1
|
Lamorie-Foote K, Kramer DR, Sundaram S, Cavaleri J, Gilbert ZD, Tang AM, Bashford L, Liu CY, Kellis S, Lee B. Primary somatosensory cortex organization for engineering artificial somatosensation. Neurosci Res 2024; 204:1-13. [PMID: 38278220 DOI: 10.1016/j.neures.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024]
Abstract
Somatosensory deficits from stroke, spinal cord injury, or other neurologic damage can lead to a significant degree of functional impairment. The primary (SI) and secondary (SII) somatosensory cortices encode information in a medial to lateral organization. SI is generally organized topographically, with more discrete cortical representations of specific body regions. SII regions corresponding to anatomical areas are less discrete and may represent a more functional rather than topographic organization. Human somatosensory research continues to map cortical areas of sensory processing with efforts primarily focused on hand and upper extremity information in SI. However, research into SII and other body regions is lacking. In this review, we synthesize the current state of knowledge regarding the cortical organization of human somatosensation and discuss potential applications for brain computer interface. In addition to accurate individualized mapping of cortical somatosensation, further research is required to uncover the neurophysiological mechanisms of how somatosensory information is encoded in the cortex.
Collapse
Affiliation(s)
- Krista Lamorie-Foote
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Daniel R Kramer
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; Department of Neurological Surgery, University of Colorado School of Medicine, Denver, CO, United States
| | - Shivani Sundaram
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States.
| | - Jonathon Cavaleri
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Zachary D Gilbert
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Austin M Tang
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; Department of Neurological Surgery, University of Texas at Houston, Houston, TX, United States
| | - Luke Bashford
- Department of Biology and Biological Engineering, T&C Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, United States; Department of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Charles Y Liu
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Spencer Kellis
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Brian Lee
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| |
Collapse
|
2
|
Triccas LT, Camilleri KP, Tracey C, Mansoureh FH, Benjamin W, Francesca M, Leonardo B, Dante M, Geert V. Reliability of Upper Limb Pin-Prick Stimulation With Electroencephalography: Evoked Potentials, Spectra and Source Localization. Front Hum Neurosci 2022; 16:881291. [PMID: 35937675 PMCID: PMC9351050 DOI: 10.3389/fnhum.2022.881291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
In order for electroencephalography (EEG) with sensory stimuli measures to be used in research and neurological clinical practice, demonstration of reliability is needed. However, this is rarely examined. Here we studied the test-retest reliability of the EEG latency and amplitude of evoked potentials and spectra as well as identifying the sources during pin-prick stimulation. We recorded EEG in 23 healthy older adults who underwent a protocol of pin-prick stimulation on the dominant and non-dominant hand. EEG was recorded in a second session with rest intervals of 1 week. For EEG electrodes Fz, Cz, and Pz peak amplitude, latency and frequency spectra for pin-prick evoked potentials was determined and test-retest reliability was assessed. Substantial reliability ICC scores (0.76-0.79) were identified for evoked potential negative-positive amplitude from the left hand at C4 channel and positive peak latency when stimulating the right hand at Cz channel. Frequency spectra showed consistent increase of low-frequency band activity (< 5 Hz) and also in theta and alpha bands in first 0.25 s. Almost perfect reliability scores were found for activity at both low-frequency and theta bands (ICC scores: 0.81-0.98). Sources were identified in the primary somatosensory and motor cortices in relation to the positive peak using s-LORETA analysis. Measuring the frequency response from the pin-prick evoked potentials may allow the reliable assessment of central somatosensory impairment in the clinical setting.
