1
|
Jimenez-Blasco D, Agulla J, Lapresa R, Garcia-Macia M, Bobo-Jimenez V, Garcia-Rodriguez D, Manjarres-Raza I, Fernandez E, Jeanson Y, Khoury S, Portais JC, Padro D, Ramos-Cabrer P, Carmeliet P, Almeida A, Bolaños JP. Weak neuronal glycolysis sustains cognition and organismal fitness. Nat Metab 2024; 6:1253-1267. [PMID: 38789798 PMCID: PMC11272580 DOI: 10.1038/s42255-024-01049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 04/15/2024] [Indexed: 05/26/2024]
Abstract
The energy cost of neuronal activity is mainly sustained by glucose1,2. However, in an apparent paradox, neurons modestly metabolize glucose through glycolysis3-6, a circumstance that can be accounted for by the constant degradation of 6-phosphofructo-2-kinase-fructose-2,6-bisphosphatase-3 (PFKFB3)3,7,8, a key glycolysis-promoting enzyme. To evaluate the in vivo physiological importance of this hypoglycolytic metabolism, here we genetically engineered mice with their neurons transformed into active glycolytic cells through Pfkfb3 expression. In vivo molecular, biochemical and metabolic flux analyses of these neurons revealed an accumulation of anomalous mitochondria, complex I disassembly, bioenergetic deficiency and mitochondrial redox stress. Notably, glycolysis-mediated nicotinamide adenine dinucleotide (NAD+) reduction impaired sirtuin-dependent autophagy. Furthermore, these mice displayed cognitive decline and a metabolic syndrome that was mimicked by confining Pfkfb3 expression to hypothalamic neurons. Neuron-specific genetic ablation of mitochondrial redox stress or brain NAD+ restoration corrected these behavioural alterations. Thus, the weak glycolytic nature of neurons is required to sustain higher-order organismal functions.
Collapse
Affiliation(s)
- Daniel Jimenez-Blasco
- Institute of Functional Biology and Genomics, Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Madrid, Spain
| | - Jesús Agulla
- Institute of Functional Biology and Genomics, Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, Spain
| | - Rebeca Lapresa
- Institute of Functional Biology and Genomics, Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, Spain
| | - Marina Garcia-Macia
- Institute of Functional Biology and Genomics, Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Madrid, Spain
| | - Veronica Bobo-Jimenez
- Institute of Functional Biology and Genomics, Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, Spain
| | - Dario Garcia-Rodriguez
- Institute of Functional Biology and Genomics, Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Madrid, Spain
| | - Israel Manjarres-Raza
- Institute of Functional Biology and Genomics, Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Madrid, Spain
| | - Emilio Fernandez
- Institute of Functional Biology and Genomics, Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Madrid, Spain
| | - Yannick Jeanson
- RESTORE, University of Toulouse, Inserm U1031, CNRS 5070, UPS, EFS, Toulouse, France
| | - Spiro Khoury
- RESTORE, University of Toulouse, Inserm U1031, CNRS 5070, UPS, EFS, Toulouse, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Jean-Charles Portais
- RESTORE, University of Toulouse, Inserm U1031, CNRS 5070, UPS, EFS, Toulouse, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
- Toulouse Biotechnology Institute, INSA de Toulouse INSA/CNRS 5504, UMR INSA/INRA 792, Toulouse, France
| | - Daniel Padro
- CIC biomaGUNE, Basque Research and Technology Alliance, Donostia-San Sebastián, Spain
| | - Pedro Ramos-Cabrer
- CIC biomaGUNE, Basque Research and Technology Alliance, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Angeles Almeida
- Institute of Functional Biology and Genomics, Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, Spain
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics, Universidad de Salamanca, CSIC, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Madrid, Spain.
