1
|
El-Hakim Y, Mani KK, Pickle KA, Akbari Z, Samiya N, Pham C, Salas G, Pilla R, Sohrabji F. Peripheral, but not central, IGF-1 treatment attenuates stroke-induced cognitive impairment in middle-aged female Sprague Dawley rats: The gut as a therapeutic target. Brain Behav Immun 2024; 122:150-166. [PMID: 39142422 DOI: 10.1016/j.bbi.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 07/18/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024] Open
Abstract
Stroke results in immediate sensory or motor disability and increases the risk for long term cognitive-affective impairments. Thus, therapies are urgently needed to improve quality of life for stroke survivors, especially women who are at a greater risk for severe stroke after menopause. Most current research on stroke therapies target the central nervous system; however, stroke also impacts peripheral organ systems. Our studies using acyclic (estrogen-deficient) middle aged female Sprague Dawley rats show that this group not only displays worse outcomes after stroke as compared to adult females, but also has lower levels of the neuroprotective peptide Insulin-like Growth Factor (IGF1) in circulation. Intracerebroventricular (ICV) administration of IGF1 to this group decreases infarct volume and improves sensory motor performance in the acute phase. In this study, we show that, despite this neuroprotection, ICV-IGF1 did not reduce peripheral inflammation or improve post stroke cognitive impairment in the chronic phase. In view of the evidence that stroke induces rapid gut dysfunction, we tested whether systemic delivery of IGF1 (intraperitoneal, IP) would promote gut health and consequently improve long-term behavioral outcomes. Surprisingly, while IP-IGF1, delivered 4 h and 24 h after ischemic stroke, did not reduce infarct volume or acute sensory motor impairment, it significantly attenuated circulating levels of pro-inflammatory cytokines, and attenuated stroke-induced cognitive impairment. In addition, IP-IGF1 treatment reduced gut dysmorphology and gut dysbiosis. Our data support the conclusion that therapeutics targeting peripheral targets are critical for long-term stroke recovery, and that gut repair is a novel therapeutic target to improve brain health in aging females.
Collapse
Affiliation(s)
- Yumna El-Hakim
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan TX-77807 USA
| | - Kathiresh Kumar Mani
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan TX-77807 USA
| | - Kaylin A Pickle
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan TX-77807 USA
| | - Zara Akbari
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan TX-77807 USA
| | - Nadia Samiya
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan TX-77807 USA
| | - Chloe Pham
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan TX-77807 USA
| | - Gianna Salas
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan TX-77807 USA
| | - Rachel Pilla
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine Texas A&M University, College Station, TX Brazos
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan TX-77807 USA.
| |
Collapse
|
2
|
Artimovič P, Špaková I, Macejková E, Pribulová T, Rabajdová M, Mareková M, Zavacká M. The ability of microRNAs to regulate the immune response in ischemia/reperfusion inflammatory pathways. Genes Immun 2024; 25:277-296. [PMID: 38909168 PMCID: PMC11327111 DOI: 10.1038/s41435-024-00283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024]
Abstract
MicroRNAs play a crucial role in regulating the immune responses induced by ischemia/reperfusion injury. Through their ability to modulate gene expression, microRNAs adjust immune responses by targeting specific genes and signaling pathways. This review focuses on the impact of microRNAs on the inflammatory pathways triggered during ischemia/reperfusion injury and highlights their ability to modulate inflammation, playing a critical role in the pathophysiology of ischemia/reperfusion injury. Dysregulated expression of microRNAs contributes to the pathogenesis of ischemia/reperfusion injury, therefore targeting specific microRNAs offers an opportunity to restore immune homeostasis and improve patient outcomes. Understanding the complex network of immunoregulatory microRNAs could provide novel therapeutic interventions aimed at attenuating excessive inflammation and preserving tissue integrity.
Collapse
Affiliation(s)
- Peter Artimovič
- Department of Medical and Clinical Biochemistry, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia
| | - Ivana Špaková
- Department of Medical and Clinical Biochemistry, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia
| | - Ema Macejková
- Department of Vascular Surgery, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia
| | - Timea Pribulová
- Department of Vascular Surgery, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia
| | - Miroslava Rabajdová
- Department of Medical and Clinical Biochemistry, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia
| | - Mária Mareková
- Department of Medical and Clinical Biochemistry, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia
| | - Martina Zavacká
- Department of Vascular Surgery, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia.
| |
Collapse
|
3
|
Pinson MR, Bake S, Hurst DA, Samiya NT, Sohrabji F, Miranda RC. Prenatal alcohol alters inflammatory signatures in enteric portal tissues following adult-onset cerebrovascular ischemic stroke. iScience 2023; 26:107920. [PMID: 37810225 PMCID: PMC10550726 DOI: 10.1016/j.isci.2023.107920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 07/24/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Prenatal alcohol exposure (PAE) impairs recovery from cerebrovascular ischemic stroke in adult rodents. Since the gut becomes dysbiotic following stroke, we assessed links between PAE and enteric portal inflammation. Adult control and PAE rat offspring received a unilateral endothelin-1-induced occlusion of the middle cerebral artery. Post-stroke behavioral disabilities and brain cytokines were assessed. Mesenteric adipose and liver transcriptomes were assessed from stroke-exposed and stroke-naive offspring. We identified, in the liver of stroke-naive animals, a moderate correlation between PAE and a gene network for inflammatory necroptosis. PAE inhibited the acute-phase brain inflammatory cytokine response to stroke. Post-stroke neurological function was correlated with an adipose gene network associated with B-lymphocyte differentiation and nuclear factor κB (NF-κB) signaling and with a liver pro-inflammatory gene network. Collectively, PAE inhibits brain inflammation but results in an inflammatory signature in enteric portal tissues after stroke, suggesting that PAE persistently and adversely impacts the gut-brain axis following adult-onset disease.
Collapse
Affiliation(s)
- Marisa R Pinson
- Department of Neuroscience and Experimental Therapeutics, Texas A&M School of Medicine, Bryan, TX, USA
| | - Shameena Bake
- Department of Neuroscience and Experimental Therapeutics, Texas A&M School of Medicine, Bryan, TX, USA
- Women's Health in Neuroscience Program, Texas A&M University School of Medicine, Bryan, TX, USA
| | - David A Hurst
- Department of Neuroscience and Experimental Therapeutics, Texas A&M School of Medicine, Bryan, TX, USA
| | - Nadia T Samiya
- Department of Neuroscience and Experimental Therapeutics, Texas A&M School of Medicine, Bryan, TX, USA
| | - Farida Sohrabji
- Department of Neuroscience and Experimental Therapeutics, Texas A&M School of Medicine, Bryan, TX, USA
- Women's Health in Neuroscience Program, Texas A&M University School of Medicine, Bryan, TX, USA
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M School of Medicine, Bryan, TX, USA
- Women's Health in Neuroscience Program, Texas A&M University School of Medicine, Bryan, TX, USA
| |
Collapse
|
4
|
Branyan TE, Aleksa J, Lepe E, Kosel K, Sohrabji F. The aging ovary impairs acute stroke outcomes. J Neuroinflammation 2023; 20:159. [PMID: 37408003 DOI: 10.1186/s12974-023-02839-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
In experimental stroke, ovariectomized (OVX) adult rats have larger infarct volumes and greater sensory-motor impairment as compared to ovary-intact females and is usually interpreted to indicate that ovarian hormones are neuroprotective for stroke. Previous work from our lab shows that middle-aged, acyclic reproductively senescent (RS) females have worse stroke outcomes as compared to adult (normally cycling) females. We hypothesized that if loss of ovarian estrogen is the critical determinant of stroke outcomes, then ovary-intact middle-aged acyclic females, who have reduced levels of estradiol, should have similar stroke outcomes as age-matched OVX. Instead, the data demonstrated that OVX RS animals showed better sensory-motor function after stroke and reduced infarct volume as compared to ovary-intact females. Inflammatory cytokines were decreased in the aging ovary after stroke as compared to non-stroke shams, which led to the hypothesis that immune cells may be extravasated from the ovaries post-stroke. Flow cytometry indicated reduced overall T cell populations in the aging ovary after middle cerebral artery occlusion (MCAo), with a paradoxical increase in regulatory T cells (Tregs) and M2-like macrophages. Moreover, in the brain, OVX RS animals showed increased Tregs, increased M2-like macrophages, and increased MHC II + cells as compared to intact RS animals, which have all been shown to be correlated with better prognosis after stroke. Depletion of ovary-resident immune cells after stroke suggests that there may be an exaggerated response to ischemia and possible increased burden of the inflammatory response via extravasation of these cells into circulation. Increased anti-inflammatory cells in the brain of OVX RS animals further supports this hypothesis. These data suggest that stroke severity in aging females may be exacerbated by the aging ovary and underscore the need to assess immunological changes in this organ after stroke.
