1
|
Li G, Zhang R, Chen K, Dong J, Yang Z, Chen H, Wang H, Wang H, Lei H, Bao W, Zhang M, Xiao Z, Cheng L, Dong Z. Zinc sulfide nanoparticles serve as gas slow-release bioreactors for H 2S therapy of ischemic stroke. Biomaterials 2025; 315:122912. [PMID: 39490059 DOI: 10.1016/j.biomaterials.2024.122912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/04/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Stroke is one of the leading causes of death and disability in the world. Ischemic stroke causes overproduction of reactive oxygen/nitrogen species (RONS) after reperfusion, triggering inflammatory responses that further leads to cell damage. In order to develop novel neuroprotective materials, we synthesized zinc sulfide nanoparticles (ZnS NPs) to function as gas slow-release bioreactors, showcasing stable and sustained H2S release while effectively removing RONS. In cultured cells, ZnS NPs can reduce the oxidative damage caused by oxygen-glucose deprivation and reoxygenation (OGD/R), promote the expression of p-AMPK, enhance microglia M2 polarization, decrease inflammatory factors and reduce neuronal apoptosis. Additionally, it increases the proliferation and migration of endothelial cells, promoting the formation of new neurovascular units by regulating the protein of p-AKT. In mice with ischemic stroke induced by middle cerebral artery occlusion/reperfusion (MCAO/R), ZnS NPs significantly reduce the infarct area and restore the mobility of mice owing to the slow release of H2S. In summary, our results indicate that ZnS NPs can be used as H2S slow-release bioreactors, offering a potentially innovative approach to treat ischemia-reperfusion injury caused by stroke.
Collapse
Affiliation(s)
- Guangqiang Li
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Clinical Research Center of Central Nervous System Repair and Functional Reconstruction, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Ruolin Zhang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Clinical Research Center of Central Nervous System Repair and Functional Reconstruction, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Keyu Chen
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiawen Dong
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhihao Yang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Clinical Research Center of Central Nervous System Repair and Functional Reconstruction, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Hangyu Chen
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haipeng Wang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hui Wang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huali Lei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Wendai Bao
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Min Zhang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhidong Xiao
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China.
| | - Zhiqiang Dong
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Clinical Research Center of Central Nervous System Repair and Functional Reconstruction, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
| |
Collapse
|
2
|
Emre Aydıngöz S, Teimoori A, Orhan HG, Demirtaş E, Zeynalova N. A meta-analysis of animal studies evaluating the effect of hydrogen sulfide on ischemic stroke: is the preclinical evidence sufficient to move forward? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9533-9548. [PMID: 39017715 PMCID: PMC11582254 DOI: 10.1007/s00210-024-03291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
Hydrogen sulfide (H2S) is a gasotransmitter that has been studied for its potential therapeutic effects, including its role in the pathophysiology and treatment of stroke. This systematic review and meta-analysis aimed to determine the sufficiency of overall preclinical evidence to guide the initiation of clinical stroke trials with H2S and provide tailored recommendations for their design. PubMed, Web of Science, Scopus, EMBASE, and MEDLINE were searched for studies evaluating the effect of any H2S donor on in vivo animal models of regional ischemic stroke, and 34 publications were identified. Pooling of the effect sizes using the random-effect model revealed that H2S decreased the infarct area by 34.5% (95% confidence interval (CI) 28.2-40.8%, p < 0.0001), with substantial variability among the studies (I2 = 89.8%). H2S also caused a 37.9% reduction in the neurological deficit score (95% CI 29.0-46.8%, p < 0.0001, I2 = 63.8%) and in the brain water content (3.2%, 95% CI 1.4-4.9%, p = 0.0014, I2 = 94.6%). Overall, the studies had a high risk of bias and low quality of evidence (median quality score 5/15, interquartile range 4-9). The majority of the included studies had a "high" or "unclear" risk of bias, and none of the studies overall had a "low" risk. In conclusion, H2S significantly improves structural and functional outcomes in in vivo animal models of ischemic stroke. However, the level of evidence from preclinical studies is not sufficient to proceed to clinical trials due to the low external validity, high risk of bias, and variable design of existing animal studies.
Collapse
Affiliation(s)
- Selda Emre Aydıngöz
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey.
| | - Ariyan Teimoori
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Halit Güner Orhan
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Elif Demirtaş
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Nargız Zeynalova
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
3
|
Feng M, Zou Z, Shou P, Peng W, Liu M, Li X. Gut microbiota and Parkinson's disease: potential links and the role of fecal microbiota transplantation. Front Aging Neurosci 2024; 16:1479343. [PMID: 39679259 PMCID: PMC11638248 DOI: 10.3389/fnagi.2024.1479343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/14/2024] [Indexed: 12/17/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide and seriously affects the quality of life of elderly patients. PD is characterized by the loss of dopaminergic neurons in the substantia nigra as well as abnormal accumulation of α-synuclein in neurons. Recent research has deepened our understanding of the gut microbiota, revealing that it participates in the pathological process of PD through the gut-brain axis, suggesting that the gut may be the source of PD. Therefore, studying the relationship between gut microbiota and PD is crucial for improving our understanding of the disease's prevention, diagnosis, and treatment. In this review, we first describe the bidirectional regulation of the gut-brain axis by the gut microbiota and the mechanisms underlying the involvement of gut microbiota and their metabolites in PD. We then summarize the different species of gut microbiota found in patients with PD and their correlations with clinical symptoms. Finally, we review the most comprehensive animal and human studies on treating PD through fecal microbiota transplantation (FMT), discussing the challenges and considerations associated with this treatment approach.
