1
|
Chen H, Xie M, Ouyang M, Yuan F, Yu J, Song S, Liu N, Zhang N. The impact of illness duration on brain activity in goal-directed and habit-learning systems in obsessive-compulsive disorder progression: A resting-state functional imaging study. Neuroscience 2024; 553:74-88. [PMID: 38964449 DOI: 10.1016/j.neuroscience.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
It is increasingly evident that structural and functional changes in brain regions associated with obsessive-compulsive disorder (OCD) are often related to the development of the disease. However, limited research has been conducted on how the progression of OCD may lead to an imbalance between goal-directed and habit-learning systems. This study employs resting-state functional imaging to examine the relationship between illness duration and abnormal brain function in goal-directed/habitual-learning systems. Demographic, clinical, and multimodal fMRI data were collected from participants. Our findings suggest that, compared to healthy controls, individuals with OCD exhibit abnormal brain functional indicators in both goal-directed and habit-learning brain regions, with a more pronounced reduction observed in the goal-directed regions. Additionally, abnormal brain activity is associated with illness duration, and the abnormalities observed in goal-directed regions are more effective in distinguishing different courses of OCD patients. Patients with different durations of OCD have functional abnormalities in the goal-directed and habitual-learning brain regions. There are differences in the degree of abnormality in different brain regions, and these abnormalities may disrupt the balance between goal-directed and habitual-learning systems, leading to increasing reliance on repetitive behaviors.
Collapse
Affiliation(s)
- Haocheng Chen
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Minyao Xie
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Mengyuan Ouyang
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Fangzheng Yuan
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jianping Yu
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shasha Song
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Na Liu
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Ning Zhang
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
2
|
Stapf CA, Keefer SE, McInerney JM, Cheer JF, Calu DJ. Dorsomedial Striatum CB1R signaling is required for Pavlovian outcome devaluation in male Long Evans rats and reduces inhibitory synaptic transmission in both sexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592059. [PMID: 38746352 PMCID: PMC11092566 DOI: 10.1101/2024.05.01.592059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Cannabinoid-1 receptor (CB1R) signaling in the dorsal striatum regulates the shift from flexible to habitual behavior in instrumental outcome devaluation. Based on prior work establishing individual, sex, and experience-dependent differences in Pavlovian behaviors, we predicted a role for dorsomedial striatum CB1R signaling in driving rigid responding in Pavlovian autoshaping and outcome devaluation. We trained male and female Long Evans rats in Pavlovian Lever Autoshaping (PLA). We gave intra-dorsomedial striatum (DMS) infusions of the CB1R inverse agonist, rimonabant, before satiety-induced outcome devaluation test sessions, where we sated rats on training pellets or home cage chow and tested them in brief nonreinforced Pavlovian Lever Autoshaping sessions. Overall, inhibition of DMS CB1R signaling prevented Pavlovian outcome devaluation but did not affect behavior in reinforced PLA sessions. Males were sensitive to devaluation while females were not and DMS CB1R inhibition impaired devaluation sensitivity in males. We then investigated how DMS CB1R signaling impacts local inhibitory synaptic transmission in male and female Long Evans rats. We recorded spontaneous inhibitory postsynaptic currents (sIPSC) from DMS neurons at baseline and before and after application of a CB1R agonist, WIN 55,212-2. We found that male rats showed decreased sIPSC frequency compared to females, and that CB1R activation reduced DMS inhibitory transmission independent of sex. Altogether our results demonstrate that DMS CB1Rs regulate Pavlovian devaluation sensitivity and inhibitory synaptic transmission and suggest that basal sex differences in inhibitory synaptic transmission may underly sex differences in DMS function and behavioral flexibility.
Collapse
Affiliation(s)
- Catherine A Stapf
- Program in Neuroscience, University of Maryland Baltimore, Baltimore, MD, 21201
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Sara E Keefer
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Jessica M McInerney
- Program in Neuroscience, University of Maryland Baltimore, Baltimore, MD, 21201
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Joseph F Cheer
- Program in Neuroscience, University of Maryland Baltimore, Baltimore, MD, 21201
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Donna J Calu
- Program in Neuroscience, University of Maryland Baltimore, Baltimore, MD, 21201
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
3
|
Qi Y, Zhao M, Yan Z, Jia X, Wang Y. Altered spontaneous regional brain activity in ventromedial prefrontal cortex and visual area of expert table tennis athletes. Brain Imaging Behav 2024; 18:529-538. [PMID: 38246897 DOI: 10.1007/s11682-023-00841-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/23/2024]
Abstract
Sports training may lead to functional changes in the brain, and different types of sports, including table tennis, have different influences on these changes. However, the effects of long-term table tennis practice on brain function in expert athletes are largely undefined. Here, we investigated spontaneous regional brain activity characteristics of expert table tennis athletes by using resting-state functional magnetic resonance imaging to compare differences between 25 athletes and 33 age- and sex-matched non-athletes. We analyzed four metrics-amplitude of low-frequency fluctuation (ALFF), fractional ALFF, regional homogeneity, and degree centrality-because together they identify functional changes in the brain with greater sensitivity than a single indicator and may more comprehensively describe regional functional changes. Additional statistical analysis was conducted to assess whether any correlation existed between brain activity and years of table tennis training for athletes. Results show that compared with non-athletes, table tennis athletes showed altered spontaneous regional brain activity in the ventromedial prefrontal cortex and the calcarine sulcus, a visual area. Furthermore, the functional changes in the calcarine sulcus showed a significant correlation with the number of years of expert sports training. Despite the relatively small sample size, these results indicated that the regional brain function of table tennis athletes was associated with sports training-related changes, providing insights for understanding the neural mechanisms underlying the expert performance of athletes.
Collapse
Affiliation(s)
- Yapeng Qi
- School of Psychology, Shanghai University of Sport, Shanghai, China
- Center for Exercise and Brain Science, Shanghai University of Sport, No. 399 Changhai Road, Yangpu District, Shanghai, 200438, China
| | - Mengqi Zhao
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent, Education Technology and Application of Zhejiang Province, Zhejiang Normal University, No. 688 Yingbin Avenue, Jinhua, Zhejiang Province, 321004, China
| | - Zhurui Yan
- School of Psychology, Shanghai University of Sport, Shanghai, China
- Center for Exercise and Brain Science, Shanghai University of Sport, No. 399 Changhai Road, Yangpu District, Shanghai, 200438, China
| | - Xize Jia
- School of Psychology, Zhejiang Normal University, Jinhua, China.
- Key Laboratory of Intelligent, Education Technology and Application of Zhejiang Province, Zhejiang Normal University, No. 688 Yingbin Avenue, Jinhua, Zhejiang Province, 321004, China.
| | - Yingying Wang
- School of Psychology, Shanghai University of Sport, Shanghai, China.
