1
|
Camici M, Garcia-Gil M, Allegrini S, Pesi R, Bernardini G, Micheli V, Tozzi MG. Inborn Errors of Purine Salvage and Catabolism. Metabolites 2023; 13:787. [PMID: 37512494 PMCID: PMC10383617 DOI: 10.3390/metabo13070787] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Cellular purine nucleotides derive mainly from de novo synthesis or nucleic acid turnover and, only marginally, from dietary intake. They are subjected to catabolism, eventually forming uric acid in humans, while bases and nucleosides may be converted back to nucleotides through the salvage pathways. Inborn errors of the purine salvage pathway and catabolism have been described by several researchers and are usually referred to as rare diseases. Since purine compounds play a fundamental role, it is not surprising that their dysmetabolism is accompanied by devastating symptoms. Nevertheless, some of these manifestations are unexpected and, so far, have no explanation or therapy. Herein, we describe several known inborn errors of purine metabolism, highlighting their unexplained pathological aspects. Our intent is to offer new points of view on this topic and suggest diagnostic tools that may possibly indicate to clinicians that the inborn errors of purine metabolism may not be very rare diseases after all.
Collapse
Affiliation(s)
- Marcella Camici
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| | - Mercedes Garcia-Gil
- Unità di Fisiologia Generale, Dipartimento di Biologia, Università di Pisa, Via San Zeno 31, 56127 Pisa, Italy
- CISUP, Centro per l'Integrazione Della Strumentazione Dell'Università di Pisa, 56127 Pisa, Italy
- Centro di Ricerca Interdipartimentale Nutrafood "Nutraceuticals and Food for Health", Università di Pisa, 56126 Pisa, Italy
| | - Simone Allegrini
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
- CISUP, Centro per l'Integrazione Della Strumentazione Dell'Università di Pisa, 56127 Pisa, Italy
- Centro di Ricerca Interdipartimentale Nutrafood "Nutraceuticals and Food for Health", Università di Pisa, 56126 Pisa, Italy
| | - Rossana Pesi
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| | - Giulia Bernardini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Vanna Micheli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
- LND Famiglie Italiane ODV-Via Giovanetti 15-20, 16149 Genova, Italy
| | - Maria Grazia Tozzi
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| |
Collapse
|
2
|
Jang G, Shin HR, Do HS, Kweon J, Hwang S, Kim S, Heo SH, Kim Y, Lee BH. Therapeutic gene correction for Lesch-Nyhan syndrome using CRISPR-mediated base and prime editing. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:586-595. [PMID: 36910714 PMCID: PMC9996127 DOI: 10.1016/j.omtn.2023.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Lesch-Nyhan syndrome (LNS) is inherited as an X-linked recessive genetic disorder caused by mutations in hypoxanthine-guanine phosphoribosyl transferase 1 (HPRT1). Patients with LNS show various clinical phenotypes, including hyperuricemia, gout, devastating behavioral abnormality, intellectual disability, and self-harm. Although uric acid overproduction can be modulated with the xanthine oxidase inhibitor allopurinol, there exists no treatment for behavioral and neurological manifestations of LNS. In the current study, CRISPR-mediated base editors (BEs) and prime editors (PEs) were utilized to generate LNS-associated disease models and correct the disease models for therapeutic approach. Cytosine BEs (CBEs) were used to induce c.430C>T and c.508C>T mutations in HAP1 cells, and then adenine BEs (ABEs) were used to correct these mutations without DNA cleavage. PEs induced a c.333_334ins(A) mutation, identified in a Korean patient with LNS, in HAP1 cells, which was corrected in turn by PEs. Furthermore, improved PEs corrected the same mutation in LNS patient-derived fibroblasts by up to 14% without any unwanted mutations. These results suggest that CRISPR-mediated BEs and PEs would be suggested as a potential therapeutic strategy of this extremely rare, devastating genetic disease.