Collapse
Affiliation(s)
- Maosen Feng
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- Department of Gastroenterology, National Clinical Key Specialty, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Zhiyan Zou
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Pingping Shou
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Wei Peng
- Department of Gastroenterology, National Clinical Key Specialty, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Mingxue Liu
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Xiaoan Li
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- Department of Gastroenterology, National Clinical Key Specialty, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
4
|
Bencivenni S, Roggiani S, Zannoni A, Conti G, Fabbrini M, Cotugno M, Stanzione R, Pietrangelo D, Litterio M, Forte M, Busceti CL, Fornai F, Volpe M, Turroni S, Brigidi P, Forni M, Rubattu S, D'Amico F. Early and late gut microbiota signatures of stroke in high salt-fed stroke-prone spontaneously hypertensive rats. Sci Rep 2024; 14:19575. [PMID: 39179705 PMCID: PMC11343747 DOI: 10.1038/s41598-024-69961-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024] Open
Abstract
The high salt-fed stroke-prone spontaneously hypertensive rat (SHRSP) is a suitable tool to study the mechanisms underlying stroke pathogenesis. Salt intake modifies the gut microbiota (GM) in rats and humans and alterations of the GM have previously been associated with increased stroke occurrence. We aimed to characterize the GM profile in SHRSPs fed a high-salt stroke-permissive diet (Japanese diet, JD), compared to the closely related stroke-resistant control (SHRSR), to identify possible changes associated with stroke occurrence. SHRSPs and SHRSRs were fed a regular diet or JD for 4 weeks (short-term, ST) or a maximum of 10 weeks (long-term, LT). Stroke occurred in SHRSPs on JD-LT, preceded by proteinuria and diarrhoea. The GM of JD-fed SHRSPs underwent early and late compositional changes compared to SHRSRs. An overrepresentation of Streptococcaceae and an underrepresentation of Lachnospiraceae were observed in SHRSPs JD-ST, while in SHRSPs JD-LT short-chain fatty acid producers, e.g. Lachnobacterium and Faecalibacterium, decreased and pathobionts such as Coriobacteriaceae and Desulfovibrio increased. Occludin gene expression behaved differently in SHRSPs and SHRSRs. Calprotectin levels were unchanged. In conclusion, the altered GM in JD-fed SHRSPs may be detrimental to gut homeostasis and contribute to stroke occurrence.
Collapse
Affiliation(s)
- Silvia Bencivenni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Sara Roggiani
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Augusta Zannoni
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum-University of Bologna, 40126, Bologna, Italy
| | - Gabriele Conti
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Marco Fabbrini
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | | | - Donatella Pietrangelo
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | | | | | | | - Francesco Fornai
- IRCCS Neuromed, Pozzilli, Isernia, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Massimo Volpe
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
- IRCCS San Raffaele, Rome, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Patrizia Brigidi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum-University of Bologna, 40126, Bologna, Italy
| | - Monica Forni
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum-University of Bologna, 40126, Bologna, Italy
| | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli, Isernia, Italy
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Federica D'Amico
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.
| |
Collapse
|
5
|
Rodkin S, Nwosu C, Sannikov A, Tyurin A, Chulkov VS, Raevskaya M, Ermakov A, Kirichenko E, Gasanov M. The Role of Gasotransmitter-Dependent Signaling Mechanisms in Apoptotic Cell Death in Cardiovascular, Rheumatic, Kidney, and Neurodegenerative Diseases and Mental Disorders. Int J Mol Sci 2023; 24:ijms24076014. [PMID: 37046987 PMCID: PMC10094524 DOI: 10.3390/ijms24076014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/14/2023] Open
Abstract
Cardiovascular, rheumatic, kidney, and neurodegenerative diseases and mental disorders are a common cause of deterioration in the quality of life up to severe disability and death worldwide. Many pathological conditions, including this group of diseases, are based on increased cell death through apoptosis. It is known that this process is associated with signaling pathways controlled by a group of gaseous signaling molecules called gasotransmitters. They are unique messengers that can control the process of apoptosis at different stages of its implementation. However, their role in the regulation of apoptotic signaling in these pathological conditions is often controversial and not completely clear. This review analyzes the role of nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S), and sulfur dioxide (SO2) in apoptotic cell death in cardiovascular, rheumatic, kidney, and neurodegenerative diseases. The signaling processes involved in apoptosis in schizophrenia, bipolar, depressive, and anxiety disorders are also considered. The role of gasotransmitters in apoptosis in these diseases is largely determined by cell specificity and concentration. NO has the greatest dualism; scales are more prone to apoptosis. At the same time, CO, H2S, and SO2 are more involved in cytoprotective processes.
Collapse
Affiliation(s)
- Stanislav Rodkin
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Chizaram Nwosu
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Alexander Sannikov
- Department of Psychiatry, Rostov State Medical University, Rostov-on-Don 344022, Russia
| | - Anton Tyurin
- Internal Medicine Department, Bashkir State Medical University, Ufa 450008, Russia
| | | | - Margarita Raevskaya
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Alexey Ermakov
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Evgeniya Kirichenko
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Mitkhat Gasanov
- Department of Internal Diseases #1, Rostov State Medical University, Rostov-on-Don 344022, Russia
| |
Collapse
|
6
|
Jia TT, Zhang Y, Hou JT, Niu H, Wang S. H 2S-based fluorescent imaging for pathophysiological processes. Front Chem 2023; 11:1126309. [PMID: 36778034 PMCID: PMC9911449 DOI: 10.3389/fchem.2023.1126309] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Hydrogen sulfide (H2S), as an important endogenous signaling molecule, plays a vital role in many physiological processes. The abnormal behaviors of hydrogen sulfide in organisms may lead to various pathophysiological processes. Monitoring the changes in hydrogen sulfide is helpful for pre-warning and treating these pathophysiological processes. Fluorescence imaging techniques can be used to observe changes in the concentration of analytes in organisms in real-time. Therefore, employing fluorescent probes imaging to investigate the behaviors of hydrogen sulfide in pathophysiological processes is vital. This paper reviews the design strategy and sensing mechanisms of hydrogen sulfide-based fluorescent probes, focusing on imaging applications in various pathophysiological processes, including neurodegenerative diseases, inflammation, apoptosis, oxidative stress, organ injury, and diabetes. This review not only demonstrates the specific value of hydrogen sulfide fluorescent probes in preclinical studies but also illuminates the potential application in clinical diagnostics.