- Center for Exercise and Brain Science, Shanghai University of Sport, No. 399 Changhai Road, Yangpu District, Shanghai, 200438, China.
| |
Collapse
|
4
|
Wu M, Liu F, Wang H, Yao L, Wei C, Zheng Q, Han J, Liu Z, Liu Y, Duan H, Ren W, Sun Z. Characterizing the dynamic learning process: Implications of a quantitative analysis. Behav Brain Res 2024; 463:114915. [PMID: 38368954 DOI: 10.1016/j.bbr.2024.114915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Understanding the neural mechanisms involved in learning processes is crucial for unraveling the complexities of behavior and cognition. Sudden change from the untrained level to the fully-learned level is a pivotal feature of instrumental learning. However, the concept of change point and suitable methods to conveniently analyze the characteristics of sudden change in groups remain elusive, which might hinder a fuller understanding of the neural mechanism underlying dynamic leaning process. In the current study, we investigated the learning processes of mice that were trained in an aversive instrumental learning task, and introduced a novel strategy to analyze behavioral variations in instrumental learning, leading to improved clarity on the concept of sudden change and enabling comprehensive group analysis. By applying this novel strategy, we examined the effects of cocaine and a cannabinoid receptor agonist on instrumental learning. Intriguingly, our analysis revealed significant differences in timing and occurrence of sudden changes that were previously overlooked using traditional analysis. Overall, our research advances understanding of behavioral variation during instrumental learning and the interplay between learning behaviors and neurotransmitter systems, contributing to a deeper comprehension of learning processes and informing future investigations and therapeutic interventions.
Collapse
Affiliation(s)
- Meilin Wu
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Fuhong Liu
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Hao Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Li Yao
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Chunling Wei
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Qiaohua Zheng
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Jing Han
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Zhiqiang Liu
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Yihui Liu
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Haijun Duan
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Wei Ren
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an 710062, China; Faculty of Education, Shaanxi Normal University, Xi'an 710062, China.
| | - Zongpeng Sun
- School of Psychology, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
5
|
Glover EJ, Margaret Starr E, Gascon A, Clayton-Stiglbauer K, Amegashie CL, Selchick AH, Vaughan DT, Wayman WN, Woodward JJ, Chandler LJ. Involvement of cortical input to the rostromedial tegmental nucleus in aversion to foot shock. Neuropsychopharmacology 2023; 48:1455-1464. [PMID: 37221326 PMCID: PMC10425416 DOI: 10.1038/s41386-023-01612-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/15/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023]
Abstract
The rostromedial tegmental nucleus (RMTg) encodes negative reward prediction error (RPE) and plays an important role in guiding behavioral responding to aversive stimuli. Previous research has focused on regulation of RMTg activity by the lateral habenula despite studies revealing RMTg afferents from other regions including the frontal cortex. The current study provides a detailed anatomical and functional analysis of cortical input to the RMTg of male rats. Retrograde tracing uncovered dense cortical input to the RMTg spanning the medial prefrontal cortex, the orbitofrontal cortex and anterior insular cortex. Afferents were most dense in the dorsomedial subregion of the PFC (dmPFC), an area that is also implicated in both RPE signaling and aversive responding. RMTg-projecting dmPFC neurons originate in layer V, are glutamatergic, and collateralize to select brain regions. In-situ mRNA hybridization revealed that neurons in this circuit are predominantly D1 receptor-expressing with a high degree of D2 receptor colocalization. Consistent with cFos induction in this neural circuit during exposure to foot shock and shock-predictive cues, optogenetic stimulation of dmPFC terminals in the RMTg drove avoidance. Lastly, acute slice electrophysiology and morphological studies revealed that exposure to repeated foot shock resulted in significant physiological and structural changes consistent with a loss of top-down modulation of RMTg-mediated signaling. Altogether, these data reveal the presence of a prominent cortico-subcortical projection involved in adaptive behavioral responding to aversive stimuli such as foot shock and provide a foundation for future work aimed at exploring alterations in circuit function in diseases characterized by deficits in cognitive control over reward and aversion.
Collapse
Affiliation(s)
- Elizabeth J Glover
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA.
| | - E Margaret Starr
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Andres Gascon
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Kacey Clayton-Stiglbauer
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Christen L Amegashie
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Alyson H Selchick
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Dylan T Vaughan
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Wesley N Wayman
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - John J Woodward
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - L Judson Chandler
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
6
|
Leung BK, Merlin S, Walker AK, Lawther AJ, Paxinos G, Eapen V, Clarke R, Balleine BW, Furlong TM. Immp2l knockdown in male mice increases stimulus-driven instrumental behaviour but does not alter goal-directed learning or neuron density in cortico-striatal circuits in a model of Tourette syndrome and autism spectrum disorder. Behav Brain Res 2023; 452:114610. [PMID: 37541448 DOI: 10.1016/j.bbr.2023.114610] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Cortico-striatal neurocircuits mediate goal-directed and habitual actions which are necessary for adaptive behaviour. It has recently been proposed that some of the core symptoms of autism spectrum disorder (ASD) and Gilles de la Tourette syndrome (GTS), such as tics and other repetitive behaviours, may emerge because of imbalances in these neurocircuits. We have recently developed a model of ASD and GTS by knocking down Immp2l, a mitochondrial gene frequently associated with these disorders. The current study sought to determine whether Immp2l knockdown (KD) in male mice alters flexible, goal- or cue- driven behaviour using procedures specifically designed to examine response-outcome and stimulus-response associations, which underlie goal-directed and habitual behaviour, respectively. Whether Immp2l KD alters neuron density in cortico-striatal neurocircuits known to regulate these behaviours was also examined. Immp2l KD mice and wild type-like mice (WT) were trained on Pavlovian and instrumental learning procedures where auditory cues predicted food delivery and lever-press responses earned a food outcome. It was demonstrated that goal-directed learning was not changed for Immp2l KD mice compared to WT mice, as lever-press responses were sensitive to changes in the value of the food outcome, and to contingency reversal and degradation. There was also no difference in the capacity of KD mice to form habitual behaviours compared to WT mice following extending training of the instrumental action. However, Immp2l KD mice were more responsive to auditory stimuli paired with food as indicated by a non-specific increase in lever response rates during Pavlovian-to-instrumental transfer. Finally, there were no alterations to neuron density in striatum or any prefrontal cortex or limbic brain structures examined. Thus, the current study suggests that Immp2l is not necessary for learned maladaptive goal or stimulus driven behaviours in ASD or GTS, but that it may contribute to increased capacity for external stimuli to drive behaviour. Alterations to stimulus-driven behaviour could potentially influence the expression of tics and repetitive behaviours, suggesting that genetic alterations to Immp2l may contribute to these core symptoms in ASD and GTS. Given that this is the first application of this battery of instrumental learning procedures to a mouse model of ASD or GTS, it is an important initial step in determining the contribution of known risk-genes to goal-directed versus habitual behaviours, which should be more broadly applied to other rodent models of ASD and GTS in the future.