| |
Collapse
|
2
|
Dienel GA, Schousboe A, McKenna MC, Rothman DL. A tribute to Leif Hertz: The historical context of his pioneering studies of the roles of astrocytes in brain energy metabolism, neurotransmission, cognitive functions, and pharmacology identifies important, unresolved topics for future studies. J Neurochem 2024; 168:461-495. [PMID: 36928655 DOI: 10.1111/jnc.15812] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Leif Hertz, M.D., D.Sc. (honōris causā) (1930-2018), was one of the original and noteworthy participants in the International Conference on Brain Energy Metabolism (ICBEM) series since its inception in 1993. The biennial ICBEM conferences are organized by neuroscientists interested in energetics and metabolism underlying neural functions; they have had a high impact on conceptual and experimental advances in these fields and on promoting collaborative interactions among neuroscientists. Leif made major contributions to ICBEM discussions and understanding of metabolic and signaling characteristics of astrocytes and their roles in brain function. His studies ranged from uptake of K+ from extracellular fluid and its stimulation of astrocytic respiration, identification, and regulation of enzymes specifically or preferentially expressed in astrocytes in the glutamate-glutamine cycle of excitatory neurotransmission, a requirement for astrocytic glycogenolysis for fueling K+ uptake, involvement of glycogen in memory consolidation in the chick, and pharmacology of astrocytes. This tribute to Leif Hertz highlights his major discoveries, the high impact of his work on astrocyte-neuron interactions, and his unparalleled influence on understanding the cellular basis of brain energy metabolism. His work over six decades has helped integrate the roles of astrocytes into neurotransmission where oxidative and glycogenolytic metabolism during neurotransmitter glutamate turnover are key aspects of astrocytic energetics. Leif recognized that brain astrocytic metabolism is greatly underestimated unless the volume fraction of astrocytes is taken into account. Adjustment for pathway rates expressed per gram tissue for volume fraction indicates that astrocytes have much higher oxidative rates than neurons and astrocytic glycogen concentrations and glycogenolytic rates during sensory stimulation in vivo are similar to those in resting and exercising muscle, respectively. These novel insights are typical of Leif's astute contributions to the energy metabolism field, and his publications have identified unresolved topics that provide the neuroscience community with challenges and opportunities for future research.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
- Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Mary C McKenna
- Department of Pediatrics and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | - Douglas L Rothman
- Department of Radiology, Magnetic Resonance Research Center (MRRC), Yale University, New Haven, Connecticut, 06520, USA
| |
Collapse
|
3
|
Jekabsons MB, Merrell M, Skubiz AG, Thornton N, Milasta S, Green D, Chen T, Wang YH, Avula B, Khan IA, Zhou YD. Breast cancer cells that preferentially metastasize to lung or bone are more glycolytic, synthesize serine at greater rates, and consume less ATP and NADPH than parent MDA-MB-231 cells. Cancer Metab 2023; 11:4. [PMID: 36805760 PMCID: PMC9940388 DOI: 10.1186/s40170-023-00303-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/25/2023] [Indexed: 02/22/2023] Open
Abstract
Gene expression signatures associated with breast cancer metastases suggest that metabolic re-wiring is important for metastatic growth in lungs, bones, and other organs. However, since pathway fluxes depend on additional factors such as ATP demand, allosteric effects, and post-translational modification, flux analysis is necessary to conclusively establish phenotypes. In this study, the metabolic phenotypes of breast cancer cell lines with low (T47D) or high (MDA-MB-231) metastatic potential, as well as lung (LM)- and bone (BoM)-homing lines derived from MDA-MB-231 cells, were assessed by 13C metabolite labeling from [1,2-13C] glucose or [5-13C] glutamine and the rates of nutrient and oxygen consumption and lactate production. MDA-MB-231 and T47D cells produced 55 and 63%, respectively, of ATP from oxidative phosphorylation, whereas LM and BoM cells were more glycolytic, deriving only 20-25% of their ATP from mitochondria. ATP demand by BoM and LM cells was approximately half the rate of the parent cells. Of the anabolic fluxes assessed, nucleotide synthesis was the major ATP consumer for all cell lines. Glycolytic NADH production by LM cells exceeded the rate at which it could be oxidized by mitochondria, suggesting that the malate-aspartate shuttle was not involved in re-oxidation of these reducing equivalents. Serine synthesis was undetectable in MDA-MB-231 cells, whereas 3-5% of glucose was shunted to serine by LM and BoM lines. Proliferation rates of T47D, BoM, and LM lines tightly correlated with their respiration-normalized NADPH production rates. In contrast, MDA-MB-231 cells produced NADPH and GSH at higher rates, suggesting this line is more oxidatively stressed. Approximately half to two-thirds of NADPH produced by T47D, MDA-MB-231, and BoM cells was from the oxidative PPP, whereas the majority in LM cells was from the folate cycle. All four cell lines used the non-oxidative PPP to produce pentose phosphates, although this was most prominent for LM cells. Taken together, the metabolic phenotypes of LM and BoM lines differed from the parent line and from each other, supporting the metabolic re-wiring hypothesis as a feature of metastasis to lung and bone.