Collapse
Affiliation(s)
- Gayoung Jang
- Department of Biomedical Sciences, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ha Rim Shin
- Department of Biomedical Sciences, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyo-Sang Do
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Jiyeon Kweon
- Department of Biomedical Sciences, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Soojin Hwang
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Soyoung Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Sun Hee Heo
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Yongsub Kim
- Department of Biomedical Sciences, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Beom Hee Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Jia HW, Yang HL, Xiong ZL, Deng MH, Wang T, Liu Y, Cheng M. Design, synthesis and antitumor activity evaluation of novel indole acrylamide derivatives as IMPDH inhibitors. Bioorg Chem 2022; 129:106213. [DOI: 10.1016/j.bioorg.2022.106213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/02/2022]
|
4
|
Targeting NAD-dependent dehydrogenases in drug discovery against infectious diseases and cancer. Biochem Soc Trans 2021; 48:693-707. [PMID: 32311017 DOI: 10.1042/bst20191261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 12/24/2022]
Abstract
Dehydrogenases are oxidoreductase enzymes that play a variety of fundamental functions in the living organisms and have primary roles in pathogen survival and infection processes as well as in cancer development. We review here a sub-set of NAD-dependent dehydrogenases involved in human diseases and the recent advancements in drug development targeting pathogen-associated NAD-dependent dehydrogenases. We focus also on the molecular aspects of the inhibition process listing the structures of the most relevant molecules targeting this enzyme family. Our aim is to review the most impacting findings regarding the discovery of novel inhibitory compounds targeting the selected NAD-dependent dehydrogenases involved in cancer and infectious diseases.
Collapse
|
5
|
Koehler A, Karve A, Desai P, Arbiser J, Plas DR, Qi X, Read RD, Sasaki AT, Gawali VS, Toukam DK, Bhattacharya D, Kallay L, Pomeranz Krummel DA, Sengupta S. Reuse of Molecules for Glioblastoma Therapy. Pharmaceuticals (Basel) 2021; 14:99. [PMID: 33525329 PMCID: PMC7912673 DOI: 10.3390/ph14020099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a highly malignant primary brain tumor. The current standard of care for GBM is the Stupp protocol which includes surgical resection, followed by radiotherapy concomitant with the DNA alkylator temozolomide; however, survival under this treatment regimen is an abysmal 12-18 months. New and emerging treatments include the application of a physical device, non-invasive 'tumor treating fields' (TTFs), including its concomitant use with standard of care; and varied vaccines and immunotherapeutics being trialed. Some of these approaches have extended life by a few months over standard of care, but in some cases are only available for a minority of GBM patients. Extensive activity is also underway to repurpose and reposition therapeutics for GBM, either alone or in combination with the standard of care. In this review, we present select molecules that target different pathways and are at various stages of clinical translation as case studies to illustrate the rationale for their repurposing-repositioning and potential clinical use.
Collapse
Affiliation(s)
- Abigail Koehler
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| | - Aniruddha Karve
- Division of Pharmaceutical Sciences, University of Cincinnati James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (A.K.); (P.D.)
| | - Pankaj Desai
- Division of Pharmaceutical Sciences, University of Cincinnati James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (A.K.); (P.D.)
| | - Jack Arbiser
- Department of Dermatology, Emory School of Medicine, Atlanta, GA 30322, USA;
- Atlanta Veterans Administration Medical Center, Decatur, GA 30033, USA
| | - David R. Plas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Xiaoyang Qi
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (X.Q.); (A.T.S.)
| | - Renee D. Read
- Department of Pharmacology and Chemical Biology, Emory School of Medicine, Atlanta, GA 30322, USA;
| | - Atsuo T. Sasaki
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (X.Q.); (A.T.S.)
| | - Vaibhavkumar S. Gawali
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| | - Donatien K. Toukam
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| | - Debanjan Bhattacharya
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| | - Laura Kallay
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| | - Daniel A. Pomeranz Krummel
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| | - Soma Sengupta
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| |
Collapse
|
6
|
Townsend MH, Tellez Freitas CM, Larsen D, Piccolo SR, Weber KS, Robison RA, O'Neill KL. Hypoxanthine Guanine Phosphoribosyltransferase expression is negatively correlated with immune activity through its regulation of purine synthesis. Immunobiology 2020; 225:151931. [PMID: 32291109 DOI: 10.1016/j.imbio.2020.151931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/13/2020] [Accepted: 03/03/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The purpose of this study was to examine the effects of elevated Hypoxanthine Guanine Phosphoribosyltransferase (HPRT) on the immune response in the tumor microenvironment. METHODOLOGY HPRT expression was evaluated in cancer patients and correlated with cytokine expression, survival, and immune cell infiltration. An HPRT knockdown cell line was created to evaluate HPRT impact on purine expression and subsequent purine treatment was administered to immune cells to determine their influence on cell activation. RESULTS HPRT expression was negatively correlated with the general expression of both pro-inflammatory and anti-inflammatory cytokines. Additionally, HPRT expression was also negatively correlated with the infiltration of immune cell subsets: B-cells, CD4 + T cells, macrophages, neutrophils, and dendritic cells (p < 0.001) and CD8 + T-cells (p < 0.01). When HPRT was knocked down in a Raji cell line, the levels of adenosine were reduced significantly compared to the wild type. When examining the level of Ca2+ influx of Raji compared to the HPRT Raji knockdown cell, there was a significant decrease in calcium influx in the knockdown cells when compared to the wild type cells. This demonstrates that HPRT had a significant impact on overall cell activation and the ability of the cells to properly influx calcium needed for their activation. CONCLUSIONS We conclude that purine levels significantly reduce immune cell activation in cancer and the upregulation of HPRT in malignant tissue is a contributing factors to the immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Michelle H Townsend
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA.
