1
|
Asir B, Kumtepe Y. The Relationship Between Oxidative Stress and Infertility Due to Antihypertensive Drugs in Rattus Norvegicus. Animals (Basel) 2024; 14:3674. [PMID: 39765578 PMCID: PMC11672417 DOI: 10.3390/ani14243674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
This study aimed to investigate the effect of antihypertensive drugs on reproductive function in Rattus norvegicus and demonstrate the potential role of oxidative stress in reproductive dysfunction. Rattus norvegicus were selected as the experimental animals and divided into the following groups: healthy (control group), clonidine (CL), rilmenidine (RLD), methyldopa (MTL), amlodipine (ALD), and ramipril (RML). Each individual in each group was marked from one to six. Doses of clonidine (0.075 mg/kg), rilmenidine (0.5 mg/kg), methyldopa (100 mg/kg), amlodipine (2 mg/kg), and ramipril (2 mg/kg) were administered orally via gavage to each Rattus norvegicus. Using blood obtained from Rattus norvegicus, the absorbance of the pink-colored complex formed by thiobarbituric acid (TBA) and malondialdehyde (MDA) was measured spectrophotometrically at the 532 nm wavelength. Blood samples were collected from the tail veins to analyze serum malondialdehyde (MDA) and total glutathione levels in the serum of all Rattus norvegicus. After sampling, two mature male Rattus norvegicus were introduced to every group of six female Rattus norvegicus and accommodated in a controlled laboratory environment for two months. Any female Rattus norvegicus that became pregnant during this time was transferred to a solitary cage within a controlled setting. Rattus norvegicus that did not become pregnant and did not give birth during this period were considered infertile. The results were compared among the groups. Total glutathione (tGSH) levels were determined using a spectrophotometer. According to our study, the increase in MDA levels observed was not statistically significant in the CL and RLD groups compared to that in the control group. MDA levels were significantly increased in the methyldopa, amlodipine, and RML groups. While total glutathione levels in the CL group were similar to those in the control group, the RLD, MTL, ALD, and RML groups showed a statistically significant decrease. While the animals in the CL and RLD groups were not infertile, infertility was apparent in the groups treated with MTL, ALD, and RML. Thus, it was determined that the antihypertensive drugs MTL, ALD, and RML had different effects on fertility, and that the use of such drugs could cause infertility by increasing oxidative stress and decreasing antioxidant levels.
Collapse
Affiliation(s)
- Berna Asir
- Department of Obstetrics and Gynecology, Erzurum City Hospital, Erzurum 25030, Turkey
| | - Yakup Kumtepe
- Department of Obstetrics and Gynecology, Ankara University, Ankara 06100, Turkey;
| |
Collapse
|
2
|
Zhu CZ, Li GZ, Lyu HF, Lu YY, Li Y, Zhang XN. Modulation of autophagy by melatonin and its receptors: implications in brain disorders. Acta Pharmacol Sin 2024:10.1038/s41401-024-01398-2. [PMID: 39448859 DOI: 10.1038/s41401-024-01398-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/17/2024] [Indexed: 10/26/2024] Open
Abstract
Autophagy plays a crucial role in maintaining neuronal homeostasis and function, and its disruption is linked to various brain diseases. Melatonin, an endogenous hormone that primarily acts through MT1 and MT2 receptors, regulates autophagy via multiple pathways. Growing evidence indicates that melatonin's ability to modulate autophagy provides therapeutic and preventive benefits in brain disorders, including neurodegenerative and affective diseases. In this review, we summarize the key mechanisms by which melatonin affects autophagy and explore its therapeutic potential in the treatment of brain disorders.
Collapse
Affiliation(s)
- Chen-Ze Zhu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Gui-Zhi Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, China
| | - Hai-Feng Lyu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, China
| | - Yang-Yang Lu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Yue Li
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Xiang-Nan Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China.
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China.
| |
Collapse
|
3
|
Nakashima M, Suga N, Fukumoto A, Yoshikawa S, Matsuda S. Caveolae with serotonin and NMDA receptors as promising targets for the treatment of Alzheimer's disease. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2024; 16:96-110. [PMID: 39583750 PMCID: PMC11579522 DOI: 10.62347/mtwv3745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/13/2024] [Indexed: 11/26/2024]
Abstract
Alzheimer's disease is the most general type of cognitive impairments. Until recently, strategies that prevent its clinical progression have remained more elusive. Consequently, research direction should be for finding effective neuroprotective agents. It has been suggested oxidative stress, mitochondrial injury, and inflammation level might lead to brain cell death in many neurological disorders. Therefore, several autophagy-targeted bioactive compounds may be promising candidate therapeutics for the prevention of brain cell damage. Interestingly, some risk genes to Alzheimer's disease are expressed within brain cells, which may be linked to cholesterol metabolism, lipid transport, endocytosis, exocytosis and/or caveolae formation, suggesting that caveolae may be a fruitful therapeutic target to improve cognitive impairments. This review would highlight the latest advances in therapeutic technologies to improve the treatment of Alzheimer's disease. In particular, a paradigm that serotonin and N-methyl-d-aspartate (NMDA) receptors agonist/antagonist within caveolae structure might possibly improve the cognitive impairment. Consequently, cellular membrane biophysics should improve our understanding of the pathology of the cognitive dysfunction associated with Alzheimer's disease. Here, this research direction for the purpose of therapy may open the potential to move a clinical care toward disease-modifying treatment strategies with certain benefits for patients.
Collapse
Affiliation(s)
- Moeka Nakashima
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Naoko Suga
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Akari Fukumoto
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Sayuri Yoshikawa
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
4
|
Merabova N, Ugartemendia L, Edlow AG, Ibarra C, Darbinian N, Tatevosian G, Goetzl L. Maternal obesity: sex-specific in utero changes in fetal brain autophagy and mTOR. Obesity (Silver Spring) 2024; 32:1136-1143. [PMID: 38644654 DOI: 10.1002/oby.24017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 04/23/2024]
Abstract
OBJECTIVE Maternal obesity affects 39.7% of reproductive-age women in the United States. Emerging research has suggested that in utero exposure to maternal obesity is associated with adverse neurodevelopmental outcomes, but knowledge of underlying mechanisms in human samples is lacking. METHODS A matched case-control study was performed in women with singleton fetuses who were undergoing elective pregnancy termination at gestational ages 15 to 21 weeks. Maternal adiponectin levels from plasma were measured using ELISA kits. RNA was extracted from fetal brain tissue using RNeasy Mini Kit (QIAGEN). mRNA expression from ADIPOR1, ADIPOR2, MTOR, ATG5, ATG7, BECN1, and MAP1LC3B was quantified through the ΔΔCt method and using GAPDH as a housekeeping gene. RESULTS We have identified transcription patterns associated with inhibition of autophagy in male fetal brain tissue exposed to maternal obesity (↑MTOR, ↓ATG5, ↓ATG7, and ↓MAP1LC3B), with female fetuses demonstrating either no change in transcription or nonsignificant changes associated with increased autophagy. There was significant downregulation of the autophagy-associated gene BECN1 in both male and female individuals who were exposed to obesity in utero. CONCLUSIONS We present novel evidence suggesting that in utero exposure to maternal obesity in humans may significantly affect neurodevelopment, especially in male fetuses, through alterations in normal autophagy molecular mechanisms and with adiponectin as a potential mediator.