Collapse
Affiliation(s)
- Taylor E Branyan
- Department of Neuroscience and Experimental Therapeutics, Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, 8447 Riverside Pkwy, Bryan, TX, 77807, USA
- Texas A&M Institute for Neuroscience, College Station, TX, 77840, USA
| | - Jocelyn Aleksa
- Department of Neuroscience and Experimental Therapeutics, Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, 8447 Riverside Pkwy, Bryan, TX, 77807, USA
| | - Esteban Lepe
- Department of Neuroscience and Experimental Therapeutics, Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, 8447 Riverside Pkwy, Bryan, TX, 77807, USA
| | - Kelby Kosel
- Department of Neuroscience and Experimental Therapeutics, Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, 8447 Riverside Pkwy, Bryan, TX, 77807, USA
| | - Farida Sohrabji
- Department of Neuroscience and Experimental Therapeutics, Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, 8447 Riverside Pkwy, Bryan, TX, 77807, USA.
- Texas A&M Institute for Neuroscience, College Station, TX, 77840, USA.
| |
Collapse
|
5
|
Sampath D, Branyan TE, Markowsky KG, Gunda R, Samiya N, Obenaus A, Sohrabji F. Sex differences in cognitive impairment after focal ischemia in middle-aged rats and the effect of iv miR-20a-3p treatment. Neurobiol Aging 2023; 129:168-177. [PMID: 37336171 DOI: 10.1016/j.neurobiolaging.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 06/21/2023]
Abstract
Stroke is a major cause of death and disability worldwide and is also a leading cause of vascular dementia and Alzheimer's disease, with older women experiencing accelerated decline. Our previous studies show that intravenous (iv) injections of miR-20a-3p, a small noncoding RNA (miRNA) delivered after stroke improves acute stroke outcomes in middle-aged male and female rats. The present study tested whether mir-20a-3p treatment would also ameliorate stroke-induced cognitive decline in the chronic phase. Acyclic middle-aged females and age-matched male Sprague Dawley rats were subjected to middle cerebral artery occlusion using endothelin-1 or sham surgery, and treated iv with miR-20a-3p mimics or scrambled oligos at 4 hours, 24 hours, and 70 days post-stroke. Stroke resulted in a significant sensory motor deficit, while miR-20a-3p treatment reduced these deficits in both sexes. Cognitive impairment was assessed periodically for 3 months after stroke using contextual fear conditioning and the novel object recognition task. Overall, the tests of associative and episodic memory were affected by focal ischemia only in female rats, and miR-20a-3p ameliorated the rate of decline.
Collapse
Affiliation(s)
- Dayalan Sampath
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine and Texas A&M Institute for Neuroscience, Texas A&M University, Bryan, TX, USA
| | - Taylor E Branyan
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine and Texas A&M Institute for Neuroscience, Texas A&M University, Bryan, TX, USA
| | - Kylee G Markowsky
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine and Texas A&M Institute for Neuroscience, Texas A&M University, Bryan, TX, USA
| | - Rithvik Gunda
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine and Texas A&M Institute for Neuroscience, Texas A&M University, Bryan, TX, USA
| | - Nadia Samiya
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine and Texas A&M Institute for Neuroscience, Texas A&M University, Bryan, TX, USA
| | - Andre Obenaus
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine and Texas A&M Institute for Neuroscience, Texas A&M University, Bryan, TX, USA.
| |
Collapse
|
6
|
Todoran R, Falcione SR, Clarke M, Joy T, Boghozian R, Jickling GC. microRNA as a therapeutic for ischemic stroke. Neurochem Int 2023; 163:105487. [PMID: 36657721 DOI: 10.1016/j.neuint.2023.105487] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023]
Abstract
microRNA (miRNA) are important regulators of gene expression. miRNA have the potential as a treatment to modulate genes, pathways and cells involved in ischemic stroke. In this review, we specifically present miRNA in stroke as a treatment to decrease thrombosis, reduce blood brain barrier (BBB) disruption and hemorrhagic transformation (HT), modulate inflammation, and modify angiogenesis. miRNA as a treatment for stroke is an emerging area with evidence from animal studies demonstrating its potential. While no miRNA is currently approved for human use, several have shown promise in clinical trials to treat medical conditions, such as miR-122 for hepatitis C. The role of miRNA as a treatment for specific applications in ischemic stroke is presented including a discussion of the benefits and barriers of miRNA as a treatment, and directions for future advancement.
Collapse
Affiliation(s)
- Raluca Todoran
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Sarina R Falcione
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Canada
| | - Michael Clarke
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Twinkle Joy
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Canada
| | - Roobina Boghozian
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Canada
| | - Glen C Jickling
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada; Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
7
|
Mani KK, El-Hakim Y, Branyan TE, Samiya N, Pandey S, Grimaldo MT, Habbal A, Wertz A, Sohrabji F. Intestinal epithelial stem cell transplants as a novel therapy for cerebrovascular stroke. Brain Behav Immun 2023; 107:345-360. [PMID: 36328163 DOI: 10.1016/j.bbi.2022.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/24/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
Almost 2/3rds of stroke survivors exhibit vascular cognitive impairment and a third of stroke patients will develop dementia 1-3 years after stroke. These dire consequences underscore the need for effective stroke therapies. In addition to its damaging effects on the brain, stroke rapidly dysregulates the intestinal epithelium, resulting in elevated blood levels of inflammatory cytokines and toxic gut metabolites due to a 'leaky' gut. We tested whether repairing the gut via intestinal epithelial stem cell (IESC) transplants would also improve stroke recovery. Organoids containing IESCs derived from young rats transplanted into older rats after stroke were incorporated into the gut, restored stroke-induced gut dysmorphology and decreased gut permeability, and reduced circulating levels of endotoxin LPS and the inflammatory cytokine IL-17A. Remarkably, IESC transplants also improved stroke-induced acute (4d) sensory-motor disability and chronic (30d) cognitive-affective function. Moreover, IESCs from older animals displayed senescent features and were not therapeutic for stroke. These data underscore the gut as a critical therapeutic target for stroke and demonstrate the effectiveness of gut stem cell therapy.
Collapse
Affiliation(s)
- Kathiresh Kumar Mani
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States; Texas A&M Institute for Neuroscience, Texas A&M University, Bryan, TX 77807, United States
| | - Yumna El-Hakim
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States
| | - Taylor E Branyan
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States; Texas A&M Institute for Neuroscience, Texas A&M University, Bryan, TX 77807, United States
| | - Nadia Samiya
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States
| | - Sivani Pandey
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States
| | - Maria T Grimaldo
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States
| | - Ali Habbal
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States
| | - Anna Wertz
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States; Texas A&M Institute for Neuroscience, Texas A&M University, Bryan, TX 77807, United States.
| |
Collapse
|
8
|
Bake S, Hurst DA, Miranda RC, Sohrabji F. Prenatal alcohol exposure exacerbates acute sensorimotor deficits and impedes long-term behavioral recovery from the effects of an adult-onset cerebrovascular ischemic stroke. Alcohol Clin Exp Res 2022; 46:2267-2279. [PMID: 36203340 PMCID: PMC10100487 DOI: 10.1111/acer.14952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/18/2022] [Accepted: 09/24/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) is a significant risk factor for developmental disability, although its health consequences across the lifespan are poorly understood. Here, we hypothesized that latent brain and systemic consequences of PAE influence resiliency to adult-onset neurological disease, specifically, cerebrovascular ischemic stroke. METHODS Pregnant Sprague-Dawley rats were exposed episodically to ethanol during the fetal neurogenic period. Adult (5 months) male and female PAE and control offspring were subjected to endothelin-1-induced unilateral middle cerebral artery occlusion. In the acute injury phase outcomes including stroke volume and neurological, endocrine, and gut permeability markers were assessed. Because the effects of stroke in human populations evolve over months to years, we also assessed hippocampal- and amygdala-dependent memory function and social interaction preference up to 6 months following a stroke, in middle-aged offspring. RESULTS Prenatal alcohol exposure did not alter infarct volume, but significantly increased neurological deficits in both sexes, and impaired interhemispheric sensorimotor integration in PAE females. The IGF-1/IGFBP3 ratio, a measure of bioavailable IGF-1, was significantly reduced, while circulating levels of bacterial lipopolysaccharide, an inflammagen, were significantly increased in PAE males. In PAE females, the circulating IGF-1/IGFBP3 ratio was significantly increased and estradiol-17b levels were significantly reduced. The intestinal fatty acid binding protein, a surrogate marker of gut permeability was also significantly increased in PAE females. Longer-term deficits in hippocampal-associated memory and social interactions were observed in PAE males, while deficits in amygdala-dependent memory were observed in PAE females. CONCLUSIONS PAE contributes to adverse effects on brain health and decreased resiliency in response to a common adult-onset neurovascular disease, cerebrovascular ischemic stroke.
