
19
|
Nock TG, Chouinard-Watkins R, Plourde M. Carriers of an apolipoprotein E epsilon 4 allele are more vulnerable to a dietary deficiency in omega-3 fatty acids and cognitive decline. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1068-1078. [PMID: 28733268 DOI: 10.1016/j.bbalip.2017.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 07/05/2017] [Accepted: 07/15/2017] [Indexed: 01/29/2023]
Abstract
Carriers of an epsilon 4 allele (E4) of apolipoprotein E (APOE) develop Alzheimer's disease (AD) earlier than carriers of other APOE alleles. The metabolism of plasma docosahexaenoic acid (DHA, 22:6n-3), an omega-3 fatty acid (n-3 FA), taken up by the brain and concentrated in neurons, is disrupted in E4 carriers, resulting in lower levels of brain DHA. Behavioural and cognitive impairments have been observed in animals with lower brain DHA levels, with emphasis on loss of spatial memory and increased anxiety. E4 mice provided a diet deficient in n-3 FA had a greater depletion of n-3 FA levels in organs and tissues than mice carrying other APOE alleles. However, providing n-3 FA can restore levels of brain DHA in E4 animals and in other models of n-3 FA deficiency. In E4 carriers, supplementation with DHA as early as possible might help to prevent the onset of AD and could halt the progression of, and reverse some of the neurological and behavioural consequences of their higher vulnerability to n-3 FA deficiency.
Collapse
Affiliation(s)
- Tanya Gwendolyn Nock
- Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Canada; Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Canada; Institute of Nutrition and Functional Foods, Quebec City, Canada
| | - Raphaël Chouinard-Watkins
- Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Canada; Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Canada; Institute of Nutrition and Functional Foods, Quebec City, Canada
| | - Mélanie Plourde
- Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Canada; Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Canada; Institute of Nutrition and Functional Foods, Quebec City, Canada.
| |
Collapse
|
20
|
Wangler MF, Chao YH, Bayat V, Giagtzoglou N, Shinde AB, Putluri N, Coarfa C, Donti T, Graham BH, Faust JE, McNew JA, Moser A, Sardiello M, Baes M, Bellen HJ. Peroxisomal biogenesis is genetically and biochemically linked to carbohydrate metabolism in Drosophila and mouse. PLoS Genet 2017; 13:e1006825. [PMID: 28640802 PMCID: PMC5480855 DOI: 10.1371/journal.pgen.1006825] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/16/2017] [Indexed: 01/07/2023] Open
Abstract
Peroxisome biogenesis disorders (PBD) are a group of multi-system human diseases due to mutations in the PEX genes that are responsible for peroxisome assembly and function. These disorders lead to global defects in peroxisomal function and result in severe brain, liver, bone and kidney disease. In order to study their pathogenesis we undertook a systematic genetic and biochemical study of Drosophila pex16 and pex2 mutants. These mutants are short-lived with defects in locomotion and activity. Moreover these mutants exhibit severe morphologic and functional peroxisomal defects. Using metabolomics we uncovered defects in multiple biochemical pathways including defects outside the canonical specialized lipid pathways performed by peroxisomal enzymes. These included unanticipated changes in metabolites in glycolysis, glycogen metabolism, and the pentose phosphate pathway, carbohydrate metabolic pathways that do not utilize known peroxisomal enzymes. In addition, mutant flies are starvation sensitive and are very sensitive to glucose deprivation exhibiting dramatic shortening of lifespan and hyperactivity on low-sugar food. We use bioinformatic transcriptional profiling to examine gene co-regulation between peroxisomal genes and other metabolic pathways and we observe that the expression of peroxisomal and carbohydrate pathway genes in flies and mouse are tightly correlated. Indeed key steps in carbohydrate metabolism were found to be strongly co-regulated with peroxisomal genes in flies and mice. Moreover mice lacking peroxisomes exhibit defective carbohydrate metabolism at the same key steps in carbohydrate breakdown. Our data indicate an unexpected link between these two metabolic processes and suggest metabolism of carbohydrates could be a new therapeutic target for patients with PBD.
