1
|
Mlyczyńska E, Kieżun M, Kurowska P, Dawid M, Pich K, Respekta N, Daudon M, Rytelewska E, Dobrzyń K, Kamińska B, Kamiński T, Smolińska N, Dupont J, Rak A. New Aspects of Corpus Luteum Regulation in Physiological and Pathological Conditions: Involvement of Adipokines and Neuropeptides. Cells 2022; 11:957. [PMID: 35326408 PMCID: PMC8946127 DOI: 10.3390/cells11060957] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
The corpus luteum is a small gland of great importance because its proper functioning determines not only the appropriate course of the estrous/menstrual cycle and embryo implantation, but also the subsequent maintenance of pregnancy. Among the well-known regulators of luteal tissue functions, increasing attention is focused on the role of neuropeptides and adipose tissue hormones-adipokines. Growing evidence points to the expression of these factors in the corpus luteum of women and different animal species, and their involvement in corpus luteum formation, endocrine function, angiogenesis, cells proliferation, apoptosis, and finally, regression. In the present review, we summarize the current knowledge about the expression and role of adipokines, such as adiponectin, leptin, apelin, vaspin, visfatin, chemerin, and neuropeptides like ghrelin, orexins, kisspeptin, and phoenixin in the physiological regulation of the corpus luteum function, as well as their potential involvement in pathologies affecting the luteal cells that disrupt the estrous cycle.
Collapse
Affiliation(s)
- Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Marta Kieżun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Natalia Respekta
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Mathilde Daudon
- Unité Physiologie de la Reproduction et des Comportements, French National Institute for Agriculture, Food, and Environment, 37380 Nouzilly, France; (M.D.); (J.D.)
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Kamil Dobrzyń
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Barbara Kamińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Tadeusz Kamiński
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Nina Smolińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Joelle Dupont
- Unité Physiologie de la Reproduction et des Comportements, French National Institute for Agriculture, Food, and Environment, 37380 Nouzilly, France; (M.D.); (J.D.)
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| |
Collapse
|
2
|
Razavinia F, Tehranian N, Sadatmahalleh SJ, Kazemnejad A, Khajetash S, Daryasari SRF, Pahlavan F, Jahanfar S. The influence of mode of delivery, anthropometric indices, and infant's sex on the maternal and cord blood orexin-A levels: A cohort study. J Obstet Gynaecol Res 2021; 47:2363-2370. [PMID: 33870593 DOI: 10.1111/jog.14758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/17/2021] [Accepted: 03/10/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Orexin as an adipokin hormone plays an important role in appetite regulation, energy metabolism, obesity, diabetes, and cardiovascular disease. The main source of orexin secretion in nonpregnant and pregnant women is adipose tissue and placenta, respectively. This research was conducted to evaluate the association between orexin-A level and the mode of delivery, anthropometric indices, and sex of the infant. METHODS This prospective cohort study was conducted on 69 normal pregnant women. The samples of umbilical cord blood were obtained at the time of delivery, and maternal blood was taken within 24 h of delivery. Serum orexin-A levels were measured by using enzyme-linked immunosorbent assay. Statistical analyses were performed using SPSS and p < 0.05 was considered as significant. RESULTS We found a significant difference between postpartum maternal and umbilical cord orexin-A level both with the mode of delivery (p < 0.001). Also, a significant positive correlation was seen between maternal and umbilical cord serum orexin-A levels (r = -0.61, p < 0.001). There was no relationship between serum orexin-A levels with anthropometric indices and the sex of the neonate (p > 0.05). CONCLUSION Both maternal and umbilical cord serum orexin-A levels were associated with the mode of delivery. Maternal and cord blood orexin-A levels in normal vaginal delivery are higher than cesarean section.