| | - Claudia M Tellez Freitas
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA; College of Dental Medicine, Roseman University of Health Science, South Jordan, UT, USA
| | - Dallas Larsen
- Department of Biology, Brigham Young University, Provo, UT, USA
| | - Stephen R Piccolo
- Department of Biology, Brigham Young University, Provo, UT, USA; Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, USA
| | - K Scott Weber
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Richard A Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Kim L O'Neill
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| |
Collapse
|
7
|
Anti-Tumor Potential of IMP Dehydrogenase Inhibitors: A Century-Long Story. Cancers (Basel) 2019; 11:cancers11091346. [PMID: 31514446 PMCID: PMC6770829 DOI: 10.3390/cancers11091346] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/01/2019] [Accepted: 09/02/2019] [Indexed: 01/15/2023] Open
Abstract
The purine nucleotides ATP and GTP are essential precursors to DNA and RNA synthesis and fundamental for energy metabolism. Although de novo purine nucleotide biosynthesis is increased in highly proliferating cells, such as malignant tumors, it is not clear if this is merely a secondary manifestation of increased cell proliferation. Suggestive of a direct causative effect includes evidence that, in some cancer types, the rate-limiting enzyme in de novo GTP biosynthesis, inosine monophosphate dehydrogenase (IMPDH), is upregulated and that the IMPDH inhibitor, mycophenolic acid (MPA), possesses anti-tumor activity. However, historically, enthusiasm for employing IMPDH inhibitors in cancer treatment has been mitigated by their adverse effects at high treatment doses and variable response. Recent advances in our understanding of the mechanistic role of IMPDH in tumorigenesis and cancer progression, as well as the development of IMPDH inhibitors with selective actions on GTP synthesis, have prompted a reappraisal of targeting this enzyme for anti-cancer treatment. In this review, we summarize the history of IMPDH inhibitors, the development of new inhibitors as anti-cancer drugs, and future directions and strategies to overcome existing challenges.
Collapse
|
8
|
Aghazadeh S, Yazdanparast R. Mycophenolic acid potentiates HER2-overexpressing SKBR3 breast cancer cell line to induce apoptosis: involvement of AKT/FOXO1 and JAK2/STAT3 pathways. Apoptosis 2016; 21:1302-1314. [DOI: 10.1007/s10495-016-1288-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Nakashima R, Morooka M, Shiraki N, Sakano D, Ogaki S, Kume K, Kume S. Neural cells play an inhibitory role in pancreatic differentiation of pluripotent stem cells. Genes Cells 2015; 20:1028-45. [PMID: 26514269 PMCID: PMC4738370 DOI: 10.1111/gtc.12308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 09/17/2015] [Indexed: 01/06/2023]
Abstract
Pancreatic endocrine β-cells derived from embryonic stem (ES) cells and induced pluripotent stem (iPS) cells have received attention as screening systems for therapeutic drugs and as the basis for cell-based therapies. Here, we used a 12-day β-cell differentiation protocol for mouse ES cells and obtained several hit compounds that promoted β-cell differentiation. One of these compounds, mycophenolic acid (MPA), effectively promoted ES cell differentiation with a concomitant reduction of neuronal cells. The existence of neural cell-derived inhibitory humoral factors for β-cell differentiation was suggested using a co-culture system. Based on gene array analysis, we focused on the Wnt/β-catenin pathway and showed that the Wnt pathway inhibitor reversed MPA-induced β-cell differentiation. Wnt pathway activation promoted β-cell differentiation also in human iPS cells. Our results showed that Wnt signaling activation positively regulates β-cell differentiation, and represent a downstream target of the neural inhibitory factor.