Collapse
Affiliation(s)
- Tong-Tong Jia
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, China
| | - Yuanyuan Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Ji-Ting Hou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Huawei Niu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Shan Wang
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
L-Cysteine attenuates osteopontin-mediated neuroinflammation following hypoxia-ischemia insult in neonatal mice by inducing S-sulfhydration of Stat3. Acta Pharmacol Sin 2022; 43:1658-1669. [PMID: 34737419 PMCID: PMC9253102 DOI: 10.1038/s41401-021-00794-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/12/2021] [Indexed: 11/08/2022] Open
Abstract
We previously show that L-Cysteine administration significantly suppresses hypoxia-ischemia (HI)-induced neuroinflammation in neonatal mice through releasing H2S. In this study we conducted proteomics analysis to explore the potential biomarkers or molecular therapeutic targets associated with anti-inflammatory effect of L-Cysteine in neonatal mice following HI insult. HI brain injury was induced in postnatal day 7 (P7) neonatal mice. The pups were administered L-Cysteine (5 mg/kg) at 24, 48, and 72 h post-HI. By conducting TMT-based proteomics analysis, we confirmed that osteopontin (OPN) was the most upregulated protein in ipsilateral cortex 72 h following HI insult. Moreover, OPN was expressed in CD11b+/CD45low cells and infiltrating CD11b+/CD45high cells after HI exposure. Intracerebroventricular injection of OPN antibody blocked OPN expression, significantly attenuated brain damage, reduced pro-inflammatory cytokine levels and suppressed cerebral recruitment of CD11b+/CD45high immune cells following HI insult. L-Cysteine administration reduced OPN expression in CD11b+/CD45high immune cells, concomitant with improving the behavior in Y-maze test and suppressing cerebral recruitment of CD11b+/CD45high immune cells post-HI insult. Moreover, L-Cysteine administration suppressed the Stat3 activation by inducing S-sulfhydration of Stat3. Intracerebroventricular injection of Stat3 siRNA not only decreased OPN expression, but also reversed HI brain damage. Our data demonstrate that L-Cysteine administration effectively attenuates the OPN-mediated neuroinflammation by inducing S-sulfhydration of Stat3, which contributes to its anti-inflammatory effect following HI insult in neonatal mice. Blocking OPN expression may serve as a new target for therapeutic intervention for perinatal HI brain injury.
Collapse
|
8
|
Lu D, Wang L, Liu G, Wang S, Wang Y, Wu Y, Wang J, Sun X. Role of hydrogen sulfide in subarachnoid hemorrhage. CNS Neurosci Ther 2022; 28:805-817. [PMID: 35315575 PMCID: PMC9062544 DOI: 10.1111/cns.13828] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/19/2022] [Accepted: 03/09/2022] [Indexed: 12/15/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a common acute and severe disease worldwide, which imposes a heavy burden on families and society. However, the current therapeutic strategies for SAH are unsatisfactory. Hydrogen sulfide (H2 S), as the third gas signaling molecule after carbon monoxide and nitric oxide, has been widely studied recently. There is growing evidence that H2 S has a promising future in the treatment of central nervous system diseases. In this review, we focus on the effects of H2 S in experimental SAH and elucidate the underlying mechanisms. We demonstrate that H2 S has neuroprotective effects and significantly reduces secondary damage caused by SAH via antioxidant, antiinflammatory, and antiapoptosis mechanisms, and by alleviating cerebral edema and vasospasm. Based on these findings, we believe that H2 S has great potential in the treatment of SAH and warrants further study to promote its early clinical application.
Collapse
Affiliation(s)
- Dengfeng Lu
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu ProvinceChina
| | - Lingling Wang
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu ProvinceChina
| | - Guangjie Liu
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu ProvinceChina
| | - Shixin Wang
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu ProvinceChina
| | - Yi Wang
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu ProvinceChina
| | - Yu Wu
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu ProvinceChina
| | - Jing Wang
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu ProvinceChina
| | - Xiaoou Sun
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu ProvinceChina
| |
Collapse
|
9
|
Li M, Mao J, Zhu Y. New Therapeutic Approaches Using Hydrogen Sulfide Donors in Inflammation and Immune Response. Antioxid Redox Signal 2021; 35:341-356. [PMID: 33789440 DOI: 10.1089/ars.2020.8249] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Inflammation and immune response are associated with many pathological disorders, including rheumatoid arthritis, lupus, heart failure, and cancer(s). In recent times, important roles of hydrogen sulfide (H2S) have been evidenced by researchers in inflammatory responses, as well as immunomodulatory effects in several disease models. Recent Advances: Numerous biological targets, including cytochrome c oxidase, various kinases, enzymes involved in epigenetic changes, transcription factors, namely nuclear factor kappa B and nuclear factor erythroid 2-related factor 2, and several membrane ion channels, are shown to be sensitive to H2S and have been widely investigated in various preclinical models. Critical Issues: A complete understanding of the effects of H2S in inflammatory and immune response is vital in the development of novel H2S generating therapeutics. In this review, the biological effects and pharmacological properties of H2S in inflammation and immune response are addressed. The review also covers some of the novel H2S releasing prodrugs developed in recent years as tools to study this fascinating molecule. Future Directions: H2S plays important roles in inflammation and immunity-related processes. Future researches are needed to further assess the immunomodulatory effects of H2S and to assist in the design of more efficient H2S carrier systems, or drug formulations, for the management of immune-related conditions in humans. Antioxid. Redox Signal. 35, 341-356.