Collapse
Affiliation(s)
- Mika B. Jekabsons
- grid.251313.70000 0001 2169 2489Department of Biology, University of Mississippi, University, MS 38677 USA
| | - Mollie Merrell
- grid.251313.70000 0001 2169 2489Department of Biology, University of Mississippi, University, MS 38677 USA
| | - Anna G. Skubiz
- grid.251313.70000 0001 2169 2489Department of Biology, University of Mississippi, University, MS 38677 USA
| | - Noah Thornton
- grid.251313.70000 0001 2169 2489Department of Biology, University of Mississippi, University, MS 38677 USA
| | - Sandra Milasta
- grid.240871.80000 0001 0224 711XDepartment of Immunology, St Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Douglas Green
- grid.240871.80000 0001 0224 711XDepartment of Immunology, St Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Taosheng Chen
- grid.240871.80000 0001 0224 711XDepartment of Chemical Biology and Therapeutics, St Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Yan-Hong Wang
- grid.251313.70000 0001 2169 2489National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677 USA
| | - Bharathi Avula
- grid.251313.70000 0001 2169 2489National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677 USA
| | - Ikhlas A. Khan
- grid.251313.70000 0001 2169 2489National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677 USA ,grid.251313.70000 0001 2169 2489Department of Biomedical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677 USA
| | - Yu-Dong Zhou
- grid.251313.70000 0001 2169 2489Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677 USA
| |
Collapse
|
4
|
Tian B, Chen M, Liu L, Rui B, Deng Z, Zhang Z, Shen T. 13C metabolic flux analysis: Classification and characterization from the perspective of mathematical modeling and application in physiological research of neural cell. Front Mol Neurosci 2022; 15:883466. [PMID: 36157075 PMCID: PMC9493264 DOI: 10.3389/fnmol.2022.883466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
13C metabolic flux analysis (13C-MFA) has emerged as a forceful tool for quantifying in vivo metabolic pathway activity of different biological systems. This technology plays an important role in understanding intracellular metabolism and revealing patho-physiology mechanism. Recently, it has evolved into a method family with great diversity in experiments, analytics, and mathematics. In this review, we classify and characterize the various branch of 13C-MFA from a unified perspective of mathematical modeling. By linking different parts in the model to each step of its workflow, the specific technologies of 13C-MFA are put into discussion, including the isotope labeling model (ILM), isotope pattern measuring technique, optimization algorithm and statistical method. Its application in physiological research in neural cell has also been reviewed.
Collapse
Affiliation(s)
- Birui Tian
- Key Laboratory of Information and Computing Science Guizhou Province, Guizhou Normal University, Guiyang, China
| | - Meifeng Chen
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Key Laboratory of Plant Physiology and Development Regulation, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Lunxian Liu
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Key Laboratory of Plant Physiology and Development Regulation, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Bin Rui
- Eurofins Lancaster Laboratories Professional Scientific Services, Lancaster, PA, United States
| | - Zhouhui Deng
- China Guizhou Science Data Center Gui’an Supercomputing Center, Guiyang, China
| | - Zhengdong Zhang
- College of Mathematics and Information Science, Guiyang University, Guiyang, China
- *Correspondence: Zhengdong Zhang,
| | - Tie Shen
- Key Laboratory of Information and Computing Science Guizhou Province, Guizhou Normal University, Guiyang, China
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Key Laboratory of Plant Physiology and Development Regulation, School of Life Science, Guizhou Normal University, Guiyang, China
- Tie Shen,
| |
Collapse
|
5
|
Tiwari AK, Adhikari A, Mishra LC, Srivastava A. Current Status of Our Understanding for Brain Integrated Functions and its Energetics. Neurochem Res 2022; 47:2499-2512. [PMID: 35689788 DOI: 10.1007/s11064-022-03633-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
Abstract
Human/animal brain is a unique organ with substantially high metabolism but it contains no energy reserve that is the reason it requires continuous supply of O2 and energy fluxes through CBF. The main source of energy remains glucose as the other biomolecules do not able to cross the blood-brain barrier. The speed of glucose metabolism is heterogeneous throughout the brain. One of the major flux consumption is Neuron-astrocyte cycling of glutamate and glutamine in glutamatergic neurons (approximately 80% of glucose metabolism in brain). The quantification of cellular glucose and other related substrate in resting, activated state can be analyzed through [18 F]FDG -positron-emission tomography (studying CMRglc) and [13 C/31P -MRS: for neuroenergetics & neurotransmitter cycling &31P-MRS: for energy induction & redox state). Merging basic in vitro studies with these techniques will help to develop new treatment paradigms for human brain diseased conditions.