Collapse
Affiliation(s)
- Fatemeh Razavinia
- Department of Reproductive Health and Midwifery, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Najmeh Tehranian
- Department of Reproductive Health and Midwifery, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Anoshirvan Kazemnejad
- Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shaghayegh Khajetash
- Counseling in Midwifery, Research Committee, School of Nursing and Midwifery Nasibeh, Sari, Iran
| | | | - Fattaneh Pahlavan
- Department of Reproductive Health and Midwifery, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shayesteh Jahanfar
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Adeghate E, Lotfy M, D'Souza C, Alseiari SM, Alsaadi AA, Qahtan SA. Hypocretin/orexin modulates body weight and the metabolism of glucose and insulin. Diabetes Metab Res Rev 2020; 36:e3229. [PMID: 31655012 DOI: 10.1002/dmrr.3229] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 08/16/2019] [Accepted: 10/06/2019] [Indexed: 12/18/2022]
Abstract
The hypocretin/orexin (Hcrt/orexin) unit affects the functions of the nervous, cardiovascular, gastrointestinal, and reproductive systems. Hcrt/orexin ligands and receptors have been localized to different parts of the central and peripheral nervous systems, cerebrospinal fluid and blood, exocrine (pancreas, salivary, lacrimal) as well as endocrine (pancreatic islets, pituitary, adrenal) glands. Several factors including stress, glucagon-like peptide-1 agonists, glutamate, nicotine, glucose, and hypoglycaemia stimulate the expression of Hcrt/orexin system, but it is inhibited by ageing, bone morphogenetic protein, hypoxia/hypercapnia, melanocortin receptor accessory protein 2, and glucagon. Literature reports show that Hcrt/orexin can significantly increase insulin secretion from normal and diabetic rat pancreata. Hcrt/orexin decreases blood glucose concentration and reduces insulin resistance partly via increased tissue expression of glucose transporter type 4. It reduces obesity by increasing browning of fat cells and energy expenditure. Taken together, Hcrt/orexin modulates obesity and the metabolism of glucose and insulin. The Hcrt/orexin system may thus be a target in the development of new therapies for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamed Lotfy
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Crystal D'Souza
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Saleh Meqbel Alseiari
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abdulla Ali Alsaadi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Saif Abdo Qahtan
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
4
|
Barson JR, Leibowitz SF. Orexin/Hypocretin System: Role in Food and Drug Overconsumption. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 136:199-237. [PMID: 29056152 DOI: 10.1016/bs.irn.2017.06.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The neuropeptide orexin/hypocretin (OX), while largely transcribed within the hypothalamus, is released throughout the brain to affect complex behaviors. Primarily through the hypothalamus itself, OX homeostatically regulates adaptive behaviors needed for survival, including food intake, sleep-wake regulation, mating, and maternal behavior. However, through extrahypothalamic limbic brain regions, OX promotes seeking and intake of rewarding substances of abuse, like palatable food, alcohol, nicotine, and cocaine. This neuropeptide, in turn, is stimulated by the intake of or early life exposure to these substances, forming a nonhomeostatic, positive feedback loop. The specific OX receptor involved in these behaviors, whether adaptive behavior or substance seeking and intake, is dependent on the particular brain region that contributes to them. Thus, we propose that, while the primary function of OX is to maintain arousal for the performance of adaptive behaviors, this neuropeptide system is readily co-opted by rewarding substances that involve positive feedback, ultimately promoting their abuse.
