1
|
Hou L, Bellingham MC, Huang Y, Zhang P, Zhou X, Zhang M. Central inspiratory activity rhythmically activates synaptic currents of airway vagal preganglionic neurons in neonatal rats. Neurosci Lett 2018; 694:231-237. [PMID: 30458215 DOI: 10.1016/j.neulet.2018.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/18/2018] [Accepted: 11/15/2018] [Indexed: 10/27/2022]
Abstract
The airway vagal preganglionic neurons (AVPNs) in the external formation of the nucleus ambiguus (eNA) can be separated into inspiratory-activated AVPNs (IA-AVPNs) and inspiratory-inhibited AVPNs (II-AVPNs). IA-AVPNs are activated by excitatory presynaptic inputs during inspiratory bursts, but the composition and the roles of these excitatory inputs still remain obscure. II-AVPNs are inhibited by inhibitory presynaptic inputs but whether these inhibitory inputs are regulated by excitatory inputs is also unclear. In the current study, AVPNs were retrogradely fluorescent labeled. The IA-AVPNs were discriminated from II-AVPNs by their different synaptic inputs during inspiratory bursts. The excitatory inputs to IA-AVPNs and the presynaptic regulation of II-AVPNs were examined by whole-cell patch clamping. Topical application of 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX) to the recorded IA-AVPNs almost abolished the tonic EPSCs during inspiratory intervals, inhibited the phasic excitatory currents during inspiratory bursts and attenuated the phasic inspiratory inward currents (PIICs) driven by central inspiratory activity. Blockade of α4β2 and α7 nicotinic acetylcholine receptors (nAChRs) respectively inhibited PIICs in some IA-AVPNs. Carbenoxolone, a gap junction uncoupler, partly inhibited the PIICs of IA-AVPNs. Focal application of CNQX to the II-AVPNs significantly inhibited the frequency, peak amplitude and area of the phasic inspiratory outward currents (PIOCs). These findings demonstrated that glutamatergic non-NMDA receptors played a predominant role in the excitatory drive to the IA-AVPNs, and that α4β2, α7 nAChRs and gap junctions were also rhythmically activated by central inspiratory activity. Additionally, glycinergic neurons making inhibitory inputs to the II-AVPNs were pre-synaptically facilitated by excitatory glutamatergic synaptic inputs.
Collapse
Affiliation(s)
- Lili Hou
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Mark C Bellingham
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Yong Huang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengyu Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Zhou
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Simko F, Baka T, Paulis L, Reiter RJ. Elevated heart rate and nondipping heart rate as potential targets for melatonin: a review. J Pineal Res 2016; 61:127-37. [PMID: 27264986 DOI: 10.1111/jpi.12348] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/03/2016] [Indexed: 01/08/2023]
Abstract
Elevated heart rate is a risk factor for cardiovascular and all-cause mortalities in the general population and various cardiovascular pathologies. Insufficient heart rate decline during the night, that is, nondipping heart rate, also increases cardiovascular risk. Abnormal heart rate reflects an autonomic nervous system imbalance in terms of relative dominance of sympathetic tone. There are only a few prospective studies concerning the effect of heart rate reduction in coronary heart disease and heart failure. In hypertensive patients, retrospective analyses show no additional benefit of slowing down the heart rate by beta-blockade to blood pressure reduction. Melatonin, a secretory product of the pineal gland, has several attributes, which predict melatonin to be a promising candidate in the struggle against elevated heart rate and its consequences in the hypertensive population. First, melatonin production depends on the sympathetic stimulation of the pineal gland. On the other hand, melatonin inhibits the sympathetic system in several ways representing potentially the counter-regulatory mechanism to normalize excessive sympathetic drive. Second, administration of melatonin reduces heart rate in animals and humans. Third, the chronobiological action of melatonin may normalize the insufficient nocturnal decline of heart rate. Moreover, melatonin reduces the development of endothelial dysfunction and atherosclerosis, which are considered a crucial pathophysiological disorder of increased heart rate and pulsatile blood flow. The antihypertensive and antiremodeling action of melatonin along with its beneficial effects on lipid profile and insulin resistance may be of additional benefit. A clinical trial investigating melatonin actions in hypertensive patients with increased heart rate is warranted.
Collapse
Affiliation(s)
- Fedor Simko
- Department of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
- 3rd Clinic of Medicine, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
- Institute of Experimental Endocrinology BMC, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Tomas Baka
- Department of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - Ludovit Paulis
- Department of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| |
Collapse
|
3
|
Citti C, Battisti UM, Cannazza G, Jozwiak K, Stasiak N, Puja G, Ravazzini F, Ciccarella G, Braghiroli D, Parenti C, Troisi L, Zoli M. 7-Chloro-5-(furan-3-yl)-3-methyl-4H-benzo[e][1,2,4]thiadiazine 1,1-Dioxide as Positive Allosteric Modulator of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptor. The End of the Unsaturated-Inactive Paradigm? ACS Chem Neurosci 2016; 7:149-60. [PMID: 26580317 DOI: 10.1021/acschemneuro.5b00257] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
5-Arylbenzothiadiazine type compounds acting as positive allosteric modulators of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA-PAMs) have received particular attention in the past decade for their nootropic activity and lack of the excitotoxic side effects of direct agonists. Recently, our research group has published the synthesis and biological activity of 7-chloro-5-(3-furanyl)-3-methyl-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide (1), one of the most active benzothiadiazine-derived AMPA-PAMs in vitro to date. However, 1 exists as two stereolabile enantiomers, which rapidly racemize in physiological conditions, and only one isomer is responsible for the pharmacological activity. In the present work, experiments carried out with rat liver microsomes show that 1 is converted by hepatic cytochrome P450 to the corresponding unsaturated derivative 2 and to the corresponding pharmacologically inactive benzenesulfonamide 3. Surprisingly, patch-clamp experiments reveal that 2 displays an activity comparable to that of the parent compound. Molecular modeling studies were performed to rationalize these results. Furthermore, mice cerebral microdialysis studies suggest that 2 is able to cross the blood-brain barrier and increases acetylcholine and serotonin levels in the hippocampus. The experimental data disclose that the achiral hepatic metabolite 2 possesses the same pharmacological activity of its parent compound 1 but with an enhanced chemical and stereochemical stability, as well as an improved pharmacokinetic profile compared with 1.