Collapse
Affiliation(s)
- Anjani Kumar Tiwari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University (A Central University), 226025, Lucknow, Uttar Pradesh, India.
| | - Anupriya Adhikari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University (A Central University), 226025, Lucknow, Uttar Pradesh, India
| | - Lokesh Chandra Mishra
- Department of Zoology, Hansraj College, University of Delhi, North Campus, 110007, Delhi, India
| | | |
Collapse
|
6
|
Maly IV, Morales MJ, Pletnikov MV. Astrocyte Bioenergetics and Major Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2021; 26:173-227. [PMID: 34888836 DOI: 10.1007/978-3-030-77375-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ongoing research continues to add new elements to the emerging picture of involvement of astrocyte energy metabolism in the pathophysiology of major psychiatric disorders, including schizophrenia, mood disorders, and addictions. This review outlines what is known about the energy metabolism in astrocytes, the most numerous cell type in the brain, and summarizes the recent work on how specific perturbations of astrocyte bioenergetics may contribute to the neuropsychiatric conditions. The role of astrocyte energy metabolism in mental health and disease is reviewed on the organism, organ, and cell level. Data arising from genomic, metabolomic, in vitro, and neurobehavioral studies is critically analyzed to suggest future directions in research and possible metabolism-focused therapeutic interventions.
Collapse
Affiliation(s)
- Ivan V Maly
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Michael J Morales
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Mikhail V Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
7
|
Muraleedharan R, Dasgupta B. AMPK in the brain: its roles in glucose and neural metabolism. FEBS J 2021; 289:2247-2262. [PMID: 34355526 DOI: 10.1111/febs.16151] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 11/28/2022]
Abstract
The adenosine monophosphate-activated protein kinase (AMPK) is an integrative metabolic sensor that maintains energy balance at the cellular level and plays an important role in orchestrating intertissue metabolic signaling. AMPK regulates cell survival, metabolism, and cellular homeostasis basally as well as in response to various metabolic stresses. Studies so far show that the AMPK pathway is associated with neurodegeneration and CNS pathology, but the mechanisms involved remain unclear. AMPK dysregulation has been reported in neurodegenerative diseases such as amyotrophic lateral sclerosis, multiple sclerosis, Alzheimer's disease, Parkinson's disease, Huntington's disease, and other neuropathies. AMPK activation appears to be both neuroprotective and pro-apoptotic, possibly dependent upon neural cell types, the nature of insults, and the intensity and duration of AMPK activation. While embryonic brain development in AMPK null mice appears to proceed normally without any overt structural abnormalities, our recent study confirmed the full impact of AMPK loss in the postnatal and aging brain. Our studies revealed that Ampk deletion in neurons increased basal neuronal excitability and reduced latency to seizure upon stimulation. Three major pathways, glycolysis, pentose phosphate shunt, and glycogen turnover, contribute to utilization of glucose in the brain. AMPK's regulation of aerobic glycolysis in astrocytic metabolism warrants further deliberation, particularly glycogen turnover and shuttling of glucose- and glycogen-derived lactate from astrocytes to neurons during activation. In this minireview, we focus on recent advances in AMPK and energy-sensing in the brain.