Collapse
Affiliation(s)
- Ryutaro Nakashima
- Division of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Kumamoto, 860-0811, Japan
| | - Mayu Morooka
- Division of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Kumamoto, 860-0811, Japan
| | - Nobuaki Shiraki
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Daisuke Sakano
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Soichiro Ogaki
- Division of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Kumamoto, 860-0811, Japan.,Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Kazuhiko Kume
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe Street, Mizuho, Nagoya, 467-8603, Japan
| | - Shoen Kume
- Division of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Kumamoto, 860-0811, Japan.,Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.,Program for Leading Graduate Schools, Health life science: Interdisciplinary and Glocal Oriented (HIGO), Kumamoto University, Honjo 2-2-1, Kumamoto, 860-0811, Japan
| |
Collapse
|
10
|
Dammer EB, Göttle M, Duong DM, Hanfelt J, Seyfried NT, Jinnah HA. Consequences of impaired purine recycling on the proteome in a cellular model of Lesch-Nyhan disease. Mol Genet Metab 2015; 114:570-579. [PMID: 25769394 PMCID: PMC4390545 DOI: 10.1016/j.ymgme.2015.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 02/24/2015] [Accepted: 02/24/2015] [Indexed: 12/20/2022]
Abstract
The importance of specific pathways of purine metabolism for normal brain function is highlighted by several inherited disorders, such as Lesch-Nyhan disease (LND). In this disorder, deficiency of the purine recycling enzyme, hypoxanthine-guanine phosphoribosyltransferase (HGprt), causes severe neurological and behavioral abnormalities. Despite many years of research, the mechanisms linking the defect in purine recycling to the neurobehavioral abnormalities remain unclear. In the current studies, an unbiased approach to the identification of potential mechanisms was undertaken by examining changes in protein expression in a model of HGprt deficiency based on the dopaminergic rat PC6-3 line, before and after differentiation with nerve growth factor (NGF). Protein expression profiles of 5 mutant sublines carrying different mutations affecting HGprt enzyme activity were compared to the HGprt-competent parent line using the method of stable isotopic labeling by amino acids in cell culture (SILAC) followed by denaturing gel electrophoresis with liquid chromatography and tandem mass spectrometry (LC-MS/MS) of tryptic digests, and subsequent identification of affected biochemical pathways using the Database for Annotation, Visualization and Integrated Discovery (DAVID) functional annotation chart analysis. The results demonstrate that HGprt deficiency causes broad changes in protein expression that depend on whether the cells are differentiated or not. Several of the pathways identified reflect predictable consequences of defective purine recycling. Other pathways were not anticipated, disclosing previously unknown connections with purine metabolism and novel insights into the pathogenesis of LND.
Collapse
Affiliation(s)
- Eric B. Dammer
- Department of Biochemistry, Emory University, Atlanta, GA
| | - Martin Göttle
- Department of Neurology, Emory University, Atlanta, GA
| | - Duc M. Duong
- Department of Biochemistry, Emory University, Atlanta, GA
| | - John Hanfelt
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA
| | | | - H. A. Jinnah
- Department of Neurology, Emory University, Atlanta, GA
- Department of Human Genetics & Pediatrics, Emory University, Atlanta, GA
| |
Collapse
|
11
|
Karunakaran SC, Paul AK, Ramaiah D. Effective discrimination of GTP from ATP by a cationic tentacle porphyrin through “turn-on” fluorescence intensity. RSC Adv 2014. [DOI: 10.1039/c4ra04672b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cationic porphyrin selectively recognises guanosine based nucleotides was utilized as fluorescence “turn-on” probe to discriminate GTP from ATP through FID assay.