Collapse
Affiliation(s)
- Lisa Tedesco Triccas
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Department of Systems and Control Engineering, University of Malta, Msida, Malta
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium
- Centre for Biomedical Cybernetics, University of Malta, Msida, Malta
| | - Kenneth P. Camilleri
- Department of Systems and Control Engineering, University of Malta, Msida, Malta
- Centre for Biomedical Cybernetics, University of Malta, Msida, Malta
| | - Camilleri Tracey
- Department of Systems and Control Engineering, University of Malta, Msida, Malta
- Centre for Biomedical Cybernetics, University of Malta, Msida, Malta
| | - Fahimi Hnazaee Mansoureh
- Laboratory for Neuro- and Psychophysiology, KU Leuven, Leuven, Belgium
- The Wellcome Trust Centre for Neuroimaging, University College London Institute of Neurology, London, United Kingdom
| | | | - Muscat Francesca
- Department of Systems and Control Engineering, University of Malta, Msida, Malta
- Centre for Biomedical Cybernetics, University of Malta, Msida, Malta
| | - Boccuni Leonardo
- Institut Guttmann, Institut Universitari de Neurorehabilitació Adscrit a la Universitat Autónoma de Barcelona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Mantini Dante
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Verheyden Geert
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Van Oudenhove L, Kragel PA, Dupont P, Ly HG, Pazmany E, Enzlin P, Rubio A, Delon-Martin C, Bonaz B, Aziz Q, Tack J, Fukudo S, Kano M, Wager TD. Common and distinct neural representations of aversive somatic and visceral stimulation in healthy individuals. Nat Commun 2020; 11:5939. [PMID: 33230131 PMCID: PMC7684294 DOI: 10.1038/s41467-020-19688-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022] Open
Abstract
Different pain types may be encoded in different brain circuits. Here, we examine similarities and differences in brain processing of visceral and somatic pain. We analyze data from seven fMRI studies (N = 165) and five types of pain and discomfort (esophageal, gastric, and rectal distension, cutaneous thermal stimulation, and vulvar pressure) to establish and validate generalizable pain representations. We first evaluate an established multivariate brain measure, the Neurologic Pain Signature (NPS), as a common nociceptive pain system across pain types. Then, we develop a multivariate classifier to distinguish visceral from somatic pain. The NPS responds robustly in 98% of participants across pain types, correlates with perceived intensity of visceral pain and discomfort, and shows specificity to pain when compared with cognitive and affective conditions from twelve additional studies (N = 180). Pre-defined signatures for non-pain negative affect do not respond to visceral pain. The visceral versus the somatic classifier reliably distinguishes somatic (thermal) from visceral (rectal) stimulation in both cross-validation and independent cohorts. Other pain types reflect mixtures of somatic and visceral patterns. These results validate the NPS as measuring a common core nociceptive pain system across pain types, and provide a new classifier for visceral versus somatic pain.
Collapse
Affiliation(s)
- Lukas Van Oudenhove
- Laboratory for Brain-Gut Axis Studies (LaBGAS), Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism, and Ageing, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Cognitive and Affective Neuroscience Lab, Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Philip A Kragel
- Department of Psychology and Neuroscience and the Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, USA
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Patrick Dupont
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Huynh Giao Ly
- Laboratory for Brain-Gut Axis Studies (LaBGAS), Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism, and Ageing, KU Leuven, Leuven, Belgium
| | - Els Pazmany
- Interfaculty Institute for Family and Sexuality Studies, Department of Neurosciences, University of Leuven, Leuven, Belgium
| | - Paul Enzlin
- Interfaculty Institute for Family and Sexuality Studies, Department of Neurosciences, University of Leuven, Leuven, Belgium
| | - Amandine Rubio
- Grenoble Institute of Neuroscience, University of Grenoble Alpes, Grenoble, France
| | - Chantal Delon-Martin
- Grenoble Institute of Neuroscience, University of Grenoble Alpes, Grenoble, France
| | - Bruno Bonaz
- Grenoble Institute of Neuroscience, University of Grenoble Alpes, Grenoble, France
| | - Qasim Aziz
- Barts and The London School of Medicine and Dentistry, Wingate Institute of Neurogastroenterology, Centre for Neuroscience and Trauma, Blizzard Institute, Queen Mary University of London, London, UK
| | - Jan Tack
- Gastrointestinal Motility and Sensitivity Research Group, Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism, and Ageing, KU Leuven, Leuven, Belgium
| | - Shin Fukudo
- Behavioral Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Michiko Kano
- Behavioral Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai, Japan
| | - Tor D Wager
- Cognitive and Affective Neuroscience Lab, Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
4
|
Yang FP, Chao AS, Lin SH, Chao A, Wang TH, Chang YL, Chang HS, Wang JJ. Functional human brain connectivity during labor and its alteration under epidural analgesia. Brain Imaging Behav 2020; 14:2647-2658. [PMID: 31900889 DOI: 10.1007/s11682-019-00216-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This study used functional magnetic resonance imaging to explore the neural networks of pain during labor and its relief. It was hypothesized that epidural analgesia would affect the neural activities and the underlying network connectivity. Analysis using dynamic causal modelling and functional connectivity was performed to investigate the spatial activity and network connection of labor pain with and without epidural analgesia. This Institutional Review Board approved study acquired Magnetic Resonance Imaging from 15 healthy women of spontaneous normal delivery (with/without epidural analgesia = 7/8, aged 29.6 ± 2.3 and 29.3 ± 4.8 years old respectively) using a 1.5 Tesla scanner. Numerical rating score of pain was evaluated by a research nurse in the beginning of the first stage of labor and approximately 30 min after imaging examination. Six regions of interested from the activated clusters and literature were selected for dynamic causal modelling, which included primary and secondary somatosensory cortex, middle frontal gyrus, anterior cingulate cortex, insula and lentiform. Functional connectivity was calculated from selected sensory and affective regions. All analyses were performed by using software of statistical parametric mapping version 8 and CONN functional connectivity toolbox. The result showed that the experience of labor pain can lead to activations within a distributed brain network. The pain relief from epidural analgesia can be accompanied with altered functional connectivity, which was most evident in the cingulo-frontal system. The present study, therefore, provides an overview of a pain-related neural network that occur during labor and upon epidural analgesia.