Collapse
Affiliation(s)
- Shameena Bake
- Women's Health in Neuroscience Program, and Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, Texas, USA
| | - David A Hurst
- Women's Health in Neuroscience Program, and Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, Texas, USA
| | - Rajesh C Miranda
- Women's Health in Neuroscience Program, and Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, Texas, USA
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, and Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, Texas, USA
| |
Collapse
|
9
|
Liu L, Liu J, Li M, Lyu J, Su W, Feng S, Ji X. Selective brain hypothermia attenuates focal cerebral ischemic injury and improves long-term neurological outcome in aged female mice. CNS Neurosci Ther 2022; 29:129-139. [PMID: 36341958 PMCID: PMC9804044 DOI: 10.1111/cns.14017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/09/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
AIMS This study aimed to investigate the effects of mild selective brain hypothermia on aged female ischemic mice. METHODS A distal middle cerebral artery occlusion (dMCAO) model was established in aged female mice, who were then subjected to mild selective brain hypothermia immediately after the dMCAO procedure. Neurological behavioral examinations were conducted prior to and up to 35 days post-ischemia. Infarct volume, brain atrophy, pro-inflammation, and anti-inflammation microglia/macrophages phenotype and white matter injury were evaluated by immunofluorescence staining. Correlations between neurological behaviors and histological parameters were evaluated by Pearson product linear regression analysis. RESULTS Sensorimotor and cognitive function tests confirmed the protective effect of mild selective brain hypothermia in elderly female ischemic mice. In addition, hypothermia decreased the infarct volume and brain atrophy induced by focal cerebral ischemia. Furthermore, hypothermia alleviated ischemia-induced short-term and long-term white matter injury, which was correlated with behavioral deficits. Finally, hypothermia suppressed the harmful immunological response by promoting the transformation of pro-inflammatory microglia/macrophages to anti-inflammatory phenotype. This polarization was negatively correlated with neuronal loss and white matter injury. CONCLUSION Mild selective brain hypothermia promoted long-term functional recovery by alleviating white matter damage in an aged female mouse model of ischemia.
Collapse
Affiliation(s)
- Liqiang Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Jia Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Ming Li
- Beijing Institute of Geriatrics, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Junxuan Lyu
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Wei Su
- Department of Neurosurgery, Beijing Tsing Hua Chang Gung Hospital, School of Clinical MedicineTsing Hua UniversityBeijingChina
| | - Shejun Feng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina,Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
10
|
Can U, Marzioglu E, Akdu S. Some miRNA expressions and their targets in ischemic stroke. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:1224-1262. [PMID: 35876186 DOI: 10.1080/15257770.2022.2098974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/15/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Ischemic stroke (IS) is a global health challenge leading to life-long disabilities or the deaths of patients. IS is a complex disease where genetic and environmental factors are both concerned with the pathophysiology of the condition. Here, we aimed to investigate various microRNA (miRNA) expressions and their targets in IS. A rapid and accurate diagnosis of acute IS is important to perform appropriate treatment. Therefore, there is a need for a more rapid and simple tool to carry out an acute diagnosis of IS. miRNAs are small RNA molecules serving as precious biomarkers due to their easy detection and stability in blood samples. The present systematic review aimed to summarize previous studies investigating several miRNA expressions and their targets in IS.
Collapse
Affiliation(s)
- Ummugulsum Can
- Department of Biochemistry, Konya City Hospital, Konya, Türkiye
| | - Ebru Marzioglu
- Department of Genetics, Konya Training and Research Hospital, Konya, Türkiye
| | - Sadinaz Akdu
- Department of Biochemistry, Fethiye State Hospital, Muğla, Turkey
| |
Collapse
|
11
|
Branyan TE, Selvamani A, Park MJ, Korula KE, Kosel KF, Srinivasan R, Sohrabji F. Functional Assessment of Stroke-Induced Regulation of miR-20a-3p and Its Role as a Neuroprotectant. Transl Stroke Res 2022; 13:432-448. [PMID: 34570349 PMCID: PMC9046320 DOI: 10.1007/s12975-021-00945-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/12/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022]
Abstract
MicroRNAs have gained popularity as a potential treatment for many diseases, including stroke. This study identifies and characterizes a specific member of the miR-17-92 cluster, miR-20a-3p, as a possible stroke therapeutic. A comprehensive microRNA screening showed that miR-20a-3p was significantly upregulated in astrocytes of adult female rats, which typically have better stroke outcomes, while it was profoundly downregulated in astrocytes of middle-aged females and adult and middle-aged males, groups that typically have more severe stroke outcomes. Assays using primary human astrocytes and neurons show that miR-20a-3p treatment alters mitochondrial dynamics in both cell types. To assess whether stroke outcomes could be improved by elevating astrocytic miR-20a-3p, we created a tetracycline (Tet)-induced recombinant adeno-associated virus (rAAV) construct where miR-20a-3p was located downstream a glial fibrillary acidic protein promoter. Treatment with doxycycline induced miR-20-3p expression in astrocytes, reducing mortality and modestly improving sensory motor behavior. A second Tet-induced rAAV construct was created in which miR-20a-3p was located downstream of a neuron-specific enolase (NSE) promoter. These experiments demonstrate that neuronal expression of miR-20a-3p is vastly more neuroprotective than astrocytic expression, with animals receiving the miR-20a-3p vector showing reduced infarction and sensory motor improvement. Intravenous injections, which are a therapeutically tractable treatment route, with miR-20a-3p mimic 4 h after middle cerebral artery occlusion (MCAo) significantly improved stroke outcomes including infarct volume and sensory motor performance. Improvement was not observed when miR-20a-3p was given immediately or 24 h after MCAo, identifying a unique delayed therapeutic window. Overall, this study identifies a novel neuroprotective microRNA and characterizes several key pathways by which it can improve stroke outcomes.
Collapse
Affiliation(s)
- Taylor E Branyan
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
- Texas A&M Institute for Neuroscience, College Station, TX, 77840, USA
| | - Amutha Selvamani
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
| | - Min Jung Park
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
| | - Kriti E Korula
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
| | - Kelby F Kosel
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
| | - Rahul Srinivasan
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
- Texas A&M Institute for Neuroscience, College Station, TX, 77840, USA
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA.
- Texas A&M Institute for Neuroscience, College Station, TX, 77840, USA.
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, 8447 Riverside Pkwy, Bryan, TX, 77807, USA.
| |
Collapse
|
12
|
Zhang L, Zhou H, Wang S, Guan Y, Zhang C, Fang D. Changes in microglia during drug treatment of stroke. IBRAIN 2022; 8:227-240. [PMID: 37786889 PMCID: PMC10528798 DOI: 10.1002/ibra.12037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/07/2022] [Accepted: 04/20/2022] [Indexed: 10/04/2023]
Abstract
Microglia are the main immune cells in the brain and the first defense barrier of the nervous system. Microglia play a complex role in the process of stroke. A growing number of studies focus on the mechanism of action of drugs functions and how to regulate microglia. Therefore, we talk about the pathophysiological mechanisms of stroke and elaborate on the microglia signaling pathways of drug action in stroke models and how these drugs play a role in stroke treatment in this review. Understanding how drugs modulate proinflammatory and anti-inflammatory responses of microglia may be critical to implementing therapeutic strategies using immune interventions in stroke.
Collapse
Affiliation(s)
- Ling‐Jing Zhang
- Department of AnesthesiaZunyi Medical UniversityZunyiGuizhouChina
| | - Hong‐Su Zhou
- Department of AnesthesiaGraduate School of Zunyi Medical UniversityZunyiGuizhouChina
| | - Shi‐Ya Wang
- Department of AnesthesiaZunyi Medical UniversityZunyiGuizhouChina
| | - Yi‐Huan Guan
- Department of AnesthesiaZunyi Medical UniversityZunyiGuizhouChina
| | - Chao Zhang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - De‐Rong Fang
- Department of Family PlanningAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
13
|
Noncoding RNA as Diagnostic and Prognostic Biomarkers in Cerebrovascular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8149701. [PMID: 35498129 PMCID: PMC9042605 DOI: 10.1155/2022/8149701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/22/2022] [Indexed: 02/06/2023]
Abstract
Noncoding RNAs (ncRNAs), such as microRNAs, long noncoding RNAs, and circular RNAs, play an important role in the pathophysiology of cerebrovascular diseases (CVDs). They are effectively detectable in body fluids, potentially suggesting new biomarkers for the early detection and prognosis of CVDs. In this review, the physiological functions of circulating ncRNAs and their potential role as diagnostic and prognostic markers in patients with cerebrovascular diseases are discussed, especially in acute ischemic stroke, subarachnoid hemorrhage, and moyamoya disease.