Collapse
Affiliation(s)
- Beatrice K Leung
- Decision Neuroscience Laboratory, School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Sam Merlin
- School of Science, Western Sydney University, Campbelltown, Sydney, NSW, Australia
| | - Adam K Walker
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW, Australia; Discipline of Psychiatry and Mental Health, University of New South Wales, NSW, Australia
| | - Adam J Lawther
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW, Australia
| | - George Paxinos
- Neuroscience Research Australia, Randwick, NSW, Australia; School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Valsamma Eapen
- Discipline of Psychiatry and Mental Health, University of New South Wales, NSW, Australia; Mental Health Research Unit, South Western Sydney Local Health District, Liverpool, Australia
| | - Raymond Clarke
- Ingham Institute, Discipline of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Bernard W Balleine
- Decision Neuroscience Laboratory, School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Teri M Furlong
- Neuroscience Research Australia, Randwick, NSW, Australia; School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
7
|
Gagliano A, Carta A, Tanca MG, Sotgiu S. Pediatric Acute-Onset Neuropsychiatric Syndrome: Current Perspectives. Neuropsychiatr Dis Treat 2023; 19:1221-1250. [PMID: 37251418 PMCID: PMC10225150 DOI: 10.2147/ndt.s362202] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
Pediatric acute-onset neuropsychiatric syndrome (PANS) features a heterogeneous constellation of acute obsessive-compulsive disorder (OCD), eating restriction, cognitive, behavioral and/or affective symptoms, often followed by a chronic course with cognitive deterioration. An immune-mediated etiology is advocated in which the CNS is hit by different pathogen-driven (auto)immune responses. This narrative review focused on recent clinical (ie, diagnostic criteria, pre-existing neurodevelopmental disorders, neuroimaging) and pathophysiological (ie, CSF, serum, genetic and autoimmune findings) aspects of PANS. We also summarized recent points to facilitate practitioners with the disease management. Relevant literature was obtained from PubMed database which included only English-written, full-text clinical studies, case reports, and reviews. Among a total of 1005 articles, 205 were pertinent to study inclusion. Expert opinions are converging on PANS as the effect of post-infectious events or stressors leading to "brain inflammation", as it is well-established for anti-neuronal psychosis. Interestingly, differentiating PANS from either autoimmune encephalitides and Sydenham's chorea or from alleged "pure" psychiatric disorders (OCD, tics, Tourette's syndrome), reveals several overlaps and more analogies than differences. Our review highlights the need for a comprehensive algorithm to help both patients during their acute distressing phase and physicians during their treatment decision. A full agreement on the hierarchy of each therapeutical intervention is missing owing to the limited number of randomized controlled trials. The current approach to PANS treatment emphasizes immunomodulation/anti-inflammatory treatments in association with both psychotropic and cognitive-behavioral therapies, while antibiotics are suggested when an active bacterial infection is established. A dimensional view, taking into account the multifactorial origin of psychiatric disorders, should suggest neuro-inflammation as a possible shared substrate of different psychiatric phenotypes. Hence, PANS and PANS-related disorders should be considered as a conceptual framework describing the etiological and phenotypical complexity of many psychiatric disorders.
Collapse
Affiliation(s)
- Antonella Gagliano
- Department of Health Science, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
- Department of Biomedical Sciences, University of Cagliari & "A. Cao" Paediatric Hospital, Child & Adolescent Neuropsychiatry Unit, Cagliari, Italy
| | - Alessandra Carta
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Unit of Child Neuropsychiatry, Sassari, Italy
| | - Marcello G Tanca
- Department of Biomedical Sciences, University of Cagliari & "A. Cao" Paediatric Hospital, Child & Adolescent Neuropsychiatry Unit, Cagliari, Italy
| | - Stefano Sotgiu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Unit of Child Neuropsychiatry, Sassari, Italy
| |
Collapse
|
8
|
de Carvalho G, Khoja S, Haile MT, Chen LY. Early life adversity impaired dorsal striatal synaptic transmission and behavioral adaptability to appropriate action selection in a sex-dependent manner. Front Synaptic Neurosci 2023; 15:1128640. [PMID: 37091877 PMCID: PMC10116150 DOI: 10.3389/fnsyn.2023.1128640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/10/2023] [Indexed: 04/25/2023] Open
Abstract
Early life adversity (ELA) is a major health burden in the United States, with 62% of adults reporting at least one adverse childhood experience. These experiences during critical stages of brain development can perturb the development of neural circuits that mediate sensory cue processing and behavioral regulation. Recent studies have reported that ELA impaired the maturation of dendritic spines on neurons in the dorsolateral striatum (DLS) but not in the dorsomedial striatum (DMS). The DMS and DLS are part of two distinct corticostriatal circuits that have been extensively implicated in behavioral flexibility by regulating and integrating action selection with the reward value of those actions. To date, no studies have investigated the multifaceted effects of ELA on aspects of behavioral flexibility that require alternating between different action selection strategies or higher-order cognitive processes, and the underlying synaptic transmission in corticostriatal circuitries. To address this, we employed whole-cell patch-clamp electrophysiology to assess the effects of ELA on synaptic transmission in the DMS and DLS. We also investigated the effects of ELA on the ability to update action control in response to outcome devaluation in an instrumental learning paradigm and reversal of action-outcome contingency in a water T-maze paradigm. At the circuit level, ELA decreased corticostriatal glutamate transmission in male but not in female mice. Interestingly, in DMS, glutamate transmission is decreased in male ELA mice, but increased in female ELA mice. ELA impaired the ability to update action control in response to reward devaluation in a context that promotes goal-directedness in male mice and induced deficits in reversal learning. Overall, our findings demonstrate the sex- and region-dependent effects of ELA on behavioral flexibility and underlying corticostriatal glutamate transmission. By establishing a link between ELA and circuit mechanisms underlying behavioral flexibility, our findings will begin to identify novel molecular mechanisms that can represent strategies for treating behavioral inflexibility in individuals who experienced early life traumatic incidents.
