1
|
Dhar KS, Townsend B, Montgomery AP, Danon JJ, Pagan JK, Kassiou M. Enhancing CNS mitophagy: drug development and disease-relevant models. Trends Pharmacol Sci 2024; 45:982-996. [PMID: 39419743 DOI: 10.1016/j.tips.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/05/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
Mitophagy, the selective degradation of mitochondria, is impaired in many neurodegenerative diseases (NDs), resulting in an accumulation of dysfunctional mitochondria and neuronal damage. Although enhancing mitophagy shows promise as a therapeutic strategy, the clinical significance of mitophagy activators remains uncertain due to limited understanding and poor representation of mitophagy in the central nervous system (CNS). This review explores recent insights into which mitophagy pathways to target and the extent of modulation necessary to be therapeutic towards NDs. We also highlight the complexities of mitophagy in the CNS, highlighting the need for disease-relevant models. Last, we outline crucial aspects of in vitro models to consider during drug discovery, aiming to bridge the gap between preclinical research and clinical applications in treating NDs through mitophagy modulation.
Collapse
Affiliation(s)
- Krishayant S Dhar
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Brendan Townsend
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Andrew P Montgomery
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Jonathan J Danon
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Julia K Pagan
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Michael Kassiou
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
2
|
Jing Y, Dogan I, Reetz K, Romanzetti S. Neurochemical changes in the progression of Huntington's disease: A meta-analysis of in vivo 1H-MRS studies. Neurobiol Dis 2024; 199:106574. [PMID: 38914172 DOI: 10.1016/j.nbd.2024.106574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024] Open
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) allows measuring specific brain metabolic alterations in Huntington's disease (HD), and these metabolite profiles may serve as non-invasive biomarkers associated with disease progression. Despite this potential, previous findings are inconsistent. Accordingly, we performed a meta-analysis on available in vivo1H-MRS studies in premanifest (Pre-HD) and symptomatic HD stages (Symp-HD), and quantified neurometabolic changes relative to controls in 9 Pre-HD studies (227 controls and 188 mutation carriers) and 14 Symp-HD studies (326 controls and 306 patients). Our results indicated decreased N-acetylaspartate and creatine in the basal ganglia in both Pre-HD and Symp-HD. The overall level of myo-inositol was decreased in Pre-HD while increased in Symp-HD. Besides, Symp-HD patients showed more severe metabolism disruption than Pre-HD patients. Taken together, 1H-MRS is important for elucidating progressive metabolite changes from Pre-HD to clinical conversion; N-acetylaspartate and creatine in the basal ganglia are already sensitive at the preclinical stage and are promising biomarkers for tracking disease progression; overall myo-inositol is a possible characteristic metabolite for distinguishing HD stages.
Collapse
Affiliation(s)
- Yinghua Jing
- Department of Neurology, RWTH Aachen University, Aachen, Germany; JARA-Brain Institute Molecular Neuroscience and Neuroimaging (INM-11), Research Centre Jülich and RWTH Aachen University, Aachen, Germany
| | - Imis Dogan
- Department of Neurology, RWTH Aachen University, Aachen, Germany; JARA-Brain Institute Molecular Neuroscience and Neuroimaging (INM-11), Research Centre Jülich and RWTH Aachen University, Aachen, Germany
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Aachen, Germany; JARA-Brain Institute Molecular Neuroscience and Neuroimaging (INM-11), Research Centre Jülich and RWTH Aachen University, Aachen, Germany
| | - Sandro Romanzetti
- Department of Neurology, RWTH Aachen University, Aachen, Germany; JARA-Brain Institute Molecular Neuroscience and Neuroimaging (INM-11), Research Centre Jülich and RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
3
|
Wankhede NL, Rajendra Kopalli S, Dhokne MD, Badnag DJ, Chandurkar PA, Mangrulkar SV, Shende PV, Taksande BG, Upaganlawar AB, Umekar MJ, Koppula S, Kale MB. Decoding mitochondrial quality control mechanisms: Identifying treatment targets for enhanced cellular health. Mitochondrion 2024; 78:101926. [PMID: 38944367 DOI: 10.1016/j.mito.2024.101926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/09/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Mitochondria are singular cell organelles essential for many cellular functions, which includes responding to stress, regulating calcium levels, maintaining protein homeostasis, and coordinating apoptosis response. The vitality of cells, therefore, hinges on the optimal functioning of these dynamic organelles. Mitochondrial Quality Control Mechanisms (MQCM) play a pivotal role in ensuring the integrity and functionality of mitochondria. Perturbations in these mechanisms have been closely associated with the pathogenesis of neurodegenerative disorders such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis. Compelling evidence suggests that targeting specific pathways within the MQCM could potentially offer a therapeutic avenue for rescuing mitochondrial integrity and mitigating the progression of neurodegenerative diseases. The intricate interplay of cellular stress, protein misfolding, and impaired quality control mechanisms provides a nuanced understanding of the underlying pathology. Consequently, unravelling the specific MQCM dysregulation in neurodegenerative disorders becomes paramount for developing targeted therapeutic strategies. This review delves into the impaired MQCM pathways implicated in neurodegenerative disorders and explores emerging therapeutic interventions. By shedding light on pharmaceutical and genetic manipulations aimed at restoring MQCM efficiency, the discussion aims to provide insights into novel strategies for ameliorating the progression of neurodegenerative diseases. Understanding and addressing mitochondrial quality control mechanisms not only underscore their significance in cellular health but also offer a promising frontier for advancing therapeutic approaches in the realm of neurodegenerative disorders.
Collapse
Affiliation(s)
- Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee- 441002, Nagpur, Maharashtra, India.
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea.
| | - Mrunali D Dhokne
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh (UP) - 226002, India.
| | - Dishant J Badnag
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee- 441002, Nagpur, Maharashtra, India.
| | - Pranali A Chandurkar
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee- 441002, Nagpur, Maharashtra, India.
| | - Shubhada V Mangrulkar
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee- 441002, Nagpur, Maharashtra, India.
| | - Prajwali V Shende
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee- 441002, Nagpur, Maharashtra, India.