Collapse
Affiliation(s)
- Michael F. Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, United States of America
- Texas Children’s Hospital, Houston TX, United States of America
- Program in Developmental Biology, BCM, Houston, TX, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital (TCH), Houston, TX, United States of America
| | - Yu-Hsin Chao
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, United States of America
| | - Vafa Bayat
- Program in Developmental Biology, BCM, Houston, TX, United States of America
| | - Nikolaos Giagtzoglou
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, United States of America
| | - Abhijit Babaji Shinde
- KU Leuven, Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, BCM, Houston, TX, United States of America
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, BCM, Houston, TX, United States of America
| | - Taraka Donti
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, United States of America
| | - Brett H. Graham
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, United States of America
| | - Joseph E. Faust
- Department of BioSciences, Rice University, Houston TX, United States of America
| | - James A. McNew
- Department of BioSciences, Rice University, Houston TX, United States of America
| | - Ann Moser
- Kennedy Krieger Institute, Baltimore MD, United States of America
| | - Marco Sardiello
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, United States of America
- Program in Developmental Biology, BCM, Houston, TX, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital (TCH), Houston, TX, United States of America
| | - Myriam Baes
- KU Leuven, Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, United States of America
- Texas Children’s Hospital, Houston TX, United States of America
- Program in Developmental Biology, BCM, Houston, TX, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital (TCH), Houston, TX, United States of America
- Howard Hughes Medical Institute, Houston, TX, United States of America
- Department of Neuroscience, BCM, Houston, TX, United States of America
| |
Collapse
|
21
|
Fransen M, Brees C. KillerRed as a Tool to Study the Cellular Responses to Peroxisome-Derived Oxidative Stress. Methods Mol Biol 2017; 1595:165-179. [PMID: 28409460 DOI: 10.1007/978-1-4939-6937-1_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many biological processes and cell fate decisions are modulated by changes in redox environment. To gain insight into how subcellular compartmentalization of reactive oxygen species (ROS) formation contributes to (site-specific) redox signaling and oxidative stress responses, it is critical to have access to tools that allow tight spatial and temporal control of ROS production. Over the past decade, the use of genetically encoded photosensitizers has attracted growing interest of researchers because these proteins can be easily targeted to various subcellular compartments and allow for controlled release of ROS when excited by light. This chapter provides guidance and practical advice on the use of po-KR, a peroxisomal variant of the phototoxic red fluorescent protein KillerRed, to address fundamental questions about how mammalian cells cope with peroxisome-derived oxidative stress.
Collapse
Affiliation(s)
- Marc Fransen
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Leuven, Belgium.
| | - Chantal Brees
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Amor DJ, Marsh APL, Storey E, Tankard R, Gillies G, Delatycki MB, Pope K, Bromhead C, Leventer RJ, Bahlo M, Lockhart PJ. Heterozygous mutations in HSD17B4 cause juvenile peroxisomal D-bifunctional protein deficiency. NEUROLOGY-GENETICS 2016; 2:e114. [PMID: 27790638 PMCID: PMC5070413 DOI: 10.1212/nxg.0000000000000114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 09/06/2016] [Indexed: 11/15/2022]
Abstract
Objective: To determine the genetic cause of slowly progressive cerebellar ataxia, sensorineural deafness, and hypergonadotropic hypogonadism in 5 patients from 3 different families. Methods: The patients comprised 2 sib pairs and 1 sporadic patient. Clinical assessment included history, physical examination, and brain MRI. Linkage analysis was performed separately on the 2 sets of sib pairs using single nucleotide polymorphism microarrays, followed by analysis of the intersection of the regions. Exome sequencing was performed on 1 affected patient with variant filtering and prioritization undertaken using these intersected regions. Results: Using a combination of sequencing technologies, we identified compound heterozygous mutations in HSD17B4 in all 5 affected patients. In all 3 families, peroxisomal D-bifunctional protein (DBP) deficiency was caused by compound heterozygosity for 1 nonsense/deletion mutation and 1 missense mutation. Conclusions: We describe 5 patients with juvenile DBP deficiency from 3 different families, bringing the total number of reported patients to 14, from 8 families. This report broadens and consolidates the phenotype associated with juvenile DBP deficiency.