Collapse
|
14
|
Bahatyrevich-Kharitonik B, Medina-Guzman R, Flores-Cortes A, García-Cruzado M, Kavanagh E, Burguillos MA. Cell Death Related Proteins Beyond Apoptosis in the CNS. Front Cell Dev Biol 2022; 9:825747. [PMID: 35096845 PMCID: PMC8794922 DOI: 10.3389/fcell.2021.825747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022] Open
Abstract
Cell death related (CDR) proteins are a diverse group of proteins whose original function was ascribed to apoptotic cell death signaling. Recently, descriptions of non-apoptotic functions for CDR proteins have increased. In this minireview, we comment on recent studies of CDR proteins outside the field of apoptosis in the CNS, encompassing areas such as the inflammasome and non-apoptotic cell death, cytoskeleton reorganization, synaptic plasticity, mitophagy, neurodegeneration and calcium signaling among others. Furthermore, we discuss the evolution of proteomic techniques used to predict caspase substrates that could potentially explain their non-apoptotic roles. Finally, we address new concepts in the field of non-apoptotic functions of CDR proteins that require further research such the effect of sexual dimorphism on non-apoptotic CDR protein function and the emergence of zymogen-specific caspase functions.
Collapse
Affiliation(s)
- Bazhena Bahatyrevich-Kharitonik
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| | - Rafael Medina-Guzman
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| | - Alicia Flores-Cortes
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| | - Marta García-Cruzado
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| | - Edel Kavanagh
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| | - Miguel Angel Burguillos
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| |
Collapse
|
15
|
MicroRNA as a Potential Biomarker and Treatment Strategy for Ischemia-Reperfusion Injury. Int J Genomics 2021; 2021:9098145. [PMID: 34845433 PMCID: PMC8627352 DOI: 10.1155/2021/9098145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022] Open
Abstract
Ischemia-reperfusion (I/R) injury is a progressive injury that aggravates the pathological state when the organ tissue restores blood supply after a certain period of ischemia, including the myocardial, brain, liver, kidney, and intestinal. With growing evidence that microRNAs (miRNAs) play an important role as posttranscription gene silencing mediators in many I/R injury, in this review, we highlight the microRNAs that are related to I/R injury and their regulatory molecular pathways. In addition, we discussed the potential role of miRNA as a biomarker and its role as a target in I/R injury treatment. Developing miRNAs are not without its challenges, but prudent design combined with existing clinical treatments will result in more effective therapies for I/R injury. This review is aimed at providing new research results obtained in this research field. It is hoped that new research on this topic will not only generate new insights into the pathophysiology of miRNA in I/R injury but also can provide a basis for the clinical application of miRNA in I/R.
Collapse
|
16
|
Florijn BW, Bijkerk R, Kruyt ND, van Zonneveld AJ, Wermer MJH. Sex-Specific MicroRNAs in Neurovascular Units in Ischemic Stroke. Int J Mol Sci 2021; 22:11888. [PMID: 34769320 PMCID: PMC8585074 DOI: 10.3390/ijms222111888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence pinpoints sex differences in stroke incidence, etiology and outcome. Therefore, more understanding of the sex-specific mechanisms that lead to ischemic stroke and aggravation of secondary damage after stroke is needed. Our current mechanistic understanding of cerebral ischemia states that endothelial quiescence in neurovascular units (NVUs) is a major physiological parameter affecting the cellular response to neuron, astrocyte and vascular smooth muscle cell (VSMC) injury. Although a hallmark of the response to injury in these cells is transcriptional activation, noncoding RNAs such as microRNAs exhibit cell-type and context dependent regulation of gene expression at the post-transcriptional level. This review assesses whether sex-specific microRNA expression (either derived from X-chromosome loci following incomplete X-chromosome inactivation or regulated by estrogen in their biogenesis) in these cells controls NVU quiescence, and as such, could differentiate stroke pathophysiology in women compared to men. Their adverse expression was found to decrease tight junction affinity in endothelial cells and activate VSMC proliferation, while their regulation of paracrine astrocyte signaling was shown to neutralize sex-specific apoptotic pathways in neurons. As such, these microRNAs have cell type-specific functions in astrocytes and vascular cells which act on one another, thereby affecting the cell viability of neurons. Furthermore, these microRNAs display actual and potential clinical implications as diagnostic and prognostic biomarkers in ischemic stroke and in predicting therapeutic response to antiplatelet therapy. In conclusion, this review improves the current mechanistic understanding of the molecular mechanisms leading to ischemic stroke in women and highlights the clinical promise of sex-specific microRNAs as novel diagnostic biomarkers for (silent) ischemic stroke.
Collapse
Affiliation(s)
- Barend W. Florijn
- Department of Neurology, Leiden University Medical Center, 2333 ZR Leiden, The Netherlands; (N.D.K.); (M.J.H.W.)
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.B.); (A.J.v.Z.)
| | - Roel Bijkerk
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.B.); (A.J.v.Z.)
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Nyika D. Kruyt
- Department of Neurology, Leiden University Medical Center, 2333 ZR Leiden, The Netherlands; (N.D.K.); (M.J.H.W.)
| | - Anton Jan van Zonneveld
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.B.); (A.J.v.Z.)
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Marieke J. H. Wermer
- Department of Neurology, Leiden University Medical Center, 2333 ZR Leiden, The Netherlands; (N.D.K.); (M.J.H.W.)
| |
Collapse
|
17
|
Ruiz D, Bhattarai S, Dharap A. Sex-based eRNA expression and function in ischemic stroke. Neurochem Int 2021; 150:105149. [PMID: 34358636 DOI: 10.1016/j.neuint.2021.105149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/13/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
Enhancer-derived RNAs (eRNAs) are a new class of long noncoding RNA that have roles in modulating enhancer-mediated gene transcription, which ultimately influences phenotypic outcomes. We recently published the first study mapping genome-wide eRNA expression in the male mouse cortex during ischemic stroke and identified 77 eRNAs that were significantly altered following a 1 h middle cerebral artery occlusion (MCAO) and 6 h of reperfusion, as compared to sham controls. Knockdown of one such stroke-induced eRNA - eRNA_06347 - resulted in significantly larger infarcts, demonstrating a role for eRNA_06347 in modulating the post-stroke pathophysiology in males. In the current study, we applied quantitative real-time PCR to evaluate whether the 77 eRNAs identified in the male cortex also show altered expression in the post-stroke female cortex. Using age-matched and time-matched female mice, we found that only a subset of the 77 eRNAs were detected in the post-stroke female cortex. Of these, only a small fraction showed similar temporal expression characteristics as males, including eRNA_06347 which was highly induced in both sexes. Knockdown of eRNA_06347 in the female cortex resulted in significantly increased infarct volumes that were closely matched to those in males, indicating that eRNA_06347 modulates the post-stroke pathophysiology similarly in males and females. This suggests a common underlying role for eRNA_06347 in the two sexes. Overall, this is the first study to evaluate eRNA expression and perturbation in the female cortex during stroke, and present a comparative analysis between males and females. Our findings show that eRNAs have sex-dependent and sex-independent expression patterns that may be of significance to the pathophysiological responses to stroke in the two sexes.