Collapse
Affiliation(s)
- Nana Merabova
- Department of Family Medicine, Medical College of Wisconsin-Prevea, Green Bay, Wisconsin, USA
| | - Lierni Ugartemendia
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Andrea G Edlow
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Vincent Center for Reproductive Biology, Boston, Massachusetts, USA
| | - Claudia Ibarra
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Nune Darbinian
- Shriners Pediatric Research Center, Center for Neural Repair and Rehabilitation, Temple University, Philadelphia, Pennsylvania, USA
| | - Gabriel Tatevosian
- Shriners Pediatric Research Center, Center for Neural Repair and Rehabilitation, Temple University, Philadelphia, Pennsylvania, USA
| | - Laura Goetzl
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
5
|
Yalçın MB, Bora ES, Çakır A, Akbulut S, Erbaş O. Autophagy and anti-inflammation ameliorate diabetic neuropathy with Rilmenidine. Acta Cir Bras 2023; 38:e387823. [PMID: 38055406 DOI: 10.1590/acb387823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/25/2023] [Indexed: 12/08/2023] Open
Abstract
PURPOSE To evaluate the neuroprotective effects of Rilmenidine on diabetic peripheral neuropathy (DPN) in a rat model of diabetes induced by streptozotocin (STZ). METHODS STZ (60 mg/kg) was administered to adult Sprague-Dawley rats to induce diabetes. On the 30th day after STZ administration, electromyography (EMG) and motor function tests confirmed the presence of DPN. Group 1: Control (n = 10), Group 2: DM + 0.1 mg/kg Rilmenidine (n = 10), and Group 3: DM + 0.2 mg/kg Rilmenidine (n = 10) were administered via oral lavage for four weeks. EMG, motor function test, biochemical analysis, and histological and immunohistochemical analysis of sciatic nerves were then performed. RESULTS The administration of Rilmenidine to diabetic rats substantially reduced sciatic nerve inflammation and fibrosis and prevented electrophysiological alterations. Immunohistochemistry of sciatic nerves from saline-treated rats revealed increased perineural thickness, HMGB-1, tumor necrosis factor-α, and a decrease in nerve growth factor (NGF), LC-3. In contrast, Rilmendine significantly inhibited inflammation markers and prevented the reduction in NGF expression. In addition, Rilmenidine significantly decreased malondialdehyde and increased diabetic rats' total antioxidative capacity. CONCLUSIONS The findings of this study suggest that Rilmenidine may have therapeutic effects on DNP by modulating antioxidant and autophagic pathways.
Collapse
Affiliation(s)
- Mehmet Burak Yalçın
- Bahcelievler Memorial Hospital - Department of Orthopedics and Traumatology - Istanbul - Turkey
| | - Ejder Saylav Bora
- Izmir Ataturk Research and Training Hospital - Department of Emergency Medicine - Izmir - Turkey
| | - Adem Çakır
- Canakkale Mehmet Akif Ersoy State SBU Kartal Kosuyolu Training and Research Hospital - Department of Emergency Medicine - Canakkale - Turkey
| | - Sabiye Akbulut
- SBU Kartal Kosuyolu Training and Research - Hospital Department of Gastroenterology - Istanbul - Turkey
| | - Oytun Erbaş
- Demiroğlu Bilim University - Faculty of Medicine - Department of Physiology - Istanbul - Turkey
| |
Collapse
|
6
|
Autophagic Molecular Alterations in the Mouse Cerebellum Experimental Autoimmune Encephalomyelitis Model Following Treatment with Cannabidiol and Fluoxetine. Mol Neurobiol 2023; 60:1797-1809. [PMID: 36576709 DOI: 10.1007/s12035-022-03170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/10/2022] [Indexed: 12/29/2022]
Abstract
The crosstalk between autophagy and apoptosis is one of the most important processes involved in the cell program death, and several mechanisms including oligodendrocyte apoptosis and autophagy play significant roles in activating macrophages, microglial cells, and finally demyelination in neurodegenerative disease. The antidepressants and anti-apoptotic mechanisms of fluoxetine (FLX) and cannabidiol (CBD) commence an autophagic event that can effectively repair myelin. This study aimed to investigate the effect of those reagents on the rate of demyelination in the cerebellum, an important site for white matter in a mouse model of experimental autoimmune encephalomyelitis (EAE). EAE was induced in twenty four adult female C57Bl/6 mice were inducted the EAE model; FLX treatment which was performed (10 mg/kg/IP) and CBD; were treated (5 mg/kg/IP); and their cerebellum was used for Western blotting, real-time PCR to autophagic markers of LC3II, Beclin-1, and apoptotic markers Bax and Bcl2 evaluation and Luxol Fast Blue staining to the assessment of demyelination. The level of autophagic markers was expressively elevated (P < 0.01) but the pro-apoptotic markers and Bax/Bcl2 ratio were reduced (P < 0.05). Luxol Fast Blue staining confirmed the noteworthy diminution of demyelination in treatment groups (P < 0.001). This finding clarified that FLX and CBD ameliorate the severity of the EAE model. Combinatory treatments of these two agents are suggested for future investigations.
Collapse
|
7
|
Hingorani M, Viviani AML, Sanfilippo JE, Janušonis S. High-resolution spatiotemporal analysis of single serotonergic axons in an in vitro system. Front Neurosci 2022; 16:994735. [PMID: 36353595 PMCID: PMC9638127 DOI: 10.3389/fnins.2022.994735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/28/2022] [Indexed: 12/04/2022] Open
Abstract
Vertebrate brains have a dual structure, composed of (i) axons that can be well-captured with graph-theoretical methods and (ii) axons that form a dense matrix in which neurons with precise connections operate. A core part of this matrix is formed by axons (fibers) that store and release 5-hydroxytryptamine (5-HT, serotonin), an ancient neurotransmitter that supports neuroplasticity and has profound implications for mental health. The self-organization of the serotonergic matrix is not well understood, despite recent advances in experimental and theoretical approaches. In particular, individual serotonergic axons produce highly stochastic trajectories, fundamental to the construction of regional fiber densities, but further advances in predictive computer simulations require more accurate experimental information. This study examined single serotonergic axons in culture systems (co-cultures and monolayers), by using a set of complementary high-resolution methods: confocal microscopy, holotomography (refractive index-based live imaging), and super-resolution (STED) microscopy. It shows that serotonergic axon walks in neural tissue may strongly reflect the stochastic geometry of this tissue and it also provides new insights into the morphology and branching properties of serotonergic axons. The proposed experimental platform can support next-generation analyses of the serotonergic matrix, including seamless integration with supercomputing approaches.
Collapse
|
8
|
Hosseini A, Shetab-Boushehri SMH, Shetab-Boushehri SV. Evaluation of Cytotoxic, Necrotic, Apoptotic, and Autophagic Effects of Methamphetamine and 3,4-Methylenedioxymethamphetamine on U-87 MG (Glial) and B104-1-1 (Neuronal) Cell Lines. Neurotox Res 2022; 40:1499-1515. [PMID: 35838908 DOI: 10.1007/s12640-022-00543-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 10/17/2022]
Abstract
Methamphetamine (MA) and 3,4-methylenedioxymethamphetamine (MDMA) are empathogen (entactogen) psychoactive designer drugs which are mainly used for recreational purposes. Both MA and MDMA are central nervous system stimulants which are classified as monoamine neurotransmitter reuptake inhibitors. They have strong cytotoxic effects on dopaminergic and serotonergic neurons. Neurotoxicities of MA and MDMA by glial activation have been shown. The present work has investigated and measured cytotoxic, necrotic and apoptotic, and autophagic effects of MA and MDMA on U-87 MG (glial) and B104-1-1 (neuronal) cell lines by janus green, ethidium bromide/acridine orange, and monodansylcadaverine/propidium iodide staining to evaluate and compare their effects on glial and neuronal cells, respectively. The results of the present work showed that: (1) MDMA induced more potent mitochondrial toxicity, stronger necrotic and autophagic effects than MA in both B104-1-1 (neuronal) and U-87 MG (glial) cell lines; (2) although MDMA induced stronger apoptotic effect than MA on U-87 MG cell line, it had equal apoptotic effect on B104-1-1 cell line with MA; and (3) MDMA induced more potent mitochondrial toxicity, stronger necrotic, apoptotic, and autophagic effects than MA in B104-1-1 cell line than U-87 MG cell line.