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee- 441002, Nagpur, Maharashtra, India.
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad- 423101, Nashik, Maharashtra, India.
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee- 441002, Nagpur, Maharashtra, India.
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee- 441002, Nagpur, Maharashtra, India.
| |
Collapse
|
4
|
Fote GM, Eapen VV, Lim RG, Yu C, Salazar L, McClure NR, McKnight J, Nguyen TB, Heath MC, Lau AL, Villamil MA, Miramontes R, Kratter IH, Finkbeiner S, Reidling JC, Paulo JA, Kaiser P, Huang L, Housman DE, Thompson LM, Steffan JS. Huntingtin contains an ubiquitin-binding domain and regulates lysosomal targeting of mitochondrial and RNA-binding proteins. Proc Natl Acad Sci U S A 2024; 121:e2319091121. [PMID: 39074279 PMCID: PMC11317567 DOI: 10.1073/pnas.2319091121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/20/2024] [Indexed: 07/31/2024] Open
Abstract
Understanding the normal function of the Huntingtin (HTT) protein is of significance in the design and implementation of therapeutic strategies for Huntington's disease (HD). Expansion of the CAG repeat in the HTT gene, encoding an expanded polyglutamine (polyQ) repeat within the HTT protein, causes HD and may compromise HTT's normal activity contributing to HD pathology. Here, we investigated the previously defined role of HTT in autophagy specifically through studying HTT's association with ubiquitin. We find that HTT interacts directly with ubiquitin in vitro. Tandem affinity purification was used to identify ubiquitinated and ubiquitin-associated proteins that copurify with a HTT N-terminal fragment under basal conditions. Copurification is enhanced by HTT polyQ expansion and reduced by mimicking HTT serine 421 phosphorylation. The identified HTT-interacting proteins include RNA-binding proteins (RBPs) involved in mRNA translation, proteins enriched in stress granules, the nuclear proteome, the defective ribosomal products (DRiPs) proteome and the brain-derived autophagosomal proteome. To determine whether the proteins interacting with HTT are autophagic targets, HTT knockout (KO) cells and immunoprecipitation of lysosomes were used to investigate autophagy in the absence of HTT. HTT KO was associated with reduced abundance of mitochondrial proteins in the lysosome, indicating a potential compromise in basal mitophagy, and increased lysosomal abundance of RBPs which may result from compensatory up-regulation of starvation-induced macroautophagy. We suggest HTT is critical for appropriate basal clearance of mitochondrial proteins and RBPs, hence reduced HTT proteostatic function with mutation may contribute to the neuropathology of HD.
Collapse
Affiliation(s)
- Gianna M. Fote
- Department of Biological Chemistry, UC Irvine School of Medicine, Irvine, CA92697
- Department of Neurological Surgery, UC Irvine School of Medicine, Orange, CA92868
| | - Vinay V. Eapen
- Department of Cell Biology, Harvard Medical School, Boston, MA02115
- Casma Therapeutics, Cambridge, MA02139
| | - Ryan G. Lim
- The University of California Irvine Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA92697
| | - Clinton Yu
- Department of Physiology and Biophysics, University of California, Irvine, CA92697
| | - Lisa Salazar
- Department of Psychiatry and Human Behavior, UC Irvine School of Medicine, Orange, CA92868
| | - Nicolette R. McClure
- Department of Neurobiology and Behavior, University of California, Irvine, CA92697
| | - Jharrayne McKnight
- Department of Neurobiology and Behavior, University of California, Irvine, CA92697
| | - Thai B. Nguyen
- Department of Neurobiology and Behavior, University of California, Irvine, CA92697
| | - Marie C. Heath
- Department of Neurobiology and Behavior, University of California, Irvine, CA92697
| | - Alice L. Lau
- Department of Psychiatry and Human Behavior, UC Irvine School of Medicine, Orange, CA92868
| | - Mark A. Villamil
- Department of Biological Chemistry, UC Irvine School of Medicine, Irvine, CA92697
| | - Ricardo Miramontes
- Department of Psychiatry and Human Behavior, UC Irvine School of Medicine, Orange, CA92868
| | - Ian H. Kratter
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA94158
- Stanford Brain Stimulation Lab, Stanford, CA94304
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA94304
| | - Steven Finkbeiner
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA94158
- Department of Physiology, University of California, San Francisco, CA94158
- Department of Neurology, University of California, San Francisco, CA94158
| | - Jack C. Reidling
- The University of California Irvine Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA92697
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA02115
| | - Peter Kaiser
- Department of Biological Chemistry, UC Irvine School of Medicine, Irvine, CA92697
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, CA92697
| | - David E. Housman
- Koch Institute for Integrative Cancer Research, The Massachusetts Institute of Technology, Cambridge, MA02139
| | - Leslie M. Thompson
- Department of Biological Chemistry, UC Irvine School of Medicine, Irvine, CA92697
- The University of California Irvine Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA92697
- Department of Psychiatry and Human Behavior, UC Irvine School of Medicine, Orange, CA92868
- Department of Neurobiology and Behavior, University of California, Irvine, CA92697
- Center for Epigenetics and Metabolism, University of California, Irvine School of Medicine, University of California, Irvine, CA92697
| | - Joan S. Steffan
- The University of California Irvine Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA92697
- Department of Psychiatry and Human Behavior, UC Irvine School of Medicine, Orange, CA92868
- Center for Epigenetics and Metabolism, University of California, Irvine School of Medicine, University of California, Irvine, CA92697
| |
Collapse
|
5
|
Zhao L, Chen Y, Li H, Ding X, Li J. Deciphering the neuroprotective mechanisms of RACK1 in cerebral ischemia-reperfusion injury: Pioneering insights into mitochondrial autophagy and the PINK1/Parkin axis. CNS Neurosci Ther 2024; 30:e14836. [PMID: 39097918 PMCID: PMC11298203 DOI: 10.1111/cns.14836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 05/23/2024] [Accepted: 06/16/2024] [Indexed: 08/06/2024] Open
Abstract
INTRODUCTION Cerebral ischemia-reperfusion injury (CIRI) is a common and debilitating complication of cerebrovascular diseases such as stroke, characterized by mitochondrial dysfunction and cell apoptosis. Unraveling the molecular mechanisms behind these processes is essential for developing effective CIRI treatments. This study investigates the role of RACK1 (receptor for activated C kinase 1) in CIRI and its impact on mitochondrial autophagy. METHODS We utilized high-throughput transcriptome sequencing and weighted gene co-expression network analysis (WGCNA) to identify core genes associated with CIRI. In vitro experiments used human neuroblastoma SK-N-SH cells subjected to oxygen and glucose deprivation (OGD) to simulate ischemia, followed by reperfusion (OGD/R). RACK1 knockout cells were created using CRISPR/Cas9 technology, and cell viability, apoptosis, and mitochondrial function were assessed. In vivo experiments involved middle cerebral artery occlusion/reperfusion (MCAO/R) surgery in rats, evaluating neurological function and cell apoptosis. RESULTS Our findings revealed that RACK1 expression increases during CIRI and is protective by regulating mitochondrial autophagy through the PINK1/Parkin pathway. In vitro, RACK1 knockout exacerbated cell apoptosis, while overexpression of RACK1 reversed this process, enhancing mitochondrial function. In vivo, RACK1 overexpression reduced cerebral infarct volume and improved neurological deficits. The regulatory role of RACK1 depended on the PINK1/Parkin pathway, with RACK1 knockout inhibiting PINK1 and Parkin expression, while RACK1 overexpression restored them. CONCLUSION This study demonstrates that RACK1 safeguards against neural damage in CIRI by promoting mitochondrial autophagy through the PINK1/Parkin pathway. These findings offer crucial insights into the regulation of mitochondrial autophagy and cell apoptosis by RACK1, providing a promising foundation for future CIRI treatments.