Collapse
Affiliation(s)
- Diandra Ruiz
- Laboratory for Stroke Research and Noncoding RNA Biology, JFK Neuroscience Institute, HackensackMeridian Health JFK University Medical Center, Edison, NJ, 08820, USA
| | - Sunil Bhattarai
- Laboratory for Stroke Research and Noncoding RNA Biology, JFK Neuroscience Institute, HackensackMeridian Health JFK University Medical Center, Edison, NJ, 08820, USA
| | - Ashutosh Dharap
- Laboratory for Stroke Research and Noncoding RNA Biology, JFK Neuroscience Institute, HackensackMeridian Health JFK University Medical Center, Edison, NJ, 08820, USA; Department of Neurology, Hackensack Meridian School of Medicine, Nutley, NJ, 07110, USA.
| |
Collapse
|
18
|
Zhou T, Li S, Yang L, Xiang D. microRNA-363-3p reduces endothelial cell inflammatory responses in coronary heart disease via inactivation of the NOX4-dependent p38 MAPK axis. Aging (Albany NY) 2021; 13:11061-11082. [PMID: 33744854 PMCID: PMC8109087 DOI: 10.18632/aging.202721] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
Abstract
Coronary heart disease (CHD) is one of the leading causes of heart-associated deaths worldwide. This study aimed to investigate the mechanism by which microRNA-363-3p (miR-363-3p) regulates endothelial injury induced by inflammatory responses in CHD. The expression patterns of miR-363-3p, NADPH oxidase 4 (NOX4), and p38 MAPK/p-p38 MAPK were examined in an established atherosclerosis (AS) model in C57BL/6 mice and in isolated coronary arterial endothelial cells (CAECs) after gain- or loss-of-function experiments. We also measured the levels of inflammatory factors (IL-6, ICAM-1, IL-10 and IL-1β), hydrogen peroxide (H2O2), and catalase (CAT) activity, followed by detection of cell viability and apoptosis. In AS, miR-363-3p was downregulated and NOX4 was upregulated, while miR-363-3p was identified as targeting NOX4 and negatively regulating its expression. The AS progression was reduced in NOX4 knockout mice. Furthermore, miR-363-3p resulted in a decreased inflammatory response, oxidative stress, and cell apoptosis in CAECs while augmenting their viability via blockade of the p38 MAPK signaling pathway. Overall, miR-363-3p hampers the NOX4-dependent p38 MAPK axis to attenuate apoptosis, oxidative stress injury, and the inflammatory reaction in CAECs, thus protecting CAECs against CHD. This finding suggests the miR-363-3p-dependent NOX4 p38 MAPK axis as a promising therapeutic target for CHD.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Cardiac Surgery, Guizhou Provincial People's Hospital, Guiyang 550002, P.R. China
| | - Suining Li
- Department of Cardiac Surgery, Guizhou Provincial People's Hospital, Guiyang 550002, P.R. China
| | - Liehong Yang
- Department of Cardiac Surgery, Guizhou Provincial People's Hospital, Guiyang 550002, P.R. China
| | - Daokang Xiang
- Department of Cardiac Surgery, Guizhou Provincial People's Hospital, Guiyang 550002, P.R. China
| |
Collapse
|
19
|
Boltze J, Aronowski JA, Badaut J, Buckwalter MS, Caleo M, Chopp M, Dave KR, Didwischus N, Dijkhuizen RM, Doeppner TR, Dreier JP, Fouad K, Gelderblom M, Gertz K, Golubczyk D, Gregson BA, Hamel E, Hanley DF, Härtig W, Hummel FC, Ikhsan M, Janowski M, Jolkkonen J, Karuppagounder SS, Keep RF, Koerte IK, Kokaia Z, Li P, Liu F, Lizasoain I, Ludewig P, Metz GAS, Montagne A, Obenaus A, Palumbo A, Pearl M, Perez-Pinzon M, Planas AM, Plesnila N, Raval AP, Rueger MA, Sansing LH, Sohrabji F, Stagg CJ, Stetler RA, Stowe AM, Sun D, Taguchi A, Tanter M, Vay SU, Vemuganti R, Vivien D, Walczak P, Wang J, Xiong Y, Zille M. New Mechanistic Insights, Novel Treatment Paradigms, and Clinical Progress in Cerebrovascular Diseases. Front Aging Neurosci 2021; 13:623751. [PMID: 33584250 PMCID: PMC7876251 DOI: 10.3389/fnagi.2021.623751] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
The past decade has brought tremendous progress in diagnostic and therapeutic options for cerebrovascular diseases as exemplified by the advent of thrombectomy in ischemic stroke, benefitting a steeply increasing number of stroke patients and potentially paving the way for a renaissance of neuroprotectants. Progress in basic science has been equally impressive. Based on a deeper understanding of pathomechanisms underlying cerebrovascular diseases, new therapeutic targets have been identified and novel treatment strategies such as pre- and post-conditioning methods were developed. Moreover, translationally relevant aspects are increasingly recognized in basic science studies, which is believed to increase their predictive value and the relevance of obtained findings for clinical application.This review reports key results from some of the most remarkable and encouraging achievements in neurovascular research that have been reported at the 10th International Symposium on Neuroprotection and Neurorepair. Basic science topics discussed herein focus on aspects such as neuroinflammation, extracellular vesicles, and the role of sex and age on stroke recovery. Translational reports highlighted endovascular techniques and targeted delivery methods, neurorehabilitation, advanced functional testing approaches for experimental studies, pre-and post-conditioning approaches as well as novel imaging and treatment strategies. Beyond ischemic stroke, particular emphasis was given on activities in the fields of traumatic brain injury and cerebral hemorrhage in which promising preclinical and clinical results have been reported. Although the number of neutral outcomes in clinical trials is still remarkably high when targeting cerebrovascular diseases, we begin to evidence stepwise but continuous progress towards novel treatment options. Advances in preclinical and translational research as reported herein are believed to have formed a solid foundation for this progress.
Collapse
Affiliation(s)
- Johannes Boltze
- School of Life Sciences, University of Warwick, Warwick, United Kingdom
| | - Jaroslaw A. Aronowski
- Institute for Stroke and Cerebrovascular Diseases, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jerome Badaut
- NRS UMR 5287, INCIA, Brain Molecular Imaging Team, University of Bordeaux, Bordeaux cedex, France
| | - Marion S. Buckwalter
- Departments of Neurology and Neurological Sciences, and Neurosurgery, Wu Tsai Neurosciences Institute, Stanford School of Medicine, Stanford, CA, United States
| | - Mateo Caleo
- Neuroscience Institute, National Research Council, Pisa, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
| | - Kunjan R. Dave
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Nadine Didwischus
- School of Life Sciences, University of Warwick, Warwick, United Kingdom
| | - Rick M. Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Thorsten R. Doeppner
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Jens P. Dreier
- Department of Neurology, Center for Stroke Research Berlin, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Karim Fouad
- Faculty of Rehabilitation Medicine and Institute for Neuroscience and Mental Health, University of Alberta, Edmonton, AB, Canada
| | - Mathias Gelderblom
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karen Gertz
- Department of Neurology, Center for Stroke Research Berlin, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Dominika Golubczyk
- Department of Neurosurgery, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Barbara A. Gregson
- Neurosurgical Trials Group, Institute of Neuroscience, The University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom
| | - Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Daniel F. Hanley
- Division of Brain Injury Outcomes, Johns Hopkins University, Baltimore, MD, United States
| | - Wolfgang Härtig
- Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| | - Friedhelm C. Hummel
- Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology Valais, Clinique Romande de Réadaptation, Sion, Switzerland
- Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| | - Maulana Ikhsan
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Lübeck, Germany
- Institute for Medical and Marine Biotechnology, University of Lübeck, Lübeck, Germany
| | - Miroslaw Janowski
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, United States
| | - Jukka Jolkkonen
- Department of Neurology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Saravanan S. Karuppagounder
- Burke Neurological Institute, White Plains, NY, United States
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Richard F. Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - Inga K. Koerte
- Psychiatric Neuroimaging Laboratory, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Department of Child and Adolescent Psychiatry, Psychosomatic, and Psychotherapy, Ludwig Maximilians University, Munich, Germany
| | - Zaal Kokaia
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Peiying Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Fudong Liu
- Department of Neurology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, United States
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular, Departamento Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Madrid, Spain
| | - Peter Ludewig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerlinde A. S. Metz
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Axel Montagne
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Andre Obenaus
- Department of Pediatrics, University of California, Irvine, Irvine, CA, United States
| | - Alex Palumbo
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Lübeck, Germany
- Institute for Medical and Marine Biotechnology, University of Lübeck, Lübeck, Germany
| | - Monica Pearl
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Miguel Perez-Pinzon
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Anna M. Planas
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Àrea de Neurociències, Barcelona, Spain
- Department d’Isquèmia Cerebral I Neurodegeneració, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Munich, Germany
- Graduate School of Systemic Neurosciences (GSN), Munich University Hospital, Munich, Germany
- Munich Cluster of Systems Neurology (Synergy), Munich, Germany
| | - Ami P. Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Maria A. Rueger
- Faculty of Medicine and University Hospital, Department of Neurology, University of Cologne, Cologne, Germany
| | - Lauren H. Sansing
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
| | - Farida Sohrabji
- Women’s Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, TX, United States
| | - Charlotte J. Stagg
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
| | - R. Anne Stetler
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ann M. Stowe
- Department of Neurology and Neurotherapeutics, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, United States
| | - Dandan Sun
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, PA, United States
| | - Akihiko Taguchi
- Department of Regenerative Medicine Research, Institute of Biomedical Research and Innovation, Kobe, Japan
| | - Mickael Tanter
- Institute of Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS FRE 2031, PSL University, Paris, France
| | - Sabine U. Vay
- Faculty of Medicine and University Hospital, Department of Neurology, University of Cologne, Cologne, Germany
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, United States
| | - Denis Vivien
- UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging for Neurological Disorders (PhIND), Normandy University, Caen, France
- CHU Caen, Clinical Research Department, CHU de Caen Côte de Nacre, Caen, France
| | - Piotr Walczak
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, United States
| | - Jian Wang
- Department of Human Anatomy, College of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ye Xiong
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, United States
| | - Marietta Zille
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Lübeck, Germany
- Institute for Medical and Marine Biotechnology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
20
|
El-Hakim Y, Mani KK, Eldouh A, Pandey S, Grimaldo MT, Dabney A, Pilla R, Sohrabji F. Sex differences in stroke outcome correspond to rapid and severe changes in gut permeability in adult Sprague-Dawley rats. Biol Sex Differ 2021; 12:14. [PMID: 33451354 PMCID: PMC7811247 DOI: 10.1186/s13293-020-00352-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Sex differences in experimental stroke outcomes are well documented, such that adult males have a greater infarct volume, increased stroke-induced mortality, and more severe sensory-motor impairment. Based on recent evidence that the gut is an early responder to stroke, the present study tested the hypothesis that sex differences in stroke severity will be accompanied by rapid and greater permeability of the gut-blood barrier and gut dysbiosis in males as compared to females. METHOD Male and female Sprague-Dawley rats (5-7 months of age) were subject to endothelin (ET)-1-induced middle cerebral artery occlusion (MCAo). Sensory-motor tests were conducted pre- and 2 days after MCAo. Gut permeability was assessed in serum samples using biomarkers of gut permeability as well as functional assays using size-graded dextrans. Histological analysis of the gut was performed with H&E staining, periodic acid-Schiff for mucus, and immunohistochemistry for the tight junction protein, ZO-1. Fecal samples obtained pre- and post-stroke were analyzed for bacterial taxa and short-chain fatty acids (SCFAs). RESULTS After stroke, males displayed greater mortality, worse sensory-motor deficit, and higher serum levels of proinflammatory cytokines IL-17A, MCP-1, and IL-5 as compared to females. MCAo-induced gut permeability was rapid and severe in males as indicated by dextran extravasation from the gut to the blood in the hyperacute (< 2 h) and early acute (2 days) phase of stroke. This was accompanied by dysmorphology of the gut villi and dysregulation of the tight junction protein ZO-1 in the acute phase. Fecal 16s sequencing showed no differences in bacterial diversity in the acute phase of stroke. Predictive modeling indicated that markers of gut permeability were associated with acute sensory-motor impairment and infarct volume. CONCLUSIONS These data show that extensive leakiness of the gut barrier is associated with severe post-stroke disability and suggest that reinforcing this barrier may improve stroke outcomes.