Collapse
Affiliation(s)
- Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Seyed Vahid Shetab-Boushehri
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran. .,Ameretat Shimi Pharmaceutical Co, Tehran, Iran.
| |
Collapse
|
9
|
Karam CS, Williams BL, Morozova I, Yuan Q, Panarsky R, Zhang Y, Hodgkinson CA, Goldman D, Kalachikov S, Javitch JA. Functional Genomic Analysis of Amphetamine Sensitivity in Drosophila. Front Psychiatry 2022; 13:831597. [PMID: 35250674 PMCID: PMC8894854 DOI: 10.3389/fpsyt.2022.831597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/24/2022] [Indexed: 11/14/2022] Open
Abstract
Abuse of psychostimulants, including amphetamines (AMPHs), is a major public health problem with profound psychiatric, medical, and psychosocial complications. The actions of these drugs at the dopamine transporter (DAT) play a critical role in their therapeutic efficacy as well as their liability for abuse and dependence. To date, however, the mechanisms that mediate these actions are not well-understood, and therapeutic interventions for AMPH abuse have been limited. Drug exposure can induce broad changes in gene expression that can contribute to neuroplasticity and effect long-lasting changes in neuronal function. Identifying genes and gene pathways perturbed by drug exposure is essential to our understanding of the molecular basis of drug addiction. In this study, we used Drosophila as a model to examine AMPH-induced transcriptional changes that are DAT-dependent, as those would be the most relevant to the stimulatory effects of the drug. Using this approach, we found genes involved in the control of mRNA translation to be significantly upregulated in response to AMPH in a DAT-dependent manner. To further prioritize genes for validation, we explored functional convergence between these genes and genes we identified in a genome-wide association study of AMPH sensitivity using the Drosophila Genetic Reference Panel. We validated a number of these genes by showing that they act specifically in dopamine neurons to mediate the behavioral effects of AMPH. Taken together, our data establish Drosophila as a powerful model that enables the integration of behavioral, genomic and transcriptomic data, followed by rapid gene validation, to investigate the molecular underpinnings of psychostimulant action.
Collapse
Affiliation(s)
- Caline S Karam
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States.,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - Brenna L Williams
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - Irina Morozova
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY, United States.,Department of Chemical Engineering, Columbia University, New York, NY, United States
| | - Qiaoping Yuan
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Rony Panarsky
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Yuchao Zhang
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States.,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - Colin A Hodgkinson
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Sergey Kalachikov
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY, United States.,Department of Chemical Engineering, Columbia University, New York, NY, United States
| | - Jonathan A Javitch
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States.,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States.,Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| |
Collapse
|
10
|
Sogos V, Caria P, Porcedda C, Mostallino R, Piras F, Miliano C, De Luca MA, Castelli MP. Human Neuronal Cell Lines as An In Vitro Toxicological Tool for the Evaluation of Novel Psychoactive Substances. Int J Mol Sci 2021; 22:ijms22136785. [PMID: 34202634 PMCID: PMC8268582 DOI: 10.3390/ijms22136785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/18/2022] Open
Abstract
Novel psychoactive substances (NPS) are synthetic substances belonging to diverse groups, designed to mimic the effects of scheduled drugs, resulting in altered toxicity and potency. Up to now, information available on the pharmacology and toxicology of these new substances is very limited, posing a considerable challenge for prevention and treatment. The present in vitro study investigated the possible mechanisms of toxicity of two emerging NPS (i) 4′-methyl-alpha-pyrrolidinoexanophenone (3,4-MDPHP), a synthetic cathinone, and (ii) 2-chloro-4,5-methylenedioxymethamphetamine (2-Cl-4,5-MDMA), a phenethylamine. In addition, to apply our model to the class of synthetic opioids, we evaluated the toxicity of fentanyl, as a reference compound for this group of frequently abused substances. To this aim, the in vitro toxic effects of these three compounds were evaluated in dopaminergic-differentiated SH-SY5Y cells. Following 24 h of exposure, all compounds induced a loss of viability, and oxidative stress in a concentration-dependent manner. 2-Cl-4,5-MDMA activates apoptotic processes, while 3,4-MDPHP elicits cell death by necrosis. Fentanyl triggers cell death through both mechanisms. Increased expression levels of pro-apoptotic Bax and caspase 3 activity were observed following 2-Cl-4,5-MDMA and fentanyl, but not 3,4-MDPHP exposure, confirming the different modes of cell death.
Collapse
Affiliation(s)
- Valeria Sogos
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (V.S.); (P.C.); (C.P.); (R.M.); (F.P.); (M.A.D.L.)
| | - Paola Caria
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (V.S.); (P.C.); (C.P.); (R.M.); (F.P.); (M.A.D.L.)
| | - Clara Porcedda
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (V.S.); (P.C.); (C.P.); (R.M.); (F.P.); (M.A.D.L.)
| | - Rafaela Mostallino
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (V.S.); (P.C.); (C.P.); (R.M.); (F.P.); (M.A.D.L.)
| | - Franca Piras
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (V.S.); (P.C.); (C.P.); (R.M.); (F.P.); (M.A.D.L.)
| | - Cristina Miliano
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA;
| | - Maria Antonietta De Luca
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (V.S.); (P.C.); (C.P.); (R.M.); (F.P.); (M.A.D.L.)
| | - M. Paola Castelli
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (V.S.); (P.C.); (C.P.); (R.M.); (F.P.); (M.A.D.L.)
- Guy Everett Laboratory, University of Cagliari, 09042 Monserrato, Italy
- Center of Excellence “Neurobiology of Addiction”, University of Cagliari, 09042 Monserrato, Italy
- Correspondence: ; Tel.: +39-070-6754065
| |
Collapse
|
11
|
Martins WK, Silva MDND, Pandey K, Maejima I, Ramalho E, Olivon VC, Diniz SN, Grasso D. Autophagy-targeted therapy to modulate age-related diseases: Success, pitfalls, and new directions. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100033. [PMID: 34909664 PMCID: PMC8663935 DOI: 10.1016/j.crphar.2021.100033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 04/15/2021] [Accepted: 05/02/2021] [Indexed: 02/08/2023] Open
Abstract
Autophagy is a critical metabolic process that supports homeostasis at a basal level and is dynamically regulated in response to various physiological and pathological processes. Autophagy has some etiologic implications that support certain pathological processes due to alterations in the lysosomal-degradative pathway. Some of the conditions related to autophagy play key roles in highly relevant human diseases, e.g., cardiovascular diseases (15.5%), malignant and other neoplasms (9.4%), and neurodegenerative conditions (3.7%). Despite advances in the discovery of new strategies to treat these age-related diseases, autophagy has emerged as a therapeutic option after preclinical and clinical studies. Here, we discuss the pitfalls and success in regulating autophagy initiation and its lysosome-dependent pathway to restore its homeostatic role and mediate therapeutic effects for cancer, neurodegenerative, and cardiac diseases. The main challenge for the development of autophagy regulators for clinical application is the lack of specificity of the repurposed drugs, due to the low pharmacological uniqueness of their target, including those that target the PI3K/AKT/mTOR and AMPK pathway. Then, future efforts must be conducted to deal with this scenery, including the disclosure of key components in the autophagy machinery that may intervene in its therapeutic regulation. Among all efforts, those focusing on the development of novel allosteric inhibitors against autophagy inducers, as well as those targeting autolysosomal function, and their integration into therapeutic regimens should remain a priority for the field.