Collapse
Affiliation(s)
- Fan-Pei Yang
- Department of Foreign Languages and Literature, National Tsing Hua University, Hsinchu, Taiwan
| | - An-Shine Chao
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan City, Taiwan
| | - Sung-Han Lin
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, 259 WenHua 1st Road, TaoYuan county, Taiwan
| | - Anne Chao
- Department of Anesthesia, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzu-Hao Wang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan City, Taiwan
| | - Yao-Lung Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan City, Taiwan
| | - Hong-Shiu Chang
- Department of Neurology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan City, Taiwan
| | - Jiun-Jie Wang
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, 259 WenHua 1st Road, TaoYuan county, Taiwan.
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Keelung, Taiwan.
- Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan.
| |
Collapse
|
5
|
Wu R, Wang F, Yang PF, Chen LM. High-resolution functional MRI identified distinct global intrinsic functional networks of nociceptive posterior insula and S2 regions in squirrel monkey brain. Neuroimage 2017; 155:147-158. [PMID: 28461059 DOI: 10.1016/j.neuroimage.2017.04.067] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 01/21/2023] Open
Abstract
Numerous functional imaging and electrophysiological studies in humans and animals indicate that the two contiguous areas of secondary somatosensory cortex (S2) and posterior insula (pIns) are core regions in nociceptive processing and pain perception. In this study, we tested the hypothesis that the S2-pIns connection serves as a hub for connecting distinct sensory and affective nociceptive processing networks in the squirrel monkey brain. At 9.4T, we first mapped the brain regions that respond to nociceptive heat stimuli with high-resolution fMRI, and then used seed-based resting-state fMRI (rsfMRI) analysis to delineate and refine the global intrinsic functional connectivity circuits of the proximal S2 and pIns regions. In each subject, nociceptive (47.5°C) heat-evoked fMRI activations were detected in many brain regions, including primary somatosensory (S1), S2, pIns, area 7b, anterior cingulate cortex (ACC), primary motor cortex, prefrontal cortex, supplementary motor area, thalamus, and caudate. Using the heat-evoked fMRI activation foci in S2 and pIns as the seeds, voxel-wise whole-brain resting-state functional connectivity (rsFC) analysis revealed strong functional connections between contralateral S2 and pIns, as well as their corresponding regions in the ipsilateral hemisphere. Spatial similarity and overlap analysis identified each region as part of two distinct intrinsic functional networks with 7% overlap: sensory S2-S1-area 7b and affective pIns-ACC-PCC networks. Moreover, a high degree of overlap was observed between the combined rsFC maps of nociceptive S2 and pIns regions and the nociceptive heat-evoked activation map. In summary, our study provides evidence for the existence of two distinct intrinsic functional networks for S2 and pIns nociceptive regions, and these two networks are joined via the S2-pIns connection. Brain regions that are involved in processing nociceptive inputs are also highly interconnected at rest. The presence of robust and distinct S1-S2-area 7b and pIns-ACC-PCC rsFC networks under anesthesia underscores their fundamental roles in processing nociceptive information.