Collapse
Affiliation(s)
- Gregory de Carvalho
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Sheraz Khoja
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Mulatwa T Haile
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Lulu Y Chen
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, United States
- UCI-Conte Center, UCI-NIMH, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
9
|
Merlin S, Furlong TM. Habitual behaviour associated with exposure to high-calorie diet is prevented by an orexin-receptor-1 antagonist. ADDICTION NEUROSCIENCE 2022; 4:100036. [PMID: 37476304 PMCID: PMC10357952 DOI: 10.1016/j.addicn.2022.100036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Habitual actions, which are associated with addictive behaviours, contribute to the loss of control of food seeking seen following exposure to calorie-dense foods in rats. Antagonism of orexin-receptor-1 (ORX-R1) has been shown to reduce a range of stimulus-driven feeding behaviours, but have yet to be implicated in the regulation of habitual actions. In the current study, male Long-Evans rats were given 'binge-like' access to high-calorie diet (HCD) or standard chow diet, and were subsequently trained to press a lever for food outcome. When lever responses were tested following outcome devaluation, chow-fed rats displayed goal-directed actions, whereas HCD-exposed rats displayed habitual actions. In study 1, it was shown that systemic administration of the ORX-R1 antagonist, SB-334867, prior to test restored goal-directed behaviour in HCD-exposed rats. In study 2, intra-nigral administration of SB-334867 similarly restored goal-directed behaviour, thereby implicating the substantia nigra as an important site for this effect. This study demonstrates that targeting ORX-R1 reduces habitual food seeking in male rats which may be important for understanding and treating compulsive feeding, obesity and binge eating disorder. This study also implicates the lateral hypothalamus, where ORX is produced, in mediating the expression of habits for the first time, and thus extends on the neurocircuits known to regulate habitual actions. Further investigation is required to determine whether the same effects are also seen in female rats, given that there are recognised sexual dimorphisms in feeding behaviour and a higher incidence of disordered eating in female than male populations.
Collapse
Affiliation(s)
- Sam Merlin
- School of Science, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Teri M. Furlong
- School of Biomedical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
10
|
Wu X, Yu G, Zhang K, Feng J, Zhang J, Sahakian BJ, Robbins TW. Symptom-Based Profiling and Multimodal Neuroimaging of a Large Preteenage Population Identifies Distinct Obsessive-Compulsive Disorder-like Subtypes With Neurocognitive Differences. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:1078-1089. [PMID: 34224907 DOI: 10.1016/j.bpsc.2021.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/06/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is characterized by both internalizing (anxiety) and externalizing (compulsivity) symptoms. Currently, little is known about their interrelationships and their relative contributions to disease heterogeneity. Our goal is to resolve affective and cognitive symptom heterogeneity related to internalized and externalized symptom dimensions by determining subtypes of children with OCD symptoms, and to identify any corresponding neural differences. METHODS A total of 1269 children with OCD symptoms screened using the Child Behavior Checklist Obsessive-Compulsive Symptom scale and 3987 matched control subjects were obtained from the Adolescent Brain Cognitive Development (ABCD) Study. Consensus hierarchical clustering was used to cluster children with OCD symptoms into distinct subtypes. Ten neurocognitive task scores and 20 Child Behavior Checklist syndrome scales were used to characterize cognitive/behavioral differences. Gray matter volume, fractional anisotropy of major white matter fiber tracts, and functional connectivity among networks were used in case-control studies. RESULTS We identified two subgroups with contrasting patterns in internalized and externalized dimensions. Group 1 showed compulsive thoughts and repeated acts but relatively low anxiety symptoms, whereas group 2 exhibited higher anxiety and perfectionism and relatively low repetitive behavior. Only group 1 had significant cognitive impairments and gray matter volume reductions in the bilateral inferior parietal lobe, precentral gyrus, and precuneus gyrus, and had white matter tract fractional anisotropy reductions in the corticostriatal fasciculus. CONCLUSIONS Children with OCD symptoms are heterogeneous at the level of symptom clustering and its underlying neural basis. Two subgroups represent distinct patterns of externalizing and internalizing symptoms, suggesting that anxiety is not its major predisposing factor. These results may have implications for the nosology and treatment of preteenage OCD.
Collapse
Affiliation(s)
- Xinran Wu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Gechang Yu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Kai Zhang
- School of Computer Science and Technology, East China Normal University, Shanghai, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Shanghai Center for Mathematical Sciences, Shanghai, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China; Department of Computer Science, University of Warwick, Coventry, United Kingdom
| | - Jie Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China.
| | - Barbara J Sahakian
- Departments of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - Trevor W Robbins
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Department of Psychology, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
11
|
Bingul A, Merlin S, Carrive P, Killcross S, Furlong TM. Targeting the lateral hypothalamus with short hairpin RNAs reduces habitual behaviour following extended instrumental training in rats. Neurobiol Learn Mem 2022; 193:107657. [DOI: 10.1016/j.nlm.2022.107657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
|
12
|
Aomine Y, Sakurai K, Macpherson T, Ozawa T, Miyamoto Y, Yoneda Y, Oka M, Hikida T. Importin α3 (KPNA3) Deficiency Augments Effortful Reward-Seeking Behavior in Mice. Front Neurosci 2022; 16:905991. [PMID: 35844217 PMCID: PMC9279672 DOI: 10.3389/fnins.2022.905991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Importin α3 (Gene: Kpna3, the ortholog of human Importin α4) is a member of the importin α family and participates in nucleocytoplasmic transport by forming trimeric complexes between cargo proteins and importin β1. Evidence from human studies has indicated that single nucleotide polymorphisms (SNP) in the KPNA3 gene are associated with the occurrence of several psychiatric disorders accompanied by abnormal reward-related behavior, including schizophrenia, major depression, and substance addiction. However, the precise roles of importin α3 in controlling reward processing and motivation are still unclear. In this study, we evaluated the behavioral effects of Kpna3 knockout (KO) in mice on performance in touchscreen operant chamber-based tasks evaluating simple (fixed-ratio) and effortful (progressive-ratio) reward-seeking behaviors. While Kpna3 KO mice showed no significant differences in operant reward learning on a fixed-ratio schedule, they demonstrated significantly increased motivation (increased break point) to instrumentally respond for sucrose on a progressive-ratio schedule. We additionally measured the number of c-Fos-positive cells, a marker of neural activity, in 20 regions of the brain and identified a network of brain regions based on their interregional correlation coefficients. Network and graph-theoretic analyses suggested that Kpna3 deficiency enhanced overall interregional functional connectivity. These findings suggest the importance of Kpna3 in motivational control and indicate that Kpna3 KO mice may be an attractive line for modeling motivational abnormalities associated with several psychiatric disorders.