Collapse
Affiliation(s)
- Waleska Kerllen Martins
- Laboratory of Cell and Membrane (LCM), Anhanguera University of São Paulo (UNIAN), Rua Raimundo Pereira de Magalhães, 3,305. Pirituba, São Paulo, 05145-200, Brazil
| | - Maryana do Nascimento da Silva
- Laboratory of Cell and Membrane (LCM), Anhanguera University of São Paulo (UNIAN), Rua Raimundo Pereira de Magalhães, 3,305. Pirituba, São Paulo, 05145-200, Brazil
| | - Kiran Pandey
- Center for Neural Science, New York University, Meyer Building, Room 823, 4 Washington Place, New York, NY, 10003, USA
| | - Ikuko Maejima
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa Machi, Maebashi, Gunma, 3718512, Japan
| | - Ercília Ramalho
- Laboratory of Cell and Membrane (LCM), Anhanguera University of São Paulo (UNIAN), Rua Raimundo Pereira de Magalhães, 3,305. Pirituba, São Paulo, 05145-200, Brazil
| | - Vania Claudia Olivon
- Laboratory of Pharmacology and Physiology, UNIDERP, Av. Ceará, 333. Vila Miguel Couto, Campo Grande, MS, 79003-010, Brazil
| | - Susana Nogueira Diniz
- Laboratory of Molecular Biology and Functional Genomics, Anhanguera University of São Paulo (UNIAN), Rua Raimundo Pereira de Magalhães, 3,305. Pirituba, São Paulo, 05145-200, Brazil
| | - Daniel Grasso
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), Universidad de Buenos Aires, CONICET, Junín 954 p4, Buenos Aires, C1113AAD, Argentina
| |
Collapse
|
12
|
Oeri HE. Beyond ecstasy: Alternative entactogens to 3,4-methylenedioxymethamphetamine with potential applications in psychotherapy. J Psychopharmacol 2021; 35:512-536. [PMID: 32909493 PMCID: PMC8155739 DOI: 10.1177/0269881120920420] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The last two decades have seen a revival of interest in the entactogen 3,4-methylenedioxy-N-methylamphetamine (MDMA) as an adjunct to psychotherapy, particularly for the treatment of post-traumatic stress disorder. While clinical results are highly promising, and MDMA is expected to be approved as a treatment in the near future, it is currently the only compound in its class of action that is being actively investigated as a medicine. This lack of alternatives to MDMA may prove detrimental to patients who do not respond well to the particular mechanism of action of MDMA or whose treatment calls for a modification of MDMA's effects. For instance, patients with existing cardiovascular conditions or with a prolonged history of stimulant drug use may not fit into the current model of MDMA-assisted psychotherapy, and could benefit from alternative drugs. This review examines the existing literature on a host of entactogenic drugs, which may prove to be useful alternatives in the future, paying particularly close attention to any neurotoxic risks, neuropharmacological mechanism of action and entactogenic commonalities with MDMA. The substances examined derive from the 1,3-benzodioxole, cathinone, benzofuran, aminoindane, indole and amphetamine classes. Several compounds from these classes are identified as potential alternatives to MDMA.
Collapse
Affiliation(s)
- Hans Emanuel Oeri
- Hans Emanuel Oeri, University of Victoria,
3800 Finnerty Rd, Victoria, British Columbia V8P 5C2, Canada.
| |
Collapse
|
13
|
Mustafa NS, Bakar NHA, Mohamad N, Adnan LHM, Fauzi NFAM, Thoarlim A, Omar SHS, Hamzah MS, Yusoff Z, Jufri M, Ahmad R. MDMA and the Brain: A Short Review on the Role of Neurotransmitters in Neurotoxicity. Basic Clin Neurosci 2021; 11:381-388. [PMID: 33613876 PMCID: PMC7878040 DOI: 10.32598/bcn.9.10.485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/10/2018] [Accepted: 02/19/2019] [Indexed: 11/24/2022] Open
Abstract
N-Methyl-3, 4-methylenedioxyamphetamine (MDMA), or ecstasy is a recreational drug of abuse. It is a synthetic substance that affects the body’s systems, which its mechanism of action and treatment should be more investigated. MDMA provides an immediate enjoyable feeling by stimulating the release of neurotransmitters, such as dopamine and serotonin in the brain. Unfortunately, abnormal regulation of the brain neurotransmitters, as well as the increased oxidative stress causes damage to the brain neurons after the MDMA exposure. Only a few studies have been done regarding its treatment. Thus, the treatment of MDMA complications should be further explored mainly by targeting its mechanism of action in the neurotransmitter systems. Hence, this study presents a short review regarding the recent findings on the role of neurotransmitters to cause MDMA neurotoxicity. The results will be useful for future research in elucidating the potential treatment based on the targeted mechanisms to treat the neurotoxic effects of MDMA.
Collapse
Affiliation(s)
- Nor Suliana Mustafa
- Centre for Research in Addiction (CentRenA), University of Sultan Zainal Abidin, Terengganu, Malaysia.,Faculty of Medicine, City Campus, University of Sultan Zainal Abidin, Terengganu, Malaysia
| | - Nor Hidayah Abu Bakar
- Centre for Research in Addiction (CentRenA), University of Sultan Zainal Abidin, Terengganu, Malaysia.,Faculty of Medicine, City Campus, University of Sultan Zainal Abidin, Terengganu, Malaysia
| | - Nasir Mohamad
- Centre for Research in Addiction (CentRenA), University of Sultan Zainal Abidin, Terengganu, Malaysia.,Faculty of Medicine, City Campus, University of Sultan Zainal Abidin, Terengganu, Malaysia
| | - Liyana Hazwani Mohd Adnan
- Centre for Research in Addiction (CentRenA), University of Sultan Zainal Abidin, Terengganu, Malaysia.,Faculty of Medicine, City Campus, University of Sultan Zainal Abidin, Terengganu, Malaysia
| | - Nurul Farah Aina Md Fauzi
- Centre for Research in Addiction (CentRenA), University of Sultan Zainal Abidin, Terengganu, Malaysia.,Faculty of Medicine, City Campus, University of Sultan Zainal Abidin, Terengganu, Malaysia
| | - Abdulsoma Thoarlim
- Centre for Research in Addiction (CentRenA), University of Sultan Zainal Abidin, Terengganu, Malaysia.,Faculty of Islamic Contemporary Studies, University of Sultan Zainal Abidin, Terengganu, Malaysia
| | - Syed Hadzrullathfi Syed Omar
- Centre for Research in Addiction (CentRenA), University of Sultan Zainal Abidin, Terengganu, Malaysia.,Research Institute for Islamic Products, Malay Civilization University of Sultan Zainal Abidin, Terengganu, Malaysia
| | - Mohd Shafiee Hamzah
- Faculty of Medicine, City Campus, University of Sultan Zainal Abidin, Terengganu, Malaysia.,Faculty of Islamic Contemporary Studies, University of Sultan Zainal Abidin, Terengganu, Malaysia
| | - Zawawi Yusoff
- Faculty of Medicine, City Campus, University of Sultan Zainal Abidin, Terengganu, Malaysia.,Faculty of Islamic Contemporary Studies, University of Sultan Zainal Abidin, Terengganu, Malaysia
| | - Mahdi Jufri
- Faculty of Pharmacy, University of Indonesia, Indonesia
| | - Rashidi Ahmad
- Academic Unit of Emergency Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
From street to lab: in vitro hepatotoxicity of buphedrone, butylone and 3,4-DMMC. Arch Toxicol 2021; 95:1443-1462. [PMID: 33550444 DOI: 10.1007/s00204-021-02990-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/21/2021] [Indexed: 12/19/2022]
Abstract
Synthetic cathinones are among the most popular new psychoactive substances, being abused for their stimulant properties, which are similar to those of amphetamine and 3,4-methylenedioxymethamphetamine (MDMA). Considering that the liver is a likely target for cathinones-induced toxicity, and for their metabolic activation/detoxification, we aimed to determine the hepatotoxicity of three commonly abused synthetic cathinones: butylone, α-methylamino-butyrophenone (buphedrone) and 3,4-dimethylmethcathinone (3,4-DMMC). We characterized their cytotoxic profile in primary rat hepatocytes (PRH) and in the HepaRG and HepG2 cell lines. PRH was the most sensitive cell model, showing the lowest EC50 values for all three substances (0.158 mM for 3,4-DMMC; 1.21 mM for butylone; 1.57 mM for buphedrone). Co-exposure of PRH to the synthetic cathinones and CYP450 inhibitors (selective and non-selective) proved that hepatic metabolism reduced the toxicity of buphedrone but increased that of butylone and 3,4-DMMC. All compounds were able to increase oxidative stress, disrupting mitochondrial homeostasis and inducing apoptotic and necrotic features, while also increasing the occurrence of acidic vesicular organelles in PRH, compatible with autophagic activation. In conclusion, butylone, buphedrone and 3,4-DMMC have hepatotoxic potential, and their toxicity lies in the interference with a number of homeostatic processes, while being influenced by their metabolic fate.
