1
|
Abstract
Excess and ectopic fat accumulation in obesity is a major risk factor for developing hyperlipidemia, type 2 diabetes and cardiovascular disease. The activation of brown and/or beige adipocytes is a promising target for the treatment of metabolic disorders as the combustion of excess energy by these thermogenic adipocytes may help losing weight and improving plasma parameters including triglyceride, cholesterol and glucose levels. The regulation of heat production by thermogenic adipose tissues is based on a complex crosstalk between the autonomous nervous system, intracellular and secreted factors. This multifaceted alignment regulates thermogenic demands to environmental circumstances in dependence on available energy resources. This review summarizes the current knowledge how thermogenic tissues can be targeted to combat the burden of diseases with a special focus on lipid metabolism and diseases related to lipoprotein metabolism.
Collapse
Affiliation(s)
- Christian Schlein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
2
|
Horii Y, Nagai K, Nakashima T. Order of exposure to pleasant and unpleasant odors affects autonomic nervous system response. Behav Brain Res 2013; 243:109-17. [PMID: 23318462 DOI: 10.1016/j.bbr.2012.12.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/20/2012] [Accepted: 12/24/2012] [Indexed: 12/22/2022]
Abstract
When mammals are exposed to an odor, that odor is expected to elicit a physiological response in the autonomic nervous system. An unpleasant aversive odor causes non-invasive stress, while a pleasant odor promotes healing and relaxation in mammals. We hypothesized that pleasant odors might reduce a stress response previously induced by an aversive predator odor. Rats were thus exposed to pleasant and unpleasant odors in different orders to determine whether the order of odor exposure had an effect on the physiological response in the autonomic nervous system. The first trial examined autonomic nerve activity via sympathetic and parasympathetic nerve response while the second trial examined body temperature response. Initial exposure to a pleasant odor elicited a positive response and secondary exposure to an unpleasant odor elicited a negative response, as expected. However, we found that while initial exposure to an unpleasant odor elicited a negative stress response, subsequent secondary exposure to a pleasant odor not only did not alleviate that negative response, but actually amplified it. These findings were consistent for both the autonomic nerve activity response trial and the body temperature response trial. The trial results suggest that exposure to specific odors does not necessarily result in the expected physiological response and that the specific order of exposure plays an important role. Our study should provide new insights into our understanding of the physiological response in the autonomic nervous system related to odor memory and discrimination and point to areas that require further research.
Collapse
Affiliation(s)
- Yuko Horii
- Kyoto Institute of Technology, Matsugasaki, Sakyo-Ku, Kyoto 606-8585, Japan.
| | | | | |
Collapse
|
3
|
Stengel A, Goebel M, Luckey A, Yuan PQ, Wang L, Taché Y. Cold ambient temperature reverses abdominal surgery-induced delayed gastric emptying and decreased plasma ghrelin levels in rats. Peptides 2010; 31:2229-35. [PMID: 20817059 PMCID: PMC2967623 DOI: 10.1016/j.peptides.2010.08.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 08/26/2010] [Accepted: 08/26/2010] [Indexed: 02/01/2023]
Abstract
We investigated whether acute cold-induced vagal activation through brainstem thyrotropin-releasing hormone (TRH) signaling influences abdominal surgery-induced delayed gastric emptying (GE) in fasted rats. Laparotomy and cecal palpation or sham (short anesthesia alone) was performed 10 min before or 30 min after cold exposure (4-6°C) lasting 90 min. Non-nutrient GE was assessed during 70-90 min of cold exposure. Control groups remained at room temperature (RT). The stable TRH analog, RX-77368 (50 ng/rat) was injected intracisternally immediately before surgery and GE monitored 30-50 min postsurgery in rats maintained at RT. Plasma acyl (AG) and total ghrelin levels were assessed using the new RAPID blood processing method and radioimmunoassays. Desacyl ghrelin (DAG) was derived from total minus AG. In rats maintained at RT, abdominal surgery decreased GE by 60% compared to sham. Cold before or after surgery or RX-77368 normalized the delayed GE. In non-fasted rats, cold exposure increased plasma AG and DAG levels at 2 h (2.4- and 2.7-times, respectively) and 4 h (2.2- and 2.0-times, respectively) compared to values in rats maintained at RT. In fasted rats, abdominal surgery decreased AG and DAG levels by 2.4- and 2.1-times, respectively, at 90 min. Cold for 90 min after surgery normalized AG and DAG levels to those observed in sham-treated animals kept at RT. These data indicate that endogenous (cold exposure) and exogenous (TRH analog) activation of medullary TRH vagal signaling prevent abdominal surgery-induced delayed GE. The restoration of circulating AG levels inhibited by abdominal surgery may contribute to alleviate postoperative gastric ileus.