Collapse
Affiliation(s)
- Jessica R Barson
- Drexel University College of Medicine, Philadelphia, PA, United States
| | | |
Collapse
|
5
|
Cho GJ, Hong HR, Kim SW, Hong SC, Oh MJ, Kim HJ. Decreased umbilical orexin-A level is associated with idiopathic polyhydramnios. Acta Obstet Gynecol Scand 2015; 94:295-300. [DOI: 10.1111/aogs.12559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 12/08/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Geum Joon Cho
- Department of Obstetrics and Gynecology; College of Medicine; Korea University; Seoul Korea
| | - Hye-Ri Hong
- Department of Obstetrics and Gynecology; School of Medicine; Kyung Hee University; Seoul Korea
| | - Suhng Wook Kim
- Department of Biomedical Science; College of Health Sciences; Korea University; Seoul Korea
| | - Soon Cheol Hong
- Department of Obstetrics and Gynecology; College of Medicine; Korea University; Seoul Korea
| | - Min-Jeong Oh
- Department of Obstetrics and Gynecology; College of Medicine; Korea University; Seoul Korea
| | - Hai Joon Kim
- Department of Obstetrics and Gynecology; College of Medicine; Korea University; Seoul Korea
| |
Collapse
|
6
|
Donlin M, Cavanaugh BL, Spagnuolo OS, Yan L, Lonstein JS. Effects of sex and reproductive experience on the number of orexin A-immunoreactive cells in the prairie vole brain. Peptides 2014; 57:122-8. [PMID: 24874707 DOI: 10.1016/j.peptides.2014.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/07/2014] [Accepted: 05/07/2014] [Indexed: 12/27/2022]
Abstract
Large populations of cells synthesizing the neuropeptide orexin (OX) exist in the caudal hypothalamus of all species examined and are implicated in physiological and behavioral processes including arousal, stress, anxiety and depression, reproduction, and goal-directed behaviors. Hypothalamic OX expression is sexually dimorphic in different directions in laboratory rats (F>M) and mice (M>F), suggesting different roles in male and female physiology and behavior that are species-specific. We here examined if the number of hypothalamic cells immunoreactive for orexin A (OXA) differs between male and female prairie voles (Microtus ochrogaster), a socially monogamous species that pairbonds after mating and in which both sexes care for offspring, and if reproductive experience influences their number of OXA-immunoreactive (OXA-ir) cells. It was found that the total number of OXA-ir cells did not differ between the sexes, but females had more OXA-ir cells than males in anterior levels of the caudal hypothalamus, while males had more OXA-ir cells posteriorly. Sexually experienced females sacrificed 12 days after the birth of their first litter, or one day after birth of a second litter, had more OXA-ir cells in anterior levels but not posterior levels of the caudal hypothalamus compared to females housed with a brother (incest avoidance prevents sibling mating). Male prairie voles showed no effect of reproductive experience but showed an unexpected effect of cohabitation duration regardless of mating. The sex difference in the distribution of OXA-ir cells, and their increased number in anterior levels of the caudal hypothalamus of reproductively experienced female prairie voles, may reflect a sex-specific mechanism involved in pairbonding, parenting, or lactation in this species.
Collapse
Affiliation(s)
- Michael Donlin
- Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824, United States
| | - Breyanna L Cavanaugh
- Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824, United States
| | - Olivia S Spagnuolo
- Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824, United States
| | - Lily Yan
- Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824, United States
| | - Joseph S Lonstein
- Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824, United States.
| |
Collapse
|
7
|
Nitkiewicz A, Smolinska N, Maleszka A, Chojnowska K, Kaminski T. Expression of orexins and their precursor in the porcine ovary and the influence of orexins on ovarian steroidogenesis in pigs. Anim Reprod Sci 2014; 148:53-62. [PMID: 24916957 DOI: 10.1016/j.anireprosci.2014.03.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 03/16/2014] [Accepted: 03/23/2014] [Indexed: 11/30/2022]
Abstract
Orexins A and B are hypothalamic neuropeptides associated with homeostasis and the reproductive system. The aim of the study was to compare the expression of the prepro-orexin gene and the intensity of orexins immunoreactivity in the porcine ovary (corpora lutea, granulosa and theca interna cells) during four different stages of the oestrous cycle (days: 2-3, 10-12, 14-16 and 17-19) and to examine the in vitro effect of orexins on the secretion of steroid hormones by porcine luteal, granulosa and theca interna cells. The highest expression of prepro-orexin mRNA was observed in theca interna cells on days 17-19 of the oestrous cycle. The highest content of immunoreactive orexin A was noted in corpora lutea on days 10-12 and the highest level of immunoreactive orexin B on days 14-16 of the cycle. Immunoreactive orexin A concentrations were higher in theca interna cells than in granulosa cells, whereas similar levels of immunoreactive orexin B were observed in both cell types. Under in vitro conditions, at the concentration of 10 nM, orexins A and B inhibited FSH-induced oestradiol secretion by granulosa cells. The obtained results suggest that the pattern of orexin peptide expression in the porcine ovary is related to the animals' hormonal status. Our findings imply that orexins can affect porcine reproductive functions through modulation of ovarian steroidogenesis.