Collapse
Affiliation(s)
- Lanqing Zhao
- Department of Sleep Medicine CenterThe Shengjing Affiliated Hospital, China Medical UniversityShenyangLiaoningPeople's Republic of China
| | - Yu Chen
- Department of Otorhinolaryngology Head and NeckShengjing Hospital of China Medical UniversityShenyangLiaoningPeople's Republic of China
| | - Hongxi Li
- Department of Pain ManagementShengjing Hospital of China Medical UniversityShenyangLiaoningPeople's Republic of China
| | - Xiaoxu Ding
- Department of Otorhinolaryngology Head and NeckShengjing Hospital of China Medical UniversityShenyangLiaoningPeople's Republic of China
| | - Jinwei Li
- Department of Neurology/Stroke CenterThe First Affiliated Hospital of China Medical University, China Medical UniversityShenyangLiaoningPeople's Republic of China
| |
Collapse
|
6
|
Chamakioti M, Chrousos GP, Kassi E, Vlachakis D, Yapijakis C. Stress-Related Roles of Exosomes and Exosomal miRNAs in Common Neuropsychiatric Disorders. Int J Mol Sci 2024; 25:8256. [PMID: 39125827 PMCID: PMC11311345 DOI: 10.3390/ijms25158256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Exosomes, natural nanovesicles that contain a cargo of biologically active molecules such as lipids, proteins, and nucleic acids, are released from cells to the extracellular environment. They then act as autocrine, paracrine, or endocrine mediators of communication between cells by delivering their cargo into recipient cells and causing downstream effects. Exosomes are greatly enriched in miRNAs, which are small non-coding RNAs that act both as cytoplasmic post-transcriptional repression agents, modulating the translation of mRNAs into proteins, as well as nuclear transcriptional gene activators. Neuronal exosomal miRNAs have important physiologic functions in the central nervous system (CNS), including cell-to-cell communication, synaptic plasticity, and neurogenesis, as well as modulating stress and inflammatory responses. Stress-induced changes in exosomal functions include effects on neurogenesis and neuroinflammation, which can lead to the appearance of various neuropsychiatric disorders such as schizophrenia, major depression, bipolar disorder, and Alzheimer's and Huntington's diseases. The current knowledge regarding the roles of exosomes in the pathophysiology of common mental disorders is discussed in this review.
Collapse
Affiliation(s)
- Myrsini Chamakioti
- Unit of Orofacial Genetics, 1st Department of Pediatrics, National Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
- University Research Institute of Maternal and Child Health and Precision Medicine, Choremion Laboratory, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, Choremion Laboratory, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
| | - Eva Kassi
- 1st Department of Internal Medicine, School of Medicine, National Kapodistrian University of Athens, Laikon Hospital, 115 27 Athens, Greece;
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 118 55 Athens, Greece;
| | - Christos Yapijakis
- Unit of Orofacial Genetics, 1st Department of Pediatrics, National Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
- University Research Institute of Maternal and Child Health and Precision Medicine, Choremion Laboratory, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
| |
Collapse
|
7
|
Nowak I, Paździor M, Sarna R, Madej M. Molecular Mechanisms in the Design of Novel Targeted Therapies for Neurodegenerative Diseases. Curr Issues Mol Biol 2024; 46:5436-5453. [PMID: 38920997 PMCID: PMC11202845 DOI: 10.3390/cimb46060325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Neurodegenerative diseases are a diverse group of diseases characterized by a progressive loss of neurological function due to damage to nerve cells in the central nervous system. In recent years, there has been a worldwide increase in the expanding associated with increasing human life expectancy. Molecular mechanisms control many of the essential life processes of cells, such as replication, transcription, translation, protein synthesis and gene regulation. These are complex interactions that form the basis for understanding numerous processes in the organism and developing new diagnostic and therapeutic approaches. In the context of neurodegenerative diseases, molecular basis refers to changes at the molecular level that cause damage to or degeneration of nerve cells. These may include protein aggregates leading to pathological structures in brain cells, impaired protein transport in nerve cells, mitochondrial dysfunction, inflammatory processes or genetic mutations that impair nerve cell function. New medical therapies are based on these mechanisms and include gene therapies, reduction in inflammation and oxidative stress, and the use of miRNAs and regenerative medicine. The aim of this study was to bring together the current state of knowledge regarding selected neurodegenerative diseases, presenting the underlying molecular mechanisms involved, which could be potential targets for new forms of treatment.