Collapse
Affiliation(s)
- Suneesh C. Karunakaran
- Photosciences and Photonics
- Chemical Sciences and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST)
- Trivandrum–695019, India
| | - Albish K. Paul
- Photosciences and Photonics
- Chemical Sciences and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST)
- Trivandrum–695019, India
| | - Danaboyina Ramaiah
- Photosciences and Photonics
- Chemical Sciences and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST)
- Trivandrum–695019, India
- CSIR-North East Institute of Science and Technology (CSIR-NEIST)
| |
Collapse
|
12
|
Yang N, Wang QH, Wang WQ, Wang J, Li F, Tan SP, Cheng MS. The design, synthesis and in vitro immunosuppressive evaluation of novel isobenzofuran derivatives. Bioorg Med Chem Lett 2011; 22:53-6. [PMID: 22172700 DOI: 10.1016/j.bmcl.2011.11.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 10/21/2011] [Accepted: 11/19/2011] [Indexed: 11/27/2022]
Abstract
The synthesis and biological evaluation of a series of novel isobenzofuran-based compounds are described. The compounds were evaluated for their immunosuppressive effects of T-cell proliferation and IMPDH type II inhibitor activity in vitro, as well as their structure-activity relationships were assessed. Several compounds demonstrated highly efficacious immunosuppressive properties, especially compounds 2d, 2e, 2h and 2j, which were superior to MPA, while compounds 2k, 2m, 2n, 4c and 5d exhibited an equipotent inhibitory activity compared to MPA. Generally, it was obviously demonstrated that α,β-unsaturated amides proved more potent than the diamide and urea series. The present study provides a guide for further research on development of safe and effective immunosuppressive agents.
Collapse
Affiliation(s)
- Na Yang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | | | | | | | | | | | | |
Collapse
|
13
|
Guibinga GH, Hrustanovic G, Bouic K, Jinnah HA, Friedmann T. MicroRNA-mediated dysregulation of neural developmental genes in HPRT deficiency: clues for Lesch-Nyhan disease? Hum Mol Genet 2011; 21:609-22. [PMID: 22042773 DOI: 10.1093/hmg/ddr495] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mutations in the gene encoding the purine biosynthetic enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) cause the intractable neurodevelopmental Lesch-Nyhan disease (LND) associated with aberrant development of brain dopamine pathways. In the current study, we have identified an increased expression of the microRNA miR181a in HPRT-deficient human dopaminergic SH-SY5Y neuroblastoma cells. Among the genes potentially regulated by miR181a are several known to be required for neural development, including Engrailed1 (En1), Engrailed2 (En2), Lmx1a and Brn2. We demonstrate that these genes are down-regulated in HPRT-deficient SH-SY5Y cells and that over-expression of miR181a significantly reduces endogenous expression of these genes and inhibits translation of luciferase plasmids bearing the En1/2 or Lmx1a 3'UTR miRNA-binding elements. Conversely, inhibition of miR181a increases the expression of these genes and enhances translation of luciferase constructs bearing the En1/2 and Lmx1a 3'UTR miRNA-binding sequences. We also demonstrate that key neurodevelopmental genes (e.g. Nurr1, Pitx3, Wnt1 and Mash1) known to be functional partners of Lmx1a and Brn2 are also markedly down-regulated in SH-SY5Y cells over-expressing miR181a and in HPRT-deficient cells. Our findings in SH-SY5Y cells demonstrate that HPRT deficiency is accompanied by dysregulation of some of the important pathways that regulate the development of dopaminergic neurons and dopamine pathways and that this defect is associated with and possibly due at least partly to aberrant expression of miR181a. Because aberrant expression of miR181a is not as apparent in HPRT-deficient LND fibroblasts, the relevance of the SH-SY5Y neuroblastoma cells to human disease remains to be proven. Nevertheless, we propose that these pleiotropic neurodevelopment effects of miR181a may play a role in the pathogenesis of LND.