Collapse
|
15
|
Harraz MM, Guha P, Kang IG, Semenza ER, Malla AP, Song YJ, Reilly L, Treisman I, Cortés P, Coggiano MA, Veeravalli V, Rais R, Tanda G, Snyder SH. Cocaine-induced locomotor stimulation involves autophagic degradation of the dopamine transporter. Mol Psychiatry 2021; 26:370-382. [PMID: 33414501 PMCID: PMC8625012 DOI: 10.1038/s41380-020-00978-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 11/18/2020] [Accepted: 12/01/2020] [Indexed: 01/29/2023]
Abstract
Cocaine exerts its stimulant effect by inhibiting dopamine reuptake leading to increased dopamine signaling. This action is thought to reflect binding of cocaine to the dopamine transporter (DAT) to inhibit its function. However, cocaine is a relatively weak inhibitor of DAT, and many DAT inhibitors do not share the behavioral actions of cocaine. We previously showed that toxic levels of cocaine induce autophagic neuronal cell death. Here, we show that subnanomolar concentrations of cocaine elicit neural autophagy in vitro and in vivo. Autophagy inhibitors reduce the locomotor stimulant effect of cocaine in mice. Cocaine-induced autophagy degrades transporters for dopamine but not serotonin in the nucleus accumbens. Autophagy inhibition impairs cocaine conditioned place preference in mice. Our findings indicate that autophagic degradation of DAT modulates behavioral actions of cocaine.
Collapse
Affiliation(s)
- Maged M Harraz
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Prasun Guha
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - In Guk Kang
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Evan R Semenza
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Adarsha P Malla
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Young Jun Song
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Luke Reilly
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Isaac Treisman
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Pedro Cortés
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mark A Coggiano
- Medication Development Program, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, MD, 21224, USA
| | - Vijayabhaskar Veeravalli
- Department of Neurology and Johns Hopkins Drug Discovery (JHDD) Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Rana Rais
- Department of Neurology and Johns Hopkins Drug Discovery (JHDD) Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Gianluigi Tanda
- Medication Development Program, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, MD, 21224, USA
| | - Solomon H Snyder
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
16
|
Vaz I, Carvalho T, Valente MJ, Castro A, Araújo AM, Bastos ML, Carvalho M. The interplay between autophagy and apoptosis mediates toxicity triggered by synthetic cathinones in human kidney cells. Toxicol Lett 2020; 331:42-52. [PMID: 32464236 DOI: 10.1016/j.toxlet.2020.05.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/06/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022]
Abstract
Synthetic cathinones abuse remains a serious public health problem. Kidney injury has been reported in intoxications associated with synthetic cathinones, but the molecular mechanisms involved have not been explored yet. In this study, the potential in vitro nephrotoxic effects of four commonly abused cathinone derivatives, namely pentedrone, 3,4-dimethylmethcatinone (3,4-DMMC), methylone and 3,4-methylenedioxypyrovalerone (MDPV), were assessed in the human kidney HK-2 cell line. All four derivatives elicited cell death in a concentration- and time-dependent manner, in the following order of potency: 3,4-DMMC >> MDPV > methylone ≈ pentedrone. 3,4-DMMC and methylone were selected to further elucidate the mechanisms behind synthetic cathinones-induced cell death. Both drugs elicited apoptotic cell death and prompted the formation of acidic vesicular organelles and autophagosomes in HK-2 cells. Moreover, the autophagy inhibitor 3-methyladenine significantly potentiated cell death, indicating that autophagy may serve as a cell survival mechanism that protects renal cells against synthetic cathinones toxicity. Both drugs triggered a rise in reactive oxygen and nitrogen species formation, which was completely prevented by antioxidant treatment with N‑acetyl‑L‑cysteine or ascorbic acid. Importantly, these antioxidant agents significantly aggravated renal cell death induced by cathinone derivatives, most likely due to their autophagy-blocking properties. Taken together, our results support an intricate control of cell survival/death modulated by oxidative stress, apoptosis and autophagy in synthetic cathinones-induced renal injury.
Collapse
Affiliation(s)
- I Vaz
- UFP Energy, Environment and Health Research Unit (FP-ENAS), University Fernando Pessoa, Praça Nove de Abril, 349, 4249-004, Porto, Portugal
| | - T Carvalho
- UFP Energy, Environment and Health Research Unit (FP-ENAS), University Fernando Pessoa, Praça Nove de Abril, 349, 4249-004, Porto, Portugal
| | - M J Valente
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - A Castro
- UFP Energy, Environment and Health Research Unit (FP-ENAS), University Fernando Pessoa, Praça Nove de Abril, 349, 4249-004, Porto, Portugal
| | - A M Araújo
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - M L Bastos
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - M Carvalho
- UFP Energy, Environment and Health Research Unit (FP-ENAS), University Fernando Pessoa, Praça Nove de Abril, 349, 4249-004, Porto, Portugal; UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
17
|
Corti O, Blomgren K, Poletti A, Beart PM. Autophagy in neurodegeneration: New insights underpinning therapy for neurological diseases. J Neurochem 2020; 154:354-371. [PMID: 32149395 DOI: 10.1111/jnc.15002] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/27/2020] [Accepted: 03/05/2020] [Indexed: 12/13/2022]
Abstract
In autophagy long-lived proteins, protein aggregates or damaged organelles are engulfed by vesicles called autophagosomes prior to lysosomal degradation. Autophagy dysfunction is a hallmark of several neurodegenerative diseases in which misfolded proteins or dysfunctional mitochondria accumulate. Excessive autophagy can also exacerbate brain injury under certain conditions. In this review, we provide specific examples to illustrate the critical role played by autophagy in pathological conditions affecting the brain and discuss potential therapeutic implications. We show how a singular type of autophagy-dependent cell death termed autosis has attracted attention as a promising target for improving outcomes in perinatal asphyxia and hypoxic-ischaemic injury to the immature brain. We provide evidence that autophagy inhibition may be protective against radiotherapy-induced damage to the young brain. We describe a specialized form of macroautophagy of therapeutic relevance for motoneuron and neuromuscular diseases, known as chaperone-assisted selective autophagy, in which heat shock protein B8 is used to deliver aberrant proteins to autophagosomes. We summarize studies pinpointing mitophagy mediated by the serine/threonine kinase PINK1 and the ubiquitin-protein ligase Parkin as a mechanism potentially relevant to Parkinson's disease, despite debate over the physiological conditions in which it is activated in organisms. Finally, with the example of the autophagy-inducing agent rilmenidine and its discrepant effects in cell culture and mouse models of motor neuron disorders, we illustrate the importance of considering aspects such a disease stage and aggressiveness, type of insult and load of damaged or toxic cellular components, when choosing the appropriate drug, timepoint and duration of treatment.