Collapse
Affiliation(s)
- Cinzia Citti
- Dipartimento
di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via per Monteroni, 73100 Lecce, Italy
- CNR
NANOTEC, Campus Ecoteckne dell’Università del Salento, Via per
Monteroni, 73100 Lecce, Italy
| | - Umberto M. Battisti
- Dipartimento
di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Giuseppe Cannazza
- CNR
NANOTEC, Campus Ecoteckne dell’Università del Salento, Via per
Monteroni, 73100 Lecce, Italy
- Dipartimento
di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Krzysztof Jozwiak
- Laboratory
of Biopharmacy, Department of Chemistry, Medical University of Lublin, ul. W. Chodzki 4a, 20-093 Lublin, Poland
| | - Natalia Stasiak
- Dipartimento
di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Giulia Puja
- Dipartimento
di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Federica Ravazzini
- Dipartimento
di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Giuseppe Ciccarella
- Dipartimento
di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via per Monteroni, 73100 Lecce, Italy
- CNR
NANOTEC, Campus Ecoteckne dell’Università del Salento, Via per
Monteroni, 73100 Lecce, Italy
| | - Daniela Braghiroli
- Dipartimento
di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Carlo Parenti
- Dipartimento
di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Luigino Troisi
- Dipartimento
di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Michele Zoli
- Dipartimento
di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| |
Collapse
|
4
|
Carrozzo MM, Battisti UM, Cannazza G, Puia G, Ravazzini F, Falchicchio A, Perrone S, Citti C, Jozwiak K, Braghiroli D, Parenti C, Troisi L. Design, stereoselective synthesis, configurational stability and biological activity of 7-chloro-9-(furan-3-yl)-2,3,3a,4-tetrahydro-1H-benzo[e]pyrrolo[2,1-c][1,2,4]thiadiazine 5,5-dioxide. Bioorg Med Chem 2014; 22:4667-76. [DOI: 10.1016/j.bmc.2014.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/10/2014] [Accepted: 07/11/2014] [Indexed: 11/30/2022]
|
5
|
Patel NC, Schwarz J, Hou XJ, Hoover DJ, Xie L, Fliri AJ, Gallaschun RJ, Lazzaro JT, Bryce DK, Hoffmann WE, Hanks AN, McGinnis D, Marr ES, Gazard JL, Hajós M, Scialis RJ, Hurst RS, Shaffer CL, Pandit J, O’Donnell CJ. Discovery and Characterization of a Novel Dihydroisoxazole Class of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) Receptor Potentiators. J Med Chem 2013; 56:9180-91. [DOI: 10.1021/jm401274b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Nandini C. Patel
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jacob Schwarz
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Xinjun J. Hou
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Dennis J. Hoover
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Longfei Xie
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Anton J. Fliri
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Randall J. Gallaschun
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - John T. Lazzaro
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Dianne K. Bryce
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - William E. Hoffmann
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Ashley N. Hanks
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Dina McGinnis
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Eric S. Marr
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Justin L. Gazard
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Mihály Hajós
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Renato J. Scialis
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Raymond S. Hurst
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Christopher L. Shaffer
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jayvardhan Pandit
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Christopher J. O’Donnell
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
6
|
Yefimenko N, Portero-Tresserra M, Martí-Nicolovius M, Guillazo-Blanch G, Vale-Martínez A. The AMPA receptor modulator S18986 in the prelimbic cortex enhances acquisition and retention of an odor-reward association. Neurosci Lett 2013; 548:105-9. [PMID: 23707650 DOI: 10.1016/j.neulet.2013.05.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/05/2013] [Accepted: 05/13/2013] [Indexed: 12/31/2022]
Abstract
Systemic administration of S18986, a positive allosteric modulator of AMPA receptors, improves cognition. The present study further characterizes the drug's memory-enhancing properties and is the first to investigate its intracerebral effects on learning and memory. The results showed that rats receiving a single dose of S18986 (3 μg/site) into the prelimbic cortex, prior to olfactory discrimination acquisition, exhibited significantly shorter latencies and fewer errors to make the correct response, both in the acquisition and two drug-free retention tests. Such findings corroborate the involvement of glutamate receptors in odor-reward learning and confirm the role of the AMPAkine S18986 as a cognitive enhancer.