Collapse
Affiliation(s)
- Yumna El-Hakim
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health, 8447 Riverside Pkwy, Bryan, TX, 77807, USA
| | - Kathiresh Kumar Mani
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health, 8447 Riverside Pkwy, Bryan, TX, 77807, USA
| | - Amir Eldouh
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health, 8447 Riverside Pkwy, Bryan, TX, 77807, USA
| | - Sivani Pandey
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health, 8447 Riverside Pkwy, Bryan, TX, 77807, USA
| | - Maria T Grimaldo
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health, 8447 Riverside Pkwy, Bryan, TX, 77807, USA
| | - Alan Dabney
- Department of Statistics, College of Science, College Station, USA
| | - Rachel Pilla
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health, 8447 Riverside Pkwy, Bryan, TX, 77807, USA.
| |
Collapse
|
21
|
Panta A, Montgomery K, Nicolas M, Mani KK, Sampath D, Sohrabji F. Mir363-3p Treatment Attenuates Long-Term Cognitive Deficits Precipitated by an Ischemic Stroke in Middle-Aged Female Rats. Front Aging Neurosci 2020; 12:586362. [PMID: 33132904 PMCID: PMC7550720 DOI: 10.3389/fnagi.2020.586362] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/02/2020] [Indexed: 01/29/2023] Open
Abstract
Cognitive impairment and memory loss are commonly seen after stroke and a third of patients will develop signs of dementia a year after stroke. Despite a large number of studies on the beneficial effects of neuroprotectants, few studies have examined the effects of these compounds/interventions on long-term cognitive impairment. Our previous work showed that the microRNA mir363-3p reduced infarct volume and sensory-motor impairment in the acute stage of stroke in middle-aged females but not males. Thus, the present study determined the impact of mir363-3p treatment on stroke-induced cognitive impairment in middle-aged females. Sprague–Dawley female rats (12 months of age) were subjected to middle cerebral artery occlusion (MCAo; or sham surgery) and injected (iv) with mir363-3p mimic (MCAo + mir363-3p) or scrambled oligos (MCAo + scrambled) 4 h later. Sensory-motor performance was assessed in the acute phase (2–5 days after stroke), while all other behaviors were tested 6 months after MCAo (18 months of age). Cognitive function was assessed by the novel object recognition test (declarative memory) and the Barnes maze (spatial memory). The MCAo + scrambled group showed reduced preference for a novel object after the stroke and poor learning in the spatial memory task. In contrast, mir363-3p treated animals were similar to either their baseline performance or to the sham group. Histological analysis showed significant deterioration of specific white matter tracts due to stroke, which was attenuated in mir363-3p treated animals. The present data builds on our previous finding to show that a neuroprotectant can abrogate the long-term effects of stroke.
Collapse
Affiliation(s)
- Aditya Panta
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Texas A&M University, Bryan, TX, United States
| | - Karienn Montgomery
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Texas A&M University, Bryan, TX, United States
| | - Marissa Nicolas
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Texas A&M University, Bryan, TX, United States
| | - Kathiresh K Mani
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Texas A&M University, Bryan, TX, United States
| | - Dayalan Sampath
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Texas A&M University, Bryan, TX, United States
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Texas A&M University, Bryan, TX, United States
| |
Collapse
|
22
|
Stewart CE, Sohrabji F. Gonadal hormones and stroke risk: PCOS as a case study. Front Neuroendocrinol 2020; 58:100853. [PMID: 32640267 DOI: 10.1016/j.yfrne.2020.100853] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 01/20/2023]
Abstract
It is well known that stroke incidence and outcome is sex-dependent and influenced by age and gonadal hormones. In post-menopausal and/or aged females, declining estrogen levels increases stroke risk. However, women who experience early menopause also have an increase in stroke risk. This suggests that, regardless of age, gonadal hormones regulate stroke risk and severity. This review discusses prolonged gonadal hormone dysfunction in a common female endocrine disorder known as polycystic ovarian syndrome, PCOS, and the associated increased risk of stroke due to resulting hyperandrogenism and metabolic comorbidities.
Collapse
Affiliation(s)
- Courtney E Stewart
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX 77807, USA
| | - Farida Sohrabji
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX 77807, USA.
| |
Collapse
|
23
|
Reproductive Senescence and Ischemic Stroke Remodel the Gut Microbiome and Modulate the Effects of Estrogen Treatment in Female Rats. Transl Stroke Res 2019; 11:812-830. [PMID: 31845185 DOI: 10.1007/s12975-019-00760-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/29/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022]
Abstract
Our previous work has shown that reproductively senescent (or middle-aged; 10-12-month-old) Sprague-Dawley female rats, that are naturally estrogen-deficient, have worse stroke outcomes as compared to normally estrous-cycling adult (5-6-month-old) females. Paradoxically, estrogen replacement to this middle-aged group exacerbates stroke outcomes, while it is neuroprotective in adult females. Recent studies reveal an important role for the gut microbiome and gut metabolites in cardiovascular health, including stroke outcomes. To determine whether gut dysbiosis underlies stroke severity in reproductive senescent females, and underlies the anomalous effects of estrogen on stroke, we compared the gut microbiota and gut metabolites pre and post stroke in (a) gonadally intact adult and middle-aged females, (b) in ovariectomized and estrogen-treated (OVX+E) adult and OVX+E middle-aged females, and (c) in middle-aged OVX+E females after fecal microbiome transfer. Our data show significant gut dysbiosis in reproductive senescent females at baseline and after stroke as indicated by an elevated ratio of the major phyla, Firmicutes/Bacteroidetes (F:B), reduced alpha diversity, and significant shifts in beta diversity as compared with adult females. Specific bacterial families were also altered as a result of reproductive aging, as well as gut metabolites, including elevated serum endotoxin levels and decreased short-chain fatty acids (SCFAs), with a concomitant increase in IL-17A, indicating that reproductive senescence significantly affects gut communities under pathologic conditions. Despite the differences in gonadally intact adult and middle-aged females, estrogen-treated ovariectomized (OVX+E) females of either age group displayed no differences in the major phyla, but there was increased abundance in specific bacterial taxa, including Prevotella and Lactobacillus. The SCFA butyrate was significantly reduced at baseline in the middle-aged OVX+E females, while circulating endotoxin LPS were elevated in this group after stroke, suggesting that gut metabolites were differently affected by estrogen treatment in the two age groups. A fecal transfer from adult OVX+E females to middle-aged OVX+E females significantly reduced infarct volume, improved behavioral recovery and transiently reduced IL-17A expression. These data provide the first evidence that microbial gut communities and metabolites are altered by reproductive senescence in female rats at baseline and after stroke, and suggest that estrogen may impact stroke recovery differently in adult and reproductive senescent females due to an age-specific effect on gut microbiota and metabolites.