Collapse
Affiliation(s)
- David J Amor
- Murdoch Childrens Research Institute (D.J.A., A.P.L.M., G.G., M.B.D., K.P., R.J.L., P.J.L.), Royal Children's Hospital (D.J.A., M.B.D., R.J.L.), Parkville; Department of Paediatrics (D.J.A., A.P.L.M., M.B.D., C.B., R.J.L., P.J.L.), Department of Medical Biology (R.T., M.B.), The University of Melbourne; Department of Medicine (Neuroscience) (E.S.), Central Clinical School, Monash University; and Population Health and Immunity Division (R.T., M.B.), The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, Australia
| | - Ashley P L Marsh
- Murdoch Childrens Research Institute (D.J.A., A.P.L.M., G.G., M.B.D., K.P., R.J.L., P.J.L.), Royal Children's Hospital (D.J.A., M.B.D., R.J.L.), Parkville; Department of Paediatrics (D.J.A., A.P.L.M., M.B.D., C.B., R.J.L., P.J.L.), Department of Medical Biology (R.T., M.B.), The University of Melbourne; Department of Medicine (Neuroscience) (E.S.), Central Clinical School, Monash University; and Population Health and Immunity Division (R.T., M.B.), The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, Australia
| | - Elsdon Storey
- Murdoch Childrens Research Institute (D.J.A., A.P.L.M., G.G., M.B.D., K.P., R.J.L., P.J.L.), Royal Children's Hospital (D.J.A., M.B.D., R.J.L.), Parkville; Department of Paediatrics (D.J.A., A.P.L.M., M.B.D., C.B., R.J.L., P.J.L.), Department of Medical Biology (R.T., M.B.), The University of Melbourne; Department of Medicine (Neuroscience) (E.S.), Central Clinical School, Monash University; and Population Health and Immunity Division (R.T., M.B.), The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, Australia
| | - Rick Tankard
- Murdoch Childrens Research Institute (D.J.A., A.P.L.M., G.G., M.B.D., K.P., R.J.L., P.J.L.), Royal Children's Hospital (D.J.A., M.B.D., R.J.L.), Parkville; Department of Paediatrics (D.J.A., A.P.L.M., M.B.D., C.B., R.J.L., P.J.L.), Department of Medical Biology (R.T., M.B.), The University of Melbourne; Department of Medicine (Neuroscience) (E.S.), Central Clinical School, Monash University; and Population Health and Immunity Division (R.T., M.B.), The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, Australia
| | - Greta Gillies
- Murdoch Childrens Research Institute (D.J.A., A.P.L.M., G.G., M.B.D., K.P., R.J.L., P.J.L.), Royal Children's Hospital (D.J.A., M.B.D., R.J.L.), Parkville; Department of Paediatrics (D.J.A., A.P.L.M., M.B.D., C.B., R.J.L., P.J.L.), Department of Medical Biology (R.T., M.B.), The University of Melbourne; Department of Medicine (Neuroscience) (E.S.), Central Clinical School, Monash University; and Population Health and Immunity Division (R.T., M.B.), The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, Australia
| | - Martin B Delatycki
- Murdoch Childrens Research Institute (D.J.A., A.P.L.M., G.G., M.B.D., K.P., R.J.L., P.J.L.), Royal Children's Hospital (D.J.A., M.B.D., R.J.L.), Parkville; Department of Paediatrics (D.J.A., A.P.L.M., M.B.D., C.B., R.J.L., P.J.L.), Department of Medical Biology (R.T., M.B.), The University of Melbourne; Department of Medicine (Neuroscience) (E.S.), Central Clinical School, Monash University; and Population Health and Immunity Division (R.T., M.B.), The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, Australia
| | - Kate Pope
- Murdoch Childrens Research Institute (D.J.A., A.P.L.M., G.G., M.B.D., K.P., R.J.L., P.J.L.), Royal Children's Hospital (D.J.A., M.B.D., R.J.L.), Parkville; Department of Paediatrics (D.J.A., A.P.L.M., M.B.D., C.B., R.J.L., P.J.L.), Department of Medical Biology (R.T., M.B.), The University of Melbourne; Department of Medicine (Neuroscience) (E.S.), Central Clinical School, Monash University; and Population Health and Immunity Division (R.T., M.B.), The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, Australia
| | - Catherine Bromhead