Collapse
Affiliation(s)
| | - Biplab Dasgupta
- Division of Oncology, Cincinnati Children's Hospital Medical Center, OH, USA
| |
Collapse
|
8
|
Possible mechanisms of HIV neuro-infection in alcohol use: Interplay of oxidative stress, inflammation, and energy interruption. Alcohol 2021; 94:25-41. [PMID: 33864851 DOI: 10.1016/j.alcohol.2021.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/05/2021] [Accepted: 04/01/2021] [Indexed: 11/21/2022]
Abstract
Alcohol use and HIV-1 infection have a pervasive impact on brain function, which extends to the requirement, distribution, and utilization of energy within the central nervous system. This effect on neuroenergetics may explain, in part, the exacerbation of HIV-1 disease under the influence of alcohol, particularly the persistence of HIV-associated neurological complications. The objective of this review article is to highlight the possible mechanisms of HIV/AIDS progression in alcohol users from the perspective of oxidative stress, neuroinflammation, and interruption of energy metabolism. These include the hallmark of sustained immune cell activation and high metabolic energy demand by HIV-1-infected cells in the central nervous system, with at-risk alcohol use. Here, we discussed the point that the increase in energy supply requirement by HIV-1-infected neuroimmune cells as well as the deterrence of nutrient uptake across the blood-brain barrier significantly depletes the energy source and neuro-environment homeostasis in the CNS. We also described the mechanistic idea that comorbidity of HIV-1 infection and alcohol use can cause a metabolic shift and redistribution of energy usage toward HIV-1-infected neuroimmune cells, as shown in neuropathological evidence. Under such an imbalanced neuro-environment, meaningless energy waste is expected in infected cells, along with unnecessary malnutrition in non-infected neuronal cells, which is likely to accelerate HIV neuro-infection progression in alcohol use. Thus, it will be important to consider the factor of nutrients/energy imbalance in formulating treatment strategies to help impede the progression of HIV-1 disease and associated neurological disorders in alcohol use.
Collapse
|
9
|
Reevaluation of Astrocyte-Neuron Energy Metabolism with Astrocyte Volume Fraction Correction: Impact on Cellular Glucose Oxidation Rates, Glutamate-Glutamine Cycle Energetics, Glycogen Levels and Utilization Rates vs. Exercising Muscle, and Na +/K + Pumping Rates. Neurochem Res 2020; 45:2607-2630. [PMID: 32948935 DOI: 10.1007/s11064-020-03125-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022]
Abstract
Accurate quantification of cellular contributions to rates of substrate utilization in resting, activated, and diseased brain is essential for interpretation of data from studies using [18F]fluorodeoxyglucose-positron-emission tomography (FDG-PET) and [13C]glucose/magnetic resonance spectroscopy (MRS). A generally-accepted dogma is that neurons have the highest energy demands of all brain cells, and calculated neuronal rates of glucose oxidation in awake, resting brain accounts for 70-80%, with astrocytes 20-30%. However, these proportions do not take cell type volume fractions into account. To evaluate the conclusion that neuron-astrocyte glucose oxidation rates are similar when adjusted for astrocytic volume fraction (Hertz, Magn Reson Imaging 2011; 29, 1319), the present study analyzed data from 31 studies. On average, astrocytes occupy 6.1, 9.6, and 15% of tissue volume in hippocampus, cerebral cortex, and cerebellum, respectively, and regional astrocytic metabolic rates are adjusted for volume fraction by multiplying by 17.6, 11.4, and 6.8, respectively. After adjustment, astrocytic glucose oxidation rates in resting awake rat brain are 4-10 fold higher than neuronal oxidation rates. Volume-fraction adjustment also increases brain glycogen concentrations and utilization rates to be similar to or exceed exercising muscle. Ion flux calculations to evaluate sodium/potassium homeostasis during neurotransmission are not correct if astrocyte-neuron volume fractions are assumed to be equal. High rates of glucose and glycogen utilization after adjustment for volume fraction indicate that astrocytic energy demands are much greater than recognized, with most of the ATP being used for functions other than glutamate processing in the glutamate-glutamine cycle, challenging the notion that astrocytes 'feed hungry neurons'.
Collapse
|
10
|
Cherkas A, Holota S, Mdzinarashvili T, Gabbianelli R, Zarkovic N. Glucose as a Major Antioxidant: When, What for and Why It Fails? Antioxidants (Basel) 2020; 9:antiox9020140. [PMID: 32033390 PMCID: PMC7070274 DOI: 10.3390/antiox9020140] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
A human organism depends on stable glucose blood levels in order to maintain its metabolic needs. Glucose is considered to be the most important energy source, and glycolysis is postulated as a backbone pathway. However, when the glucose supply is limited, ketone bodies and amino acids can be used to produce enough ATP. In contrast, for the functioning of the pentose phosphate pathway (PPP) glucose is essential and cannot be substituted by other metabolites. The PPP generates and maintains the levels of nicotinamide adenine dinucleotide phosphate (NADPH) needed for the reduction in oxidized glutathione and protein thiols, the synthesis of lipids and DNA as well as for xenobiotic detoxification, regulatory redox signaling and counteracting infections. The flux of glucose into a PPP—particularly under extreme oxidative and toxic challenges—is critical for survival, whereas the glycolytic pathway is primarily activated when glucose is abundant, and there is lack of NADP+ that is required for the activation of glucose-6 phosphate dehydrogenase. An important role of glycogen stores in resistance to oxidative challenges is discussed. Current evidences explain the disruptive metabolic effects and detrimental health consequences of chronic nutritional carbohydrate overload, and provide new insights into the positive metabolic effects of intermittent fasting, caloric restriction, exercise, and ketogenic diet through modulation of redox homeostasis.