Collapse
Affiliation(s)
- Meng Li
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Jianchun Mao
- Department of Rheumatology, Longhua Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yizhun Zhu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
- School of Pharmacy, Macau University of Science and Technology, Macau, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Zheng SY, Li HX, Xu RC, Miao WT, Dai MY, Ding ST, Liu HD. Potential roles of gut microbiota and microbial metabolites in Parkinson's disease. Ageing Res Rev 2021; 69:101347. [PMID: 33905953 DOI: 10.1016/j.arr.2021.101347] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/06/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is a complicated neurodegenerative disease attributed to multifactorial changes. However, its pathological mechanism remains undetermined. Accumulating evidence has revealed the emerging functions of gut microbiota and microbial metabolites, which can affect both the enteric nervous system and the central nervous system via the microbiota-gut-brain axis. Accordingly, intestinal dysbiosis might be closely associated with PD. This review explores alterations to gut microbiota, correlations with clinical manifestations of PD, and briefly probes the underlying mechanisms. Next, the highly controversial roles of microbial metabolites including short-chain fatty acids (SCFAs), H2 and H2S are discussed. Finally, the pros and cons of the current treatments for PD, including those targeting microbiota, are assessed. Advancements in research techniques, further studies on levels of specific strains and longitudinal prospective clinical trials are urgently needed for the identification of early diagnostic markers and the development of novel therapeutic approaches for PD.
Collapse
|
11
|
Elwood M. The Scientific Basis for Occupational Exposure Limits for Hydrogen Sulphide-A Critical Commentary. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18062866. [PMID: 33799676 PMCID: PMC8001002 DOI: 10.3390/ijerph18062866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Occupational exposure limits for hydrogen sulphide (H2S) vary considerably; three expert group reports, published from 2006 to 2010, each recommend different limits. Some jurisdictions are considering substantial reductions. METHODS This review assesses the scientific evidence used in these recommendations and presents a new systematic review of human studies from 2006-20, identifying 33 studies. RESULTS The three major reports all give most weight to two sets of studies: of physiological effects in human volunteers, and of effects in the nasal passages of rats and mice. The human studies were done in one laboratory over 20 years ago and give inconsistent results. The breathing style and nasal anatomy of rats and mice would make them more sensitive than humans to inhaled agents. Each expert group applied different uncertainly factors. From these reports and the further literature review, no clear evidence of detrimental health effects from chronic occupational exposures specific to H2S was found. Detailed studies of individuals in communities with natural sources in New Zealand have shown no detrimental effects. Studies in Iceland and Italy show some associations; these and various other small studies need verification. CONCLUSIONS The scientific justification for lowering occupational exposure limits is very limited. There is no clear evidence, based on currently available studies, that lower limits will protect the health of workers further than will the current exposure limits used in most countries. Further review and assessment of relevant evidence is justified before exposure limits are set.
Collapse
Affiliation(s)
- Mark Elwood
- Department of Epidemiology & Biostatistics, School of Population Health, University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
| |
Collapse
|
12
|
Li T, Chu X, Xin D, Ke H, Wang S, Liu D, Chen W, Wang Z. H 2S prevents peripheral immune cell invasion, increasing [Ca 2+]i and excessive phagocytosis following hypoxia-ischemia injury in neonatal mice. Biomed Pharmacother 2021; 135:111207. [PMID: 33460958 DOI: 10.1016/j.biopha.2020.111207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 12/15/2020] [Accepted: 12/26/2020] [Indexed: 12/24/2022] Open
Abstract
We previously reported that L-Cysteine, H2S donor, remarkably attenuated neuroinflammation following hypoxia-ischemia (HI) brain injury in neonatal mice. However, its anti-inflammatory mechanism for HI insult is still unknown. The study focus on the effects of L-Cysteine on immune cell populations, Ca2+ mobilization and phagocytosis after neonatal HI. We found that L-Cysteine treatment skewed CD11b+/CD45low microglia and CD11b+/CD45high brain monocytes/macrophages towards a more anti-inflammatory property 72 h after HI-injured brain. Moreover, L-Cysteine treatment reduced cerebral infiltration of CD4 T cells 7 days following HI insult. Furthermore, CD4 T cell subset analysis revealed that L-Cysteine treatment decreased Th1 and Th2 counts, while increased Th17/Th2 ratio. Moreover, L-Cysteine treatment suppressed LPS-induced cytosolic Ca2+ and LPS-stimulated phagocytosis in primary microglia. The anti-inflammatory effect of L-Cysteine was associated with improving neurobehavioral impairment following HI insult. Our results demonstrate L-Cysteine treatment suppressed the invasion of peripheral immune cells, increasing [Ca2+]i and excessive phagocytosis to improve neurobehavioral deficits following hypoxia-ischemia injury in neonatal mice by H2S release.
Collapse
Affiliation(s)
- Tingting Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Xili Chu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Danqing Xin
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Hongfei Ke
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China; Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Shuhan Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Dexiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Wenqiang Chen
- Qilu Hospital, Shandong University, Jinan, Shandong, PR China
| | - Zhen Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
13
|
Sun J, Li X, Gu X, Du H, Zhang G, Wu J, Wang F. Neuroprotective effect of hydrogen sulfide against glutamate-induced oxidative stress is mediated via the p53/glutaminase 2 pathway after traumatic brain injury. Aging (Albany NY) 2021; 13:7180-7189. [PMID: 33640879 PMCID: PMC7993660 DOI: 10.18632/aging.202575] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/04/2021] [Indexed: 12/22/2022]
Abstract
Several reports suggest that hydrogen sulfide (H2S) exerts multiple biological and physiological effects on the pathogenesis of traumatic brain injury (TBI). However, the exact molecular mechanism involved in this effect is not yet fully known. In this study, we found that H2S alleviated TBI-induced motor and spatial memory deficits, brain pathology, and brain edema. Moreover, sodium hydrosulfide (NaHS), an H2S donor, treatment markedly increased the expression of Bcl-2, while inhibited the expression of Bax and Cleaved caspase-3 in TBI-challenged rats. Tunnel staining also demonstrated these results. Treatment with NaHS significantly reduced the glutamate and glutaminase 2 (GLS-2) protein levels, and glutamate-mediated oxidative stress in TBI-challenged rats. Furthermore, we demonstrated that H2S treatment inhibited glutamate-mediated oxidative stress through the p53/GLS-2 pathway. Therefore, our results suggested that H2S protects brain injury induced by TBI through modulation of the glutamate-mediated oxidative stress in the p53/GLS-2 pathway-dependent manner.