Collapse
Affiliation(s)
- Ghiabe-Henri Guibinga
- Department of Pediatrics, Center for Neural Circuits and Behavior and Rady Children's Hospital, School of Medicine, University of California San Diego, San Diego, CA 92093-0634, USA
| | | | | | | | | |
Collapse
|
14
|
Cristini S, Navone S, Canzi L, Acerbi F, Ciusani E, Hladnik U, de Gemmis P, Alessandri G, Colombo A, Parati E, Invernici G. Human neural stem cells: a model system for the study of Lesch-Nyhan disease neurological aspects. Hum Mol Genet 2010; 19:1939-50. [PMID: 20159777 DOI: 10.1093/hmg/ddq072] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The study of Lesch-Nyhan-diseased (LND) human brain is crucial for understanding how mutant hypoxanthine-phosphoribosyltransferase (HPRT) might lead to neuronal dysfunction. Since LND is a rare, inherited disorder caused by a deficiency of the enzyme HPRT, human neural stem cells (hNSCs) that carry this mutation are a precious source for delineating the consequences of HPRT deficiency and for developing new treatments. In our study we have examined the effect of HPRT deficiency on the differentiation of neurons in hNSCs isolated from human LND fetal brain. We have examined the expression of a number of transcription factors essential for neuronal differentiation and marker genes involved in dopamine (DA) biosynthetic pathway. LND hNSCs demonstrate aberrant expression of several transcription factors and DA markers. HPRT-deficient dopaminergic neurons also demonstrate a striking deficit in neurite outgrowth. These results represent direct experimental evidence for aberrant neurogenesis in LND hNSCs and suggest developmental roles for other housekeeping genes in neurodevelopmental disease. Moreover, exposure of the LND hNSCs to retinoic acid medium elicited the generation of dopaminergic neurons. The lack of precise understanding of the neurological dysfunction in LND has precluded development of useful therapies. These results evidence aberrant neurogenesis in LND hNSCs and suggest a role for HPRT gene in neurodevelopment. These cells combine the peculiarity of a neurodevelopmental model and a human, neural origin to provide an important tool to investigate the pathophysiology of HPRT deficiency and more broadly demonstrate the utility of human neural stem cells for studying the disease and identifying potential therapeutics.
Collapse
Affiliation(s)
- Silvia Cristini
- Laboratory of Cellular Neurobiology, UO Cerebrovascular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Affiliation(s)
- Lizbeth Hedstrom
- Department of Biology, Brandeis University, MS009, 415 South Street, Waltham, Massachusetts 02454, USA.
| |
Collapse
|
16
|
Ceballos-Picot I, Mockel L, Potier MC, Dauphinot L, Shirley TL, Torero-Ibad R, Fuchs J, Jinnah HA. Hypoxanthine-guanine phosphoribosyl transferase regulates early developmental programming of dopamine neurons: implications for Lesch-Nyhan disease pathogenesis. Hum Mol Genet 2009; 18:2317-27. [PMID: 19342420 DOI: 10.1093/hmg/ddp164] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hypoxanthine-guanine phosphoribosyltransferase (HPRT) deficiency results in Lesch-Nyhan disease (LND), where affected individuals exhibit a characteristic neurobehavioral disorder that has been linked with dysfunction of dopaminergic pathways of the basal ganglia. Since the functions of HPRT, a housekeeping enzyme responsible for recycling purines, have no direct relationships with the dopaminergic pathways, the mechanisms whereby HPRT deficiency affect them remain unknown. The current studies demonstrate that HPRT deficiency influences early developmental processes controlling the dopaminergic phenotype, using several different cell models for HPRT deficiency. Microarray methods and quantitative PCR were applied to 10 different HPRT-deficient (HPRT(-)) sublines derived from the MN9D cell line. Despite the variation inherent in such mutant sublines, several consistent abnormalities were evident. Most notable were increases in the mRNAs for engrailed 1 and 2, transcription factors known to play a key role in the specification and survival of dopamine neurons. The increases in mRNAs were accompanied by increases in engrailed proteins, and restoration of HPRT reverted engrailed expression towards normal levels, demonstrating a functional relationship between HPRT and engrailed. The functional relevance of the abnormal developmental molecular signature of the HPRT(-) MN9D cells was evident in impoverished neurite outgrowth when the cells were forced to differentiate chemically. To verify that these abnormalities were not idiosyncratic to the MN9D line, HPRT(-) sublines from the SK-N-BE(2) M17 human neuroblastoma line were evaluated and an increased expression of engrailed mRNAs was also seen. Over-expression of engrailed occurred even in primary fibroblasts from patients with LND in a manner that suggested a correlation with disease severity. These results provide novel evidence that HPRT deficiency may affect dopaminergic neurons by influencing early developmental mechanisms.