Collapse
Affiliation(s)
- Ilona Nowak
- Silesia LabMed, Centre for Research and Implementation, Medical University of Silesia in Katowice, 18 Medykow Str., 40-752 Katowice, Poland; (M.P.); (R.S.); (M.M.)
| | - Marlena Paździor
- Silesia LabMed, Centre for Research and Implementation, Medical University of Silesia in Katowice, 18 Medykow Str., 40-752 Katowice, Poland; (M.P.); (R.S.); (M.M.)
| | - Robert Sarna
- Silesia LabMed, Centre for Research and Implementation, Medical University of Silesia in Katowice, 18 Medykow Str., 40-752 Katowice, Poland; (M.P.); (R.S.); (M.M.)
| | - Marcel Madej
- Silesia LabMed, Centre for Research and Implementation, Medical University of Silesia in Katowice, 18 Medykow Str., 40-752 Katowice, Poland; (M.P.); (R.S.); (M.M.)
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
8
|
Pierzynowska K, Podlacha M, Gaffke L, Rintz E, Wiśniewska K, Cyske Z, Węgrzyn G. Correction of symptoms of Huntington disease by genistein through FOXO3-mediated autophagy stimulation. Autophagy 2024; 20:1159-1182. [PMID: 37992314 PMCID: PMC11135876 DOI: 10.1080/15548627.2023.2286116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023] Open
Abstract
Huntington disease (HD) is a neurodegenerative disorder caused by a mutation in the HTT gene. The expansion of CAG triplets leads to the appearance of misfolded HTT (huntingtin) forming aggregates and leading to impairment of neuronal functions. Here we demonstrate that stimulation of macroautophagy/autophagy by genistein (4',5,7-trihydroxyisoflavone or 5,7-dihydroxy-3-(4-hydroxyphenyl)-4 H-1-benzopyran-4-one) caused a reduction of levels of mutated HTT in brains of HD mice and correction of their behavior as assessed in a battery of cognitive, anxiety and motor tests, even if the compound was administered after symptoms had developed in the animals. Biochemical and immunological parameters were also improved in HD mice. Studies on molecular mechanisms of genistein-mediated stimulation of autophagy in HD cells indicated the involvement of the FOXO3-related pathway. In conclusion, treatment with genistein stimulates the autophagy process in the brains of HD mice, leading to correction of symptoms of HD, suggesting that it might be considered as a potential drug for this disease. Combined with a very recently published report indicating that impaired autophagy may be a major cause of neurodegenerative changes, these results may indicate the way to the development of effective therapeutic approaches for different neurodegenerative diseases by testing compounds (or possibly combinations of compounds) capable of stimulating autophagy and/or unblocking this process.Abbreviations: CNS: central nervous system; EPM: elevated plus-maze; GOT1/ASPAT: glutamic-oxaloacetic transaminase 1, soluble; GPT/ALAT/ALT: glutamic pyruvic transaminase, soluble; HD: Huntington disease; HTT: huntingtin; IL: interleukin; mHTT: mutant huntingtin; NOR: novel object recognition; MWM: Morris water maze; OF: open field; ROS: reactive oxygen species; TNF: tumor necrosis factor.
Collapse
Affiliation(s)
- Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Magdalena Podlacha
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Karolina Wiśniewska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Zuzanna Cyske
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
9
|
El-Emam MA, Sheta E, El-Abhar HS, Abdallah DM, El Kerdawy AM, Eldehna WM, Gowayed MA. Morin suppresses mTORc1/IRE-1α/JNK and IP3R-VDAC-1 pathways: Crucial mechanisms in apoptosis and mitophagy inhibition in experimental Huntington's disease, supported by in silico molecular docking simulations. Life Sci 2024; 338:122362. [PMID: 38141855 DOI: 10.1016/j.lfs.2023.122362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
AIMS Endoplasmic reticulum stress (ERS) with aberrant mitochondrial-ER contact (MERC), mitophagy, and apoptosis are interconnected determinants in neurodegenerative diseases. Previously, we proved the potential of Morin hydrate (MH), a potent antioxidant flavonoid, to mitigate Huntington's disease (HD)-3-nitropropionic acid (3-NP) model by modulating glutamate/calpain/Kidins220/BDNF trajectory. Extending our work, we aimed to evaluate its impact on combating the ERS/MERC, mitophagy, and apoptosis. METHODS Rats were subjected to 3-NP for 14 days and post-treated with MH and/or the ERS inducer WAG-4S for 7 days. Disease progression was assessed by gross inspection and striatal biochemical, histopathological, immunohistochemical, and transmission electron microscopical (TEM) examinations. A molecular docking study was attained to explore MH binding to mTOR, JNK, the kinase domain of IRE1-α, and IP3R. KEY FINDINGS MH decreased weight loss and motor dysfunction using open field and rotarod tests. It halted HD degenerative striatal neurons and nucleus/mitochondria ultra-microscopic alterations reflecting neuroprotection. Mechanistically, MH deactivated striatal mTOR/IRE1-α/XBP1s&JNK/IP3R, PINK1/Ubiquitin/Mfn2, and cytochrome c/caspase-3 signaling pathways, besides enhancing p-PGC-1α and p-VDAC1. WAG-4S was able to ameliorate all effects initiated by MH to different extents. Molecular docking simulations revealed promising binding patterns of MH and hence its potential inhibition of the studied proteins, especially mTOR, IP3R, and JNK. SIGNIFICANCE MH alleviated HD-associated ERS, MERC, mitophagy, and apoptosis. This is mainly achieved by combating the mTOR/IRE1-α signaling, IP3R/VDAC hub, PINK1/Ubiquitin/Mfn2, and cytochrome c/caspase 3 axis to be worsened by WAG-4S. Molecular docking simulations showed the promising binding of MH to mTOR and JNK as novel identified targets.