Collapse
Affiliation(s)
- Jianping Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| | - Xiaoyu Li
- Department of Thyroid and Breast Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| | - Xiaoyu Gu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| | - Hailong Du
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| | - Gengshen Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| | - Jianliang Wu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| | - Feng Wang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| |
Collapse
|
14
|
Li T, Li J, Li T, Zhao Y, Ke H, Wang S, Liu D, Wang Z. L-Cysteine Provides Neuroprotection of Hypoxia-Ischemia Injury in Neonatal Mice via a PI3K/Akt-Dependent Mechanism. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:517-529. [PMID: 33603342 PMCID: PMC7886094 DOI: 10.2147/dddt.s293025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/26/2021] [Indexed: 01/15/2023]
Abstract
Background Previous work within our laboratory has revealed that hydrogen sulfide (H2S) can serve as neuroprotectant against brain damage caused by hypoxia-ischemia (HI) exposure in neonatal mice. After HI insult, activation of the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling pathway has been shown to be implicated in neuro-restoration processes. The goal of the current study was to determine whether the neuroprotective effects of H2S were mediated by the PI3K/Akt signaling pathway. Methods The mouse HI model was built at postnatal day 7 (P7), and the effects of L-Cysteine treatment on acute brain damage (72 h post-HI) and long-term neurological responses (28 days post-HI) were evaluated. Nissl staining and Transmission electron microscopy were used to evaluate the neuronal loss and apoptosis. Immunofluorescence imaging and dihydroethidium staining were utilized to determine glial cell activation and ROS content, respectively. Results Quantitative results revealed that L-Cysteine treatment significantly prevented the acute effects of HI on apoptosis, glial cell activation and oxidative injury as well as the long-term effects upon memory impairment in neonatal mice. This protective effect of L-Cysteine was found to be associated with the phosphorylation of Akt and phosphatase and a tensin homolog deletion on chromosome 10 (PTEN). Following treatment with the PI3K inhibitor, LY294002, the neuroprotective effects of L-Cysteine were attenuated. Conclusion PTEN/PI3K/Akt signaling was involved in mediating the neuroprotective effects of exogenous H2S against HI exposure in neonatal mice.
Collapse
Affiliation(s)
- Tingting Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Jiangbing Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.,Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Tong Li
- Department of Neurosurgery Surgery, Qingdao Municipal Hospital, Shandong Province, People's Republic of China
| | - Yijing Zhao
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Hongfei Ke
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Shuanglian Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Dexiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Zhen Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
15
|
Li M, Mao JC, Zhu YZ. Hydrogen Sulfide: a Novel Immunoinflammatory Regulator in Rheumatoid Arthritis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:161-179. [PMID: 34302692 DOI: 10.1007/978-981-16-0991-6_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hydrogen sulfide (H2S), an endogenous, gaseous, signaling transmitter, has been shown to have vasodilative, anti-oxidative, anti-inflammatory, and cytoprotective activities. Increasing evidence also indicates that H2S can suppress the production of inflammatory mediators by immune cells, for example, T cells and macrophages. Inflammation is closely related to an immune response in several diseases such as rheumatoid arthritis (RA), multiple sclerosis (MS), systemic lupus erythematosus (SLE), and cancer. Considering these biological effects of H2S, a potential role in the treatment of immune-related RA is being exploited. In the present review, we will provide an overview of the therapeutic potential of H2S in RA treatment.
Collapse
Affiliation(s)
- M Li
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Jian-Chun Mao
- Department of Rheumatology, Longhua Hospital, Shanghai University of Chinese Medicine, Shanghai, China
| | - Yi-Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China. .,School of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China. .,Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Zhang ZY, Fang YJ, Luo YJ, Lenahan C, Zhang JM, Chen S. The role of medical gas in stroke: an updated review. Med Gas Res 2020; 9:221-228. [PMID: 31898607 PMCID: PMC7802415 DOI: 10.4103/2045-9912.273960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Medical gas is a large class of bioactive gases used in clinical medicine and basic scientific research. At present, the role of medical gas in neuroprotection has received growing attention. Stroke is a leading cause of death and disability in adults worldwide, but current treatment is still very limited. The common pathological changes of these two types of stroke may include excitotoxicity, free radical release, inflammation, cell death, mitochondrial disorder, and blood-brain barrier disruption. In this review, we will discuss the pathological mechanisms of stroke and the role of two medical gases (hydrogen and hydrogen sulfide) in stroke, which may potentially provide a new insight into the treatment of stroke.
Collapse
Affiliation(s)
- Ze-Yu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yuan-Jian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yu-Jie Luo
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM; Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Jian-Ming Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
17
|
Zhong H, Yu H, Chen J, Sun J, Guo L, Huang P, Zhong Y. Hydrogen Sulfide and Endoplasmic Reticulum Stress: A Potential Therapeutic Target for Central Nervous System Degeneration Diseases. Front Pharmacol 2020; 11:702. [PMID: 32477150 PMCID: PMC7240010 DOI: 10.3389/fphar.2020.00702] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
There are three members of the endogenous gas transmitter family. The first two are nitric oxide and carbon monoxide, and the third newly added member is hydrogen sulfide (H2S). They all have similar functions: relaxing blood vessels, smoothing muscles, and getting involved in the regulation of neuronal excitation, learning, and memory. The cystathionine β-synthase (CBS), 3-mercaptopyruvate sulfur transferase acts together with cysteine aminotransferase (3-MST/CAT), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfur transferase with D-amino acid oxidase (3-MST/DAO) pathways are involved in the enzymatic production of H2S. More and more researches focus on the role of H2S in the central nervous system (CNS), and H2S plays a significant function in neuroprotection processes, regulating the function of the nervous system as a signaling molecule in the CNS. Endoplasmic reticulum stress (ERS) and protein misfolding in its mechanism are related to neurodegenerative diseases. H2S exhibits a wide variety of cytoprotective and physiological functions in the CNS degenerative diseases by regulating ERS. This review summarized on the neuroprotective effect of H2S for ERS played in several CNS diseases including Alzheimer’s disease, Parkinson’s disease, and depression disorder, and discussed the corresponding possible signaling pathways or mechanisms as well.