Collapse
Affiliation(s)
- Anna Nitkiewicz
- Department of Animal Physiology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Nina Smolinska
- Department of Animal Physiology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Anna Maleszka
- Department of Animal Physiology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Katarzyna Chojnowska
- Department of Animal Physiology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Tadeusz Kaminski
- Department of Animal Physiology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 1A, 10-719 Olsztyn, Poland.
| |
Collapse
|
8
|
Nitkiewicz A, Smolinska N, Maleszka A, Kiezun M, Kaminski T. Localization of orexin A and orexin B in the porcine uterus. Reprod Biol 2012; 12:135-55. [PMID: 22850467 DOI: 10.1016/s1642-431x(12)60082-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The presence of orexins and their receptors in gonads indicate that these hormones participate in the control of reproductive functions. The aim of the study was to compare the expression of the prepro-orexin (PPO) gene in porcine endometrium and myometrium and the intensity of OXA- and OXB-immunoreactivity in the following uterine structures: endometrial glandular and luminal epithelium and stroma as well as the myometrial longitudinal and circular muscles during the four stages (days 2-3, 10-12, 14-16, 17-19) of the estrous cycle. The highest expression of PPO mRNA was observed in the endometrium and the myometrium on days 14-16 of the cycle. The expression of the PPO gene on days 2-3 was more pronounced in the myometrium than in the endometrium, whereas on days 17-19 the gene expression was markedly higher in the endometrium. The OXA signal intensity was highest on days 2-3 in the luminal epithelium and on days 2-3 and 10-12 in the stroma. In circular muscles of the myometrium, the highest immunoreactivity was found on days 2-3 and 10-12, while in longitudinal muscles on days 2-3. OXB-immunoreactivity was highest on days 10-12 in longitudinal muscles, on days 17-19 in glandular epithelium and stroma, and on days 10-12 and 14-16 in luminal epithelium. Our results suggest that orexin A and B are produced in the porcine uterus and that their release is dependent on the hormonal status of animals.
Collapse
Affiliation(s)
- Anna Nitkiewicz
- Department of Animal Physiology, University of Warmia and Mazury in Olsztyn, Poland
| | | | | | | | | |
Collapse
|
9
|
Adeghate E. Orexins: tissue localization, functions, and its relation to insulin secretion and diabetes mellitus. VITAMINS AND HORMONES 2012; 89:111-33. [PMID: 22640611 DOI: 10.1016/b978-0-12-394623-2.00007-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Orexins play a role in many biological functions include sleep, feeding, and energy balance. They also regulate circadian rhythms and the way that we feel pain. Orexins have been identified in a variety of tissues including the cerebrospinal fluid, blood, hypothalamus, spinal cord, sensory ganglion, enteric nervous system, pituitary, adrenal, salivary and lacrimal glands, testis, vestibular gland, and skin. Orexins play a role in a variety of biological functions including arousal, sleeping, food and fluid intake, pain, memory, perception of odor, and sexual activity. Orexins have also been implicated in the regulation of glucose metabolism. The expression of orexin is induced by hypoglycemia, low food, pregnancy, and hemodialysis. In contrast, factors that inhibit the expression of orexins include obstructive sleep apnea, aging, depression, obesity, traumatic brain injury, and inflammatory molecules such as liposaccharide. In conclusion, orexins are widely distributed and involved in a large variety of biological activities.