Collapse
|
17
|
The RhoGDI-α/JNK signaling pathway plays a significant role in mycophenolic acid-induced apoptosis in an insulin-secreting cell line. Cell Signal 2009; 21:356-64. [DOI: 10.1016/j.cellsig.2008.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Revised: 11/12/2008] [Accepted: 11/12/2008] [Indexed: 11/23/2022]
|
18
|
Sun XX, Dai MS, Lu H. Mycophenolic acid activation of p53 requires ribosomal proteins L5 and L11. J Biol Chem 2008; 283:12387-92. [PMID: 18305114 DOI: 10.1074/jbc.m801387200] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycophenolate mofetil (MMF), a prodrug of mycophenolic acid (MPA), is widely used as an immunosuppressive agent. MPA selectively inhibits inosine monophosphate dehydrogenase (IMPDH), a rate-limiting enzyme for the de novo synthesis of guanine nucleotides, leading to depletion of the guanine nucleotide pool. Its chemotherapeutic effects have been attributed to its ability to induce cell cycle arrest and apoptosis. MPA treatment has also been shown to induce and activate p53. However, the mechanism underlying the p53 activation pathway is still unclear. Here, we show that MPA treatment results in inhibition of pre-rRNA synthesis and disruption of the nucleolus. This treatment enhances the interaction of MDM2 with L5 and L11. Interestingly, knockdown of endogenous L5 or L11 markedly impairs the induction of p53 and G(1) cell cycle arrest induced by MPA. These results suggest that MPA may trigger a nucleolar stress that induces p53 activation via inhibition of MDM2 by ribosomal proteins L5 and L11.
Collapse
Affiliation(s)
- Xiao-Xin Sun
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine and Simon Cancer Center, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
19
|
Immunosuppression after traumatic or ischemic CNS damage: it is neuroprotective and illuminates the role of microglial cells. Prog Neurobiol 2007; 84:211-33. [PMID: 18262323 DOI: 10.1016/j.pneurobio.2007.12.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 11/15/2007] [Accepted: 12/11/2007] [Indexed: 01/08/2023]
Abstract
Acute traumatic and ischemic events in the central nervous system (CNS) invariably result in activation of microglial cells as local representatives of the immune system. It is still under debate whether activated microglia promote neuronal survival, or whether they exacerbate the original extent of neuronal damage. Protagonists of the view that microglial cells cause secondary damage have proposed that inhibition of microglial activation by immunosuppression is beneficial after acute CNS damage. It is the aim of this review to analyse the effects of immunosuppressants on isolated microglial cells and neurons, and to scrutinize the effects of immunosuppression in different in vivo models of acute CNS trauma or ischemia. It is found that the immunosuppressants cytosine-arabinoside, different steroids, cyclosporin A, FK506, rapamycin, mycophenolate mofetil, and minocycline all have direct inhibitory effects on microglial cells. These effects are mainly exerted by inhibiting microglial proliferation or microglial secretion of neurotoxic substances such as proinflammatory cytokines and nitric oxide. Furthermore, immunosuppression after acute CNS trauma or ischemia results in improved structure preservation and, mostly, in enhanced function. However, all investigated immunosuppressants also have direct effects on neurons, and some immunosuppressants affect other glial cells such as astrocytes. In summary, it is safe to conclude that immunosuppression after acute CNS trauma or ischemia is neuroprotective. Furthermore, circumferential evidence indicates that microglial activation after traumatic or ischemic CNS damage is not beneficial to adjacent neurons in the immediate aftermath of such acute lesions. Further experiments with more specific agents or genetic approaches that specifically inhibit microglial cells are needed in order to fully answer the question of whether microglial activation is "good or bad".
Collapse
|
20
|
Guo LT, Friedmann T, King CC. Partial characterization of the proteome of the mouse striatum. Proteomics 2007; 7:3867-9. [DOI: 10.1002/pmic.200700163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Song S, Friedmann T. Tissue-specific Aberrations of Gene Expression in HPRT-deficient Mice: Functional Complexity in a Monogenic Disease? Mol Ther 2007; 15:1432-43. [PMID: 17505472 DOI: 10.1038/sj.mt.6300199] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We have used the hypoxanthine-guanine phosphoribosyltransferase (HPRT) enzyme-deficient mouse model of human Lesch-Nyhan disease (LND) to examine the tissue-specificity of altered global gene expression in a genetically "simple" monogenic human disease. We have identified a number of genes and gene families whose expression is aberrant in the mouse knockout model of the LND, and we have identified different patterns of aberrant gene expression in two principal target tissues associated with the disease phenotype, i.e., the central nervous system and the liver. The major neurological phenotype reflects dysfunction of the dopamine neurotransmitter system in the basal ganglia, and we have now identified aberrant expression of a small number of genes in HPRT-deficient striata. The abnormal metabolic phenotype of hyperuricemia in HPRT-deficient mice is also reflected in an aberrant gene expression in the liver. We interpret these findings to suggest that the genetic consequences of a primary HPRT knockout in the mouse produces transcriptional aberrations in a number of other genes that may play a role in the disease phenotype. Knowledge of these secondary genetic defects may help in the identification of targets for drug- and gene-based therapy.