Collapse
Affiliation(s)
- Natalya Yefimenko
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
7
|
Fliegel S, Brand I, Spanagel R, Noori HR. Ethanol-induced alterations of amino acids measured by in vivo microdialysis in rats: a meta-analysis. In Silico Pharmacol 2013; 1:7. [PMID: 25505652 PMCID: PMC4230485 DOI: 10.1186/2193-9616-1-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/07/2013] [Indexed: 12/14/2022] Open
Abstract
PURPOSE In recent years in vivo microdialysis has become an important method in research studies investigating the alterations of neurotransmitters in the extracellular fluid of the brain. Based on the major involvement of glutamate and γ-aminobutyric acid (GABA) in mediating a variety of alcohol effects in the mammalian brain, numerous microdialysis studies have focused on the dynamical behavior of these systems in response to alcohol. METHODS Here we performed multiple meta-analyses on published datasets from the rat brain: (i) we studied basal extracellular concentrations of glutamate and GABA in brain regions that belong to a neurocircuitry involved in neuropsychiatric diseases, especially in alcoholism (Noori et al., Addict Biol 17:827-864, 2012); (ii) we examined the effect of acute ethanol administration on glutamate and GABA levels within this network and (iii) we studied alcohol withdrawal-induced alterations in glutamate and GABA levels within this neurocircuitry. RESULTS For extraction of basal concentrations of these neurotransmitters, datasets of 6932 rats were analyzed and the absolute basal glutamate and GABA levels were estimated for 18 different brain sites. In response to different doses of acute ethanol administration, datasets of 529 rats were analyzed and a non-linear dose response (glutamate and GABA release) relationship was observed in several brain sites. Specifically, glutamate in the nucleus accumbens shows a decreasing logarithmic dose response curve. Finally, regression analysis of 11 published reports employing brain microdialysis experiments in 104 alcohol-dependent rats reveals very consistent augmented extracellular glutamate and GABA levels in various brain sites that correlate with the intensity of the withdrawal response were identified. CONCLUSIONS In summary, our results provide standardized basal values for future experimental and in silico studies on neurotransmitter release in the rat brain and may be helpful to understand the effect of ethanol on neurotransmitter release. Furthermore, this study illustrates the benefit of meta-analyses using the generalization of a wide range of preclinical data.
Collapse
Affiliation(s)
- Sarah Fliegel
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Ines Brand
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Hamid R Noori
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| |
Collapse
|
8
|
Vandesquille M, Carrié I, Louis C, Beracochea D, Lestage P. Effects of positive modulators of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors in a benzodiazepine-induced deficit of spatial discrimination in mice. J Psychopharmacol 2012; 26:845-56. [PMID: 21890586 DOI: 10.1177/0269881111416692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Imbalance between GABAergic and glutamatergic neurotransmission has been recently hypothesized to trigger memory decline related either to ageing or to Alzheimer's disease (AD). Thereby, benzodiazepine-induced anterograde amnesia has been construed as a model of hippocampal-related cognitive dysfunctions. Since spatial memory is altered both by ageing and by benzodiazepines such as alprazolam, we investigated the pharmacological sensitivity of alprazolam-induced deficit in a delayed spatial discrimination (SD) task, notably with positive allosteric modulators of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors. We showed that alprazolam (0.1 mg/kg intraperitoneally) induced memory impairments as compared with vehicle-treated mice. The oral administration of modulators of AMPA receptors (IDRA-21: 10 mg/kg; S18986: 3 and 10 mg/kg) reversed the alprazolam-induced deficits. This study is first to show evidence that reference treatments of AD, such as memantine (a NMDA receptor antagonist) at 3 mg/kg per os (po) and donepezil (an acetylcholinesterase inhibitor) at 1 mg/kg po, also reversed the alprazolam-induced amnesia. Given such results, the SD task emerges as a valuable novel task to screen pro-cognitive compounds. Thus, we highlight the efficacy of modulators of AMPA-type glutamate receptors to counteract alprazolam-induced spatial deficits. These results could be viewed alongside the imbalance between excitation and inhibition observed during normal and pathological ageing.
Collapse
Affiliation(s)
- M Vandesquille
- Institut de Recherches Servier, Croissy-sur-Seine, France.
| | | | | | | | | |
Collapse
|
9
|
Vandesquille M, Krazem A, Louis C, Lestage P, Béracochéa D. S 18986 reverses spatial working memory impairments in aged mice: comparison with memantine. Psychopharmacology (Berl) 2011; 215:709-20. [PMID: 21274701 DOI: 10.1007/s00213-011-2168-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 01/04/2011] [Indexed: 12/25/2022]
Abstract
RATIONALE Normal or pathological ageing is characterized by working-memory dysfunction paired with a marked reduction in several neurotransmitters activity. The development of therapeutic strategy centered on the glutamatergic system known to bear a critical role in cognitive functions, is therefore of major importance in the treatment of mild forms of AD or age-related memory dysfunctions. OBJECTIVES In Experiment 1, we investigated the effects of ageing on spatial working memory measured by sequential alternation (SA). Thus, the decay of alternation rates over a series of trials separated by varying intertrial temporal intervals (ITI, from 5 sec to 180 sec) was studied in mice of different age groups. In Experiment 2, we investigated the memory-enhancing potential of S 18986--a modulator of AMPA receptors--on age-related SA impairments, in comparison with memantine--an antagonist of NMDA receptors--. RESULTS In Experiment 1, aged mice responded at chance with shorter ITI's and exhibited greater levels of interference in the SA task as compared to young adult mice. In Experiment 2, (1) S 18986 at 0.03 and 0.1 mg/kg reversed the memory deficit in aged mice but did not modify performance in young adult mice; (2) memantine at 10 mg/kg also increased SA rates in aged mice but did not improve performance in young adult mice. CONCLUSION The SA task is a useful tool to reveal age-induced time-dependent working memory impairments. As compared to memantine, S 18986--a compound targeting AMPA receptors--contributes a valuable therapy in the treatment of age-related cognitive dysfunctions or mild forms of AD.