Collapse
Affiliation(s)
- Mohamed A El-Emam
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Ahmed M El Kerdawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt; School of Pharmacy, College of Health and Science, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt; School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Mennatallah A Gowayed
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
10
|
Kapil L, Kumar V, Kaur S, Sharma D, Singh C, Singh A. Role of Autophagy and Mitophagy in Neurodegenerative Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:367-383. [PMID: 36974405 DOI: 10.2174/1871527322666230327092855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/19/2022] [Accepted: 01/11/2023] [Indexed: 03/29/2023]
Abstract
Autophagy is a self-destructive cellular process that removes essential metabolites and waste from inside the cell to maintain cellular health. Mitophagy is the process by which autophagy causes disruption inside mitochondria and the total removal of damaged or stressed mitochondria, hence enhancing cellular health. The mitochondria are the powerhouses of the cell, performing essential functions such as ATP (adenosine triphosphate) generation, metabolism, Ca2+ buffering, and signal transduction. Many different mechanisms, including endosomal and autophagosomal transport, bring these substrates to lysosomes for processing. Autophagy and endocytic processes each have distinct compartments, and they interact dynamically with one another to complete digestion. Since mitophagy is essential for maintaining cellular health and using genetics, cell biology, and proteomics techniques, it is necessary to understand its beginning, particularly in ubiquitin and receptor-dependent signalling in injured mitochondria. Despite their similar symptoms and emerging genetic foundations, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) have all been linked to abnormalities in autophagy and endolysosomal pathways associated with neuronal dysfunction. Mitophagy is responsible for normal mitochondrial turnover and, under certain physiological or pathological situations, may drive the elimination of faulty mitochondria. Due to their high energy requirements and post-mitotic origin, neurons are especially susceptible to autophagic and mitochondrial malfunction. This article focused on the importance of autophagy and mitophagy in neurodegenerative illnesses and how they might be used to create novel therapeutic approaches for treating a wide range of neurological disorders.
Collapse
Affiliation(s)
- Lakshay Kapil
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Vishal Kumar
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Simranjit Kaur
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Deepali Sharma
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Charan Singh
- Department of Pharmaceutics (School of Pharmacy), H.N.B. Garhwal University, Srinagar - 246174, Garhwal (Uttarakhand), India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| |
Collapse
|
11
|
Gushi S, Balis V. Mitochondrial Inherited Disorders and their Correlation with Neurodegenerative Diseases. Endocr Metab Immune Disord Drug Targets 2024; 24:381-393. [PMID: 37937560 DOI: 10.2174/0118715303250271231018103202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/13/2023] [Accepted: 09/15/2023] [Indexed: 11/09/2023]
Abstract
Mitochondria are essential organelles for the survival of a cell because they produce energy. The cells that need more mitochondria are neurons because they perform a variety of tasks that are necessary to support brain homeostasis. The build-up of abnormal proteins in neurons, as well as their interactions with mitochondrial proteins, or MAM proteins, cause serious health issues. As a result, mitochondrial functions, such as mitophagy, are impaired, resulting in the disorders described in this review. They are also due to mtDNA mutations, which alter the heritability of diseases. The topic of disease prevention, as well as the diagnosis, requires further explanation and exploration. Finally, there are treatments that are quite promising, but more detailed research is needed.
Collapse
Affiliation(s)
- Sofjana Gushi
- Department of Health Science and Biomedical Science, Metropolitan College - Thessaloniki Campus, Thessaloniki, Greece
| | - Vasileios Balis
- Department of Health Science and Biomedical Science, Metropolitan College - Thessaloniki Campus, Thessaloniki, Greece
| |
Collapse
|
12
|
Reed AL, Mitchell W, Alexandrescu AT, Alder NN. Interactions of amyloidogenic proteins with mitochondrial protein import machinery in aging-related neurodegenerative diseases. Front Physiol 2023; 14:1263420. [PMID: 38028797 PMCID: PMC10652799 DOI: 10.3389/fphys.2023.1263420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Most mitochondrial proteins are targeted to the organelle by N-terminal mitochondrial targeting sequences (MTSs, or "presequences") that are recognized by the import machinery and subsequently cleaved to yield the mature protein. MTSs do not have conserved amino acid compositions, but share common physicochemical properties, including the ability to form amphipathic α-helical structures enriched with basic and hydrophobic residues on alternating faces. The lack of strict sequence conservation implies that some polypeptides can be mistargeted to mitochondria, especially under cellular stress. The pathogenic accumulation of proteins within mitochondria is implicated in many aging-related neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's diseases. Mechanistically, these diseases may originate in part from mitochondrial interactions with amyloid-β precursor protein (APP) or its cleavage product amyloid-β (Aβ), α-synuclein (α-syn), and mutant forms of huntingtin (mHtt), respectively, that are mediated in part through their associations with the mitochondrial protein import machinery. Emerging evidence suggests that these amyloidogenic proteins may present cryptic targeting signals that act as MTS mimetics and can be recognized by mitochondrial import receptors and transported into different mitochondrial compartments. Accumulation of these mistargeted proteins could overwhelm the import machinery and its associated quality control mechanisms, thereby contributing to neurological disease progression. Alternatively, the uptake of amyloidogenic proteins into mitochondria may be part of a protein quality control mechanism for clearance of cytotoxic proteins. Here we review the pathomechanisms of these diseases as they relate to mitochondrial protein import and effects on mitochondrial function, what features of APP/Aβ, α-syn and mHtt make them suitable substrates for the import machinery, and how this information can be leveraged for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Ashley L. Reed
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Wayne Mitchell
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Andrei T. Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Nathan N. Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
13
|
Li W, Wu M, Li Y, Shen J. Reactive nitrogen species as therapeutic targets for autophagy/mitophagy modulation to relieve neurodegeneration in multiple sclerosis: Potential application for drug discovery. Free Radic Biol Med 2023; 208:37-51. [PMID: 37532065 DOI: 10.1016/j.freeradbiomed.2023.07.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
Multiple sclerosis (MS) is a neuroinflammatory disease with limited therapeutic effects, eventually developing into handicap. Seeking novel therapeutic strategies for MS is timely important. Active autophagy/mitophagy could mediate neurodegeneration, while its roles in MS remain controversial. To elucidate the exact roles of autophagy/mitophagy and reveal its in-depth regulatory mechanisms, we conduct a systematic literature study and analyze the factors that might be responsible for divergent results obtained. The dynamic change levels of autophagy/mitophagy appear to be a determining factor for final neuron fate during MS pathology. Excessive neuronal autophagy/mitophagy contributes to neurodegeneration after disease onset at the active MS phase. Reactive nitrogen species (RNS) serve as key regulators for redox-related modifications and participate in autophagy/mitophagy modulation in MS. Nitric oxide (•NO) and peroxynitrite (ONOO-), two representative RNS, could nitrate or nitrosate Drp1/parkin/PINK1 pathway, activating excessive mitophagy and aggravating neuronal injury. Targeting RNS-mediated excessive autophagy/mitophagy could be a promising strategy for developing novel anti-MS drugs. In this review, we highlight the important roles of RNS-mediated autophagy/mitophagy in neuronal injury and review the potential therapeutic compounds with the bioactivities of inhibiting RNS-mediated autophagy/mitophagy activation and attenuating MS progression. Overall, we conclude that reactive nitrogen species could be promising therapeutic targets to regulate autophagy/mitophagy for multiple sclerosis treatment.