Collapse
Affiliation(s)
- Andreas Stengel
- CURE/Digestive Diseases Research Center, Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division at the University of California Los Angeles, and VA Greater Los Angeles Health Care System, CA 90073, USA
| | | | | | | | | | | |
Collapse
|
4
|
Horii Y, Tanida M, Shen J, Hirata T, Kawamura N, Wada A, Nagai K. Effects of Eucommia leaf extracts on autonomic nerves, body temperature, lipolysis, food intake, and body weight. Neurosci Lett 2010; 479:181-6. [DOI: 10.1016/j.neulet.2010.05.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 04/30/2010] [Accepted: 05/11/2010] [Indexed: 11/15/2022]
|
5
|
Nakagawa H, Okumura N. Coordinated regulation of circadian rhythms and homeostasis by the suprachiasmatic nucleus. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:391-409. [PMID: 20431263 PMCID: PMC3417802 DOI: 10.2183/pjab.86.391] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 02/05/2010] [Indexed: 05/29/2023]
Abstract
We have demonstrated that in rats activities of various enzymes related to gluconeogenesis and amino acid metabolism show circadian rhythms. Based on these results, we have explored the molecular mechanisms underlying circadian oscillation and phase response to light of the master clock located in the dorsomedial subdivision of the suprachiasmatic nucleus (SCN) and found various proteins closely related to phase response such as BIT/SHPS-1 and those of circadian oscillation, some of which are involved in protein-tyrosine phosphorylation.On the other hand, we have presented several lines of evidence that the ventrolateral subdivision of the SCN includes not only the control center of energy supply to the brain, but also that of homeostasis such as blood glucose, blood pressure, water balance, and body temperature. We have also shown that besides these functions, the latter subdivision is involved in the regulations of hormone secretions such as insulin, glucagon, corticosterone and vasopressin. It has been also shown by electrophysiological means that light exposure to rat eye enhances sympathetic nerve activity, whereas it depresses parasympathetic nerve activity. Thus, environmental light is implicated not only in the phase-shift through the retinohypthalamic tract (RHT), but also control of autonomic nerve activities through the RHT, It is also discussed in this review how the two divisions are interconnected and how environmental light is involved in this interconnection.
Collapse
Affiliation(s)
- Hachiro Nakagawa
- International Institute of Alternative Medicine, International Institute of Alternative Medicine, 2-4-1 Noda-cho, Osaka, Japan.
| | | |
Collapse
|
6
|
Shen J, Nakamura H, Fujisaki Y, Tanida M, Horii Y, Fuyuki R, Takumi H, Shiraishi K, Kometani T, Nagai K. Effect of 4G-α-glucopyranosyl hesperidin on brown fat adipose tissue- and cutaneous-sympathetic nerve activity and peripheral body temperature. Neurosci Lett 2009; 461:30-5. [DOI: 10.1016/j.neulet.2009.05.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 03/16/2009] [Accepted: 05/19/2009] [Indexed: 10/20/2022]
|
7
|
Tanida M, Shen J, Nagai K. Possible role of the histaminergic system in autonomic and cardiovascular responses to neuropeptide Y. Neuropeptides 2009; 43:21-9. [PMID: 18996592 DOI: 10.1016/j.npep.2008.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 09/18/2008] [Accepted: 09/30/2008] [Indexed: 11/25/2022]
Abstract
Previous studies have demonstrated that neuropeptide Y (NPY) affects blood pressure (BP) in anesthetized rats. Here, we examined the effects of the third cerebral ventricular (3CV) injection of various doses of NPY on renal sympathetic nerve activity (RSNA) and BP in anesthetized rats. 3CV injection of NPY suppressed RSNA and BP in a dose-dependent manner. Moreover, suppressing effects of NPY on RSNA and BP were eliminated by lateral cerebral ventricular (LCV) preinjection of thioperamide, an antagonist of histaminergic H3-receptor, not diphenhydramine, an antagonist of histaminergic H1-receptor. In addition, 3CV injection of NPY accelerated gastric vagal nerve activity (GVNA) and inhibited brown adipose tissue sympathetic nerve activity (BAT-SNA) of anesthetized rats, and lowered brown adipose tissue temperature (BAT-T) of conscious rats. Thus, these evidences suggest that central NPY affects autonomic nerves containing RSNA, GVNA or BAT-SNA, and BP by mediating central histaminergic H3-receptors.