Collapse
Affiliation(s)
- Ruiqi Wu
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Wuhan Institute of Physics and Mathematics, The Chinese Academy of Sciences/State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan 430071, China
| | - Feng Wang
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Pai-Feng Yang
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Li Min Chen
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Psychology, Vanderbilt University, Nashville, TN 37232, United States.
| |
Collapse
|
6
|
Abstract
With more than 100 studies published over the past two decades, functional brain imaging research in gastroenterology has become an established field; one that has enabled improved insight into the supraspinal responses evoked by gastrointestinal stimulation both in health and disease. However, there remains considerable inter-study variation in the published results, largely owing to methodological differences in stimulation and recording techniques, heterogeneous patient selection, lack of control for psychological factors and so on. These issues with reproducibility, although not unique to studies of the gastrointestinal tract, can lead to unjustified inferences. To obtain consistent and more clinically relevant results, there is a need to optimize and standardize brain imaging studies across different centres. In addition, the use of complementary and more novel brain imaging modalities and analyses, which are now being used in other fields of research, might help unravel the factors at play in functional gastrointestinal disorders. This Review highlights the areas in which functional brain imaging has been useful and what it has revealed, the areas that are in need of improvement, and finally suggestions for future directions.
Collapse
|
7
|
Horing B, Kugel H, Brenner V, Zipfel S, Enck P. Perception and pain thresholds for cutaneous heat and cold, and rectal distension: associations and disassociations. Neurogastroenterol Motil 2013; 25:e791-802. [PMID: 23937429 DOI: 10.1111/nmo.12207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/18/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hypersensitivity to somatic or visceral pain has been reported in numerous clinical conditions such as fibromyalgia or the irritable bowel syndrome, and general hypersensitivity has been proposed to be the underlying mechanism. However, cross-modal relationships especially between somatic and visceral pain have rarely been investigated even in healthy volunteers. Furthermore, psychological influences on pain have rarely been characterized across modalities. METHODS Sixty-one healthy participants underwent testing of perception and pain thresholds for cutaneous thermode heat and cold, as well as for rectal balloon distension. Psychological testing for anxiety, depression, and pain experience (including catastrophizing and coping) as well as cardiac interoception was performed. Measurement quality and the correlations between the different modalities were examined. KEY RESULTS Significant correlations existed between the perception thresholds for cold/heat (τB = -0.28, p = 0.002) and cold/distension (τB = -0.21, p = 0.03) and for the pain thresholds for cold/heat (r = -0.61, p < 0.001) and heat/distension (r = 0.33, p = 0.01). No association was found between pain thresholds and anxiety, depression, psychological experience with and processing of pain, or cardiac interoception. Retest reliabilities for pain measurements were satisfying after short intertrial intervals (all intraclass correlation coefficients >0.8), but less so after longer intervals. The individuals contributing to the respective correlations differ between measurements. CONCLUSIONS & INFERENCES Moderate associations were found for pain thresholds across modalities. The strength of the associations and their stability over time warrants further investigation and might serve to increase the understanding of conditions affecting multiple pain modalities.
Collapse
Affiliation(s)
- B Horing
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | | | | | | | | |
Collapse
|
8
|
Chen LM, Dillenburger BC, Wang F, Tang CH. Differential fMRI activation to noxious heat and tactile stimuli in parasylvian areas of new world monkeys. Pain 2011; 153:158-169. [PMID: 22115923 DOI: 10.1016/j.pain.2011.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 09/06/2011] [Accepted: 10/04/2011] [Indexed: 10/15/2022]
Abstract
Emerging evidence supports an important role of posterior parasylvian areas in both pain and touch processing. Whether there are separate or shared networks for these sensations remains controversial. The present study compared spatial patterns of brain activation in response to unilateral nociceptive heat (47.5°C) or innocuous tactile stimulation (8-Hz vibration) to digits through high-resolution functional magnetic resonance imaging (fMRI) in squirrel monkeys. In addition, the temporal profile of heat-stimulus-evoked fMRI Blood Oxygenation Level Dependent (BOLD) signal changes was characterized. By examining high-resolution fMRI and histological measures at both the individual and the group levels, we found that both nociceptive heat and tactile stimuli elicited activation in bilateral secondary somatosensory and ventral parietal areas (S2/PV) and in ipsilateral ventral somatosensory areas (VS) and retroinsula (Ri). Bilateral posterior insular cortex (pIns) and area 7b responded preferentially to nociceptive heat stimulation. Single voxels within each activation cluster showed robust BOLD signal changes during each block of nociceptive stimulation. Across animals (n=11), nociceptive response magnitudes of contralateral VS and pIns and ipsilateral Ri were significantly greater than corresponding areas in the opposite hemisphere. In sum, both distinct and shared areas in regions surrounding the posterior sylvian fissure were activated in response to nociceptive and tactile inputs in nonhuman primates.