Collapse
Affiliation(s)
- Matthias Vandesquille
- Institut de Neurosciences Intégratives et Cognitives d'Aquitaine, Universités de Bordeaux, IMR CNRS 5287, Avenue des Facultés, 33405, Talence, France
| | | | | | | | | |
Collapse
|
10
|
Bernard K, Danober L, Thomas JY, Lebrun C, Muñoz C, Cordi A, Desos P, Lestage P, Morain P. DRUG FOCUS: S 18986: A positive allosteric modulator of AMPA-type glutamate receptors pharmacological profile of a novel cognitive enhancer. CNS Neurosci Ther 2011; 16:e193-212. [PMID: 21050420 DOI: 10.1111/j.1755-5949.2009.00088.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) type glutamate receptors are critical for synaptic plasticity and induction of long-term potentiation (LTP), considered as one of the synaptic mechanisms underlying learning and memory. Positive allosteric modulators of AMPA receptors could provide a therapeutic approach to the treatment of cognitive disorders resulting from aging and/or neurodegenerative diseases, such as Alzheimer disease (AD). Several AMPA potentiators have been described in the last decade, but for the moment their clinical efficacy has not been demonstrated due to the complexity of the target, AMPA receptors, and the difficulty in studying cognition in animals and humans. A better understanding of the mechanism of action of this type of drug remains an important issue, if knowledge of these compounds is to be increased and if this novel therapeutic approach is to be an interesting research area. Among the AMPA potentiators, S 18986 is emerging as a new selective positive allosteric modulator of AMPA-type glutamate receptors. S 18986, as with other positive AMPA receptor modulators, increased induction and maintenance of LTP in the hippocampus as well as the expression of brain-derived neurotrophic factor (BDNF) both in vitro and in vivo. Its cognitive-enhancing properties have been demonstrated in various behavioral models (procedural, spatial, "episodic," working, and relational/declarative memory) in young-adult and aged rodents. It is interesting to note that memory-enhancing effects appeared more robust in middle-aged animals compared with aged ones and in "episodic" and spatial memory tasks. From these results, S 18986 is expected to treat memory deficits associated with early cerebral aging and neurological diseases in elderly people.
Collapse
Affiliation(s)
- Katy Bernard
- Institut de Recherches Internationales Servier, Courbevoie, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Carrozzo MM, Cannazza G, Pinetti D, Di Viesti V, Battisti U, Braghiroli D, Parenti C, Baraldi M. Quantitative analysis of acetylcholine in rat brain microdialysates by liquid chromatography coupled with electrospray ionization tandem mass spectrometry. J Neurosci Methods 2010; 194:87-93. [PMID: 20888860 DOI: 10.1016/j.jneumeth.2010.09.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 09/21/2010] [Accepted: 09/22/2010] [Indexed: 11/24/2022]
Abstract
A liquid chromatography tandem mass spectrometry (LC/MS/MS) method has been developed for the quantitative analysis of acetylcholine in rat brain dialysates. The separation of acetylcholine (ACh), choline (Ch), acetyl-β-methylcholine (IS) from endogenous compounds and Ringer's salts was achieved with cation exchange chromatography. Optimization of chromatographic and mass spectrometry parameters were perfomed in order to improve sensitivity of the method. The limit of detection were 0.05 and 3.75 fmol on column with S/N ratio of 3:1 for ACh and Ch, respectively. The limit of quantitation (LOQ) for ACh and Ch measured in Ringer's solution were 0.05 nM (0.25 fmol) and 3.75 nM (18.75 fmol), respectively at S/N ratio of 10:1. Linearity of the method has been evaluated in the concentrations range between 0.05 and 5.00 nM and 3.75 and 200 nM for ACh and Ch respectively. The correlation coefficients were 0.999 and 0.995 for ACh and Ch respectively, indicating very good linearity. The LC/MS/MS method developed has been applied to evaluate the effect of oral administration of 7-chloro-3-methyl-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide (IDRA21), a positive modulators of AMPA receptor, on the release of ACh in the rat prefrontal cortex by microdialysis.