Collapse
Affiliation(s)
- Andriy Cherkas
- Department of Internal Medicine # 1, Lviv National Medical University, 79010 Lviv, Ukraine
- Correspondence:
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Lviv National Medical University, 79010 Lviv, Ukraine;
- Department of Organic Chemistry and Pharmacy, Lesya Ukrainka Eastern European National University, 43025 Lutsk, Ukraine
| | - Tamaz Mdzinarashvili
- Institute of Medical and Applied Biophysics, I. Javakhishvili Tbilisi State University, 0128 Tbilisi, Georgia;
| | - Rosita Gabbianelli
- Unit of Molecular Biology, School of Pharmacy, University of Camerino, 62032 Camerino, Italy;
| | - Neven Zarkovic
- Laboratory for Oxidative Stress (LabOS), Institute “Rudjer Boskovic”, HR-10000 Zagreb, Croatia;
| |
Collapse
|
11
|
Abstract
Glucose is the long-established, obligatory fuel for brain that fulfills many critical functions, including ATP production, oxidative stress management, and synthesis of neurotransmitters, neuromodulators, and structural components. Neuronal glucose oxidation exceeds that in astrocytes, but both rates increase in direct proportion to excitatory neurotransmission; signaling and metabolism are closely coupled at the local level. Exact details of neuron-astrocyte glutamate-glutamine cycling remain to be established, and the specific roles of glucose and lactate in the cellular energetics of these processes are debated. Glycolysis is preferentially upregulated during brain activation even though oxygen availability is sufficient (aerobic glycolysis). Three major pathways, glycolysis, pentose phosphate shunt, and glycogen turnover, contribute to utilization of glucose in excess of oxygen, and adrenergic regulation of aerobic glycolysis draws attention to astrocytic metabolism, particularly glycogen turnover, which has a high impact on the oxygen-carbohydrate mismatch. Aerobic glycolysis is proposed to be predominant in young children and specific brain regions, but re-evaluation of data is necessary. Shuttling of glucose- and glycogen-derived lactate from astrocytes to neurons during activation, neurotransmission, and memory consolidation are controversial topics for which alternative mechanisms are proposed. Nutritional therapy and vagus nerve stimulation are translational bridges from metabolism to clinical treatment of diverse brain disorders.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences , Little Rock, Arkansas ; and Department of Cell Biology and Physiology, University of New Mexico , Albuquerque, New Mexico
| |
Collapse
|
12
|
Dienel GA. Does shuttling of glycogen-derived lactate from astrocytes to neurons take place during neurotransmission and memory consolidation? J Neurosci Res 2019; 97:863-882. [PMID: 30667077 DOI: 10.1002/jnr.24387] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/24/2018] [Accepted: 01/07/2019] [Indexed: 12/17/2022]
Abstract
Glycogen levels in resting brain and its utilization rates during brain activation are high, but the functions fulfilled by glycogenolysis in living brain are poorly understood. Studies in cultured astrocytes have identified glycogen as the preferred fuel to provide ATP for Na+ ,K+ -ATPase for the uptake of extracellular K+ and for Ca2+ -ATPase to pump Ca2+ into the endoplasmic reticulum. Studies in astrocyte-neuron co-cultures led to the suggestion that glycogen-derived lactate is shuttled to neurons as oxidative fuel to support glutamatergic neurotransmission. Furthermore, both knockout of brain glycogen synthase and inhibition of glycogenolysis prior to a memory-evoking event impair memory consolidation, and shuttling of glycogen-derived lactate as neuronal fuel was postulated to be required for memory. However, lactate shuttling has not been measured in any of these studies, and procedures to inhibit glycogenolysis and neuronal lactate uptake are not specific. Testable alternative mechanisms to explain the observed findings are proposed: (i) disruption of K+ and Ca2+ homeostasis, (ii) release of gliotransmitters, (iii) imposition of an energy crisis on astrocytes and neurons by inhibition of mitochondrial pyruvate transport by compounds used to block neuronal monocarboxylic acid transporters, and (iv) inhibition of astrocytic filopodial movements that secondarily interfere with glutamate and K+ uptake from the synaptic cleft. Evidence that most pyruvate/lactate derived from glycogen is not oxidized and does not accumulate suggests predominant glycolytic metabolism of glycogen to support astrocytic energy demands. Sparing of blood-borne glucose for use by neurons is a reasonable explanation for the requirement for glycogenolysis in neurotransmission and memory processing.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