Collapse
Affiliation(s)
- Yoshiatsu Aomine
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Koki Sakurai
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Tom Macpherson
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Takaaki Ozawa
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Yoichi Miyamoto
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Yoshihiro Yoneda
- National Institutes for Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Masahiro Oka
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
- *Correspondence: Takatoshi Hikida,
| |
Collapse
|
13
|
Peng Z, He T, Ren P, Jin L, Yang Q, Xu C, Wen R, Chen J, Wei Z, Verguts T, Chen Q. Imbalance between the caudate and putamen connectivity in obsessive-compulsive disorder. Neuroimage Clin 2022; 35:103083. [PMID: 35717885 PMCID: PMC9213242 DOI: 10.1016/j.nicl.2022.103083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/04/2022] [Accepted: 06/11/2022] [Indexed: 11/30/2022]
Abstract
The imbalance between the caudate and putamen connectivity in OCD patient arises from the abnormal connection of caudate. The abnormal caudate connectivity mainly results from the outward extension of cortico-striato-thalamo-cortical loop. The caudate connectivity of OCD patients is negatively associated with their task-switch performance.
Background Compulsive behaviors in obsessive–compulsive disorder (OCD) have been suggested to result from an imbalance in cortico-striatal connectivity. However, the nature of this impairment, the relative involvement of different striatal areas, their imbalance in genetically related but unimpaired individuals, and their relationship with cognitive dysfunction in OCD patients, remain unknown. Methods In the current study, striatal (i.e., caudate and putamen) whole-brain connectivity was computed in a sample of OCD patients (OCD, n = 62), unaffected first-degree relatives (UFDR, n = 53) and healthy controls (HC, n = 73) by ROI-based resting-state functional magnetic resonance imaging (rs-fMRI). A behavioral task switch paradigm outside of the scanner was also performed to measure cognitive flexibility in OCD patients. Results There were significantly increased strengths (Z-transformed Pearson correlation coefficient) in caudate connectivity in OCD patients. A significant correlation between the two types of connectivity strengths in the relevant regions was observed only in the OCD patient group. Furthermore, the caudate connectivity of patients was negatively associated with their task-switch performance. Conclusions The imbalance between the caudate and putamen connectivity, arising from the abnormal increase of caudate activity, may serve as a clinical characteristic for obsessive–compulsive disorder.
Collapse
Affiliation(s)
- Ziwen Peng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China.
| | - Tingxin He
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Ping Ren
- Department of Geriatric Psychiatry, Shenzhen Kangning Hospital, 518020 Shenzhen, China
| | - Lili Jin
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Qiong Yang
- Southern Medical University, 510515 Guangzhou, China; Affiliated Brain Hospital of Guangzhou Medical University, 510370 Guangzhou, China
| | - Chuanyong Xu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Rongzhen Wen
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Jierong Chen
- Department of Child Psychiatry and Rehabilitation, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, 518017 Shenzhen, China
| | - Zhen Wei
- Department of Child Psychiatry and Rehabilitation, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, 518017 Shenzhen, China
| | - Tom Verguts
- Department of Experimental Psychology, Ghent University, 9000 Ghent, Belgium
| | - Qi Chen
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China.
| |
Collapse
|
14
|
Scaife JC, Eraifej J, Green AL, Petric B, Aziz TZ, Park RJ. Deep Brain Stimulation of the Nucleus Accumbens in Severe Enduring Anorexia Nervosa: A Pilot Study. Front Behav Neurosci 2022; 16:842184. [PMID: 35571282 PMCID: PMC9094709 DOI: 10.3389/fnbeh.2022.842184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/15/2022] [Indexed: 12/17/2022] Open
Abstract
Introduction Anorexia nervosa (AN) is one of the most debilitating psychiatric disorders, becoming severe and enduring in a third of cases; with few effective treatments. Deep brain stimulation is a reversible, adjustable neurosurgical procedure that has been gaining ground in psychiatry as a treatment for depression and obsessive-compulsive disorder, yet few studies have investigated AN. Abnormal eating behavior and the compulsive pursuit of thinness in AN is, in part, a consequence of dysfunction in reward circuitry and the nucleus accumbens (NAcc) is central to reward processing. Methods Phase 1 prospective open-label pilot study of seven individuals with severe enduring AN. Electrodes were implanted bilaterally into the NAcc with stimulation at the anterior limb of the internal capsule using rechargeable implantable pulse generators. The protocol of 15 months included 12 months of deep brain stimulation incorporating two consecutive, randomized blind on-off fortnights 9 months after stimulation onset. The primary objectives were to investigate safety and feasibility, together with changes in eating disorder psychopathology. Results Feasibility and safety was demonstrated with no serious adverse events due to deep brain stimulation. Three patients responded to treatment [defined as > 35% reduction in Eating Disorders Examination (EDE) score at 12 months] and four patients were non-responders. Responders had a statistically significant mean reduction in EDE scores (50.3% reduction; 95% CI 2.6-98.2%), Clinical Impairment Assessment (45.6% reduction; 95% CI 7.4-83.7%). Responders also had a statistically significant mean reduction in Hamilton Depression Scale, Hamilton Anxiety Scale and Snaith-Hamilton pleasure scale. There were no statistically significant changes in Body Mass Index, Yale-Brown-Cornell Eating Disorder Scale, Yale-Brown Obsessive-Compulsive Scale and World Health Organization Quality of Life Psychological subscale. Conclusion This study provides some preliminary indication that deep brain stimulation to the NAcc. Might potentially improve some key features of enduring AN. In this small study, the three responders had comorbid obsessive-compulsive disorder which predated AN diagnosis. Future studies should aim to further elucidate predictors of outcome. Clinical Trial Registration [www.ClinicalTrials.gov], identifier [Project ID 128658].