Collapse
Affiliation(s)
- Li Min Chen
- Department of Radiology and Radiological Science, Vanderbilt University, Nashville, TN, USA Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| | | | | | | |
Collapse
|
9
|
Paine P, Kishor J, Worthen SF, Gregory LJ, Aziz Q. Exploring relationships for visceral and somatic pain with autonomic control and personality. Pain 2009; 144:236-244. [DOI: 10.1016/j.pain.2009.02.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 02/24/2009] [Accepted: 02/24/2009] [Indexed: 10/20/2022]
|
10
|
Mayer EA, Aziz Q, Coen S, Kern M, Labus J, Lane R, Kuo B, Naliboff B, Tracey I. Brain imaging approaches to the study of functional GI disorders: a Rome working team report. Neurogastroenterol Motil 2009; 21:579-96. [PMID: 19646070 PMCID: PMC3829384 DOI: 10.1111/j.1365-2982.2009.01304.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Progresses in the understanding of human brain-gut interactions in health and disease have been limited by the lack of non-invasive techniques to study brain activity. The advent of neuroimaging techniques has made it possible not only to study the structure and function of the brain, but also to characterize signaling system underlying brain function. This article gives a brief overview of relevant functional neuroanatomy, and of the most commonly used brain imaging techniques. It summarizes published functional brain imaging studies using acute visceral stimulation of the oesophagus, stomach and colon in healthy control subjects and patients with functional GI disorders, and briefly discusses pertinent findings from these studies. The article concludes with a critical assessment of published studies, and with recommendations for improved study paradigms and analysis strategies.
Collapse
Affiliation(s)
- Emeran A Mayer
- Center for Neurobiology of Stress, Departments of Medicine, Physiology and Psychiatry, UCLA, CURE Digestive Diseases Research Center, UCLA Division of Digestive Diseases, Los Angeles, CA
| | - Qasim Aziz
- Wingate Institute for Neurogastroenterology, Neurogastroenterology Group, School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Steven Coen
- Wingate Institute for Neurogastroenterology, Neurogastroenterology Group, School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Mark Kern
- Department of Medicine, Division of Gastroenterology and Hepatology, Medical College of Wisconsin Milwaukee, WI
| | - Jennifer Labus
- Center for Neurobiology of Stress, Departments of Medicine, Physiology and Psychiatry, UCLA, CURE Digestive Diseases Research Center, UCLA Division of Digestive Diseases, Los Angeles, CA
| | - Richard Lane
- Departments of Psychiatry, Psychology and Neuroscience, University of Arizona, AZ
| | - Brad Kuo
- Gastro Intestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Bruce Naliboff
- Center for Neurobiology of Stress, Departments of Medicine, Physiology and Psychiatry, UCLA, CURE Digestive Diseases Research Center, UCLA Division of Digestive Diseases, Los Angeles, CA
| | - Irene Tracey
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, FMRIB Centre, Oxford University Department of Clinical Neurology, John Radcliffe Hospital Oxford, UK
| |
Collapse
|
11
|
Ralea IC, Rioufol G, Cakmak S, Derex L, Nighoghossian N. Acute stroke and heart attack management within a four-hour time window. J Stroke Cerebrovasc Dis 2009; 18:167-70. [PMID: 19251195 DOI: 10.1016/j.jstrokecerebrovasdis.2008.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 09/23/2008] [Accepted: 09/30/2008] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Although brain embolism is a uncommon complication of myocardial infarction, sequential treatment of cerebral and coronary artery occlusion within a 4-hour time window is unusual. SUMMARY of case A 60 year-old man experienced successful intravenous recombinant thrombolysis (tPA) for acute middle cerebral artery (MCA) occlusion followed by efficient angioplasty stenting of a troponin-negative coronary occlusion which, while painless, involved clear electrocardiographic abnormalities. Both pathologies were treated within a 4-hour time window. CONCLUSION Acute brain and heart ischemia may be successfully treated within a 4-hour time window, thanks to an efficient multidisciplinary approach.