Collapse
Affiliation(s)
- Mamoru Tanida
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan.
| | | | | |
Collapse
|
8
|
Matozaki T, Murata Y, Okazawa H, Ohnishi H. Functions and molecular mechanisms of the CD47-SIRPalpha signalling pathway. Trends Cell Biol 2009; 19:72-80. [PMID: 19144521 DOI: 10.1016/j.tcb.2008.12.001] [Citation(s) in RCA: 340] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/01/2008] [Accepted: 12/02/2008] [Indexed: 12/30/2022]
Abstract
Signal regulatory protein (SIRP)alpha, also known as SHPS-1 or SIRPA, is a transmembrane protein that binds to the protein tyrosine phosphatases SHP-1 and SHP-2 through its cytoplasmic region and is predominantly expressed in neurons, dendritic cells and macrophages. CD47, a widely expressed transmembrane protein, is a ligand for SIRPalpha, with the two proteins constituting a cell-cell communication system. The interaction of SIRPalpha with CD47 is important for the regulation of migration and phagocytosis. Recent studies have implicated the CD47-SIRPalpha signalling pathway in immune homeostasis and in regulation of neuronal networks. Advances in the structural and functional analyses of the CD47-SIRPalpha signalling pathway now provide exciting hints of the therapeutic benefits of manipulating this signalling system in autoimmune diseases and neurological disorders.
Collapse
Affiliation(s)
- Takashi Matozaki
- Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-Machi, Maebashi, Gunma, Japan.
| | | | | | | |
Collapse
|
9
|
Kobayashi M, Ohnishi H, Okazawa H, Murata Y, Hayashi Y, Kobayashi H, Kitamura T, Matozaki T. Expression of Src homology 2 domain-containing protein tyrosine phosphatase substrate-1 in pancreatic beta-Cells and its role in promotion of insulin secretion and protection against diabetes. Endocrinology 2008; 149:5662-9. [PMID: 18635660 DOI: 10.1210/en.2008-0236] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Insulin secretion by beta-cells of pancreatic islets is regulated by various soluble factors including glucose and hormones. The importance of direct cell-cell communication among beta-cells or between beta-cells and other cell types for such regulation has remained unclear, however. Transmembrane proteins Src homology 2 domain-containing protein tyrosine phosphatase substrate-1 (SHPS-1) and its ligand CD47 interact through their extracellular regions and contribute to intercellular communication. We now show that both SHPS-1 and CD47 are prominently expressed in beta-cells of the pancreas. The plasma insulin level in the randomly fed state was markedly reduced in mice that express a mutant form of SHPS-1 lacking most of the cytoplasmic region compared with that in wild-type (WT) mice, although the blood glucose concentrations of the two types of mice were similar. This reduction in the plasma insulin level of SHPS-1 mutant mice was even more pronounced in animals maintained on a high-fat diet. Glucose tolerance was also markedly impaired in SHPS-1 mutant mice on a high-fat diet, whereas both peripheral insulin sensitivity and the insulin content of the pancreas in the mutant animals were similar to those of WT mice. Glucose-stimulated insulin secretion was similar for islets isolated from WT or SHPS-1 mutant mice. The impaired glucose tolerance of SHPS-1 mutant mice was ameliorated by treatment with the alpha2-adrenergic antagonist yohimbine. These results suggest that SHPS-1 promotes insulin secretion from beta-cells and thereby protects against diabetes. Preventing of alpha2-adrenergic receptor-mediated inhibition of insulin secretion may partly participate in such a function of SHPS-1.
Collapse
Affiliation(s)
- Masaki Kobayashi
- Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Tanida M, Satomi J, Shen J, Nagai K. Autonomic and cardiovascular effects of central neuromedin U in rats. Physiol Behav 2008; 96:282-8. [PMID: 18977236 DOI: 10.1016/j.physbeh.2008.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 10/03/2008] [Accepted: 10/09/2008] [Indexed: 11/26/2022]
Abstract
Previous studies have demonstrated that neuromedin U (NMU) affects cardiovascular functions such as blood pressure (BP) or heart rate (HR) in rats. Here, we examined the effects of the lateral cerebral ventricular (ICV) injection of various doses of NMU on renal sympathetic nerve activity (RSNA) and BP in urethane-anesthetized rats. ICV injection of NMU elevated RSNA, BP and HR in a dose-dependent manner. Moreover, neither ICV pretreatment of thioperamide, an antagonist of histaminergic H3-receptor, or of diphenhydramine, an antagonist of histaminergic H1-receptor, abolished increasing effects of NMU on RSNA, BP and HR In addition, ICV injection of NMU suppressed gastric vagal nerve activity (GVNA) and activated brown adipose tissue sympathetic nerve activity (BAT-SNA) of anesthetized rats, and elevated brown adipose tissue temperature (BAT-T) of conscious rats. Thus, these evidence suggest that NMU affects neural activities of autonomic nerves containing RSNA, GVNA or BAT-SNA, and BP by mediating central mechanism.