Collapse
Affiliation(s)
- Marina M Carrozzo
- Department of Pharmaceutical Sciencese, University of Modena and Reggio Emilia, Via Campi 183, 41125 Modena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Woolley ML, Waters KA, Gartlon JE, Lacroix LP, Jennings C, Shaughnessy F, Ong A, Pemberton DJ, Harries MH, Southam E, Jones DNC, Dawson LA. Evaluation of the pro-cognitive effects of the AMPA receptor positive modulator, 5-(1-piperidinylcarbonyl)-2,1,3-benzoxadiazole (CX691), in the rat. Psychopharmacology (Berl) 2009; 202:343-54. [PMID: 18795266 DOI: 10.1007/s00213-008-1325-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 08/31/2008] [Indexed: 02/03/2023]
Abstract
RATIONALE Positive allosteric modulators of the glutamatergic alpha-amino-3-hydroxy-5-methyl-4-isoazolepropionic acid (AMPA) receptor do not stimulate AMPA receptors directly but delay deactivation of the receptor and/or slow its desensitisation. This results in increased synaptic responses and enhanced long-term potentiation. Thus, it has been suggested that such compounds may have utility for the treatment of cognitive impairment. OBJECTIVES The objective of the study was to investigate the effect of an AMPA positive modulator, CX691, (1) in three rodent models of learning and memory, (2) on neurochemistry in the dorsal hippocampus and medial prefrontal cortex following acute administration, and (3) on brain-derived neurotrophic factor (BDNF) messenger RNA (mRNA) expression in the rat hippocampus following acute and sub-chronic administration. RESULTS CX691 attenuated a scopolamine-induced impairment of cued fear conditioning following acute administration (0.1 mg/kg p.o.) and a temporally induced deficit in novel object recognition following both acute (0.1 and 1.0 mg/kg p.o.) and sub-chronic (bi-daily for 7 days) administration (0.01, 0.03, 0.1 mg/kg p.o.). It also improved attentional set-shifting following sub-chronic administration (0.3 mg/kg p.o.). Acute CX691 (0.1, 0.3 and 1.0 mg/kg, p.o.) increased extracellular levels of acetylcholine in the dorsal hippocampus and medial prefrontal cortex and dopamine in the medial prefrontal cortex. Sub-chronic administration of CX691 (0.1 mg/kg, p.o.) elevated BDNF mRNA expression in both the whole and CA(1) sub-region of the hippocampus (P < 0.05). CONCLUSIONS Collectively, these data support the pro-cognitive activity reported for AMPA receptor positive modulators and suggest that these compounds may be of benefit in treating disorders characterised by cognitive deficits such as Alzheimer's disease and schizophrenia.
Collapse
Affiliation(s)
- M L Woolley
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline plc, New Frontiers Science Park, Third Avenue, Harlow, Essex CM195AW, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kelly SJ, Bernard K, Muñoz C, Lawrence RC, Thacker J, Grillo CA, Piroli GG, Reagan LP. Effects of the AMPA receptor modulator S 18986 on measures of cognition and oxidative stress in aged rats. Psychopharmacology (Berl) 2009; 202:225-35. [PMID: 18762915 DOI: 10.1007/s00213-008-1301-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 08/10/2008] [Indexed: 12/13/2022]
Abstract
RATIONALE Development of cognitive-enhancing drugs that delay or halt mild cognitive impairment progression to Alzheimer's disease would be of great benefit. OBJECTIVES The aim of this study was to examine the ability of (S)-2,3-dihydro-[3,4]-cyclopentano-1,2,4-benzothiadiazine-1,1-dioxide (S 18986), a positive allosteric modulator of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, to improve behavioral performance and alleviate age-related deficits in oxidative stress status in the prelimbic cortex and hippocampus. MATERIALS AND METHODS Daily administration of S 18986 (0.1, 0.3, and 1.0 mg/kg) or vehicle was given to separate groups of male rats starting at 12 months of age. Additionally, daily vehicle administration was given to a group of rats starting at 3 months of age. Four months after initiation of drug administration, rats were trained and tested in an operant-delayed alternation task and a reinforcer devaluation task. Upon completion of testing, oxidative stress status was assessed in the prelimbic cortex and hippocampus. RESULTS S 18986 dose-dependently altered responses in the reinforcer devaluation task such that aged rats came to resemble young rats. There were no age or drug effects in the operant-delayed alternation task. Levels of the lipid peroxidation product 4-hydroxy-nonenal (HNE) were increased, and Cu/Zn-superoxide dismutase (SOD) levels were decreased in prelimbic cortex in aged rats, changes that were reversed by S 18986. Similarly, age-related increases in hippocampal HNE levels were prevented by S 18986. CONCLUSIONS Positive modulation of AMPA receptor activity may be a therapeutic approach to halt or slow progression of mild cognitive impairment via improvement in oxidative stress status in the hippocampus and prelimbic cortex.
Collapse
Affiliation(s)
- S J Kelly
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Sun MK. The quest for treatment of cognitive impairment: AMPA and mGlu5 receptor modulators. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.18.9.999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
The AMPA modulator S 18986 improves declarative and working memory performances in aged mice. Behav Pharmacol 2008; 19:235-44. [PMID: 18469541 DOI: 10.1097/fbp.0b013e3282feb0c1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aim of this study was to further characterize the memory-enhancing profile of S 18986 a positive allosteric modulator of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors. S 18986 was studied in two mouse models of age-related memory deficits, using radial maze paradigms involving long-term/declarative memory and short-term/working memory. Aged mice exhibited severe deficits when compared with their younger counterparts in the two behavioural tests. S 18986 at the dose of 0.1 mg/kg selectively improved aged mouse performance in the test of long-term/declarative memory flexibility and exerted a beneficial effect on short-term retention of successive arm-visits in the short-term/working memory test. This study confirms the memory-enhancing properties of S 18986 and, in line with emerging data on multiple AMPA modulators, highlights the relevance of targeting AMPA receptors in the development of new memory enhancers.