Collapse
Affiliation(s)
- Shaochun Song
- Department of Pediatrics, University of California, San Diego School of Medicine, La Jolla, California 92093, USA
| | | |
Collapse
|
22
|
Oest TM, Dehghani F, Korf HW, Hailer NP. The immunosuppressant mycophenolate mofetil improves preservation of the perforant path in organotypic hippocampal slice cultures: A retrograde tracing study. Hippocampus 2006; 16:437-42. [PMID: 16598730 DOI: 10.1002/hipo.20182] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Previous studies with excitotoxically lesioned organotypic hippocampal slice cultures (OHSC) have revealed that the immunosuppressant mycophenolate mofetil (MMF) inhibits microglial activation and suppresses neuronal injury in the dentate gyrus. We here investigate whether MMF also has beneficial effects on axon survival in a long-range projection, the perforant path. Complex OHSC including the entorhinal cortex were obtained from Wistar rats (p8); the plane of section ensuring that perforant path integrity was preserved. These preparations were cultured for 9 days in vitro with or without MMF (100 microg/ml). After fixation, the perforant path was retrogradely labeled by application of the fluorescent dye DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindo-carbocyanine) in the hilus of the dentate gyrus, and neuronal perikarya were immunohistochemically stained by the neuron-specific marker NeuN. Analysis of DiI-labeled and NeuN-stained OHSC by confocal laser scanning microscopy revealed double-labeled neurons in the entorhinal cortex, which projected to the dentate gyrus via the perforant path. Quantitative analysis showed that the number of these double-labeled neurons was 19-fold higher in OHSC treated with MMF than in control cultures (P < 0.05). Our findings indicate that MMF treatment improves preservation of the perforant path and encourage further studies on development and regeneration of long-range projections under the influence of immunosuppressants.
Collapse
Affiliation(s)
- Tilman M Oest
- Institute of Anatomy II, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7,D-60590 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
23
|
Mikolaenko I, Rao LM, Roberts RC, Kolb B, Jinnah HA. A Golgi study of neuronal architecture in a genetic mouse model for Lesch–Nyhan disease. Neurobiol Dis 2005; 20:479-90. [PMID: 15908225 DOI: 10.1016/j.nbd.2005.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 03/15/2005] [Accepted: 04/08/2005] [Indexed: 11/18/2022] Open
Abstract
Lesch-Nyhan disease (LND) is an inherited disorder associated with deficiency of hypoxanthine-guanine phosphoribosyltransferase (HPRT), an enzyme essential for purine recycling. The clinical manifestations of the disorder and several neurochemical studies have pointed towards a defect in the striatum, but histological studies of autopsied brain specimens have not revealed any consistent abnormalities. An HPRT-deficient (HPRT-) mouse that has been produced as a model for the disease also exhibits neurochemical abnormalities of the striatum without obvious histological correlates. In the current studies, Golgi-Cox histochemistry was used to evaluate the fine structure of medium spiny I neurons from the striatum in the HPRT- mice. To determine if any abnormalities might be restricted to striatal neurons, the pyramidal projection neurons of layer 5 of the cerebral cortex were also evaluated. Neurons from both regions demonstrated a normal distribution, orientation, and gross morphology. There was no evidence for an abnormal developmental process or degeneration. However, both regions demonstrated a paucity of neurons with very long dendrites and a reduction in dendritic spines that depended upon the distance from the cell body. These findings demonstrate that HPRT deficiency is associated with changes in neuronal architecture in the HPRT- mice. Similar abnormalities in the LND brain could underlie some of the clinical manifestations.
Collapse
Affiliation(s)
- Ivan Mikolaenko
- Department of Neurology, Meyer Room 6-181, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | | | | | | | | |
Collapse
|