Collapse
Affiliation(s)
- Huimin Zhong
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Huan Yu
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Junjue Chen
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Jun Sun
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Lei Guo
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Huang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
18
|
Tran BH, Yu Y, Chang L, Tan B, Jia W, Xiong Y, Dai T, Zhong R, Zhang W, Le VM, Rose P, Wang Z, Mao Y, Zhu YZ. A Novel Liposomal S-Propargyl-Cysteine: A Sustained Release of Hydrogen Sulfide Reducing Myocardial Fibrosis via TGF-β1/Smad Pathway. Int J Nanomedicine 2019; 14:10061-10077. [PMID: 31920303 PMCID: PMC6935304 DOI: 10.2147/ijn.s216667] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/14/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose S-propargyl-cysteine (SPRC; alternatively known as ZYZ-802) is a novel modulator of endogenous tissue H2S concentrations with known cardioprotective and anti-inflammatory effects. However, its rapid metabolism and excretion have limited its clinical application. To overcome these issues, we have developed some novel liposomal carriers to deliver ZYZ-802 to cells and tissues and have characterized their physicochemical, morphological and pharmacological properties. Methods Two liposomal formulations of ZYZ-802 were prepared by thin-layer hydration and the morphological characteristics of each liposome system were assessed using a laser particle size analyzer and transmission electron microscopy. The entrapment efficiency and ZYZ-802 release profiles were determined following ultrafiltration centrifugation, dialysis tube and HPLC measurements. LC-MS/MS was used to evaluate the pharmacokinetic parameters and tissue distribution profiles of each formulation via the measurements of plasma and tissues ZYZ-802 and H2S concentrations. Using an in vivo model of heart failure (HF), the cardio-protective effects of liposomal carrier were determined by echocardiography, histopathology, Western blot and the assessment of antioxidant and myocardial fibrosis markers. Results Both liposomal formulations improved ZYZ-802 pharmacokinetics and optimized H2S concentrations in plasma and tissues. Liposomal ZYZ-802 showed enhanced cardioprotective effects in vivo. Importantly, liposomal ZYZ-802 could inhibit myocardial fibrosis via the inhibition of the TGF-β1/Smad signaling pathway. Conclusion The liposomal formulations of ZYZ-802 have enhanced pharmacokinetic and pharmacological properties in vivo. This work is the first report to describe the development of liposomal formulations to improve the sustained release of H2S within tissues.
Collapse
Affiliation(s)
- Ba Hieu Tran
- School of Pharmacy, Fudan University, Shanghai, People's Republic of China.,School of Pharmacy, Macau University of Science and Technology, Taipa, Macau.,Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| | - Ying Yu
- School of Pharmacy, Fudan University, Shanghai, People's Republic of China.,Department of Cardiology, Xinhua Hospital, Shanghai, People's Republic of China
| | - Lingling Chang
- School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Bo Tan
- Department of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Wanwan Jia
- School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Ying Xiong
- School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Tao Dai
- School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Rui Zhong
- School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Weiping Zhang
- Department of Hematology, Institute of Hematology of PLA, Changhai Hospital, Shanghai, People's Republic of China
| | - Van Minh Le
- NTT Institute of Hi-Technology (NIH), Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Peter Rose
- School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Zhijun Wang
- School of Pharmacy, Fudan University, Shanghai, People's Republic of China.,School of Pharmacy, Macau University of Science and Technology, Taipa, Macau
| | - Yicheng Mao
- School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Yi Zhun Zhu
- School of Pharmacy, Fudan University, Shanghai, People's Republic of China.,School of Pharmacy, Macau University of Science and Technology, Taipa, Macau
| |
Collapse
|
19
|
Chen SM, Yi YL, Zeng D, Tang YY, Kang X, Zhang P, Zou W, Tang XQ. Hydrogen Sulfide Attenuates β2-Microglobulin-Induced Cognitive Dysfunction: Involving Recovery of Hippocampal Autophagic Flux. Front Behav Neurosci 2019; 13:244. [PMID: 31708756 PMCID: PMC6823620 DOI: 10.3389/fnbeh.2019.00244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/04/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND AIM Accumulation of β2-microglobulin (B2M), a systemic pro-aging factor, regulates negatively cognitive function. Hydrogen sulfide (H2S), a novel gas signaling molecule, exerts protection against cognitive dysfunction. Therefore, the present work was designed to explore whether H2S attenuates cognitive dysfunction induced by B2M and the underlying mechanism. MATERIALS AND METHODS The cognitive function of rats was assessed by Y-maze, Novel object recognition (NOR), and Morris water maze (MWM) tests. The levels of autophagosome and autolysosome in hippocampus were observed by transmission electron microscopy. The expression of p62 protein in hippocampus was detected by western blot analysis. RESULTS NaHS (a donor of H2S) significantly alleviated cognitive impairments in the B2M-exposed rats tested by Y-maze test, NOR test and MWM test. Furthermore, NaHS recovered autophagic flux in the hippocampus of B2M-exposed rats, as evidenced by decreases in the ratio of autophagosome to autolysosome and the expression of p62 protein in the hippocampus. CONCLUSION In summary, these data indicated that H2S attenuates B2M-induced cognitive dysfunction, involving in recovery of the blocked autophagic flux in the hippocampus, and suggested that H2S may be a novel approach to prevent B2M-induced cognitive dysfunction.