Collapse
Affiliation(s)
- Jessica C. Scaife
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
- Oxford Health NHS Foundation Trust, Oxford, United Kingdom
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital Oxford, University of Oxford, Oxford, United Kingdom
| | - John Eraifej
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital Oxford, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Alexander L. Green
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital Oxford, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Beth Petric
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Tipu Z. Aziz
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital Oxford, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Rebecca J. Park
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
- Oxford Health NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
15
|
Behavioral Engagement With Playable Objects Resolves Stress-Induced Adaptive Changes by Reshaping the Reward System. Biol Psychiatry 2022; 91:676-689. [PMID: 34961622 DOI: 10.1016/j.biopsych.2021.09.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND The reward system regulates motivated behavior, and repeated practice of specific motivated behavior might conversely modify the reward system. However, the detailed mechanisms by which they reciprocally regulate each other are not clearly understood. METHODS Mice subjected to chronic restraint stress show long-lasting depressive-like behavior, which is rescued by continual engagement with playable objects. A series of molecular, pharmacological, genetic, and behavioral analyses, combined with microarray, liquid chromatography, and chemogenetic tools, are used to investigate the neural mechanisms of antidepressive effects of playable objects. RESULTS Here, we show that repeated restraint induces dopamine surges into the nucleus accumbens-lateral shell (NAc-lSh), which cause upregulation of the neuropeptide PACAP in the NAc-lSh. As repeated stress is continued, the dopamine surge by stressors is adaptively suppressed without restoring PACAP upregulation, and the resulting enhanced PACAP inputs from NAc-lSh neurons to the ventral pallidum facilitate depressive-like behaviors. Continual engagement with playable objects in mice subjected to chronic stress remediates reduced dopamine response to new stressors, enhanced PACAP upregulation, and depressive-like behaviors. Overactivation of dopamine D1 receptors over the action of D2 receptors in the NAc-lSh promotes depressive-like behaviors. Conversely, inhibition of D1 receptors or PACAP upregulation in the NAc-lSh confers resilience to chronic stress-induced depressive-like behaviors. Histochemical and chemogenetic analyses reveal that engagement with playable objects produces antidepressive effects by reshaping the ventral tegmental area-to-NAc-lSh and NAc-lSh-to-ventral pallidum circuits. CONCLUSIONS These results suggest that behavioral engagement with playable objects remediates depressive-like behaviors by resolving stress-induced maladaptive changes in the reward system.
Collapse
|
16
|
Tian J, Gao X, Yang L. Repetitive Restricted Behaviors in Autism Spectrum Disorder: From Mechanism to Development of Therapeutics. Front Neurosci 2022; 16:780407. [PMID: 35310097 PMCID: PMC8924045 DOI: 10.3389/fnins.2022.780407] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/09/2022] [Indexed: 01/28/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by deficits in social communication, social interaction, and repetitive restricted behaviors (RRBs). It is usually detected in early childhood. RRBs are behavioral patterns characterized by repetition, inflexibility, invariance, inappropriateness, and frequent lack of obvious function or specific purpose. To date, the classification of RRBs is contentious. Understanding the potential mechanisms of RRBs in children with ASD, such as neural connectivity disorders and abnormal immune functions, will contribute to finding new therapeutic targets. Although behavioral intervention remains the most effective and safe strategy for RRBs treatment, some promising drugs and new treatment options (e.g., supplementary and cell therapy) have shown positive effects on RRBs in recent studies. In this review, we summarize the latest advances of RRBs from mechanistic to therapeutic approaches and propose potential future directions in research on RRBs.
Collapse
Affiliation(s)
| | | | - Li Yang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Beijing, China
| |
Collapse
|
17
|
Yu J, Zhou P, Yuan S, Wu Y, Wang C, Zhang N, Li CSR, Liu N. Symptom provocation in obsessive-compulsive disorder: A voxel-based meta-analysis and meta-analytic connectivity modeling. J Psychiatr Res 2022; 146:125-134. [PMID: 34971910 DOI: 10.1016/j.jpsychires.2021.12.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/04/2021] [Accepted: 12/11/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a heterogeneous psychiatric illness with a complex array of symptoms and potentially distinct neural underpinnings. We employed meta-analysis and connectivity modeling of symptom dimensions to delineate the circuit mechanisms of OCD. METHODS With the activation likelihood estimation (ALE) algorithm we performed meta-analysis of whole-brain functional magnetic resonance imaging (fMRI) studies of symptom provocation. We contrasted all OCD patients and controls in a primary analysis and divided the studies according to clinical symptoms in secondary meta-analyses. Finally, we employed meta-analytic connectivity modeling analyses (MACMs) to examine co-activation patterns of the brain regions revealed in the primary meta-analysis. RESULTS A total of 14 experiments from 12 eligible studies with a total of 238 OCD patients (124 men) and 219 healthy controls (120 men) were included in the primary analysis. OCD patients showed higher activation in the right caudate body/putamen/insula and lower activation in the left orbitofrontal cortex (OFC), left inferior frontal gyrus (IFG), left caudate body/middle cingulate cortex (MCC), right middle temporal gyrus (MTG), middle occipital gyrus (MOG) and right lateral occipital gyrus (LOG). MACMs revealed significant co-activation between left IFG and left caudate body/MCC, left MOG and right LOG, right LOG and MTG. In the secondary meta-analyses, the washing subgroup showed higher activation in the right OFC, bilateral ACC, left MOG and right caudate body. CONCLUSION OCD patients showed elevated dorsal striatal activation during symptom provocation. In contrast, the washing subgroup engaged higher activation in frontal, temporal and posterior cortical structures as well as right caudate body. Broadly consistent with the proposition of cortico-striatal-thalamic-cortical circuit dysfunction, these findings highlight potentially distinct neural circuits that may underlie the symptoms and potentially etiological subtypes of OCD.
Collapse
Affiliation(s)
- Jianping Yu
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Ping Zhou
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Shiting Yuan
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Yun Wu
- Functional Brain Imaging Institute of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Chun Wang
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Ning Zhang
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Chiang-Shan R Li
- Department of Psychiatry, Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| | - Na Liu
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
18
|
Endres D, Pollak TA, Bechter K, Denzel D, Pitsch K, Nickel K, Runge K, Pankratz B, Klatzmann D, Tamouza R, Mallet L, Leboyer M, Prüss H, Voderholzer U, Cunningham JL, Domschke K, Tebartz van Elst L, Schiele MA. Immunological causes of obsessive-compulsive disorder: is it time for the concept of an "autoimmune OCD" subtype? Transl Psychiatry 2022; 12:5. [PMID: 35013105 PMCID: PMC8744027 DOI: 10.1038/s41398-021-01700-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 10/09/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) is a highly disabling mental illness that can be divided into frequent primary and rarer organic secondary forms. Its association with secondary autoimmune triggers was introduced through the discovery of Pediatric Autoimmune Neuropsychiatric Disorder Associated with Streptococcal infection (PANDAS) and Pediatric Acute onset Neuropsychiatric Syndrome (PANS). Autoimmune encephalitis and systemic autoimmune diseases or other autoimmune brain diseases, such as multiple sclerosis, have also been reported to sometimes present with obsessive-compulsive symptoms (OCS). Subgroups of patients with OCD show elevated proinflammatory cytokines and autoantibodies against targets that include the basal ganglia. In this conceptual review paper, the clinical manifestations, pathophysiological considerations, diagnostic investigations, and treatment approaches of immune-related secondary OCD are summarized. The novel concept of "autoimmune OCD" is proposed for a small subgroup of OCD patients, and clinical signs based on the PANDAS/PANS criteria and from recent experience with autoimmune encephalitis and autoimmune psychosis are suggested. Red flag signs for "autoimmune OCD" could include (sub)acute onset, unusual age of onset, atypical presentation of OCS with neuropsychiatric features (e.g., disproportionate cognitive deficits) or accompanying neurological symptoms (e.g., movement disorders), autonomic dysfunction, treatment resistance, associations of symptom onset with infections such as group A streptococcus, comorbid autoimmune diseases or malignancies. Clinical investigations may also reveal alterations such as increased levels of anti-basal ganglia or dopamine receptor antibodies or inflammatory changes in the basal ganglia in neuroimaging. Based on these red flag signs, the criteria for a possible, probable, and definite autoimmune OCD subtype are proposed.