Collapse
Affiliation(s)
- Olga Corti
- Institut National de la Santé et de la Recherche Médicale, Paris, France.,Centre National de la Recherche Scientifique, Paris, France.,Sorbonne Universités, Paris, France.,Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Paediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Philip M Beart
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Vic, Australia.,Department of Pharmacology, University of Melbourne, Parkville, Vic, Australia
| |
Collapse
|
18
|
Li IH, Shih JH, Yeh TY, Lin HC, Chen MH, Huang YS. Lysosomal Dysfunction and Autophagy Blockade Contribute to MDMA-Induced Neurotoxicity in SH-SY5Y Neuroblastoma Cells. Chem Res Toxicol 2020; 33:903-914. [PMID: 32186374 DOI: 10.1021/acs.chemrestox.9b00437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methylenedioxymethamphetamine (MDMA) is a psychostimulant with high abuse potential and severe neurotoxicity. According to our previous study, MDMA promotes autophagosome accumulation and contributes to cell death in cultured cortical and serotonergic neurons. However, the detailed mechanism underlying autophagy dysfunction remains unclear. Lysosomes play an important role in autophagic degradation. The present study aimed to examine the role of lysosomal function in autophagic flux in neuronal cultures exposed to MDMA. We showed that MDMA induced enlarged vesicles that accumulate in SH-SY5Y neuroblastoma cells. In addition, we demonstrated that MDMA stimulated dynamin-dependent but clathrin-independent endocytosis, which might contribute to vacuole expansion. Morphological and Western blot analyses revealed that MDMA induced lysosomal swelling, whereas the activity of the lysosomal hydrolytic enzymes cathepsin B and cathepsin D was decreased in SH-SY5Y and cultured cortical neurons, which might lead to autophagosome accumulation and autophagic degradation blockage. Intriguingly, inactivation of cathepsins B and D led to cell death and autophagy-lysosomal dysregulation, which mimicked MDMA-induced neurotoxicity. Consequently, impairment of lysosomal proteolysis and blockage of autophagy degradation contributed to MDMA-induced neurotoxicity in neuronal cultures.
Collapse
Affiliation(s)
- I-Hsun Li
- Department of Pharmacy Practice, Tri-Service General Hospital, Taipei 114, Taiwan.,School of Pharmacy, National Defense Medical Center, Taipei 114, Taiwan
| | - Jui-Hu Shih
- Department of Pharmacy Practice, Tri-Service General Hospital, Taipei 114, Taiwan.,School of Pharmacy, National Defense Medical Center, Taipei 114, Taiwan
| | - Ting-Yin Yeh
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan
| | - Hung-Che Lin
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Ming-Hua Chen
- Division of Neurology, Department of Medicine, Armed Forces Taoyuan General Hospital, Taoyuan 325, Taiwan.,Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yuahn-Sieh Huang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
19
|
Sun Y, Jiang X, Pan R, Zhou X, Qin D, Xiong R, Wang Y, Qiu W, Wu A, Wu J. Escins Isolated from Aesculus chinensis Bge. Promote the Autophagic Degradation of Mutant Huntingtin and Inhibit its Induced Apoptosis in HT22 cells. Front Pharmacol 2020; 11:116. [PMID: 32158393 PMCID: PMC7052340 DOI: 10.3389/fphar.2020.00116] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/28/2020] [Indexed: 12/27/2022] Open
Abstract
The pathogenesis of Huntington’s disease (HD), an inherited progressive neurodegenerative disease, is highly associated with the cytotoxicity-inducing mutant huntingtin (mHtt) protein. Emerging evidence indicates that autophagy plays a pivotal role in degrading aggregated proteins such as mHtt to enhance neuronal viability. In this study, by employing preparative high-performance liquid chromatography (pre-HPLC), ultra-high performance liquid chromatography diode-array-detector quadrupole time-of-flight mass spectrometry (UHPLC-DAD-Q-TOF-MS) and nuclear magnetic resonance (NMR), three escins, escin IA (EA), escin IB (EB) and isoescin IA (IEA), were isolated and identified from the seed of Aesculus chinensis Bge. (ACB). After EGFP-HTT74-overexpressing HT22 cells were treated with EA, EB and IEA at safe concentrations, the clearance of mHtt and mHtt-induced apoptosis were investigated by Western blot, immunofluorescence microscopy and flow cytometry methods. In addition, the autophagy induced by these escins in HT22 cells was monitored by detecting GFP-LC3 puncta, P62 and LC3 protein expression. The results showed that EA, EB and IEA could significantly decrease mHtt levels and inhibit its induced apoptosis in HT22 cells. In addition, these three saponins induced autophagic flux by increasing the ratio of RFP-LC3 to GFP-LC3, and by decreasing P62 expression. Among the tested escins, EB displayed the best autophagy induction, which was regulated via both the mTOR and ERK signaling pathways. Furthermore, the degradation of mHtt and the commensurate decrease in its cytotoxic effects by EA, EB and IEA were demonstrated to be closely associated with autophagy induction, which depended on ATG7. In conclusion, we are the first to report that the escins, including EA, EB and IEA are novel autophagy inducers that degrade mHtt and inhibit mHtt-induced apoptosis in vitro and in vivo. As a result of these findings, the triterpenoid saponins in ACB might be considered to be promising candidates for the treatment of HD in the future.
Collapse
Affiliation(s)
- Yueshan Sun
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xueqin Jiang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Rong Pan
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiaogang Zhou
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Dalian Qin
- School of Pharmacy, Southwest Medical University, Luzhou, China.,The Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Rui Xiong
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yiling Wang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Wenqiao Qiu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Anguo Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China.,The Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China.,The Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
20
|
Ferguson LB, Patil S, Moskowitz BA, Ponomarev I, Harris RA, Mayfield RD, Messing RO. A Pathway-Based Genomic Approach to Identify Medications: Application to Alcohol Use Disorder. Brain Sci 2019; 9:E381. [PMID: 31888299 PMCID: PMC6956180 DOI: 10.3390/brainsci9120381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/31/2022] Open
Abstract
Chronic, excessive alcohol use alters brain gene expression patterns, which could be important for initiating, maintaining, or progressing the addicted state. It has been proposed that pharmaceuticals with opposing effects on gene expression could treat alcohol use disorder (AUD). Computational strategies comparing gene expression signatures of disease to those of pharmaceuticals show promise for nominating novel treatments. We reasoned that it may be sufficient for a treatment to target the biological pathway rather than lists of individual genes perturbed by AUD. We analyzed published and unpublished transcriptomic data using gene set enrichment of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways to identify biological pathways disrupted in AUD brain and by compounds in the Library of Network-based Cellular Signatures (LINCS L1000) and Connectivity Map (CMap) databases. Several pathways were consistently disrupted in AUD brain, including an up-regulation of genes within the Complement and Coagulation Cascade, Focal Adhesion, Systemic Lupus Erythematosus, and MAPK signaling, and a down-regulation of genes within the Oxidative Phosphorylation pathway, strengthening evidence for their importance in AUD. Over 200 compounds targeted genes within those pathways in an opposing manner, more than twenty of which have already been shown to affect alcohol consumption, providing confidence in our approach. We created a user-friendly web-interface that researchers can use to identify drugs that target pathways of interest or nominate mechanism of action for drugs. This study demonstrates a unique systems pharmacology approach that can nominate pharmaceuticals that target pathways disrupted in disease states such as AUD and identify compounds that could be repurposed for AUD if sufficient evidence is attained in preclinical studies.