Collapse
|
24
|
Gareev IF, Novikova LB, Beylerli OA. Application of microRNA in the therapy of ischemic stroke. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2019. [DOI: 10.15829/1728-8800-2019-5-66-73] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
25
|
Kim T, Chelluboina B, Chokkalla AK, Vemuganti R. Age and sex differences in the pathophysiology of acute CNS injury. Neurochem Int 2019; 127:22-28. [PMID: 30654116 PMCID: PMC6579702 DOI: 10.1016/j.neuint.2019.01.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/11/2019] [Indexed: 12/21/2022]
Abstract
Despite the immeasurable burden on patients and families, no effective therapies to protect the CNS after an acute injury are available yet. Furthermore, the underlying mechanisms that promote neuronal death and functional deficits after injury remain to be poorly understood. The prevalence, age of onset, pathophysiology, and symptomatology of many CNS insults differ significantly between males and females. In the case of stroke, younger males tend to show a higher risk than younger females, while this trend reverses with age. Accumulating evidence from preclinical studies have shown that sex hormones play a crucial role in providing neuroprotection following ischemic stroke and other acute CNS injuries. Estrogen, in particular, exerts a neuroprotective effect by modulating the immune responses after injury. In addition, there exists a sexual dimorphism in cell death pathways between males and females that are independent of hormones. Meanwhile, recent studies suggest that microRNAs are critically involved in the sex-specific mechanisms of cell death. This review discusses the current knowledge on the contribution of sex and age to outcome after stroke. Implication of the interplay between these two factors on other CNS injuries (spinal cord injury and traumatic brain injury) from the experimental evidence were also discussed.
Collapse
Affiliation(s)
- TaeHee Kim
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Bharath Chelluboina
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Anil K Chokkalla
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; Cellular and Molecular Pathology Program, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; Cellular and Molecular Pathology Program, University of Wisconsin, Madison, WI, USA; William S. Middleton Veterans Administration Hospital, Madison, WI, USA.
| |
Collapse
|
26
|
Mir363-3p attenuates post-stroke depressive-like behaviors in middle-aged female rats. Brain Behav Immun 2019; 78:31-40. [PMID: 30639697 PMCID: PMC6488367 DOI: 10.1016/j.bbi.2019.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 11/26/2018] [Accepted: 01/09/2019] [Indexed: 01/09/2023] Open
Abstract
Women are more likely to develop Post Stroke Depression (PSD) than men and generally do not respond well to anti-depressants with age. This study investigated the effect of microRNA mir363-3p treatment on PSD using a physiologically-relevant animal model. Our previous work showed that mir363-3p treatment, delivered post-stroke, effectively reduces infarct volume in the acute phase of stroke in middle-aged females but not males. Middle-aged female Sprague Dawley rats were tested for baseline sensory motor function and depressive-like behaviors, and then subjected to ischemic stroke via middle cerebral artery occlusion (MCAo) or sham surgery. Animals received either control oligos (MCAo+scrambled, Sham+scrambled) or mir363-3p (MCAo+mir363-3p, Sham+mir363-3p) treatment 4 h later. Sensory motor function and depressive-like behaviors were reassessed up to 100 d after stroke, and circulating levels of IL-6, TNF-alpha and Brain-Derived Neurotrophic Factor (BDNF) were quantified at regular intervals. Prior to termination, Fluorogold was injected into the striatum to assess meso-striatal projections. MCAo+scrambled animals had impaired sensorimotor performance in the acute phase (5 days) of stroke and developed anhedonia, decreased sociability and increased helplessness in the chronic phase. MCAo+mir363-3p animals showed significantly less sensory motor impairment and fewer depressive-like behaviors. IL-6 and TNF-alpha were elevated transiently at 4 weeks after MCAo in both groups. BDNF levels decreased progressively after stroke in the MCAo+scrambled group, and this was attenuated in the mir363-3p group. The number of retrogradely-labeled SNc and VTA cells was reduced in the ischemic hemisphere of the MCAo+scrambled group. In contrast, there was no interhemispheric difference in the number of retrogradely-labeled SNc and VTA cells of MCAo+mir363-3p treated animals. Our results support a therapeutic role for mir363-3p for long-term stroke disability.
Collapse
|
27
|
Kim T, Mehta SL, Morris-Blanco KC, Chokkalla AK, Chelluboina B, Lopez M, Sullivan R, Kim HT, Cook TD, Kim JY, Kim H, Kim C, Vemuganti R. The microRNA miR-7a-5p ameliorates ischemic brain damage by repressing α-synuclein. Sci Signal 2018; 11:eaat4285. [PMID: 30538177 PMCID: PMC7005928 DOI: 10.1126/scisignal.aat4285] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ischemic stroke, which is caused by a clot that blocks blood flow to the brain, can be severely disabling and sometimes fatal. We previously showed that transient focal ischemia in a rat model induces extensive temporal changes in the expression of cerebral microRNAs, with a sustained decrease in the abundance of miR-7a-5p (miR-7). Here, we evaluated the therapeutic efficacy of a miR-7 mimic oligonucleotide after cerebral ischemia in rodents according to the Stroke Treatment Academic Industry Roundtable (STAIR) criteria. Rodents were injected locally or systemically with miR-7 mimic before or after transient middle cerebral artery occlusion. Decreased miR-7 expression was observed in both young and aged rats of both sexes after cerebral ischemia. Pre- or postischemic treatment with miR-7 mimic decreased the lesion volume in both sexes and ages studied. Furthermore, systemic injection of miR-7 mimic into mice at 30 min (but not 2 hours) after cerebral ischemia substantially decreased the lesion volume and improved motor and cognitive functional recovery with minimal peripheral toxicity. The miR-7 mimic treatment substantially reduced the postischemic induction of α-synuclein (α-Syn), a protein that induces mitochondrial fragmentation, oxidative stress, and autophagy that promote neuronal cell death. Deletion of the gene encoding α-Syn abolished miR-7 mimic-dependent neuroprotection and functional recovery in young male mice. Further analysis confirmed that the transcript encoding α-Syn was bound and repressed by miR-7. Our findings suggest that miR-7 mimics may therapeutically minimize stroke-induced brain damage and disability.
Collapse
Affiliation(s)
- TaeHee Kim
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Suresh L Mehta
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | | | - Anil K Chokkalla
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Bharath Chelluboina
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Mary Lopez
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Ruth Sullivan
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hung Tae Kim
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Thomas D Cook
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Joo Yong Kim
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - HwuiWon Kim
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Chanul Kim
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA.
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI 53792, USA
- Williams S. Middleton Veterans Administration Hospital Madison, Madison, WI 53705, USA
| |
Collapse
|
28
|
Sohrabji F, Selvamani A. Sex differences in miRNA as therapies for ischemic stroke. Neurochem Int 2018; 127:56-63. [PMID: 30391509 DOI: 10.1016/j.neuint.2018.10.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 01/12/2023]
Abstract
MicroRNAs, a subset of non-coding RNAs, are present in virtually all tissues including body fluids and are global regulators of the transcriptome. In view of the expanding number of microRNAs and the large number of gene targets that each microRNA can potentially regulate, they have been compared to hormones in the scope of their effects. MicroRNA have been implicated as biomarkers for several diseases including stroke, as well as chronic conditions that are associated with stroke. Recent research has focused on manipulating miRNA to improve stroke outcomes. Although several miRNAs have been shown to have neuroprotective properties, the overwhelming majority of these studies have employed only male animals. This review will focus on two miRNAs, Let7f and mir363-3p, whose effectiveness as a stroke neuroprotectant is sex-specific.