Collapse
Affiliation(s)
- Dominique Endres
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Thomas A Pollak
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Karl Bechter
- Department for Psychiatry and Psychotherapy II, Ulm University, Bezirkskrankenhaus Günzburg, Günzburg, Germany
| | - Dominik Denzel
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Karoline Pitsch
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kathrin Nickel
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kimon Runge
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Benjamin Pankratz
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - David Klatzmann
- AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Paris, France
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Ryad Tamouza
- Univ Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, AP-HP, DMU IMPACT, FHU ADAPT, Fondation FondaMental, Créteil, France
| | - Luc Mallet
- Univ Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, AP-HP, DMU IMPACT, FHU ADAPT, Fondation FondaMental, Créteil, France
| | - Marion Leboyer
- Univ Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, AP-HP, DMU IMPACT, FHU ADAPT, Fondation FondaMental, Créteil, France
| | - Harald Prüss
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Ulrich Voderholzer
- Schoen Clinic Roseneck, Prien am Chiemsee, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Munich, Munich, Germany
| | - Janet L Cunningham
- Department of Neuroscience, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ludger Tebartz van Elst
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Miriam A Schiele
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
19
|
Braeutigam S, Scaife JC, Aziz T, Park RJ. A Longitudinal Magnetoencephalographic Study of the Effects of Deep Brain Stimulation on Neuronal Dynamics in Severe Anorexia Nervosa. Front Behav Neurosci 2022; 16:841843. [PMID: 35692383 PMCID: PMC9178415 DOI: 10.3389/fnbeh.2022.841843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/22/2022] [Indexed: 11/28/2022] Open
Abstract
Anorexia Nervosa (AN) is a debilitating psychiatric disorder characterized by the relentless pursuit of thinness, leading to severe emaciation. Magnetoencephalography (MEG)was used to record the neuronal response in seven patients with treatment-resistant AN while completing a disorder-relevant food wanting task. The patients underwent a 15-month protocol, where MEG scans were conducted pre-operatively, post-operatively prior to deep brain stimulation (DBS) switch on, twice during a blind on/off month and at protocol end. Electrodes were implanted bilaterally into the nucleus accumbens with stimulation at the anterior limb of the internal capsule using rechargeable implantable pulse generators. Three patients met criteria as responders at 12 months of stimulation, showing reductions of eating disorder psychopathology of over 35%. An increase in alpha power, as well as evoked power at latencies typically associated with visual processing, working memory, and contextual integration was observed in ON compared to OFF sessions across all seven patients. Moreover, an increase in evoked power at P600-like latencies as well as an increase in γ-band phase-locking over anterior-to-posterior regions were observed for high- compared to low-calorie food image only in ON sessions. These findings indicate that DBS modulates neuronal process in regions far outside the stimulation target site and at latencies possibly reflecting task specific processing, thereby providing further evidence that deep brain stimulation can play a role in the treatment of otherwise intractable psychiatric disorders.
Collapse
Affiliation(s)
- Sven Braeutigam
- Oxford Centre for Human Brain Activity, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
- Wellcome Centre For Integrative Neuroimaging, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
- *Correspondence: Sven Braeutigam
| | - Jessica Clare Scaife
- Department of Psychiatry, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
- Oxford Health NHS Foundation Trust, Oxford, United Kingdom
| | - Tipu Aziz
- Nuffield Department of Surgical Sciences, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
- Department of Neurosurgery, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
| | - Rebecca J. Park
- Department of Psychiatry, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
- Oxford Health NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
20
|
Ozawa T, Itokazu T, Ichitani Y, Yamada K. Pharmacologically induced N-methyl-D-aspartate receptor hypofunction impairs goal-directed food seeking in rats. Neuropsychopharmacol Rep 2021; 41:526-531. [PMID: 34542935 PMCID: PMC8698676 DOI: 10.1002/npr2.12209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/02/2021] [Accepted: 09/07/2021] [Indexed: 11/06/2022] Open
Abstract
AIM Acute N-methyl-D-aspartate (NMDA) receptor antagonism is an important pharmacological animal model of schizophrenia. In previous studies, schizophrenia patients show impaired goal-directed behavior in an outcome-specific devaluation procedure. In this study, we investigated whether the rat model of the NMDA receptor blockade also showed altered goal-directed behavior in a satiety-induced outcome devaluation paradigm. METHODS In experiments 1 and 2, we aimed to establish the satiety-induced outcome devaluation test using sucrose and lipid rewards in operant conditioning and free consumption paradigms. In experiment 3, we tested the effect of MK-801 (0.1 mg/kg, i.p.) on outcome-specific devaluation. RESULTS Experiments 1 and 2 demonstrated that 1-h ad libitum food consumption is sufficient to induce outcome-specific devaluation in both lever-press and free consumption tests in rats. Experiment 3 showed that the administration of MK-801 impaired satiety-induced devaluation in the lever-press test but not in the subsequent free consumption test. CONCLUSIONS Our results suggest that acute pharmacological NMDA receptor antagonism in rats is a useful animal model for impaired goal-directed behavior in schizophrenia.
Collapse
Affiliation(s)
- Takaaki Ozawa
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Japan.,Institute for Protein Research, Osaka University, Suita, Japan
| | - Tatsumi Itokazu
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Japan
| | - Yukio Ichitani
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Japan.,Faculty of Applied Psychology, Tokyo Seitoku University, Kita, Japan
| | - Kazuo Yamada
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
21
|
Mitra S, Bult-Ito A. Bidirectional Behavioral Selection in Mice: A Novel Pre-clinical Approach to Examining Compulsivity. Front Psychiatry 2021; 12:716619. [PMID: 34566718 PMCID: PMC8458042 DOI: 10.3389/fpsyt.2021.716619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) and related disorders (OCRD) is one of the most prevalent neuropsychiatric disorders with no definitive etiology. The pathophysiological attributes of OCD are driven by a multitude of factors that involve polygenic mechanisms, gender, neurochemistry, physiological status, environmental exposures and complex interactions among these factors. Such complex intertwining of contributing factors imparts clinical heterogeneity to the disorder making it challenging for therapeutic intervention. Mouse strains selected for excessive levels of nest- building behavior exhibit a spontaneous, stable and predictable compulsive-like behavioral phenotype. These compulsive-like mice exhibit heterogeneity in expression of compulsive-like and other adjunct behaviors that might serve as a valuable animal equivalent for examining the interactions of genetics, sex and environmental factors in influencing the pathophysiology of OCD. The current review summarizes the existing findings on the compulsive-like mice that bolster their face, construct and predictive validity for studying various dimensions of compulsive and associated behaviors often reported in clinical OCD and OCRD.