Collapse
Affiliation(s)
- Laura B. Ferguson
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA; (L.B.F.); (S.P.); (B.A.M.); (R.A.H.); (R.D.M.)
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Shruti Patil
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA; (L.B.F.); (S.P.); (B.A.M.); (R.A.H.); (R.D.M.)
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Bailey A. Moskowitz
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA; (L.B.F.); (S.P.); (B.A.M.); (R.A.H.); (R.D.M.)
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Igor Ponomarev
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Robert A. Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA; (L.B.F.); (S.P.); (B.A.M.); (R.A.H.); (R.D.M.)
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Roy D. Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA; (L.B.F.); (S.P.); (B.A.M.); (R.A.H.); (R.D.M.)
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Robert O. Messing
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA; (L.B.F.); (S.P.); (B.A.M.); (R.A.H.); (R.D.M.)
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
21
|
Shih JH, Chiu CH, Ma KH, Huang YS, Shiue CY, Yeh TY, Kao LT, Lin YY, Li IH. Autophagy inhibition plays a protective role against 3, 4-methylenedioxymethamphetamine (MDMA)-induced loss of serotonin transporters and depressive-like behaviors in rats. Pharmacol Res 2019; 142:283-293. [PMID: 30826457 DOI: 10.1016/j.phrs.2019.02.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/27/2018] [Accepted: 02/24/2019] [Indexed: 02/06/2023]
Abstract
The 3,4-methylenedioxymethamphetamine (MDMA) is a popular recreational drug, which ultimately leads to serotonergic (5-HT) neurotoxicity and psychiatric disorders. Previous in vitro studies have consistently demonstrated that MDMA provokes autophagic activation, as well as damage of 5-HT axons and nerve fibers. So far, whether autophagy, a well-conserved cellular process that is critical for cell fate, also participates in MDMA-induced neurotoxicity in vivo remains elusive. Here, we first examined time-course of autophagy-related changes during repeated administration of MDMA (10 mg/kg s.c. twice daily for 4 consecutive days) using immunofluorescent staining for tryptophan hydroxylase and microtubule-associated protein 1 light chain 3 beta in rats. We also evaluated the protective effects of 3-methyadanine (3-MA, an autophagy inhibitor, 15 mg/kg i.p.) against MDMA-induced acute and long-term reductions in serotonin transporters (SERT) density in various brain regions using immunohistochemical staining and positron emission tomography (PET) imaging respectively. Plasma corticosterone measurements and forced swim tests were performed to evaluate the depressive performance. The staining results showed that repeated administration of MDMA increased expression of autophagosome and caused reduction in SERT densities of striatum and frontal cortex, which was ameliorated in the presence of 3-MA. PET imaging data also revealed that 3-MA could ameliorate MDMA-induced long-term decreased SERT availability in various brain regions of rats. Furthermore, immobility time of forced swim tests and plasma corticosterone levels were less in the group of MDMA co-injected with 3-MA compared with that of MDMA group. Together, these findings suggest that autophagy inhibition may confer protection against neurobiological and behavioral changes induced by MDMA.
Collapse
Affiliation(s)
- Jui-Hu Shih
- Department of Pharmacy Practice, Tri-Service General Hospital, Taipei, Taiwan; School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Chuang-Hsin Chiu
- Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Hsing Ma
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Yuahn-Sieh Huang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Chyng-Yann Shiue
- Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ting-Yin Yeh
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Li-Ting Kao
- Department of Pharmacy Practice, Tri-Service General Hospital, Taipei, Taiwan; Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
| | - Yang-Yi Lin
- Department of Pharmacy, Chi Mei Medical Center, Tainan, Taiwan
| | - I-Hsun Li
- Department of Pharmacy Practice, Tri-Service General Hospital, Taipei, Taiwan; School of Pharmacy, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
22
|
Shin YS, Ryall JG, Britto JM, Lau CL, Devenish RJ, Nagley P, Beart PM. Inhibition of bioenergetics provides novel insights into recruitment of PINK1-dependent neuronal mitophagy. J Neurochem 2019; 149:269-283. [PMID: 30664245 DOI: 10.1111/jnc.14667] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/11/2018] [Accepted: 01/08/2019] [Indexed: 01/01/2023]
Abstract
Contributions of damaged mitochondria to neuropathologies have stimulated interest in mitophagy. We investigated triggers of neuronal mitophagy by disruption of mitochondrial energy metabolism in primary neurons. Mitophagy was examined in cultured murine cerebellar granule cells after inhibition of mitochondrial respiratory chain by drugs rotenone, 3-nitropropionic acid, antimycin A, and potassium cyanide, targeting complexes I, II, III, and IV, respectively. Inhibitor concentrations producing slow cellular demise were determined from analyses of cellular viability, morphology of neuritic damage, plasma membrane permeability, and oxidative phosphorylation. Live cell imaging of dissipation of mitochondrial membrane potential (ΔΨm ) by drugs targeting mitochondrial complexes was referenced to complete depolarization by carbonyl cyanide m-chlorophenyl hydrazone. While inhibition of complexes I, III and IV effected rapid dissipation of ΔΨm , inhibition of complex II using 3-nitropropionic acid led to minimal depolarization of mitochondria. Nonetheless, all respiratory chain inhibitors triggered mitophagy as indicated by increased aggregation of mitochondrially localized PINK1. Mitophagy was further analyzed using a dual fluorescent protein biosensor reporting mitochondrial relocation to acidic lysosomal environment. Significant acidification of mitochondria was observed in neurons treated with rotenone or 3-nitropropionic acid, revealing mitophagy at distal processes. Neurons treated with antimycin A or cyanide failed to show mitochondrial acidification. Minor dissipation of ΔΨm by 3-nitropropionic acid coupled with vigorous triggering of mitophagy suggested depolarization of mitochondria is not a necessary condition to trigger mitophagy. Moreover, weak elicitation of mitophagy by antimycin A, subsequent to loss of ΔΨm , suggested that mitochondrial depolarization is not a sufficient condition for triggering robust neuronal mitophagy. Our findings provide new insight into complexities of mitophagic clearance of neuronal mitochondria.