Collapse
Affiliation(s)
- Ernest Adeghate
- Department of Anatomy, Faculty of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
10
|
Nitkiewicz A, Smolinska N, Przala J, Kaminski T. Expression of orexin receptors 1 (OX1R) and 2 (OX2R) in the porcine ovary during the oestrous cycle. ACTA ACUST UNITED AC 2010; 165:186-90. [DOI: 10.1016/j.regpep.2010.07.166] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 07/16/2010] [Accepted: 07/26/2010] [Indexed: 01/09/2023]
|
11
|
Silveyra P, Cataldi NI, Lux-Lantos VA, Libertun C. Role of orexins in the hypothalamic-pituitary-ovarian relationships. Acta Physiol (Oxf) 2010; 198:355-60. [PMID: 19796256 DOI: 10.1111/j.1748-1716.2009.02049.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Appropriate nutritional and vigilance states are needed for reproduction. In previous works, we described the influence of the hormonal milieu of proestrus on the orexinergic system and we found that orexin receptor 1 expression in the hypothalamus, but not other neural areas, and the adenohypophysis was under the influence of oestradiol and the time of the day. Information from the sexual hormonal milieu of proestrous afternoon impacts on various components of the orexinergic system and alertness on this particular night of proestrus would be of importance for successful reproduction. In this review, we summarize the available experimental data supporting the participation of orexins in the hypothalamic-pituitary-ovarian relationships. All together, these results suggest a role of the orexinergic system as an integrative link among vital functions such as reproduction, food intake, alertness and the inner biological clock.
Collapse
Affiliation(s)
- P Silveyra
- Instituto de Biología y Medicina Experimental-CONICET, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
12
|
Expression of orexin receptors 1 (OX1R) and 2 (OX2R) in the porcine pituitary during the oestrous cycle. Anim Reprod Sci 2010; 117:111-8. [DOI: 10.1016/j.anireprosci.2009.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 02/12/2009] [Accepted: 03/17/2009] [Indexed: 10/21/2022]
|
13
|
Sawai N, Ueta Y, Nakazato M, Ozawa H. Developmental and aging change of orexin-A and -B immunoreactive neurons in the male rat hypothalamus. Neurosci Lett 2009; 468:51-5. [PMID: 19857552 DOI: 10.1016/j.neulet.2009.10.061] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 10/18/2009] [Accepted: 10/19/2009] [Indexed: 10/20/2022]
Abstract
Orexin/hypocretin is indicated to affect various physiological functions and behaviors, such as energy balance, feeding, wake-sleep cycle, stress response, and reproduction. This study investigated postnatal development and aging changes of the orexin neuron in the male rat hypothalamus. The brain tissue of rats from 1 week to 24 months old was analyzed by immunohistochemistry for two forms of orexin peptides, orexin-A and -B. The number of immunoreactive cells for each age group was counted and the immunoreactive intensity was also analyzed in order to reveal the changes in the number of expressing cells and the relative amount of the peptides. The number of orexin immunoreactive cells increased from postnatal 2 weeks to maturation, then slightly decreased and stabilized until the age of 8 months old, but it was significantly decreased by 24 months old. The intensity of the immunoreaction followed almost the same pattern. Our findings demonstrate that orexin neurons are increased during maturation and then are significantly decreased during the period from 8 to 24 months old, indicating an involvement of orexin in the physiological changes in rat aging such as energy balance, sleep, stress response, and reproduction.