Collapse
Affiliation(s)
- Swarup Mitra
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Abel Bult-Ito
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, United States
- OCRD Biomed LLC, Fairbanks, AK, United States
| |
Collapse
|
22
|
Augustine F, Nebel MB, Mostofsky SH, Mahone EM, Singer HS. Aberrant prefrontal cortical-striatal functional connectivity in children with primary complex motor stereotypies. Cortex 2021; 142:272-282. [PMID: 34303880 DOI: 10.1016/j.cortex.2021.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/24/2020] [Accepted: 05/21/2021] [Indexed: 11/28/2022]
Abstract
Motor stereotypies are rhythmic, repetitive, prolonged, predictable, and purposeless movements that stop with distraction. Although once believed to occur only in children with neurodevelopmental disorders such as autism, the presence and persistence of complex motor stereotypies (CMS) in otherwise typically developing children (primary CMS) has been well-established. Little, however, is known about the underlying pathophysiology of these unwanted actions. The aim of the present study was to use resting-state functional magnetic resonance imaging to evaluate functional connectivity within frontal-striatal circuits that are essential for goal-directed and habitual activity in children with primary complex motor stereotypies. Functional connectivity between prefrontal cortical and striatal regions, considered essential for developing goal-directed behaviors, was reduced in children with primary CMS compared to their typically developing peers. In contrast, functional connectivity between motor/premotor and striatal regions, critical for developing and regulating habitual behaviors, did not differ between groups. This documented alteration of prefrontal to striatal connectivity could provide the underlying mechanism for the presence and persistence of complex motor stereotypies in otherwise developmentally normal children.
Collapse
Affiliation(s)
- Farhan Augustine
- Department of Neurology, Johns Hopkins University School of Medicine, USA; Department of Biological Sciences, University of Maryland Baltimore County, USA.
| | - Mary B Nebel
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, USA; Department of Neurology, Johns Hopkins University School of Medicine, USA
| | - Stewart H Mostofsky
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, USA; Department of Neurology, Johns Hopkins University School of Medicine, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA
| | | | - Harvey S Singer
- Department of Neurology, Johns Hopkins University School of Medicine, USA; Department of Neurology, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
23
|
Frontoparietal hyperconnectivity during cognitive regulation in obsessive-compulsive disorder followed by reward valuation inflexibility. J Psychiatr Res 2021; 137:657-666. [PMID: 33187688 DOI: 10.1016/j.jpsychires.2020.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 10/01/2020] [Accepted: 11/01/2020] [Indexed: 12/11/2022]
Abstract
Obsessive-compulsive disorder (OCD) is characterized by cognitive deficits and altered reward processing systems. An imbalance between cognitive and reward pathways may explain the lack of control over obsessions followed by rewarding compulsive behaviors. While the processes of emotional cognitive regulation are widely studied in OCD, the mechanisms of cognitive regulation of reward are poorly described. Our goal was to investigate the OCD impact on cognitive regulation of reward at behavioral and neural functioning levels. OCD and control participants performed a functional magnetic resonance imaging task where they cognitively modulated their craving for food pictures under three cognitive regulation conditions: indulge/increase craving, distance/decrease craving, and natural/no regulation of craving. After regulation, the participants gave each picture a monetary value. We found that OCD patients had fixed food valuation scores while the control group modulated these values accordingly to the regulation conditions. Moreover, we observed frontoparietal hyperconnectivity during cognitive regulation. Our results suggest that OCD is characterized by deficits in cognitive regulation of internal states associated with inflexible behavior during reward processing. These findings bring new insights into the nature of compulsive behaviors in OCD.
Collapse
|
24
|
Hadjas LC, Schartner MM, Cand J, Creed MC, Pascoli V, Lüscher C, Simmler LD. Projection-specific deficits in synaptic transmission in adult Sapap3-knockout mice. Neuropsychopharmacology 2020; 45:2020-2029. [PMID: 32585679 PMCID: PMC7547074 DOI: 10.1038/s41386-020-0747-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 11/09/2022]
Abstract
Obsessive-compulsive disorder (OCD) is a circuit disorder involving corticostriatal projections, which play a role in motor control. The Sapap3-knockout (KO) mouse is a mouse model to study OCD and recapitulates OCD-like compulsion through excessive grooming behavior, with skin lesions appearing at advanced age. Deficits in corticostriatal control provide a link to the pathophysiology of OCD. However, there remain significant gaps in the characterization of the Sapap3-KO mouse, with respect to age, specificity of synaptic dysfunction, and locomotor phenotype. We therefore investigated the corticostriatal synaptic phenotype of Sapap3-KO mice using patch-clamp slice electrophysiology, in adult mice and with projection specificity. We also analyzed grooming across age and locomotor phenotype with a novel, unsupervised machine learning technique (MoSeq). Increased grooming in Sapap3-KO mice without skin lesions was age independent. Synaptic deficits persisted in adulthood and involved the projections from the motor cortices and cingulate cortex to the dorsolateral and dorsomedial striatum. Decreased synaptic strength was evident at the input from the primary motor cortex by reduction in AMPA receptor function. Hypolocomotion, i.e., slowness of movement, was consistently observed in Sapap3-KO mice. Our findings emphasize the utility of young adult Sapap3-KO mice to investigate corticostriatal synaptic dysfunction in motor control.
Collapse
Affiliation(s)
- Lotfi C. Hadjas
- grid.8591.50000 0001 2322 4988Department of Basic Neurosciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Michael M. Schartner
- grid.8591.50000 0001 2322 4988Department of Basic Neurosciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Jennifer Cand
- grid.8591.50000 0001 2322 4988Department of Basic Neurosciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Meaghan C. Creed
- grid.8591.50000 0001 2322 4988Department of Basic Neurosciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Vincent Pascoli
- grid.8591.50000 0001 2322 4988Department of Basic Neurosciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Christian Lüscher
- grid.8591.50000 0001 2322 4988Department of Basic Neurosciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland ,grid.150338.c0000 0001 0721 9812Service de Neurologie, Department of Clinical Neurosciences, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland
| | - Linda D. Simmler
- grid.8591.50000 0001 2322 4988Department of Basic Neurosciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| |
Collapse
|