Collapse
Affiliation(s)
- Yea Seul Shin
- Florey Institute of Neuroscience and Mental Health, Parkville, Vic., Australia.,Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Vic., Australia
| | - James G Ryall
- Department of Physiology, University of Melbourne, Parkville, Vic., Australia
| | - Joanne M Britto
- Florey Institute of Neuroscience and Mental Health, Parkville, Vic., Australia
| | - Chew L Lau
- Florey Institute of Neuroscience and Mental Health, Parkville, Vic., Australia
| | - Rodney J Devenish
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic., Australia
| | - Phillip Nagley
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic., Australia
| | - Philip M Beart
- Florey Institute of Neuroscience and Mental Health, Parkville, Vic., Australia.,Department of Pharmacology, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
23
|
Lei J, Calvo P, Vigh R, Burd I. Journey to the Center of the Fetal Brain: Environmental Exposures and Autophagy. Front Cell Neurosci 2018; 12:118. [PMID: 29773977 PMCID: PMC5943497 DOI: 10.3389/fncel.2018.00118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/13/2018] [Indexed: 01/28/2023] Open
Abstract
Fetal brain development is known to be affected by adverse environmental exposures during pregnancy, including infection, inflammation, hypoxia, alcohol, starvation, and toxins. These exposures are thought to alter autophagy activity in the fetal brain, leading to adverse perinatal outcomes, such as cognitive and sensorimotor deficits. This review introduces the physiologic autophagy pathways in the fetal brain. Next, methods to detect and monitor fetal brain autophagy activity are outlined. An additional discussion explores possible mechanisms by which environmental exposures during pregnancy alter fetal brain autophagy activity. In the final section, a correlation of fetal autophagy activity with the observed postnatal phenotype is attempted. Our main purpose is to provide the current understanding or a lack thereof mechanisms on autophagy, underlying the fetal brain injury exposed to environmental insults.
Collapse
Affiliation(s)
- Jun Lei
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Pilar Calvo
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Richard Vigh
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Irina Burd
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
24
|
The Designer Drug 3-Fluoromethcathinone Induces Oxidative Stress and Activates Autophagy in HT22 Neuronal Cells. Neurotox Res 2018; 34:388-400. [PMID: 29656349 PMCID: PMC6154176 DOI: 10.1007/s12640-018-9898-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 12/24/2022]
Abstract
Synthetic cathinones are psychoactive substances, derivatives of a natural psychostimulant cathinone. Although many synthetic cathinones have lost their legal status in many countries, their abuse still continues worldwide. Recently, they have been reported to exert neurotoxic effects in vitro and in vivo. The molecular mechanisms of their action have not been fully elucidated. Recently, they have been linked to the induction of oxidative stress, autophagy, and apoptosis. The aim of this study was to investigate whether 3-fluoromethcathinone (3-FMC), a synthetic cathinone, is able to induce oxidative stress, autophagy, and apoptosis in HT22 immortalized mouse hippocampal cells. We found that treatment of HT22 cells with this compound results in a concentration-dependent increase in the intracellular production of reactive oxygen species. Moreover, 3-FMC induced concentration-dependent conversion of cytosolic LC3-I to membrane-bound LC3-II and formation of autophagic vacuoles. Additionally, the level of p62/SQSTM1 protein decreased after 3-FMC treatment, suggesting that accumulation of autophagic vacuoles resulted from activation rather than inhibition of autophagy. Our results also showed that 3-FMC at millimolar concentration is able to induce caspase-dependent apoptotic cell death in HT22 cells. Our findings suggest that abuse of 3-FMC may disturb neuronal homeostasis and impair functioning of the central nervous system.
Collapse
|
25
|
Liu X, Zhan LH, Sun XH, Zhang T, Liu ZL, Liang XF, Zhao F, Liu F, Zeng G, Luan CS. 3,4-Methylenedioxymethamphetamine causes cytotoxicity on 661W cells through inducing macrophage polarization. Cutan Ocul Toxicol 2017; 37:143-150. [PMID: 28743199 DOI: 10.1080/15569527.2017.1359838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The abuse of 3,4-methylenedioxymethamphetamine (MDMA), a psychedelic drug, can lead to a variety of disorders in neural system, including the death of retinal neural cells. MDMA at lower doses does not cause obvious cytotoxicity to photoreceptor cells, indicating potential indirect mechanisms which have not yet been elucidated. This study investigated the effect of MDMA at nontoxic concentration on macrophage activation state and its resultant toxicity to photoreceptor cells. Using a co-culture system, cytotoxicity was caused by MDMA on 661W cells after co-culturing with RAW264.7 macrophage. Results showed that MDMA induced the macrophages to M1 polarization, releasing more pro-inflammatory cytokines, upregulating the M1-related gene and protein expression. The phenotype, secretion pattern, and cytotoxicity of the macrophages treated by MDMA are comparable to those of the ones stimulated by IFNγ and LPS. Our study demonstrated that MDMA promoted macrophage polarization to M1 and induced inflammatory response, providing the scientific rationale for the photoreceptor cell damage caused by the MDMA abuse.
Collapse
Affiliation(s)
- Xin Liu
- a Department of Ophthalmology , Daqing Oil General Hospital , Daqing , People's Republic of China
| | - Li-Hui Zhan
- b Department of Ophthalmology , Daqing People's Hospital , Daqing , People's Republic of China
| | - Xiao-Hong Sun
- a Department of Ophthalmology , Daqing Oil General Hospital , Daqing , People's Republic of China
| | - Tao Zhang
- c Department of Ophthalmology , Secondary People's Hospital of Mudanjiang City , Mudanjiang City , People's Republic of China
| | - Zhi-Li Liu
- d Department of Opthalmology , Dashiqiao Central Hospital , Yingkou , People's Republic of China
| | - Xiao-Fang Liang
- e Department of Ophthalmology , Beijing Tiantan Hospital Affiliated to the Capital Medical University , Beijing , People's Republic of China
| | - Fei Zhao
- f Department of Ophthalmology , Shenyang Red Cross Hospital , Shenyang , People's Republic of China
| | - Fang Liu
- a Department of Ophthalmology , Daqing Oil General Hospital , Daqing , People's Republic of China
| | - Guang Zeng
- a Department of Ophthalmology , Daqing Oil General Hospital , Daqing , People's Republic of China
| | - Chun-Sheng Luan
- a Department of Ophthalmology , Daqing Oil General Hospital , Daqing , People's Republic of China
| |
Collapse
|
26
|
Methylone and MDPV activate autophagy in human dopaminergic SH-SY5Y cells: a new insight into the context of β-keto amphetamines-related neurotoxicity. Arch Toxicol 2017; 91:3663-3676. [PMID: 28527032 DOI: 10.1007/s00204-017-1984-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/08/2017] [Indexed: 12/19/2022]
Abstract
Autophagy has an essential role in neuronal homeostasis and its dysregulation has been recently linked to neurotoxic effects of a growing list of psychoactive drugs, including amphetamines. However, the role of autophagy in β-keto amphetamine (β-KA) designer drugs-induced neurotoxicity has hitherto not been investigated. In the present study, we show that two commonly abused cathinone derivatives, 3,4-methylenedioxymethcathinone (methylone) and 3,4-methylenedioxypyrovalerone (MDPV), elicit morphological changes consistent with autophagy and neurodegeneration, including formation of autophagic vacuoles and neurite retraction in dopaminergic SH-SY5Y cells. Methylone and MDPV prompted the formation of acidic vesicular organelles (AVOs) and lead to increased expression of the autophagy-associated protein LC3-II in a concentration- and time-dependent manner. Electron microscopy confirmed the presence of autophagosomes with typical double membranes and autolysosomes in cells exposed to both β-KA. The autophagic flux was further confirmed using bafilomycin A1, a known inhibitor of the late phase of autophagy. Moreover, we showed that autophagy markers were activated before the triggering of cell death and caspase 3 activation, suggesting that β-KA-induced autophagy precedes apoptotic cell death. To address the role of oxidative stress in autophagy induction, we also investigated the effects of antioxidant treatment with N-acetyl-L-cysteine (NAC) on autophagy and apoptotic markers altered by these drugs. NAC significantly attenuated methylone- and MDPV-induced cell death by completely inhibiting the generation of reactive oxygen and nitrogen species, and hampering both apoptotic and autophagic activity, suggesting that oxidative stress plays an important role in mediating autophagy and apoptosis elicited by these drugs.
Collapse
|