Collapse
Affiliation(s)
- I-C Ralea
- Cerebrovascular unit, University Claude Bernard, Lyon, France
| | | | | | | | | |
Collapse
|
12
|
Basic and clinical aspects of gastrointestinal pain. Pain 2009; 141:191-209. [PMID: 19155134 DOI: 10.1016/j.pain.2008.12.011] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 09/29/2008] [Accepted: 12/03/2008] [Indexed: 12/12/2022]
Abstract
The gastrointestinal (GI) tract is a system of organs within multicellular animals which facilitates the ingestion, digestion, and absorption of food with subsequent defecation of waste. A complex arrangement of nerves and ancillary cells contributes to the sensorimotor apparatus required to subserve such essential functions that are with the exception of the extreme upper and lower ends of the GI tract normally subconscious. However, it also has the potential to provide conscious awareness of injury. Although this function can be protective, when dysregulated, particularly on a chronic basis, the same system can lead to considerable morbidity. The anatomical and molecular basis of gastrointestinal nociception, conditions associated with chronic unexplained visceral pain, and developments in treatment are presented in this review.
Collapse
|
13
|
Abstract
OBJECTIVES The convergence of a neural system for monitoring external stimuli with mechanisms that process somatic information leads to the hypothesis that the anterior parietal cortex may mediate attention to a specific internal visceral signal. METHODS We measured regional brain activity through functional magnetic resonance imaging and directed subjects (6 men and 11 women) to attend to their own heartbeat, and to a heartbeat played on an external tape. RESULTS Statistical parametric brain mapping revealed the importance of right (nondominant) parietal cortex to directing attention internally to one's visceral state and focusing on a specific body signal. CONCLUSIONS The parietal activation may be taking advantage of monitoring skills typically utilized for vigilance to the external environment, in addition to working as a higher-level recognition system for signals emerging from the viscera. The finding suggests that the parietal cortex plays a central role in an interoceptive attention system that monitors bodily states.
Collapse
|
14
|
Mayer EA, Naliboff BD, Craig ADB. Neuroimaging of the brain-gut axis: from basic understanding to treatment of functional GI disorders. Gastroenterology 2006; 131:1925-42. [PMID: 17188960 DOI: 10.1053/j.gastro.2006.10.026] [Citation(s) in RCA: 276] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 10/18/2006] [Indexed: 12/13/2022]
Affiliation(s)
- Emeran A Mayer
- Center for Neurovisceral Sciences & Women's Health, David Geffen School of Medicine at UCLA, Los Angeles, California 90073, USA.
| | | | | |
Collapse
|
15
|
Song GH, Venkatraman V, Ho KY, Chee MWL, Yeoh KG, Wilder-Smith CH. Cortical effects of anticipation and endogenous modulation of visceral pain assessed by functional brain MRI in irritable bowel syndrome patients and healthy controls. Pain 2006; 126:79-90. [PMID: 16846694 DOI: 10.1016/j.pain.2006.06.017] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 05/12/2006] [Accepted: 06/12/2006] [Indexed: 12/29/2022]
Abstract
Visceral pain processing is abnormal in a majority of irritable bowel syndrome (IBS) patients. Aberrant endogenous nociceptive modulation and anticipation are possible underlying mechanisms investigated in the current study. Twelve IBS patients and 12 matched healthy controls underwent brain fMRI scanning during the following randomised stimuli: sham and painful rectal distensions by barostat without and with simultaneous activation of endogenous descending nociceptive inhibition using ice water immersion of the foot for heterotopic stimulation. Heterotopic stimulation decreased rectal pain scores from 3.7+/-0.2 to 3.1+/-0.3 (mean+/-SE, scale 0-5) in controls (p<0.01), but not significantly in IBS. Controls differed from IBS patients in showing significantly greater activation bilaterally in the anterior insula, SII and putamen during rectal stimulation alone compared to rectal plus heterotopic stimulation. Greater activation during rectal plus heterotopic versus rectal stimulation was seen bilaterally in SI and the right superior temporal gyrus in controls and in the right inferior lobule and bilaterally in the superior temporal gyrus in IBS. Rectal pain scores were similarly low during sham stimulation in both groups, but brain activation patterns differed. In conclusion, IBS patients showed dysfunctional endogenous inhibition of pain and concomitant aberrant activation of brain areas involved in pain processing and integration. Anticipation of rectal pain was associated with different brain activation patterns in IBS involving multiple interoceptive, homeostatic, associative and emotional areas, even though pain scores were similar during sham distension. The aberrant activation of endogenous pain inhibition appears to involve circuitry relating to anticipation as well as pain processing itself.