- Murdoch Childrens Research Institute (D.J.A., A.P.L.M., G.G., M.B.D., K.P., R.J.L., P.J.L.), Royal Children's Hospital (D.J.A., M.B.D., R.J.L.), Parkville; Department of Paediatrics (D.J.A., A.P.L.M., M.B.D., C.B., R.J.L., P.J.L.), Department of Medical Biology (R.T., M.B.), The University of Melbourne; Department of Medicine (Neuroscience) (E.S.), Central Clinical School, Monash University; and Population Health and Immunity Division (R.T., M.B.), The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, Australia
| | - Richard J Leventer
- Murdoch Childrens Research Institute (D.J.A., A.P.L.M., G.G., M.B.D., K.P., R.J.L., P.J.L.), Royal Children's Hospital (D.J.A., M.B.D., R.J.L.), Parkville; Department of Paediatrics (D.J.A., A.P.L.M., M.B.D., C.B., R.J.L., P.J.L.), Department of Medical Biology (R.T., M.B.), The University of Melbourne; Department of Medicine (Neuroscience) (E.S.), Central Clinical School, Monash University; and Population Health and Immunity Division (R.T., M.B.), The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, Australia
| | - Melanie Bahlo
- Murdoch Childrens Research Institute (D.J.A., A.P.L.M., G.G., M.B.D., K.P., R.J.L., P.J.L.), Royal Children's Hospital (D.J.A., M.B.D., R.J.L.), Parkville; Department of Paediatrics (D.J.A., A.P.L.M., M.B.D., C.B., R.J.L., P.J.L.), Department of Medical Biology (R.T., M.B.), The University of Melbourne; Department of Medicine (Neuroscience) (E.S.), Central Clinical School, Monash University; and Population Health and Immunity Division (R.T., M.B.), The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, Australia
| | - Paul J Lockhart
- Murdoch Childrens Research Institute (D.J.A., A.P.L.M., G.G., M.B.D., K.P., R.J.L., P.J.L.), Royal Children's Hospital (D.J.A., M.B.D., R.J.L.), Parkville; Department of Paediatrics (D.J.A., A.P.L.M., M.B.D., C.B., R.J.L., P.J.L.), Department of Medical Biology (R.T., M.B.), The University of Melbourne; Department of Medicine (Neuroscience) (E.S.), Central Clinical School, Monash University; and Population Health and Immunity Division (R.T., M.B.), The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, Australia
| |
Collapse
|
23
|
Rahim RS, Chen M, Nourse CC, Meedeniya ACB, Crane DI. Mitochondrial changes and oxidative stress in a mouse model of Zellweger syndrome neuropathogenesis. Neuroscience 2016; 334:201-213. [PMID: 27514574 DOI: 10.1016/j.neuroscience.2016.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 12/31/2022]
Abstract
Zellweger syndrome (ZS) is a peroxisome biogenesis disorder that involves significant neuropathology, the molecular basis of which is still poorly understood. Using a mouse model of ZS with brain-restricted deficiency of the peroxisome biogenesis protein PEX13, we demonstrated an expanded and morphologically modified brain mitochondrial population. Cultured fibroblasts from PEX13-deficient mouse embryo displayed similar changes, as well as increased levels of mitochondrial superoxide and membrane depolarization; this phenotype was rescued by antioxidant treatment. Significant oxidative damage to neurons in brain was indicated by products of lipid and DNA oxidation. Similar overall changes were observed for glial cells. In toto, these findings suggest that mitochondrial oxidative stress and aberrant mitochondrial dynamics are associated with the neuropathology arising from PEX13 deficiency.
Collapse
Affiliation(s)
- Rani Sadia Rahim
- Eskitis Institute for Drug Discovery, and School of Natural Sciences, Griffith University, Qld, Australia
| | - Mo Chen
- Eskitis Institute for Drug Discovery, and School of Natural Sciences, Griffith University, Qld, Australia
| | - C Cathrin Nourse
- Eskitis Institute for Drug Discovery, and School of Natural Sciences, Griffith University, Qld, Australia
| | - Adrian C B Meedeniya
- Griffith Health Institute, School of Medical Science, Griffith University, Qld, Australia
| | - Denis I Crane
- Eskitis Institute for Drug Discovery, and School of Natural Sciences, Griffith University, Qld, Australia.