Collapse
Affiliation(s)
- Nobuhiko Sawai
- Department of Anatomy and Neurobiology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | | | | | | |
Collapse
|
14
|
Hoskins LJ, Xu M, Volkoff H. Interactions between gonadotropin-releasing hormone (GnRH) and orexin in the regulation of feeding and reproduction in goldfish (Carassius auratus). Horm Behav 2008; 54:379-85. [PMID: 18544455 DOI: 10.1016/j.yhbeh.2008.04.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2008] [Revised: 04/23/2008] [Accepted: 04/28/2008] [Indexed: 11/25/2022]
Abstract
Links between energy homeostasis and reproduction have been demonstrated in vertebrates. As a general rule, abundant food resources favor reproduction whereas low food availability induces an inhibition of reproductive processes. In both mammals and fish, gonadotropin-releasing hormone (GnRH) and orexin (OX) are hypothalamic neuropeptides that play critical roles in the regulation of sexual behavior and appetite, respectively. In order to assess possible interactions between orexin and GnRH in the control of feeding and reproduction in goldfish, we examined the effects of chicken GnRH (cGnRH-II) intracerebroventricular (ICV) injection on feeding behavior and OX brain mRNA expression as well as the effects of orexin ICV injections on spawning behavior and cGnRH-II brain mRNA expression. Treatment with cGnRH-II at doses that stimulate spawning (0.5 ng/g or 1 ng/g) resulted in a decrease in both food intake and hypothalamic orexin mRNA expression. Treatment with orexin A at doses that stimulate feeding (10 ng/g) induced an inhibition of spawning behavior and a decrease in cGnRH-II expression in the hypothalamus and optic tectum-thalamus. Our results suggest that the anorexigenic actions of cGnRH-II in goldfish might be in part mediated by OX and that orexin inhibits reproductive behavior in part via the inhibition of the GnRH system. Our data suggest the existence of a coordinated control of feeding and reproduction by the orexin and GnRH systems in goldfish.
Collapse
Affiliation(s)
- Leah J Hoskins
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada A1B 3X9
| | | | | |
Collapse
|
15
|
Silveyra P, Lux-Lantos V, Libertun C. Both orexin receptors are expressed in rat ovaries and fluctuate with the estrous cycle: effects of orexin receptor antagonists on gonadotropins and ovulation. Am J Physiol Endocrinol Metab 2007; 293:E977-85. [PMID: 17638707 DOI: 10.1152/ajpendo.00179.2007] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Orexins are peptides controlling feeding, sleep, and neuroendocrine functions. They are synthesized by the hypothalamus with projections throughout the brain. Orexins and their orexin 1 (OX(1)) and orexin 2 receptors (OX(2)) are present outside the central nervous system. Here the expression of preproorexin (PPO), OX(1), and OX(2) was studied in rat ovaries. PPO, OX(1), and OX(2) were determined by quantitative real-time RT-PCR in ovaries of cycling Sprague-Dawley rats on all days of the cycle. Serum hormones and food consumption were determined. Ovarian OX(1) and OX(2) expression was then studied after ovulation blockade with Cetrorelix or Nembutal. Finally, proestrous rats were treated at 1400 and 1900 with a selective OX(1) antagonist (SB-334867-A) and/or a selective OX(2) antagonist (JNJ-10397049), and hormone levels, ovulation, and ovarian histology were studied. Both receptors' expression increased in the ovary between 1700 and 2300 of proestrus exclusively, in coincidence with hormone peaks, but not with the dark-light cycle or food intake. PPO was not detected. Cetrorelix or Nembutal prevented the increases of OX(1) and OX(2) while blunting gonadotropin peaks. SB-334867-A and JNJ-10397049, alone or combined, decreased serum gonadotropins and reduced ova number the following morning; ovaries showed a bloody (hyperemic and/or hemorrhagic) reaction with more preovulatory follicles and less corpora lutea. Here we demonstrate for the first time an increased ovarian expression of both OX(1) and OX(2), only during proestrous afternoon, and its hormone dependence but not dependence on the dark-light cycle. Two new receptor antagonists reduced proestrous gonadotropins and/or ova number while producing ovarian structural changes.