13
|
Glycogenolysis in Cerebral Cortex During Sensory Stimulation, Acute Hypoglycemia, and Exercise: Impact on Astrocytic Energetics, Aerobic Glycolysis, and Astrocyte-Neuron Interactions. ADVANCES IN NEUROBIOLOGY 2019; 23:209-267. [DOI: 10.1007/978-3-030-27480-1_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Abstract
This review systematically examines the evidence for shifts in flux through energy generating biochemical pathways in Huntington’s disease (HD) brains from humans and model systems. Compromise of the electron transport chain (ETC) appears not to be the primary or earliest metabolic change in HD pathogenesis. Rather, compromise of glucose uptake facilitates glucose flux through glycolysis and may possibly decrease flux through the pentose phosphate pathway (PPP), limiting subsequent NADPH and GSH production needed for antioxidant protection. As a result, oxidative damage to key glycolytic and tricarboxylic acid (TCA) cycle enzymes further restricts energy production so that while basal needs may be met through oxidative phosphorylation, those of excessive stimulation cannot. Energy production may also be compromised by deficits in mitochondrial biogenesis, dynamics or trafficking. Restrictions on energy production may be compensated for by glutamate oxidation and/or stimulation of fatty acid oxidation. Transcriptional dysregulation generated by mutant huntingtin also contributes to energetic disruption at specific enzymatic steps. Many of the alterations in metabolic substrates and enzymes may derive from normal regulatory feedback mechanisms and appear oscillatory. Fine temporal sequencing of the shifts in metabolic flux and transcriptional and expression changes associated with mutant huntingtin expression remain largely unexplored and may be model dependent. Differences in disease progression among HD model systems at the time of experimentation and their varying states of metabolic compensation may explain conflicting reports in the literature. Progressive shifts in metabolic flux represent homeostatic compensatory mechanisms that maintain the model organism through presymptomatic and symptomatic stages.
Collapse
Affiliation(s)
- Janet M Dubinsky
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
15
|
Polster BM, Carrì MT, Beart PM. Mitochondria in the nervous system: From health to disease, Part I. Neurochem Int 2017; 109:1-4. [PMID: 28917714 DOI: 10.1016/j.neuint.2017.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In Part I of this Special Issue on "Mitochondria in the Nervous System: From Health to Disease", the editors bring together contributions from experts in brain mitochondrial research to provide an up-to-date overview of mitochondrial functioning in physiology and pathology. The issue provides cutting edge reviews on classical areas of mitochondrial biology that include energy substrate utilization, calcium handling, mitochondria-endoplasmic reticulum communication, and cell death regulation. Additional reviews and original research articles touch upon key mitochondrial defects seen across multiple neurodegenerative conditions, including fragmentation, loss of respiratory capacity, calcium overload, elevated reactive oxygen species generation, perturbed NAD+ metabolism, altered protein acetylation, and compromised mitophagy. Emerging links between the genetics of neurodegenerative disorders and disruption in mitochondrial function are discussed, and a new mouse model of Complex I deficiency is described. Finally, novel ways to rescue mitochondrial structure and function in acute and chronic brain injury are explored.