Collapse
Affiliation(s)
- Wenting Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.
| | - Meiling Wu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Yuzhen Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
14
|
Harrington JS, Ryter SW, Plataki M, Price DR, Choi AMK. Mitochondria in health, disease, and aging. Physiol Rev 2023; 103:2349-2422. [PMID: 37021870 PMCID: PMC10393386 DOI: 10.1152/physrev.00058.2021] [Citation(s) in RCA: 174] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Mitochondria are well known as organelles responsible for the maintenance of cellular bioenergetics through the production of ATP. Although oxidative phosphorylation may be their most important function, mitochondria are also integral for the synthesis of metabolic precursors, calcium regulation, the production of reactive oxygen species, immune signaling, and apoptosis. Considering the breadth of their responsibilities, mitochondria are fundamental for cellular metabolism and homeostasis. Appreciating this significance, translational medicine has begun to investigate how mitochondrial dysfunction can represent a harbinger of disease. In this review, we provide a detailed overview of mitochondrial metabolism, cellular bioenergetics, mitochondrial dynamics, autophagy, mitochondrial damage-associated molecular patterns, mitochondria-mediated cell death pathways, and how mitochondrial dysfunction at any of these levels is associated with disease pathogenesis. Mitochondria-dependent pathways may thereby represent an attractive therapeutic target for ameliorating human disease.
Collapse
Affiliation(s)
- John S Harrington
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | | | - Maria Plataki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - David R Price
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| |
Collapse
|
15
|
Ma Y, Jiang Q, Yang B, Hu X, Shen G, Shen W, Xu J. Platelet mitochondria, a potent immune mediator in neurological diseases. Front Physiol 2023; 14:1210509. [PMID: 37719457 PMCID: PMC10502307 DOI: 10.3389/fphys.2023.1210509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/17/2023] [Indexed: 09/19/2023] Open
Abstract
Dysfunction of the immune response is regarded as a prominent feature of neurological diseases, including neurodegenerative diseases, malignant tumors, acute neurotraumatic insult, and cerebral ischemic/hemorrhagic diseases. Platelets play a fundamental role in normal hemostasis and thrombosis. Beyond those normal functions, platelets are hyperactivated and contribute crucially to inflammation and immune responses in the central nervous system (CNS). Mitochondria are pivotal organelles in platelets and are responsible for generating most of the ATP that is used for platelet activation and aggregation (clumping). Notably, platelet mitochondria show marked morphological and functional alterations under heightened inflammatory/oxidative stimulation. Mitochondrial dysfunction not only leads to platelet damage and apoptosis but also further aggravates immune responses. Improving mitochondrial function is hopefully an effective strategy for treating neurological diseases. In this review, the authors discuss the immunomodulatory roles of platelet-derived mitochondria (PLT-mitos) in neurological diseases and summarize the neuroprotective effects of platelet mitochondria transplantation.
Collapse
Affiliation(s)
- Yan Ma
- Transfusion Research Department, Wuhan Blood Center, Wuhan, Hubei, China
- Institute of Blood Transfusion of Hubei Province, Wuhan Blood Center, Wuhan, Hubei, China
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Jiang
- Transfusion Research Department, Wuhan Blood Center, Wuhan, Hubei, China
- Institute of Blood Transfusion of Hubei Province, Wuhan Blood Center, Wuhan, Hubei, China
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Bingxin Yang
- Wuhan Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyu Hu
- Transfusion Research Department, Wuhan Blood Center, Wuhan, Hubei, China
- Institute of Blood Transfusion of Hubei Province, Wuhan Blood Center, Wuhan, Hubei, China
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Shen
- Transfusion Research Department, Wuhan Blood Center, Wuhan, Hubei, China
- Institute of Blood Transfusion of Hubei Province, Wuhan Blood Center, Wuhan, Hubei, China
| | - Wei Shen
- Wuhan Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Xu
- Wuhan Blood Center, Wuhan, Hubei, China
| |
Collapse
|
16
|
Franco R, Serrano-Marín J. The unbroken Krebs cycle. Hormonal-like regulation and mitochondrial signaling to control mitophagy and prevent cell death. Bioessays 2023; 45:e2200194. [PMID: 36549872 DOI: 10.1002/bies.202200194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
The tricarboxylic acid (TCA) or Krebs cycle, which takes place in prokaryotic cells and in the mitochondria of eukaryotic cells, is central to life on Earth and participates in key events such as energy production and anabolic processes. Despite its relevance, it is not perceived as tightly regulated compared to other key metabolisms such as glycolysis/gluconeogenesis. A better understanding of the functioning of the TCA cycle is crucial due to mitochondrial function impairment in several diseases, especially those that occur with neurodegeneration. This article revisits what is known about the regulation of the Krebs cycle and hypothesizes the need for large-scale, rapid regulation of TCA cycle enzyme activity. Evidence of mitochondrial enzyme activity regulation by activation/deactivation of protein kinases and phosphatases exists in the literature. Apart from indirect regulation via G protein-coupled receptors (GPCRs) at the cell surface, signaling upon activation of GPCRs in mitochondrial membranes may lead to a direct regulation of the enzymes of the Krebs cycle. Hormonal-like regulation by posttranscriptional events mediated by activable kinases and phosphatases deserve proper assessment using isolated mitochondria. Also see the video abstract here: https://youtu.be/aBpDSWiMQyI.