Collapse
Affiliation(s)
- Patricia Silveyra
- Instituto de Biología y Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Argentina
| | | | | |
Collapse
|
16
|
Muschamp JW, Dominguez JM, Sato SM, Shen RY, Hull EM. A role for hypocretin (orexin) in male sexual behavior. J Neurosci 2007; 27:2837-45. [PMID: 17360905 PMCID: PMC6672590 DOI: 10.1523/jneurosci.4121-06.2007] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 01/23/2007] [Accepted: 02/08/2007] [Indexed: 11/21/2022] Open
Abstract
The role of hypocretin (orexin; hcrt/orx) neurons in regulation of arousal is well established. Recently, hcrt/orx has been implicated in food reward and drug-seeking behavior. We report here that in male rats, Fos immunoreactivity (ir) in hcrt/orx neurons increases markedly during copulation, whereas castration produces decreases in hcrt/orx neuron cell counts and protein levels in a time course consistent with postcastration impairments in copulatory behavior. This effect was reversed by estradiol replacement. Immunolabeling for androgen (AR) and estrogen (ER alpha) receptors revealed no colocalization of hcrt/orx with AR and few hcrt/orx neurons expressing ER alpha, suggesting that hormonal regulation of hcrt/orx expression is via afferents from neurons containing those receptors. We also demonstrate that systemic administration of the orexin-1 receptor antagonist SB 334867 [N-(2-methyl-6-benzoxazolyl)-N''-1,5-naphthyridin-4-yl urea] impairs copulatory behavior. One locus for the prosexual effects of hcrt/orx may be the ventral tegmental area (VTA). We show here that hcrt-1/orx-A produces dose-dependent increases in firing rate and population activity of VTA dopamine (DA) neurons in vivo. Activation of hcrt/orx during copulation, and in turn, excitation of VTA DA neurons by hcrt/orx, may contribute to the robust increases in nucleus accumbens DA previously observed during male sexual behavior. Subsequent triple immunolabeling in anterior VTA showed that Fos-ir in tyrosine hydroxylase-positive neurons apposed to hcrt/orx fibers increases during copulation. Together, these data support the view that hcrt/orx peptides may act in a steroid-sensitive manner to facilitate the energized pursuit of natural rewards like sex via activation of the mesolimbic DA system.
Collapse
Affiliation(s)
- John W Muschamp
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306, USA.
| | | | | | | | | |
Collapse
|
17
|
Silveyra P, Catalano PN, Lux-Lantos V, Libertun C. Impact of proestrous milieu on expression of orexin receptors and prepro-orexin in rat hypothalamus and hypophysis: actions of Cetrorelix and Nembutal. Am J Physiol Endocrinol Metab 2007; 292:E820-8. [PMID: 17122088 DOI: 10.1152/ajpendo.00467.2006] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Orexins and their receptors OX1 and OX2 regulate energy balance and the sleep-wake cycle. We studied the expression of prepro-orexin (PPO), OX1, and OX2 in brain and pituitary under the influence of the hormonal status in adult rats. Primarily, PPO, OX1, and OX2 expression was determined in Sprague-Dawley female cycling rats during proestrus and in males. Animals were killed at 2-h intervals. Anterior (AH) and mediobasal (MBH) hypothalamus, anterior pituitary (P), and frontoparietal cortex (CC) were homogenized in TRIzol, and mRNAs were obtained for screening of PPO, OX1, OX2 expression by semiquantitative RT-PCR. Main findings were confirmed and extended to all days of the cycle by quantitative real-time RT-PCR. Hormones and food consumption were determined. Finally, OX1, OX2, and PPO were measured by real-time RT-PCR in tissues collected at 1900 of proestrus after treatments at 1400 with ovulation-blocking agents Cetrorelix or pentobarbital. OX1 and OX2 expression increased at least threefold in AH, MBH, and P, but not in CC, between 1700 and 2300 of proestrus, without variations in estrus, diestrus, or in males. PPO in AH and MBH showed a fourfold or higher increase only during proestrus afternoon. Cetrorelix or pentobarbital prevented increases of OX1 and OX2 only in the pituitary and blunted gonadotropin surges, but left OX1, OX2, and PPO brain expression unchanged. Reproduction, energy balance, and sleep-wake cycle are integrated. Here, we demonstrate that, in the physiological neuroendocrine condition leading to ovulation, information to the orexinergic system acts in hypothalamus and pituitary by different mechanisms.