Collapse
Affiliation(s)
- Mamoru Tanida
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
| | | | | | | |
Collapse
|
11
|
High-fat diet-induced obesity is attenuated by probiotic strain Lactobacillus paracasei ST11 (NCC2461) in rats. Obes Res Clin Pract 2008; 2:I-II. [DOI: 10.1016/j.orcp.2008.04.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 04/02/2008] [Accepted: 04/10/2008] [Indexed: 11/19/2022]
|
12
|
Tanida M, Shen J, Nakamura T, Niijima A, Nagai K. Day-night difference in thermoregulatory responses to olfactory stimulation. Neurosci Lett 2008; 439:192-7. [PMID: 18514405 DOI: 10.1016/j.neulet.2008.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 05/02/2008] [Accepted: 05/07/2008] [Indexed: 11/25/2022]
Abstract
Previously, we observed that olfactory stimulation with scent of grapefruit oil (SGFO) or scent of lavender oil (SLVO) affected, elevated or lowered brown adipose tissue temperature (BAT-T) in conscious mice, respectively. In the present study, to test the day-night difference in the actions of olfactory stimulations, we examined the responses of BAT-T and body temperature (BT) measured as the abdominal temperature to SGFO or SLVO during day-time at 14:00 and night-time at 2:00 in conscious rats. In the light period, BAT-T and BT were suppressed after SLVO and elevated after SGFO whereas in the dark period, these parameters remained unchanged with olfactory stimulations. Bilateral lesions of the hypothalamic suprachiasmatic nucleus (SCN) eliminated the effects of olfactory stimulations with SGFO and SVLO on BAT-T and BT. Moreover, sympathetic nerve activity innervating brown adipose tissue (BAT-SNA) changes after SGFO or SLVO were abolished in SCN-lesioned rats. Thus, we concluded that there is day-night difference in the effects of SGFO or SLVO on BAT-T and BT, and that the SCN might be involved in these effects.
Collapse
Affiliation(s)
- Mamoru Tanida
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.
| | | | | | | | | |
Collapse
|
13
|
Tanida M, Gotoh H, Taniguchi H, Otani H, Shen J, Nakamura T, Tsuruoka N, Kiso Y, Okumura N, Nagai K. Effects of central injection of l-carnosine on sympathetic nerve activity innervating brown adipose tissue and body temperature in rats. ACTA ACUST UNITED AC 2007; 144:62-71. [PMID: 17628717 DOI: 10.1016/j.regpep.2007.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 05/16/2007] [Accepted: 06/14/2007] [Indexed: 11/18/2022]
Abstract
In the present study, using urethane-anesthetized rats, we examined the effects of intralateral cerebral ventricular (LCV) injection of various doses of L-carnosine on neural activity innervating brown adipose tissue (BAT-SNA) and body temperature (BT). We found that injection of a low dose of L-carnosine (0.01 microg) suppressed BAT-SNA significantly. Conversely, a high dose (100 microg) of L-carnosine significantly elevated BAT-SNA. In the light period (14:00), brown adipose tissue temperature (BAT-T) and BT were suppressed after low and elevated after high dose injection of L-carnosine whereas in the dark period (2:00), these parameters remained unchanged with L-carnosine treatment. Bilateral lesions of the hypothalamic suprachiasmatic nucleus (SCN) abolished the effects of low and high doses of L-carnosine on BAT-SNA, BAT-T and BT. Furthermore, high dose treatment with L-carnosine altered c-Fos induction in the SCN and the PVN. These results suggest that l-carnosine affects BAT-SNA, BAT-T and BT in a dose-dependent manner in the rat, and that the SCN may be involved in these effects.