Collapse
Affiliation(s)
- Si-Min Chen
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yi-Li Yi
- Department of Neurology, The Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Dan Zeng
- Department of Neurology, The Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Yi-Yun Tang
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - Xuan Kang
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, China
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - Ping Zhang
- Department of Neurology, The Affiliated Nanhua Hospital, University of South China, Hengyang, China
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - Wei Zou
- Department of Neurology, The Affiliated Nanhua Hospital, University of South China, Hengyang, China
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - Xiao-Qing Tang
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, China
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
20
|
The Mycoplasma pneumoniae HapE alters the cytokine profile and growth of human bronchial epithelial cells. Biosci Rep 2019; 39:BSR20182201. [PMID: 30573530 PMCID: PMC6340952 DOI: 10.1042/bsr20182201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
Mycoplasma pneumoniae is one of the most common pathogenic causes of community-acquired pneumonia. Hydrogen sulfide, alanine, and pyruvate producing enzyme (HapE) is a recently discovered M. pneumoniae virulence factor that can produce H2S to promote erythrocyte lysis. However, other cytotoxic effects of HapE have not been explored. The present study examined the effects of this enzyme on normal human bronchial epithelial (NHBE) cells, in an attempt to identify additional mechanisms of M. pneumoniae pathogenesis. Recombinant HapE was purified for use in downstream assays. MTT and colony formation assays were conducted to determine the effects of HapE on cell viability and growth, while flow cytometry was used to examine changes in cell proliferation and cell cycle function. ELISA was performed to examine changes in the cytokine profile of HapE-treated cells. HapE treatment arrested NHBE cells in S phase and inhibited cell proliferation in a concentration-dependent manner. The anti-inflammatory factors interleukin (IL)-4 and IL-6 were significantly enhanced following HapE treatment. Increased secretion of pro-inflammatory factors was not observed. The effects of HapE on the respiratory epithelium may have an impact on the efficiency of host immune surveillance and pathogen elimination, and contribute to the pathogenesis of M. pneumoniae.
Collapse
|
21
|
Mir JM, Maurya RC. Physiological and pathophysiological implications of hydrogen sulfide: a persuasion to change the fate of the dangerous molecule. ACTA ACUST UNITED AC 2018. [DOI: 10.1080/22243682.2018.1493951] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jan Mohammad Mir
- Coordination, Bioinorganic and Computational Chemistry Laboratory, Department of P. G. Studies and Research in Chemistry & Pharmacy, R. D. University, Jabalpur, India
| | - Ram Charitra Maurya
- Coordination, Bioinorganic and Computational Chemistry Laboratory, Department of P. G. Studies and Research in Chemistry & Pharmacy, R. D. University, Jabalpur, India
| |
Collapse
|
22
|
Bredthauer A, Lehle K, Scheuerle A, Schelzig H, McCook O, Radermacher P, Szabo C, Wepler M, Simon F. Intravenous hydrogen sulfide does not induce neuroprotection after aortic balloon occlusion-induced spinal cord ischemia/reperfusion injury in a human-like porcine model of ubiquitous arteriosclerosis. Intensive Care Med Exp 2018; 6:44. [PMID: 30357563 PMCID: PMC6200829 DOI: 10.1186/s40635-018-0209-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/14/2018] [Indexed: 12/02/2022] Open
Abstract
Objective In rodents, intravenous sulfide protected against spinal cord ischemia/reperfusion (I/R) injury during aortic balloon occlusion. We investigated the effect of intravenous sulfide on aortic occlusion-induced porcine spinal cord I/R injury. Methods Anesthetized and mechanically ventilated “familial hypercholesterolemia Bretoncelles Meishan” (FBM) pigs with high-fat-diet-induced hypercholesterolemia and atherosclerosis were randomized to receive either intravenous sodium sulfide 2 h (initial bolus, 0.2 mg kg body weight (bw)−1; infusion, 2 mg kg bw−1 h−1; n = 4) or vehicle (sodium chloride, n = 4) prior to 45 min of thoracic aortic balloon occlusion and for 8 h during reperfusion (infusion, 1 mg kg bw−1 h−1). During reperfusion, noradrenaline was titrated to maintain blood pressure at above 80% of the baseline level. Spinal cord function was assessed by motor evoked potentials (MEPs) and lower limb reflexes using a modified Tarlov score. Spinal cord tissue damage was evaluated in tissue collected at the end of experiment using hematoxylin and eosin and Nissl staining. Results A balloon occlusion time of 45 min resulted in marked ischemic neuron damage (mean of 16% damaged motoneurons in the anterior horn of all thoracic motor neurons) in the spinal cord. In the vehicle group, only one animal recovered partial neuronal function with regain of MEPs and link motions at each time point after deflating. All other animals completely lost neuronal functions. The intravenous application of sodium sulfide did not prevent neuronal cell injury and did not confer to functional recovery. Conclusion In a porcine model of I/R injury of the spinal cord, treatment with intravenous sodium sulfide had no protective effect in animals with a pre-existing arteriosclerosis.
Collapse
Affiliation(s)
- Andre Bredthauer
- Department of Anesthesiology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany. .,Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Helmholtzstraße 8/1, 89081, Ulm, Germany.
| | - Karla Lehle
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Angelika Scheuerle
- Institute of Pathology - Section Neuropathology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Hubert Schelzig
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-Universität Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Oscar McCook
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Peter Radermacher
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Martin Wepler
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Florian Simon
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Helmholtzstraße 8/1, 89081, Ulm, Germany.,Department of Vascular and Endovascular Surgery, Heinrich-Heine-Universität Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| |
Collapse
|
23
|
Nath N, Prasad HK, Kumar M. Cerebroprotective effects of hydrogen sulfide in homocysteine-induced neurovascular permeability: Involvement of oxidative stress, arginase, and matrix metalloproteinase-9. J Cell Physiol 2018; 234:3007-3019. [PMID: 30206943 DOI: 10.1002/jcp.27120] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/05/2018] [Indexed: 01/25/2023]
Abstract
An elevated level of homocysteine (Hcy) leads to hyperhomocysteinemia (HHcy), which results in vascular dysfunction and pathological conditions identical to stroke symptoms. Hcy increases oxidative stress and leads to increase in blood-brain barrier permeability and leakage. Hydrogen sulfide (H2 S) production during the metabolism of Hcy has a cerebroprotective effect, although its effectiveness in Hcy-induced neurodegeneration and neurovascular permeability is less explored. Therefore, the current study was designed to perceive the neuroprotective effect of exogenous H 2 S against HHcy, a cause of neurodegeneration. To test this hypothesis, we used four groups of mice: control, Hcy, control + sodium hydrosulfide hydrate (NaHS), and Hcy + NaHS, and an HHcy mice model in Swiss albino mice by giving a dose of 1.8 g of dl-Hcy/L in drinking for 8-10 weeks. Mice that have 30 µmol/L Hcy were taken for the study, and a H 2 S supplementation of 20 μmol/L was given for 8 weeks to all groups of mice. HHcy results in the rise of the levels of superoxide and nitrite, although a concomitant decrease in the level of superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione, and arginase in oxidative stress and a concomitant decrease in the endogenous level of H 2 S. Although H 2 S supplementation ameliorated, the effect of HHcy and the levels of H 2 S returned to the average level in HHcy animals supplemented with H 2 S. Interestingly, H 2 S supplementation ameliorated neurovascular remodeling and neurodegeneration. Thus, our study suggested that H 2 S could be a beneficial therapeutic candidate for the treatment of Hcy-associated neurodegeneration, such as stroke and neurovascular disorders.