Collapse
|
16
|
Behavioral and biological effects of chronic S18986, a positive AMPA receptor modulator, during aging. Exp Neurol 2008; 210:109-17. [DOI: 10.1016/j.expneurol.2007.10.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 10/05/2007] [Accepted: 10/08/2007] [Indexed: 11/24/2022]
|
17
|
Ferrante M, Blackwell KT, Migliore M, Ascoli GA. Computational models of neuronal biophysics and the characterization of potential neuropharmacological targets. Curr Med Chem 2008; 15:2456-71. [PMID: 18855673 PMCID: PMC3560392 DOI: 10.2174/092986708785909094] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The identification and characterization of potential pharmacological targets in neurology and psychiatry is a fundamental problem at the intersection between medicinal chemistry and the neurosciences. Exciting new techniques in proteomics and genomics have fostered rapid progress, opening numerous questions as to the functional consequences of ligand binding at the systems level. Psycho- and neuro-active drugs typically work in nerve cells by affecting one or more aspects of electrophysiological activity. Thus, an integrated understanding of neuropharmacological agents requires bridging the gap between their molecular mechanisms and the biophysical determinants of neuronal function. Computational neuroscience and bioinformatics can play a major role in this functional connection. Robust quantitative models exist describing all major active membrane properties under endogenous and exogenous chemical control. These include voltage-dependent ionic channels (sodium, potassium, calcium, etc.), synaptic receptor channels (e.g. glutamatergic, GABAergic, cholinergic), and G protein coupled signaling pathways (protein kinases, phosphatases, and other enzymatic cascades). This brief review of neuromolecular medicine from the computational perspective provides compelling examples of how simulations can elucidate, explain, and predict the effect of chemical agonists, antagonists, and modulators in the nervous system.
Collapse
Affiliation(s)
| | - Kim T. Blackwell
- Krasnow Institute for Advanced Study, George Mason University
- Department of Molecular Neuroscience, George Mason University, Fairfax, Virginia
| | - Michele Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Giorgio A. Ascoli
- Krasnow Institute for Advanced Study, George Mason University
- Department of Molecular Neuroscience, George Mason University, Fairfax, Virginia
| |
Collapse
|
18
|
Bertaina-Anglade V, la Rochelle CD, Muñoz C, Morain P, Bernard K. Comparison of single vs. multiple administrations of the AMPA receptors modulator S 18986 in the object recognition task in rats. Fundam Clin Pharmacol 2007; 21:349-54. [PMID: 17635172 DOI: 10.1111/j.1472-8206.2007.00487.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present study aimed at defining the best scheme of administration of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-positive modulator (S)-2,3-dihydro-[3,4]-cyclopentano-1,2,4-benzothiadiazine-1,1-dioxide (S 18986) [once daily (o.d.) administration of 1 mg/kg for 3 days vs. three times daily (t.i.d.) administration of 0.3 mg/kg for 3 days] to get an optimal procognitive activity in the object recognition task in rats. Memory performance [Recognition Index (RI)] of rats was significantly improved 1 h (RI = 41%, P < 0.01) and 3 h (RI = 46%, P < 0.001) following oral administration of S 18986 (1 mg/kg, o.d.) when compared with animals receiving the vehicle (RI = 6%). When the interval between administration and testing was increased to 6 h and 9 h, no statistically significant improvement in memory performance was observed (RI = 42% for 6 h and RI = 18% for 9 h vs. 20% for the vehicle group). When S 18986 was administered at 0.3 mg/kg t.i.d., no statistically significant improvement in memory performance was observed (RI = 36%). These findings show a long-lasting efficacy of the AMPA receptor allosteric modulator in the object recognition task despite a short half-life in plasma and in brain (approximately 1 h). Accordingly, multiple administrations of S 18986 are not required to obtain a maximal efficacy in this paradigm, because a o.d. schedule of administration leads to a powerful procognitive activity.
Collapse
|
19
|
Béracochéa D, Philippin JN, Meunier S, Morain P, Bernard K. Improvement of episodic contextual memory by S 18986 in middle-aged mice: comparison with donepezil. Psychopharmacology (Berl) 2007; 193:63-73. [PMID: 17384936 DOI: 10.1007/s00213-007-0765-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Accepted: 03/06/2007] [Indexed: 11/24/2022]
Abstract
INTRODUCTION This study compared the effects of S 18986, a positive allosteric modulator of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors, to those of donepezil a cholinesterase inhibitor on memory impairments induced by ageing in a contextual serial discrimination (CSD) task in middle-aged mice. MATERIALS AND METHODS The CSD task involved the learning of two consecutive discriminations in a four-hole board, each performed on two different floors. This model has been developed to study simultaneously different forms of memory in mice (i.e., episodic-like vs semantic-like forms of memory). We showed that placebo-middle-aged mice (14-15 months old) and placebo-aged subjects (19-20 months old) exhibited a severe memory deficit for the first but not the second discrimination, which was due to an increase in interference, as compared with placebo-treated young mice (5 months old). Middle-aged mice were given (9 days) per os administration of either donepezil, S 18986, or placebo. RESULTS AND DISCUSSION Both 0.3 mg/kg donepezil and 0.1 mg/kg S 18986 reversed the deficit of middle-aged mice through a significant increase in contextually correct responses and in parallel a tendency to reduce interfering responses. CONCLUSION Overall, S 18986 emerges as having a beneficial impact on contextual memory processes in middle-aged mice.