Collapse
Affiliation(s)
- Mamoru Tanida
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Aszalós Z. [Some neurological and psychiatric complications of the disorders of the hypothalamo-hypophyseal system]. Orv Hetil 2007; 148:723-30. [PMID: 17437948 DOI: 10.1556/oh.2007.27981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Connection between the central nervous system and the endocrine system is extremely complex. The hypothalamus serves as a crucial centre for the integration and coordination of autonomic functions by neuronal and hormonal pathways. It plays a central role in the homeostatic regulation of internal physiological conditions. It controls growth and reproduction, stress reactions, and determines rhythmicity, periodicity and timing of physiological processes. Beside its well-known functions, antidiuretic hormone has a role in social behavior as it enhances aggression via vasopressin receptor 1A. Oxitocin is affected in the formation of maternal behavior, and in other social interactions, like the pair bounding, as well as in analgesia and pain modulation. The corticotrop-releasing hormone acts as a neurotransmitter, it has a special role in stress-behavior, anxiety, and depression, and it blocks deep sleeping. Among the neurotransmitters and neuropeptids of the hypothalamus, serotonin, norepinephrine, GABA, cholecystokinin, neuropeptide-Y, Agouti-related protein, alpha-MSH and ghrelin have essential importance in the eating disorders. The levels of leptin and galanin determine whether formation of anabolic or catabolic neurotransmitters should take place. In the thermoregulation the central thermoreceptors play role, and suprachiasmatic nucleus is responsible for circadian rhythm, through "timing genes". The diseases of the hypothalamus cause most frequently bulimia or anorexia, hypersomnia, impotency, and attacks of anxiety. The most common expansive process of the hypothalamus is craniopharyngioma. The lack or diminution of vasopressin causes diabetes insipidus, while inappropriate antidiuretic hormone secretion induces Schwartz-Barter syndrome. Fröhlich-, Kleine-Levin- or Prader-Willi syndromes have characteristic neuropsychiatric features. The main psychiatric symptom of hypopituitarism is a combination of dementia and delirium. The most characteristic neurological sign of pituitary adenoma is the visual field defect. Carpal tunnel syndrome, obstructive sleeping apnoe and headache are typical neurological features in somatotrop adenomas.
Collapse
Affiliation(s)
- Zsuzsa Aszalós
- Semmelweis Egyetem, Altalános Orvostudományi Kar, II. Belgyógyászati Klinika,
| |
Collapse
|
15
|
Shen J, Niijima A, Tanida M, Horii Y, Nakamura T, Nagai K. Mechanism of changes induced in plasma glycerol by scent stimulation with grapefruit and lavender essential oils. Neurosci Lett 2007; 416:241-6. [PMID: 17376592 DOI: 10.1016/j.neulet.2006.12.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 12/27/2006] [Accepted: 12/28/2006] [Indexed: 10/23/2022]
Abstract
In a previous study, we found that stimulation with scent of grapefruit oil (SGFO) elevated plasma glycerol levels in rats. However, stimulation with scent of lavender oil (SLVO) triggered a negative effect. To identify the mechanism of these changes during lipolysis, we examined the role of autonomic blockers and bilateral lesions of the hypothalamic suprachiasmatic nucleus (SCN) in the modification of plasma glycerol in rats exposed to SGFO and SLVO. We found that intraperitoneal injection of propranolol hydrochloride and atropine sulfate eliminated the changes in plasma glycerol levels induced by SGFO and SLVO, respectively. Bilateral lesions of the SCN completely abolished the effects of SGFO and SLVO on lipolysis. In addition, we investigated tyrosine phosphorylation of the transmembrane glycoprotein BIT (a brain immunoglobulin-like molecule with tyrosine-based activation motifs, a member of the signal-regulator protein family), which was found to be involved in the activation of renal sympathetic nerves and increase in body temperature on cold exposure. SGFO was found to enhance the immunoreactivity of BIT to the 4G10 anti-phosphotyrosine antibody in the SCN, whereas SLVO decreased the immunoreactivity. The changes in BIT phosphorylation resulting from the exposure to SGFO and SLVO were eliminated by the corresponding histamine receptor antagonists, which eliminated the changes in plasma glycerol concentration. The results suggest that SGFO and SLVO affect the autonomic neurotransmission and lipolysis. The SCN and histamine neurons are involved in the lipolytic responses to SGFO and SLVO, and tyrosine phosphorylation of BIT is implicated in the relevant signaling pathways.
Collapse
Affiliation(s)
- Jiao Shen
- Institute for Protein Research, Osaka University, 3-2 Yamada-Oka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | |
Collapse
|