Collapse
Affiliation(s)
- Brian M Polster
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, United States.
| | - Maria Teresa Carrì
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; Fondazione Santa Lucia IRCCS, Via Ardeatina 306, Rome, Italy
| | - Philip M Beart
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
16
|
Zilberter Y, Zilberter M. The vicious circle of hypometabolism in neurodegenerative diseases: Ways and mechanisms of metabolic correction. J Neurosci Res 2017; 95:2217-2235. [PMID: 28463438 DOI: 10.1002/jnr.24064] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/17/2017] [Accepted: 03/17/2017] [Indexed: 12/13/2022]
Abstract
Hypometabolism, characterized by decreased brain glucose consumption, is a common feature of many neurodegenerative diseases. Initial hypometabolic brain state, created by characteristic risk factors, may predispose the brain to acquired epilepsy and sporadic Alzheimer's and Parkinson's diseases, which are the focus of this review. Analysis of available data suggests that deficient glucose metabolism is likely a primary initiating factor for these diseases, and that resulting neuronal dysfunction further promotes the metabolic imbalance, establishing an effective positive feedback loop and a downward spiral of disease progression. Therefore, metabolic correction leading to the normalization of abnormalities in glucose metabolism may be an efficient tool to treat the neurological disorders by counteracting their primary pathological mechanisms. Published and preliminary experimental results on this approach for treating Alzheimer's disease and epilepsy models support the efficacy of metabolic correction, confirming the highly promising nature of the strategy. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuri Zilberter
- Aix-Marseille Université, INSERM UMR1106, Institut de Neurosciences des Systèmes, Marseille, France
| | - Misha Zilberter
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, California, 94158, USA
| |
Collapse
|
17
|
Jekabsons MB, Gebril HM, Wang YH, Avula B, Khan IA. Updates to a 13C metabolic flux analysis model for evaluating energy metabolism in cultured cerebellar granule neurons from neonatal rats. Neurochem Int 2017; 109:54-67. [PMID: 28412312 DOI: 10.1016/j.neuint.2017.03.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
Abstract
A hexose phosphate recycling model previously developed to infer fluxes through the major glucose consuming pathways in cultured cerebellar granule neurons (CGNs) from neonatal rats metabolizing [1,2-13C2]glucose was revised by considering reverse flux through the non-oxidative pentose phosphate pathway (PPP) and symmetrical succinate oxidation within the tricarboxylic acid (TCA) cycle. The model adjusts three flux ratios to effect 13C distribution in the hexose, pentose, and triose phosphate pools, and in TCA cycle malate to minimize the error between predicted and measured 13C labeling in exported lactate (i.e., unlabeled, single-, double-, and triple-labeled; M, M1, M2, and M3, respectively). Inclusion of reverse non-oxidative PPP flux substantially increased the number of calculations but ultimately had relatively minor effects on the labeling of glycolytic metabolites. From the error-minimized solution in which the predicted M-M3 lactate differed by 0.49% from that measured by liquid chromatography-triple quadrupole mass spectrometry, the neurons exhibited negligible forward non-oxidative PPP flux. Thus, no glucose was used by the pentose cycle despite explicit consideration of hexose phosphate recycling. Mitochondria consumed only 16% of glucose while 45% was exported as lactate by aerobic glycolysis. The remaining 39% of glucose was shunted to pentose phosphates presumably for de novo nucleotide synthesis, but the proportion metabolized through the oxidative PPP vs. the reverse non-oxidative PPP could not be determined. The lactate exported as M1 (2.5%) and M3 (1.2%) was attributed to malic enzyme, which was responsible for 7.8% of pyruvate production (vs. 92.2% by glycolysis). The updated model is more broadly applicable to different cell types by considering bi-directional flux through the non-oxidative PPP. Its application to cultured neurons utilizing glucose as the sole exogenous substrate has demonstrated substantial oxygen-independent glucose utilization by aerobic glycolysis as well as the oxidative PPP and/or reverse non-oxidative PPP, but negligible glucose consumption by the pentose cycle.
Collapse
Affiliation(s)
- Mika B Jekabsons
- Department of Biology, 110 Shoemaker Hall, University of Mississippi, University, MS 38677, USA.
| | - Hoda M Gebril
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Yan-Hong Wang
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Bharathi Avula
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Ikhlas A Khan
- Department of Biomedical Sciences and National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
18
|
Bonilla-Ramírez L, Jiménez-Del-Río M, Vélez-Pardo C. Glucose promotes resistance in lymphocytes against oxidative stress-induced apoptosis through signaling and metabolic pathways. Implications for Parkinson’s disease. IATREIA 2017. [DOI: 10.17533/udea.iatreia.v30n2a02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|