Collapse
Affiliation(s)
- Rafael Franco
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain.,Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.,School of Chemistry, Universitat de Barcelona, Barcelona, Spain
| | - Joan Serrano-Marín
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Mitochondrial proteotoxicity: implications and ubiquitin-dependent quality control mechanisms. Cell Mol Life Sci 2022; 79:574. [DOI: 10.1007/s00018-022-04604-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/04/2022] [Accepted: 10/17/2022] [Indexed: 11/27/2022]
|
18
|
Yefimova MG. Myelinosome organelles in pathological retinas: ubiquitous presence and dual role in ocular proteostasis maintenance. Neural Regen Res 2022; 18:1009-1016. [PMID: 36254982 PMCID: PMC9827766 DOI: 10.4103/1673-5374.355753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The timely and efficient elimination of aberrant proteins and damaged organelles, formed in response to various genetic and environmental stressors, is a vital need for all cells of the body. Recent lines of evidence point out several non-classical strategies employed by ocular tissues to cope with aberrant constituents generated in the retina and in the retinal pigmented epithelium cells exposed to various stressors. Along with conventional strategies relying upon the intracellular degradation of aberrant constituents through ubiquitin-proteasome and/or lysosome-dependent autophagy proteolysis, two non-conventional mechanisms also contribute to proteostasis maintenance in ocular tissues. An exosome-mediated clearing and a myelinosome-driven secretion mechanism do not require intracellular degradation but provide the export of aberrant constituents and "waste proteins" outside of the cells. The current review is centered on the non-degradative myelinosome-driven secretion mechanism, which operates in the retina of transgenic Huntington's disease R6/1 model mice. Myelinosome-driven secretion is supported by rare organelles myelinosomes that are detected not only in degenerative Huntington's disease R6/1 retina but also in various pathological states of the retina and of the retinal pigmented epithelium. The intra-retinal traffic and inter-cellular exchange of myelinosomes was discussed in the context of a dual role of the myelinosome-driven secretion mechanism for proteostasis maintenance in different ocular compartments. Special focus was made on the interplay between degradative and non-degradative strategies in ocular pathophysiology, to delineate potential therapeutic approaches to counteract several vision diseases.
Collapse
Affiliation(s)
- Marina G. Yefimova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St-Petersburg, Russia,Laboratoire STIM CNRS ERL 7003, Université de Poitiers, Poitiers, France,Correspondence to: Marina G. Yefimova, .
| |
Collapse
|
19
|
Wang L, Yang Z, He X, Pu S, Yang C, Wu Q, Zhou Z, Cen X, Zhao H. Mitochondrial protein dysfunction in pathogenesis of neurological diseases. Front Mol Neurosci 2022; 15:974480. [PMID: 36157077 PMCID: PMC9489860 DOI: 10.3389/fnmol.2022.974480] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Mitochondria are essential organelles for neuronal function and cell survival. Besides the well-known bioenergetics, additional mitochondrial roles in calcium signaling, lipid biogenesis, regulation of reactive oxygen species, and apoptosis are pivotal in diverse cellular processes. The mitochondrial proteome encompasses about 1,500 proteins encoded by both the nuclear DNA and the maternally inherited mitochondrial DNA. Mutations in the nuclear or mitochondrial genome, or combinations of both, can result in mitochondrial protein deficiencies and mitochondrial malfunction. Therefore, mitochondrial quality control by proteins involved in various surveillance mechanisms is critical for neuronal integrity and viability. Abnormal proteins involved in mitochondrial bioenergetics, dynamics, mitophagy, import machinery, ion channels, and mitochondrial DNA maintenance have been linked to the pathogenesis of a number of neurological diseases. The goal of this review is to give an overview of these pathways and to summarize the interconnections between mitochondrial protein dysfunction and neurological diseases.
Collapse
Affiliation(s)
- Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Ziyun Yang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Xiumei He
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Shiming Pu
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Cheng Yang
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Qiong Wu
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Zuping Zhou
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Hongxia Zhao
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
20
|
Vanisova M, Stufkova H, Kohoutova M, Rakosnikova T, Krizova J, Klempir J, Rysankova I, Roth J, Zeman J, Hansikova H. Mitochondrial organization and structure are compromised in fibroblasts from patients with Huntington's disease. Ultrastruct Pathol 2022; 46:462-475. [PMID: 35946926 DOI: 10.1080/01913123.2022.2100951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Huntington´s disease (HD) is a progressive neurodegenerative disease with onset in adulthood that leads to a complete disability and death in approximately 20 years after onset of symptoms. HD is caused by an expansion of a CAG triplet in the gene for huntingtin. Although the disease causes most damage to striatal neurons, other parts of the nervous system and many peripheral tissues are also markedly affected. Besides huntingtin malfunction, mitochondrial impairment has been previously described as an important player in HD. This study focuses on mitochondrial structure and function in cultivated skin fibroblasts from 10 HD patients to demonstrate mitochondrial impairment in extra-neuronal tissue. Mitochondrial structure, mitochondrial fission, and cristae organization were significantly disrupted and signs of elevated apoptosis were found. In accordance with structural changes, we also found indicators of functional alteration of mitochondria. Mitochondrial disturbances presented in fibroblasts from HD patients confirm that the energy metabolism damage in HD is not localized only to the central nervous system, but also may play role in the pathogenesis of HD in peripheral tissues. Skin fibroblasts can thus serve as a suitable cellular model to make insight into HD pathobiochemical processes and for the identification of possible targets for new therapies.