| |
Collapse
|
24
|
Mechanism of impaired microtubule-dependent peroxisome trafficking and oxidative stress in SPAST-mutated cells from patients with Hereditary Spastic Paraplegia. Sci Rep 2016; 6:27004. [PMID: 27229699 PMCID: PMC4882512 DOI: 10.1038/srep27004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/12/2016] [Indexed: 12/23/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) is an inherited neurological condition that leads to progressive spasticity and gait abnormalities. Adult-onset HSP is most commonly caused by mutations in SPAST, which encodes spastin a microtubule severing protein. In olfactory stem cell lines derived from patients carrying different SPAST mutations, we investigated microtubule-dependent peroxisome movement with time-lapse imaging and automated image analysis. The average speed of peroxisomes in patient-cells was slower, with fewer fast moving peroxisomes than in cells from healthy controls. This was not because of impairment of peroxisome-microtubule interactions because the time-dependent saltatory dynamics of movement of individual peroxisomes was unaffected in patient-cells. Our observations indicate that average peroxisome speeds are less in patient-cells because of the lower probability of individual peroxisome interactions with the reduced numbers of stable microtubules: peroxisome speeds in patient cells are restored by epothilone D, a tubulin-binding drug that increases the number of stable microtubules to control levels. Patient-cells were under increased oxidative stress and were more sensitive than control-cells to hydrogen peroxide, which is primarily metabolised by peroxisomal catalase. Epothilone D also ameliorated patient-cell sensitivity to hydrogen-peroxide. Our findings suggest a mechanism for neurodegeneration whereby SPAST mutations indirectly lead to impaired peroxisome transport and oxidative stress.
Collapse
|
25
|
Agrawal G, Subramani S. De novo peroxisome biogenesis: Evolving concepts and conundrums. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:892-901. [PMID: 26381541 PMCID: PMC4791208 DOI: 10.1016/j.bbamcr.2015.09.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 10/23/2022]
Abstract
Peroxisomes proliferate by growth and division of pre-existing peroxisomes or could arise de novo. Though the de novo pathway of peroxisome biogenesis is a more recent discovery, several studies have highlighted key mechanistic details of the pathway. The endoplasmic reticulum (ER) is the primary source of lipids and proteins for the newly-formed peroxisomes. More recently, an intricate sorting process functioning at the ER has been proposed, that segregates specific PMPs first to peroxisome-specific ER domains (pER) and then assembles PMPs selectively into distinct pre-peroxisomal vesicles (ppVs) that later fuse to form import-competent peroxisomes. In addition, plausible roles of the three key peroxins Pex3, Pex16 and Pex19, which are also central to the growth and division pathway, have been suggested in the de novo process. In this review, we discuss key developments and highlight the unexplored avenues in de novo peroxisome biogenesis.
Collapse
Affiliation(s)
- Gaurav Agrawal
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, UC San Diego, La Jolla, CA 92093-0322, USA
| | - Suresh Subramani
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, UC San Diego, La Jolla, CA 92093-0322, USA.
| |
Collapse
|
26
|
In Vivo NMR Studies of the Brain with Hereditary or Acquired Metabolic Disorders. Neurochem Res 2015; 40:2647-85. [PMID: 26610379 DOI: 10.1007/s11064-015-1772-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 11/10/2015] [Accepted: 11/12/2015] [Indexed: 01/09/2023]
Abstract
Metabolic disorders, whether hereditary or acquired, affect the brain, and abnormalities of the brain are related to cellular integrity; particularly in regard to neurons and astrocytes as well as interactions between them. Metabolic disturbances lead to alterations in cellular function as well as microscopic and macroscopic structural changes in the brain with diabetes, the most typical example of metabolic disorders, and a number of hereditary metabolic disorders. Alternatively, cellular dysfunction and degeneration of the brain lead to metabolic disturbances in hereditary neurological disorders with neurodegeneration. Nuclear magnetic resonance (NMR) techniques allow us to assess a range of pathophysiological changes of the brain in vivo. For example, magnetic resonance spectroscopy detects alterations in brain metabolism and energetics. Physiological magnetic resonance imaging (MRI) detects accompanying changes in cerebral blood flow related to neurovascular coupling. Diffusion and T1/T2-weighted MRI detect microscopic and macroscopic changes of the brain structure. This review summarizes current NMR findings of functional, physiological and biochemical alterations within a number of hereditary and acquired metabolic disorders in both animal models and humans. The global view of the impact of these metabolic disorders on the brain may be useful in identifying the unique and/or general patterns of abnormalities in the living brain related to the pathophysiology of the diseases, and identifying future fields of inquiry.