Collapse
Affiliation(s)
- D Béracochéa
- Centre de Neurosciences Intégratives et Cognitives(CNIC), UMR CNRS 5228, Bat Biologie Animale, Univ. Bordeaux 1 et 2, 33405, Talence-cedex, France.
| | | | | | | | | |
Collapse
|
20
|
Lockhart BP, Rodriguez M, Mourlevat S, Peron P, Catesson S, Villain N, Galizzi JP, Boutin JA, Lestage P. S18986: a positive modulator of AMPA-receptors enhances (S)-AMPA-mediated BDNF mRNA and protein expression in rat primary cortical neuronal cultures. Eur J Pharmacol 2007; 561:23-31. [PMID: 17331496 DOI: 10.1016/j.ejphar.2007.01.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 12/22/2006] [Accepted: 01/16/2007] [Indexed: 10/23/2022]
Abstract
The present study describes the effect of (S)-2,3-dihydro-[3,4]cyclopentano-1,2,4-benzothiadiazine-1,1-dioxide (S18986), a positive allosteric modulator of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors, on (S)-AMPA-mediated increases in brain-derived neurotrophic factor (BDNF) mRNA and protein expression in rat primary cortical neuronal cultures. (S)-AMPA (0.01-300 microM) induced a concentration-dependent increase in BDNF mRNA and protein expression (EC(50)=7 microM) with maximal increases (50-fold) compared to untreated cultures observed between 5 and 12 h, whereas for cellular protein levels, maximal expression was detected at 24 h. S18986 alone (< or =300 microM) failed to increase basal BDNF expression. However, S18986 (300 microM) in the presence of increasing concentrations of (S)-AMPA maximally enhanced AMPA-induced expression of BDNF mRNA and protein levels (3-5-fold). S18986 (100-300 microM) potentiated BDNF mRNA induced by 3 microM (S)-AMPA (2-3-fold). Under similar conditions, the AMPA allosteric modulator cyclothiazide induced a potent stimulation of (S)-AMPA-mediated BDNF expression (40-fold; EC(50)=18 microM), whereas IDRA-21 was inactive. Kinetic studies indicated that S18986 (300 microM) in the presence of 3 microM (S)-AMPA was capable of enhancing BDNF mRNA levels for up to 25 h, compared to 3 microM (S)-AMPA alone. On the other hand, S18986 only partially enhanced kainate-mediated expression of BDNF mRNA, but failed to significantly enhance N-methyl-D-aspartate-stimulated BDNF expression levels. In support of these observations, the competitive AMPA receptor antagonist NBQX (1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide) but not the selective NMDA-receptor antagonist, (+)-MK-801 [(5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine], abrogated S18986-induced effects on BDNF expression. S18986-mediated enhancement of (S)-AMPA-evoked BDNF protein expression was markedly attenuated in Ca(2+)-free culture conditions. Furthermore, from a series of kinase inhibitors only the Calmodulin-Kinase II/IV inhibitor (KN-62, 25 microM) significantly inhibited (-85%, P<0.001) AMPA+S18986 stimulated expression of BDNF mRNA. The present study supports the observations that AMPA receptor allosteric modulators can enhance the expression of BDNF mRNA and protein expression via the AMPA receptor in cultured primary neurones. Consequently, the long-term elevation of endogenous BDNF expression by pharmacological intervention with this class of compounds represents a potentially promising therapeutic approach for behavioural disorders implicating cognitive deficits.
Collapse
Affiliation(s)
- Brian Paul Lockhart
- Servier Research Institute, Division of Molecular Pharmacology and Pathophysiology, 125, Chemin de ronde, 78290 Croissy-sur-Seine, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Millan MJ. Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther 2006; 110:135-370. [PMID: 16522330 DOI: 10.1016/j.pharmthera.2005.11.006] [Citation(s) in RCA: 389] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 12/20/2022]
Abstract
Major depression is a debilitating and recurrent disorder with a substantial lifetime risk and a high social cost. Depressed patients generally display co-morbid symptoms, and depression frequently accompanies other serious disorders. Currently available drugs display limited efficacy and a pronounced delay to onset of action, and all provoke distressing side effects. Cloning of the human genome has fuelled expectations that symptomatic treatment may soon become more rapid and effective, and that depressive states may ultimately be "prevented" or "cured". In pursuing these objectives, in particular for genome-derived, non-monoaminergic targets, "specificity" of drug actions is often emphasized. That is, priority is afforded to agents that interact exclusively with a single site hypothesized as critically involved in the pathogenesis and/or control of depression. Certain highly selective drugs may prove effective, and they remain indispensable in the experimental (and clinical) evaluation of the significance of novel mechanisms. However, by analogy to other multifactorial disorders, "multi-target" agents may be better adapted to the improved treatment of depressive states. Support for this contention is garnered from a broad palette of observations, ranging from mechanisms of action of adjunctive drug combinations and electroconvulsive therapy to "network theory" analysis of the etiology and management of depressive states. The review also outlines opportunities to be exploited, and challenges to be addressed, in the discovery and characterization of drugs recognizing multiple targets. Finally, a diversity of multi-target strategies is proposed for the more efficacious and rapid control of core and co-morbid symptoms of depression, together with improved tolerance relative to currently available agents.