Collapse
Affiliation(s)
- Patricia Silveyra
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Cientificas y Técnicas, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
18
|
Spinazzi R, Andreis PG, Rossi GP, Nussdorfer GG. Orexins in the regulation of the hypothalamic-pituitary-adrenal axis. Pharmacol Rev 2006; 58:46-57. [PMID: 16507882 DOI: 10.1124/pr.58.1.4] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Orexin-A and orexin-B are hypothalamic peptides that act via two G protein-coupled receptors, named orexin type 1 and type 2 receptors (OX1-Rs and OX2-Rs). The most studied biological functions of orexins are the central control of feeding and sleep, but in the past few years findings that orexin system modulates the hypothalamic-pituitary-adrenal (HPA) axis, acting on both its central and peripheral branches, have accumulated. Orexins and their receptors are expressed in the hypothalamic paraventricular nucleus and median eminence and orexin receptors in pituitary corticotropes, adrenal cortex, and medulla. Whereas the effects of orexins on adrenal aldosterone secretion are doubtful, compelling evidence indicates that these peptides enhance glucocorticoid production in rats and humans. This effect involves a 2-fold mechanism: 1) stimulation of the adrenocorticotropin-releasing hormone-mediated pituitary release of adrenocorticotropin, which in turn raises adrenal glucocorticoid secretion; and 2) direct stimulation of adrenocortical cells via OX1-Rs coupled to the adenylate cyclase-dependent cascade. The effects of orexins on catecholamine release from adrenal medulla are unclear and probably of minor relevance, but there are indications that orexins can stimulate in vitro secretion of human pheochromocytoma cells via OX2-Rs coupled to the phospholipase C-dependent cascade. Evidence is also available that orexins enhance the growth in vitro of adrenocortical cells, mainly acting via OX2-Rs. Moreover, findings suggest that the orexin system may favor HPA axis responses to stresses and play a role in the pathophysiology of cortisol-secreting adrenal adenomas.
Collapse
Affiliation(s)
- Raffaella Spinazzi
- Department of Human Anatomy and Physiology, School of Medicine, University of Padua, Italy
| | | | | | | |
Collapse
|
19
|
Moreno G, Perelló M, Gaillard RC, Spinedi E. Orexin a stimulates hypothalamic-pituitary-adrenal (HPA) axis function, but not food intake, in the absence of full hypothalamic NPY-ergic activity. Endocrine 2005; 26:99-106. [PMID: 15888921 DOI: 10.1385/endo:26:2:099] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Revised: 02/11/2005] [Accepted: 02/22/2005] [Indexed: 11/11/2022]
Abstract
Neonatal monosodium L-glutamate (MSG) treatment destroys hypothalamic arcuate nucleus neuronal bodies, thus inducing several metabolic abnormalities. As a result, rats develop a phenotype characterized by hyperleptinemia and by impaired NPY but normal preproorexin hypothalamic mRNAs expression. Thus, our study was designed to explore whether hypothalamic effects of orexin A on food intake and glucocorticoid production develop in the absence of full hypothalamic NPY-ergic activity. For this purpose we evaluated, in control and MSG-treated rats, the consequences of intracerebroventricular (icv) orexin A administration on food intake and changes in circulating levels of ACTH and glucocorticoid. Our results indicate that orexin A icv treatment stimulated hypothalamic-pituitary-adrenal (HPA) axis activity in both MSG-damaged and normal animals, with this response even more pronounced in neurotoxin-damaged rats. Conversely, food intake was only enhanced by icv orexin A injection in normal rats. Our study further supports that acute hypothalamic effects of orexin A on food intake and glucocorticoid production are due to independent neuronal systems. While intact arcuate nucleus activity is needed for the orexinergic effect induced by icv orexin A administration, conversely, orexin A-stimulated HPA axis function takes place even in the absence of full NPY-ergic activity.
Collapse
Affiliation(s)
- Griselda Moreno
- Neuroendocrine Unit, Multidisciplinary Institute on Cell Biology (CONICET-CICPBA), 1900 La Plata, Argentina
| | | | | | | |
Collapse
|