Collapse
Affiliation(s)
- Guang Hui Song
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
16
|
Borsook D, Becerra L, Hargreaves R. A role for fMRI in optimizing CNS drug development. Nat Rev Drug Discov 2006; 5:411-24. [PMID: 16604100 DOI: 10.1038/nrd2027] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Drug development today needs to balance agility, speed and risk in defining the probability of success for molecules, mechanisms and therapeutic concepts. New techniques in functional magnetic resonance imaging (fMRI) promise to be part of a sequence that could transform drug development for disorders of the central nervous system (CNS) by examining brain systems and their functional activation dynamically. The brain is complex and multiple transmitters and intersecting brain circuits are implicated in many CNS disorders. CNS therapeutics are designed against specific CNS targets, many of which are unprecedented. The challenge is to reveal the functional consequences of these interactions to assess therapeutic potential. fMRI can help optimize CNS drug discovery by providing a key metric that can increase confidence in early decision-making, thereby improving success rates and reducing risk, development times and costs of drug development.
Collapse
Affiliation(s)
- David Borsook
- Imaging Center for Drug Development (ICD), Mclean Hospital, Department of Psychiatry, USA.
| | | | | |
Collapse
|
17
|
Eickhoff SB, Lotze M, Wietek B, Amunts K, Enck P, Zilles K. Segregation of visceral and somatosensory afferents: an fMRI and cytoarchitectonic mapping study. Neuroimage 2006; 31:1004-14. [PMID: 16529950 DOI: 10.1016/j.neuroimage.2006.01.023] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 01/13/2006] [Accepted: 01/20/2006] [Indexed: 12/29/2022] Open
Abstract
Ano-rectal stimulation provides an important model for the processing of somatosensory and visceral sensations in the human nervous system. In spite of their anatomical proximity, the anal canal is innervated by somatosensory afferents whereas the rectum is innervated by the visceral nervous system. In a functional magnetic resonance (fMRI) experiment, we examined the cerebral responses to pneumatic balloon distension of these two structures to test whether somatosensory and visceral stimulation elicited distinct brain activations in spite of their spinal convergence. The specificity of the identified activations was analyzed by Bayesian mixed effects modeling. Activations in the parietal operculum were also compared to the location of cytoarchitectonically defined areas OP 1-4, which are part of the secondary somatosensory cortex (SII), to analyze whether the SII region was activated by anal and/or rectal stimulation. The lowest segregation between visceral and somatosensory stimuli was in the insular cortex, which supports the interpretation of the insula as an integrative region, receiving input from different sensory modalities. The most distinct segregation was found in the fronto-parietal operculum. Here the activations following anal and rectal stimulation were not only functionally but also anatomically distinct. Anal sensations were processed similar to other somatosensory stimuli in the SII cortex (area OP 4). Rectal afferents on the other hand were not processed in SII. Rather, they evoked activation at a more anterior location on the precentral operculum. These results demonstrate a functionally and anatomically distinct processing of somatosensory and visceral afferents in the human cerebral cortex.
Collapse
|
18
|
Olausson H, Charron J, Marchand S, Villemure C, Strigo IA, Bushnell MC. Feelings of warmth correlate with neural activity in right anterior insular cortex. Neurosci Lett 2005; 389:1-5. [PMID: 16051437 DOI: 10.1016/j.neulet.2005.06.065] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 06/02/2005] [Accepted: 06/23/2005] [Indexed: 11/28/2022]
Abstract
The neural coding of perception can differ from that for the physical attributes of a stimulus. Recent studies suggest that activity in right anterior insular cortex may underlie thermal perception, particularly that of cold. We now examine whether this region is also important for the perception of warmth. We applied cutaneous warm stimuli on the left leg (warmth) in normal subjects (n = 7) during functional magnetic resonance imaging (fMRI). After each stimulus, subjects rated their subjective intensity of the stimulus using a visual analogue scale (VAS), and correlations were determined between the fMRI signal and the VAS ratings. We found that intensity ratings of warmth correlated with the fMRI signal in the right (contralateral to stimulation) anterior insular cortex. These results, in conjunction with previous reports, suggest that the right anterior insular cortex is important for different types of thermal perception.
Collapse
Affiliation(s)
- H Olausson
- Centre for Research on Pain, McGill University, Montréal, Qué., Canada.
| | | | | | | | | | | |
Collapse
|