Collapse
Affiliation(s)
- Farida Sohrabji
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, TX, 77807, USA.
| | - Amutha Selvamani
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, TX, 77807, USA
| |
Collapse
|
29
|
Ren X, Engler-Chiurazzi EB, Russell AE, Sarkar SN, Rellick SL, Lewis S, Corbin D, Clapper J, Simpkins JW. MiR-34a and stroke: Assessment of non-modifiable biological risk factors in cerebral ischemia. Neurochem Int 2018; 127:73-79. [PMID: 30365981 DOI: 10.1016/j.neuint.2018.10.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 01/14/2023]
Abstract
Aging of the nervous system, and the occurrence of age-related brain diseases such as stroke, are associated with changes to a variety of cellular processes controlled by many distinct genes. MicroRNAs (miRNAs), short non-coding functional RNAs that can induce translational repression or site-specific cleavage of numerous target mRNAs, have recently emerged as important regulators of cellular senescence, aging, and the response to neurological insult. Here, we focused on the assessment of the role of miR-34a in stroke. We noted increases in miR-34a expression in the blood of stroke patients as well as in blood and brain of mice subjected to experimental stroke. Our methodical genetic manipulation of miR-34a expression substantially impacted stroke-associated preclinical outcomes and we have in vitro evidence that these changes may be driven at least in part by disruptions to blood brain barrier integrity and mitochondrial oxidative phosphorylation in endothelial cells. Finally, aging, independent of brain injury, appears to be associated with shifts in circulating miRNA profiles. Taken together, these data support a role for miRNAs, and specifically miR-34a, in brain aging and the physiological response to age-related neurological insult, and lay the groundwork for future investigation of this novel therapeutic target.
Collapse
Affiliation(s)
- Xuefang Ren
- Center for Basic and Translational Stroke Research, USA; Rockefeller Neuroscience Institute, USA; Department of Neurosciences, USA
| | - Elizabeth B Engler-Chiurazzi
- Center for Basic and Translational Stroke Research, USA; Rockefeller Neuroscience Institute, USA; Department of Neurosciences, USA
| | - Ashley E Russell
- Center for Basic and Translational Stroke Research, USA; Rockefeller Neuroscience Institute, USA; Department of Neurosciences, USA
| | - Saumyendra N Sarkar
- Center for Basic and Translational Stroke Research, USA; Rockefeller Neuroscience Institute, USA; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, 26505, USA
| | - Stephanie L Rellick
- Center for Basic and Translational Stroke Research, USA; Rockefeller Neuroscience Institute, USA; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, 26505, USA
| | - Sara Lewis
- Center for Basic and Translational Stroke Research, USA; Rockefeller Neuroscience Institute, USA; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, 26505, USA
| | - Deborah Corbin
- Center for Basic and Translational Stroke Research, USA; Rockefeller Neuroscience Institute, USA; Department of Neurosciences, USA
| | - Jared Clapper
- Center for Basic and Translational Stroke Research, USA; Rockefeller Neuroscience Institute, USA; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, 26505, USA
| | - James W Simpkins
- Center for Basic and Translational Stroke Research, USA; Rockefeller Neuroscience Institute, USA; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, 26505, USA.
| |
Collapse
|
30
|
Kaidonis G, Rao AN, Ouyang YB, Stary CM. Elucidating sex differences in response to cerebral ischemia: immunoregulatory mechanisms and the role of microRNAs. Prog Neurobiol 2018; 176:73-85. [PMID: 30121237 DOI: 10.1016/j.pneurobio.2018.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 06/04/2018] [Accepted: 08/05/2018] [Indexed: 12/17/2022]
Abstract
Cerebral ischemia remains a major cause of death and disability worldwide, yet therapeutic options remain limited. Differences in sex and age play an important role in the final outcome in response to cerebral ischemia in both experimental and clinical studies: males have a higher risk and worse outcome than females at younger ages and this trend reverses in older ages. Although the molecular mechanisms underlying sex dimorphism are complex and are still not well understood, studies suggest steroid hormones, sex chromosomes, differential cell death and immune pathways, and sex-specific microRNAs may contribute to the outcome following cerebral ischemia. This review focuses on differential effects between males and females on cell death and immunological pathways in response to cerebral ischemia, the central role of innate sex differences in steroid hormone signaling, and upstreamregulation of sexually dimorphic gene expression by microRNAs.
Collapse
Affiliation(s)
- Georgia Kaidonis
- Stanford University School of Medicine, Department of Anesthesiology, Perioperative & Pain Medicine, United States; Stanford University School of Medicine, Department of Ophthalmology, United States
| | - Anand N Rao
- Stanford University School of Medicine, Department of Anesthesiology, Perioperative & Pain Medicine, United States
| | - Yi-Bing Ouyang
- Stanford University School of Medicine, Department of Anesthesiology, Perioperative & Pain Medicine, United States
| | - Creed M Stary
- Stanford University School of Medicine, Department of Anesthesiology, Perioperative & Pain Medicine, United States.
| |
Collapse
|
31
|
Sun LL, Duan MJ, Ma JC, Xu L, Mao M, Biddyut D, Wang Q, Yang C, Zhang S, Xu Y, Yang L, Tian Y, Liu Y, Xia SN, Li KX, Jin Z, Xiong Q, Ai J. Myocardial infarction-induced hippocampal microtubule damage by cardiac originating microRNA-1 in mice. J Mol Cell Cardiol 2018; 120:12-27. [DOI: 10.1016/j.yjmcc.2018.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/29/2018] [Accepted: 05/12/2018] [Indexed: 12/14/2022]
|
32
|
Abstract
Central nervous system (CNS) injuries, such as stroke, traumatic brain injury (TBI) and spinal cord injury (SCI), are important causes of death and long-term disability worldwide. MicroRNA (miRNA), small non-coding RNA molecules that negatively regulate gene expression, can serve as diagnostic biomarkers and are emerging as novel therapeutic targets for CNS injuries. MiRNA-based therapeutics include miRNA mimics and inhibitors (antagomiRs) to respectively decrease and increase the expression of target genes. In this review, we summarize current miRNA-based therapeutic applications in stroke, TBI and SCI. Administration methods, time windows and dosage for effective delivery of miRNA-based drugs into CNS are discussed. The underlying mechanisms of miRNA-based therapeutics are reviewed including oxidative stress, inflammation, apoptosis, blood-brain barrier protection, angiogenesis and neurogenesis. Pharmacological agents that protect against CNS injuries by targeting specific miRNAs are presented along with the challenges and therapeutic potential of miRNA-based therapies.
Collapse
Affiliation(s)
- Ping Sun
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Da Zhi Liu
- Department of Neurology and the M.I.N.D. Institute, University of California at Davis, Sacramento, CA, USA
| | - Glen C Jickling
- Department of Neurology, University of Alberta, Edmonton, Alberta, Canada
| | - Frank R Sharp
- Department of Neurology and the M.I.N.D. Institute, University of California at Davis, Sacramento, CA, USA
| | - Ke-Jie Yin
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Ke-Jie Yin, Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, 200 Lothrop Street, BST S514, Pittsburgh, PA 15213, USA. Da Zhi Liu, Department of Neurology, University of California at Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
33
|
Choleris E, Galea LAM, Sohrabji F, Frick KM. Sex differences in the brain: Implications for behavioral and biomedical research. Neurosci Biobehav Rev 2018; 85:126-145. [PMID: 29287628 PMCID: PMC5751942 DOI: 10.1016/j.neubiorev.2017.07.005] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 07/16/2017] [Indexed: 01/11/2023]
Abstract
Biological differences between males and females are found at multiple levels. However, females have too often been under-represented in behavioral neuroscience research, which has stymied the study of potential sex differences in neurobiology and behavior. This review focuses on the study of sex differences in the neurobiology of social behavior, memory, emotions, and recovery from brain injury, with particular emphasis on the role of estrogens in regulating forebrain function. This work, presented by the authors at the 2016 meeting of the International Behavioral Neuroscience Society, emphasizes varying approaches from several mammalian species in which sex differences have not only been documented, but also become the focus of efforts to understand the mechanistic basis underlying them. This information may provide readers with useful experimental tools to successfully address recently introduced regulations by granting agencies that either require (e.g. the National Institutes of Health in the United States and the Canadian Institutes of Health Research in Canada) or recommend (e.g. Horizon 2020 in Europe) the inclusion of both sexes in biomedical research.
Collapse
Affiliation(s)
- Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, MacKinnon Bldg. Room 4020, Guelph, ON N1G 2W1, Canada.
| | - Liisa A M Galea
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M HSC College of Medicine, Bryan, TX 77807, United States
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| |
Collapse
|
34
|
Abstract
To achieve success in developing more effective treatments for stroke, we need a better understanding in all aspects of stroke including prevention, diagnosis, treatment, and post-stroke recovery and complications. The objective of this special issue is to bring to the readership of Neurochemistry International the latest developments and knowledge in a broad spectrum of areas of stroke research in both review and original research articles. Topics include neuroprotective diets, biomarkers used to aid clinical management, neurodegenerative as well as neuroprotective effects of the immune system, potential therapeutic targets, engineered growth factors that promote endogenous neuroregeneration, mechanisms of cerebral small vessel disease, and post stroke epilepsy.
Collapse
|