Collapse
Affiliation(s)
- Nibendu Nath
- Department of LifeScience and Bioinformatics, Assam University, Silchar, India
| | | | - Munish Kumar
- Department of Biochemistry, University of Allahabad, Allahabad, India
| |
Collapse
|
24
|
Misak A, Grman M, Bacova Z, Rezuchova I, Hudecova S, Ondriasova E, Krizanova O, Brezova V, Chovanec M, Ondrias K. Polysulfides and products of H 2S/S-nitrosoglutathione in comparison to H 2S, glutathione and antioxidant Trolox are potent scavengers of superoxide anion radical and produce hydroxyl radical by decomposition of H 2O 2. Nitric Oxide 2017; 76:136-151. [PMID: 28951200 DOI: 10.1016/j.niox.2017.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 01/20/2023]
Abstract
Exogenous and endogenously produced sulfide derivatives, such as H2S/HS-/S2-, polysulfides and products of the H2S/S-nitrosoglutathione interaction (S/GSNO), affect numerous biological processes in which superoxide anion (O2-) and hydroxyl (OH) radicals play an important role. Their cytoprotective-antioxidant and contrasting pro-oxidant-toxic effects have been reported. Therefore, the aim of our work was to contribute to resolving this apparent inconsistency by studying sulfide derivatives/free radical interactions and their consequent biological effects compared to the antioxidants glutathione (GSH) and Trolox. Using the electron paramagnetic resonance (EPR) spin trapping technique and O2-, we found that a polysulfide (Na2S4) and S/GSNO were potent scavengers of O2- and cPTIO radicals compared to H2S (Na2S), GSH and Trolox, and S/GSNO scavenged the DEPMPO-OH radical. As detected by the EPR spectra of DEPMPO-OH, the formation of OH in physiological solution by S/GSNO was suggested. All the studied sulfide derivatives, but not Trolox or GSH, had a bell-shaped potency to decompose H2O2 and produced OH in the following order: S/GSNO > Na2S4 ≥ Na2S > GSH = Trolox = 0, but they scavenged OH at higher concentrations. In studies of the biological consequences of these sulfide derivatives/H2O2 properties, we found the following: (i) S/GSNO alone and all sulfide derivatives in the presence of H2O2 cleaved plasmid DNA; (ii) S/GSNO interfered with viral replication and consequently decreased the infectivity of viruses; (iii) the sulfide derivatives induced apoptosis in A2780 cells but inhibited apoptosis induced by H2O2; and (iv) Na2S4 modulated intracellular calcium in A87MG cells, which depended on the order of Na2S4/H2O2 application. We suggest that the apparent inconsistency of the cytoprotective-antioxidant and contrasting pro-oxidant-toxic biological effects of sulfide derivatives results from their time- and concentration-dependent radical production/scavenging properties and their interactions with O2-, OH and H2O2. The results imply a direct involvement of sulfide derivatives in O2- and H2O2/OH free radical pathways modulating antioxidant/toxic biological processes.
Collapse
Affiliation(s)
- Anton Misak
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Marian Grman
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Zuzana Bacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Ingeborg Rezuchova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Sona Hudecova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Elena Ondriasova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic
| | - Olga Krizanova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Vlasta Brezova
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovak Republic
| | - Miroslav Chovanec
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Karol Ondrias
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| |
Collapse
|
25
|
Zhang JY, Ding YP, Wang Z, Kong Y, Gao R, Chen G. Hydrogen sulfide therapy in brain diseases: from bench to bedside. Med Gas Res 2017; 7:113-119. [PMID: 28744364 PMCID: PMC5510292 DOI: 10.4103/2045-9912.208517] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hydrogen sulfide (H2S) has been recognized and studied for nearly 300 years, but past researches mainly focus on its toxicity effect. During the past two decades, the majority of researches have reported that H2S is a novel endogenous gaseous signal molecule in organisms, and play an important role in various systems and diseases. H2S is mainly produced by three enzymes, including cystathionine β-synthase, cystathionine γ-lyase and 3-mercaptopyruvate sulfurtransferase along with cysteine aminotransferase. H2S had been firstly reported as a neuromodulator in the brain, because of its essential role in the facilitating hippocampal long-term potentiation at physiological concentration. It is subsequently reported that H2S may have relevance to neurologic disorders through antioxidative, anti-inflammatory, anti-apoptotic and additional effects. Recent basic medical studies and preclinical studies on neurologic diseases have demonstrated that the administration of H2S at physiological or pharmacological levels attenuates brain injury. However, the neuroprotective effect of H2S is concentration-dependent, only a comparatively low dose of H2S can provide beneficial effect. Herein, we review the neuroprotevtive role of H2S therapy in brain diseases from its mechanism to clinical application in animal and human subjects, and therefore provide the potential strategies for further clinical treatment.
Collapse
Affiliation(s)
- Ju-Yi Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yi-Ping Ding
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yan Kong
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Rong Gao
- Department of Neurosurgery, Zhangjiagang First People's Hospital, Soochow University, Zhangjiagang, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.,Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.,Department of Neurosurgery, Zhangjiagang First People's Hospital, Soochow University, Zhangjiagang, Jiangsu Province, China.,Department of Neurosurgery, Huaian Hospital Affiliated of Xuzhou Medical University and Huaian Second People's Hospital, Huaian, Jiangsu Province, China
| |
Collapse
|