Collapse
Affiliation(s)
- Mark J Millan
- Institut de Recherches Servier, Centre de Recherches de Croissy, Psychopharmacology Department, 125, Chemin de Ronde, 78290-Croissy/Seine, France.
| |
Collapse
|
22
|
Haxhiu MA, Kc P, Moore CT, Acquah SS, Wilson CG, Zaidi SI, Massari VJ, Ferguson DG. Brain stem excitatory and inhibitory signaling pathways regulating bronchoconstrictive responses. J Appl Physiol (1985) 2005; 98:1961-82. [PMID: 15894534 DOI: 10.1152/japplphysiol.01340.2004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This review summarizes recent work on two basic processes of central nervous system (CNS) control of cholinergic outflow to the airways: 1) transmission of bronchoconstrictive signals from the airways to the airway-related vagal preganglionic neurons (AVPNs) and 2) regulation of AVPN responses to excitatory inputs by central GABAergic inhibitory pathways. In addition, the autocrine-paracrine modulation of AVPNs is briefly discussed. CNS influences on the tracheobronchopulmonary system are transmitted via AVPNs, whose discharge depends on the balance between excitatory and inhibitory impulses that they receive. Alterations in this equilibrium may lead to dramatic functional changes. Recent findings indicate that excitatory signals arising from bronchopulmonary afferents and/or the peripheral chemosensory system activate second-order neurons within the nucleus of the solitary tract (NTS), via a glutamate-AMPA signaling pathway. These neurons, using the same neurotransmitter-receptor unit, transmit information to the AVPNs, which in turn convey the central command to airway effector organs: smooth muscle, submucosal secretory glands, and the vasculature, through intramural ganglionic neurons. The strength and duration of reflex-induced bronchoconstriction is modulated by GABAergic-inhibitory inputs and autocrine-paracrine controlling mechanisms. Downregulation of GABAergic inhibitory influences may result in a shift from inhibitory to excitatory drive that may lead to increased excitability of AVPNs, heightened airway responsiveness, and sustained narrowing of the airways. Hence a better understanding of these normal and altered central neural circuits and mechanisms could potentially improve the design of therapeutic interventions and the treatment of airway obstructive diseases.
Collapse
Affiliation(s)
- Musa A Haxhiu
- Dept. of Physiology and Biophysics, Howard University College of Medicine, 520 W St. NW, Washington, DC 20059, USA.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Bourasset F, Bernard K, Muñoz C, Genissel P, Scherrmann JM. NEUROPHARMACOKINETICS OF A NEW α-AMINO-3-HYDROXY-5-METHYL-4-ISOXAZOLE PROPIONIC ACID (AMPA) MODULATOR, S18986 [(S)-2,3-DIHYDRO-[3,4]CYCLOPENTANO-1,2,4-BENZOTHIADIAZINE-1,1-DIOXIDE], IN THE RAT. Drug Metab Dispos 2005; 33:1137-43. [PMID: 15860654 DOI: 10.1124/dmd.105.004424] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of our study was to determine the neuropharmacokinetics of S18986 [(S)-2,3-dihydro-[3,4]cyclopentano-1,2,4-benzothiadiazine-1,1-dioxide], a new positive allosteric modulator of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid-type receptors, in the rat. We focused on its blood-brain barrier (BBB) uptake and on its brain intra- and extracellular fluid (bICF-bECF) partitioning. BBB transport of S18986 was measured using the in situ brain perfusion technique. bECF concentrations were determined by microdialysis in the two effector areas, i.e., frontal cortex (FC) and dorsal hippocampus (DH), and blood samples were collected simultaneously through a femoral catheter. Cerebrospinal fluid and brain tissue concentrations were determined using a conventional pharmacokinetic approach. Using all the experimental data, pharmacokinetic modeling was applied to describe the S18986 blood-brain disposition. The brain uptake clearance of S18986 was found to be high, about 20 mul s(-1) g(-1). Terminal half-lives were similar in plasma and brain, at around 1 h. Experimental and predicted blood and brain concentrations were a good fit with the pharmacokinetic model, which assumed first-order rate constants at each interface. Ratios of bECF to the unbound plasma area under the curve (AUC) were 0.24 in FC and 0.25 in DH, whereas ratios of bICF/plasma AUC were 1 in FC and 1.5 in DH. We conclude that despite the ratio of bECF/plasma AUC below 1, there is nevertheless an elevated BBB uptake of S18986. This can be explained by the S18986 nonhomogenous bECF/bICF partitioning, since S18986 mainly distributes into hippocampal bICF. This illustrates the importance of taking bECF/bICF partitioning into account when interpreting the neuropharmacokinetics of a drug.
Collapse
Affiliation(s)
- Fanchon Bourasset
- Université Laval, centre de recherche CHUQ-CHUL, Laboratoire d'endocrinologie moléculaire et on-cologique, T2-69, 2705 boulevard Laurier Sainte-Foy (Québec), G1V 4G2, Canada.
| | | | | | | | | |
Collapse
|