Collapse
|
27
|
Kinoshita T, Fujita M. Biosynthesis of GPI-anchored proteins: special emphasis on GPI lipid remodeling. J Lipid Res 2015; 57:6-24. [PMID: 26563290 DOI: 10.1194/jlr.r063313] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Indexed: 02/06/2023] Open
Abstract
Glycosylphosphatidylinositols (GPIs) act as membrane anchors of many eukaryotic cell surface proteins. GPIs in various organisms have a common backbone consisting of ethanolamine phosphate (EtNP), three mannoses (Mans), one non-N-acetylated glucosamine, and inositol phospholipid, whose structure is EtNP-6Manα-2Manα-6Manα-4GlNα-6myoinositol-P-lipid. The lipid part is either phosphatidylinositol of diacyl or 1-alkyl-2-acyl form, or inositol phosphoceramide. GPIs are attached to proteins via an amide bond between the C-terminal carboxyl group and an amino group of EtNP. Fatty chains of inositol phospholipids are inserted into the outer leaflet of the plasma membrane. More than 150 different human proteins are GPI anchored, whose functions include enzymes, adhesion molecules, receptors, protease inhibitors, transcytotic transporters, and complement regulators. GPI modification imparts proteins with unique characteristics, such as association with membrane microdomains or rafts, transient homodimerization, release from the membrane by cleavage in the GPI moiety, and apical sorting in polarized cells. GPI anchoring is essential for mammalian embryogenesis, development, neurogenesis, fertilization, and immune system. Mutations in genes involved in remodeling of the GPI lipid moiety cause human diseases characterized by neurological abnormalities. Yeast Saccharomyces cerevisiae has >60 GPI-anchored proteins (GPI-APs). GPI is essential for growth of yeast. In this review, we discuss biosynthesis of GPI-APs in mammalian cells and yeast with emphasis on the lipid moiety.
Collapse
Affiliation(s)
- Taroh Kinoshita
- WPI Immunology Frontier Research Center and Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
28
|
Fourcade S, Ferrer I, Pujol A. Oxidative stress, mitochondrial and proteostasis malfunction in adrenoleukodystrophy: A paradigm for axonal degeneration. Free Radic Biol Med 2015; 88:18-29. [PMID: 26073123 DOI: 10.1016/j.freeradbiomed.2015.05.041] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/07/2015] [Accepted: 05/26/2015] [Indexed: 12/15/2022]
Abstract
Peroxisomal and mitochondrial malfunction, which are highly intertwined through redox regulation, in combination with defective proteostasis, are hallmarks of the most prevalent multifactorial neurodegenerative diseases-including Alzheimer's (AD) and Parkinson's disease (PD)-and of the aging process, and are also found in inherited conditions. Here we review the interplay between oxidative stress and axonal degeneration, taking as groundwork recent findings on pathomechanisms of the peroxisomal neurometabolic disease adrenoleukodystrophy (X-ALD). We explore the impact of chronic redox imbalance caused by the excess of very long-chain fatty acids (VLCFA) on mitochondrial respiration and biogenesis, and discuss how this impairs protein quality control mechanisms essential for neural cell survival, such as the proteasome and autophagy systems. As consequence, prime molecular targets in the pathogenetic cascade emerge, such as the SIRT1/PGC-1α axis of mitochondrial biogenesis, and the inhibitor of autophagy mTOR. Thus, we propose that mitochondria-targeted antioxidants; mitochondrial biogenesis boosters such as the antidiabetic pioglitazone and the SIRT1 ligand resveratrol; and the autophagy activator temsirolimus, a derivative of the mTOR inhibitor rapamycin, hold promise as disease-modifying therapies for X-ALD.