Collapse
Affiliation(s)
- Marie Vanisova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Hana Stufkova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Michaela Kohoutova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tereza Rakosnikova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jana Krizova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jiri Klempir
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Irena Rysankova
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jan Roth
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jiri Zeman
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Hana Hansikova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
21
|
Cui Z, Zhao X, Amevor FK, Du X, Wang Y, Li D, Shu G, Tian Y, Zhao X. Therapeutic application of quercetin in aging-related diseases: SIRT1 as a potential mechanism. Front Immunol 2022; 13:943321. [PMID: 35935939 PMCID: PMC9355713 DOI: 10.3389/fimmu.2022.943321] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022] Open
Abstract
Quercetin, a naturally non-toxic flavonoid within the safe dose range with antioxidant, anti-apoptotic and anti-inflammatory properties, plays an important role in the treatment of aging-related diseases. Sirtuin 1 (SIRT1), a member of NAD+-dependent deacetylase enzyme family, is extensively explored as a potential therapeutic target for attenuating aging-induced disorders. SIRT1 possess beneficial effects against aging-related diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), Depression, Osteoporosis, Myocardial ischemia (M/I) and reperfusion (MI/R), Atherosclerosis (AS), and Diabetes. Previous studies have reported that aging increases tissue susceptibility, whereas, SIRT1 regulates cellular senescence and multiple aging-related cellular processes, including SIRT1/Keap1/Nrf2/HO-1 and SIRTI/PI3K/Akt/GSK-3β mediated oxidative stress, SIRT1/NF-κB and SIRT1/NLRP3 regulated inflammatory response, SIRT1/PGC1α/eIF2α/ATF4/CHOP and SIRT1/PKD1/CREB controlled phosphorylation, SIRT1-PINK1-Parkin mediated mitochondrial damage, SIRT1/FoxO mediated autophagy, and SIRT1/FoxG1/CREB/BDNF/Trkβ-catenin mediated neuroprotective effects. In this review, we summarized the role of SIRT1 in the improvement of the attenuation effect of quercetin on aging-related diseases and the relationship between relevant signaling pathways regulated by SIRT1. Moreover, the functional regulation of quercetin in aging-related markers such as oxidative stress, inflammatory response, mitochondrial function, autophagy and apoptosis through SIRT1 was discussed. Finally, the prospects of an extracellular vesicles (EVs) as quercetin loading and delivery, and SIRT1-mediated EVs as signal carriers for treating aging-related diseases, as well as discussed the ferroptosis alleviation effects of quercetin to protect against aging-related disease via activating SIRT1. Generally, SIRT1 may serve as a promising therapeutic target in the treatment of aging-related diseases via inhibiting oxidative stress, reducing inflammatory responses, and restoring mitochondrial dysfunction.
Collapse
Affiliation(s)
- Zhifu Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaxia Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Gang Shu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Xiaoling Zhao,
| |
Collapse
|
22
|
The role of autophagy and apoptosis in early brain injury after subarachnoid hemorrhage: an updated review. Mol Biol Rep 2022; 49:10775-10782. [PMID: 35819555 DOI: 10.1007/s11033-022-07756-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/29/2022] [Indexed: 12/11/2022]
Abstract
Subarachnoid hemorrhage (SAH) is a worldwide devastating type of stroke with high mortality and morbidity. Accumulating evidence show early brain injury (EBI) as the leading cause of mortality after SAH. The pathological processes involved in EBI include decreased cerebral blood flow, increased intracranial pressure, vasospasm, and disruption of the blood-brain barrier. In addition, neuroinflammation, oxidative stress, apoptosis, and autophagy have also been proposed to contribute to EBI. Among the various processes involved in EBI, neuronal apoptosis has been proven to be a key factor contributing to the poor prognosis of SAH patients. Meanwhile, as another important catabolic process maintaining the cellular and tissue homeostasis, autophagy has been shown to be neuroprotective after SAH. Studies have shown that enhancing autophagy reduced apoptosis, whereas inhibiting autophagy aggravate neuronal apoptosis after SAH. The physiological substrates and mechanisms of neuronal autophagy and apoptosis by which defects in neuronal function are largely unknown. In this review, we summarize and discuss the role of autophagy and apoptosis after SAH and contribute to further study for investigation of the means to control the balance between them.
Collapse
|
23
|
Sabnis RW. Novel Cyclic Cyanoenone Derivatives as KEAP1Modulators for Treating Neurodegenerative Diseases. ACS Med Chem Lett 2022; 13:777-778. [PMID: 35586432 PMCID: PMC9109512 DOI: 10.1021/acsmedchemlett.2c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1105 West Peachtree Street NE, Suite 1000, Atlanta, Georgia 30309, United States
| |
Collapse
|
24
|
Wan W, Hua F, Fang P, Li C, Deng F, Chen S, Ying J, Wang X. Regulation of Mitophagy by Sirtuin Family Proteins: A Vital Role in Aging and Age-Related Diseases. Front Aging Neurosci 2022; 14:845330. [PMID: 35615591 PMCID: PMC9124796 DOI: 10.3389/fnagi.2022.845330] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/19/2022] [Indexed: 12/18/2022] Open
Abstract
Sirtuins are protein factors that can delay aging and alleviate age-related diseases through multiple molecular pathways, mainly by promoting DNA damage repair, delaying telomere shortening, and mediating the longevity effect of caloric restriction. In the last decade, sirtuins have also been suggested to exert mitochondrial quality control by mediating mitophagy, which targets damaged mitochondria and delivers them to lysosomes for degradation. This is especially significant for age-related diseases because dysfunctional mitochondria accumulate in aging organisms. Accordingly, it has been suggested that sirtuins and mitophagy have many common and interactive aspects in the aging process. This article reviews the mechanisms and pathways of sirtuin family-mediated mitophagy and further discusses its role in aging and age-related diseases.
Collapse
Affiliation(s)
- Wei Wan
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Pu Fang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chang Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Fumou Deng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Shoulin Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
- Jun Ying
| | - Xifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Xifeng Wang
| |
Collapse
|
25
|
Sabnis RW. Novel Substituted Heteroaryl Compounds for Treating Huntington's Disease. ACS Med Chem Lett 2021; 12:1881-1882. [PMID: 34917244 DOI: 10.1021/acsmedchemlett.1c00607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Indexed: 11/28/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1105 W. Peachtree Street NE, Suite 1000, Atlanta, Georgia30309, United States
| |
Collapse
|