Collapse
Affiliation(s)
- Stéphane Fourcade
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, 08908 Barcelona, Spain; Institut of Neuropathology, Pathologic Anatomy Service, Bellvitge Biomedical Research Institute, IDIBELL-Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, 08908 Barcelona, Spain; Center for Biomedical Research on Rare Diseases (CIBERER), U759, ISCIII, Spain.
| | - Isidre Ferrer
- Institut of Neuropathology, Pathologic Anatomy Service, Bellvitge Biomedical Research Institute, IDIBELL-Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, 08908 Barcelona, Spain; Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, 08908 Barcelona, Spain; Institut of Neuropathology, Pathologic Anatomy Service, Bellvitge Biomedical Research Institute, IDIBELL-Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, 08908 Barcelona, Spain; Center for Biomedical Research on Rare Diseases (CIBERER), U759, ISCIII, Spain; Catalan Institution of Research and Advanced Studies (ICREA), Barcelona 08010, Catalonia, Spain.
| |
Collapse
|
29
|
Wang XM, Yik WY, Zhang P, Lu W, Huang N, Kim BR, Shibata D, Zitting M, Chow RH, Moser AB, Steinberg SJ, Hacia JG. Induced pluripotent stem cell models of Zellweger spectrum disorder show impaired peroxisome assembly and cell type-specific lipid abnormalities. Stem Cell Res Ther 2015; 6:158. [PMID: 26319495 PMCID: PMC4553005 DOI: 10.1186/s13287-015-0149-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/26/2015] [Accepted: 08/07/2015] [Indexed: 01/08/2023] Open
Abstract
Introduction Zellweger spectrum disorder (PBD-ZSD) is a disease continuum caused by mutations in a subset of PEX genes required for normal peroxisome assembly and function. They highlight the importance of peroxisomes in the development and functions of the central nervous system, liver, and other organs. To date, the underlying bases for the cell-type specificity of disease are not fully elucidated. Methods Primary skin fibroblasts from seven PBD-ZSD patients with biallelic PEX1, PEX10, PEX12, or PEX26 mutations and three healthy donors were transduced with retroviral vectors expressing Yamanaka reprogramming factors. Candidate induced pluripotent stem cells (iPSCs) were subject to global gene expression, DNA methylation, copy number variation, genotyping, in vitro differentiation and teratoma formation assays. Confirmed iPSCs were differentiated into neural progenitor cells (NPCs), neurons, oligodendrocyte precursor cells (OPCs), and hepatocyte-like cell cultures with peroxisome assembly evaluated by microscopy. Saturated very long chain fatty acid (sVLCFA) and plasmalogen levels were determined in primary fibroblasts and their derivatives. Results iPSCs were derived from seven PBD-ZSD patient-derived fibroblasts with mild to severe peroxisome assembly defects. Although patient and control skin fibroblasts had similar gene expression profiles, genes related to mitochondrial functions and organelle cross-talk were differentially expressed among corresponding iPSCs. Mitochondrial DNA levels were consistent among patient and control fibroblasts, but varied among all iPSCs. Relative to matching controls, sVLCFA levels were elevated in patient-derived fibroblasts, reduced in patient-derived iPSCs, and not significantly different in patient-derived NPCs. All cell types derived from donors with biallelic null mutations in a PEX gene showed plasmalogen deficiencies. Reporter gene assays compatible with high content screening (HCS) indicated patient-derived OPC and hepatocyte-like cell cultures had impaired peroxisome assembly. Conclusions Normal peroxisome activity levels are not required for cellular reprogramming of skin fibroblasts. Patient iPSC gene expression profiles were consistent with hypotheses highlighting the role of altered mitochondrial activities and organelle cross-talk in PBD-ZSD pathogenesis. sVLCFA abnormalities dramatically differed among patient cell types, similar to observations made in iPSC models of X-linked adrenoleukodystrophy. We propose that iPSCs could assist investigations into the cell type-specificity of peroxisomal activities, toxicology studies, and in HCS for targeted therapies for peroxisome-related disorders. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0149-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao-Ming Wang
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California, USA.
| | - Wing Yan Yik
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California, USA.
| | - Peilin Zhang
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California, USA.
| | - Wange Lu
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California, USA.
| | - Ning Huang
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California, USA.
| | - Bo Ram Kim
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California, USA.
| | - Darryl Shibata
- Department of Pathology, University of Southern California, Los Angeles, California, USA.
| | - Madison Zitting
- Department of Physiology and Biophysics, University of Southern California, Los Angeles, California, USA.
| | - Robert H Chow
- Department of Physiology and Biophysics, University of Southern California, Los Angeles, California, USA.
| | - Ann B Moser
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA.
| | - Steven J Steinberg
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA.
| | - Joseph G Hacia
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|