1
|
Bockaert J, Perroy J, Ango F. The Complex Formed by Group I Metabotropic Glutamate Receptor (mGluR) and Homer1a Plays a Central Role in Metaplasticity and Homeostatic Synaptic Scaling. J Neurosci 2021; 41:5567-5578. [PMID: 34193623 PMCID: PMC8244974 DOI: 10.1523/jneurosci.0026-21.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/28/2022] Open
Abstract
G-protein-coupled receptors can be constitutively activated following physical interaction with intracellular proteins. The first example described was the constitutive activation of Group I metabotropic glutamate receptors (mGluR: mGluR1,5) following their interaction with Homer1a, an activity-inducible early-termination variant of the scaffolding protein Homer that lacks dimerization capacity (Ango et al., 2001). Homer1a disrupts the links, maintained by the long form of Homer (cross-linking Homers), between mGluR1,5 and the Shank-GKAP-PSD-95-ionotropic glutamate receptor network. Two characteristics of the constitutive activation of the Group I mGluR-Homer1a complex are particularly interesting: (1) it affects a large number of synapses in which Homer1a is upregulated following enhanced, long-lasting neuronal activity; and (2) it mainly depends on Homer1a protein turnover. The constitutively active Group I mGluR-Homer1a complex is involved in the two main forms of non-Hebbian neuronal plasticity: "metaplasticity" and "homeostatic synaptic scaling," which are implicated in a large series of physiological and pathologic processes. Those include non-Hebbian plasticity observed in visual system, synapses modulated by addictive drugs (rewarded synapses), chronically overactivated synaptic networks, normal sleep, and sleep deprivation.
Collapse
Affiliation(s)
- Joël Bockaert
- Institut de Génomique Fonctionnelle, Université Montpellier, Center National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, 34094 Montpellier, France
| | - Julie Perroy
- Institut de Génomique Fonctionnelle, Université Montpellier, Center National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, 34094 Montpellier, France
| | - Fabrice Ango
- Institut des Neurosciences de Montpellier, Université Montpellier, Center National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, 34295 Montpellier, France
| |
Collapse
|
2
|
Speltz R, Lunzer MM, Shueb SS, Akgün E, Reed R, Kalyuzhny A, Portoghese PS, Simone DA. The bivalent ligand, MMG22, reduces neuropathic pain after nerve injury without the side effects of traditional opioids. Pain 2020; 161:2041-2057. [PMID: 32345918 PMCID: PMC7606301 DOI: 10.1097/j.pain.0000000000001902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/21/2020] [Indexed: 11/26/2022]
Abstract
ABSTRACT Functional interactions between the mu opioid receptor (MOR) and the metabotropic glutamate receptor 5 (mGluR5) in pain and analgesia have been well established. MMG22 is a bivalent ligand containing MOR agonist (oxymorphamine) and mGluR5 antagonist (MPEP) pharmacophores tethered by a 22-atom linker. MMG22 has been shown to produce potent analgesia in several models of chronic inflammatory and neuropathic pain (NP). This study assessed the efficacy of systemic administration of MMG22 at reducing pain behavior in the spared nerve injury (SNI) model of NP in mice, as well as its side-effect profile and abuse potential. MMG22 reduced mechanical hyperalgesia and spontaneous ongoing pain after SNI, with greater potency early (10 days) as compared to late (30 days) after injury. Systemic administration of MMG22 did not induce place preference in naive animals, suggesting absence of abuse liability when compared to traditional opioids. MMG22 also lacked the central locomotor, respiratory, and anxiolytic side effects of its monomeric pharmacophores. Evaluation of mRNA expression showed the transcripts for both receptors were colocalized in cells in the dorsal horn of the lumbar spinal cord and dorsal root ganglia. Thus, MMG22 reduces hyperalgesia after injury in the SNI model of NP without the typical centrally mediated side effects associated with traditional opioids.
Collapse
Affiliation(s)
- Rebecca Speltz
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Mary M Lunzer
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States
| | - Sarah S Shueb
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| | - Eyup Akgün
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States
| | | | - Alex Kalyuzhny
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
- Bio-Techne, Minneapolis, MN, United States
| | - Philip S Portoghese
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States
| | - Donald A Simone
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
3
|
Buscemi L, Ginet V, Lopatar J, Montana V, Pucci L, Spagnuolo P, Zehnder T, Grubišić V, Truttman A, Sala C, Hirt L, Parpura V, Puyal J, Bezzi P. Homer1 Scaffold Proteins Govern Ca2+ Dynamics in Normal and Reactive Astrocytes. Cereb Cortex 2017; 27:2365-2384. [PMID: 27075036 PMCID: PMC5963825 DOI: 10.1093/cercor/bhw078] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In astrocytes, the intracellular calcium (Ca2+) signaling mediated by activation of metabotropic glutamate receptor 5 (mGlu5) is crucially involved in the modulation of many aspects of brain physiology, including gliotransmission. Here, we find that the mGlu5-mediated Ca2+ signaling leading to release of glutamate is governed by mGlu5 interaction with Homer1 scaffolding proteins. We show that the long splice variants Homer1b/c are expressed in astrocytic processes, where they cluster with mGlu5 at sites displaying intense local Ca2+ activity. We show that the structural and functional significance of the Homer1b/c-mGlu5 interaction is to relocate endoplasmic reticulum (ER) to the proximity of the plasma membrane and to optimize Ca2+ signaling and glutamate release. We also show that in reactive astrocytes the short dominant-negative splice variant Homer1a is upregulated. Homer1a, by precluding the mGlu5-ER interaction decreases the intensity of Ca2+ signaling thus limiting the intensity and the duration of glutamate release by astrocytes. Hindering upregulation of Homer1a with a local injection of short interfering RNA in vivo restores mGlu5-mediated Ca2+ signaling and glutamate release and sensitizes astrocytes to apoptosis. We propose that Homer1a may represent one of the cellular mechanisms by which inflammatory astrocytic reactions are beneficial for limiting brain injury.
Collapse
Affiliation(s)
- Lara Buscemi
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
- Stroke Laboratory, Neurology Service, Department of Clinical Neurosciences, University Hospital Centre and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Vanessa Ginet
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
- Division of Neonatology, Department of Paediatrics and Paediatric Surgery, University Hospital Centre and University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Jan Lopatar
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
| | - Vedrana Montana
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
- Department of Neurobiology, Center for Glial Biology in Medicine, Civitan International Research Center, Atomic Force Microscopy and Nanotechnology Laboratories, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Luca Pucci
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
| | - Paola Spagnuolo
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Tamara Zehnder
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
| | - Vladimir Grubišić
- Department of Neurobiology, Center for Glial Biology in Medicine, Civitan International Research Center, Atomic Force Microscopy and Nanotechnology Laboratories, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anita Truttman
- Division of Neonatology, Department of Paediatrics and Paediatric Surgery, University Hospital Centre and University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Carlo Sala
- CNR Institute of Neuroscience and Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Lorenz Hirt
- Stroke Laboratory, Neurology Service, Department of Clinical Neurosciences, University Hospital Centre and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Vladimir Parpura
- Department of Neurobiology, Center for Glial Biology in Medicine, Civitan International Research Center, Atomic Force Microscopy and Nanotechnology Laboratories, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Julien Puyal
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
- Division of Neonatology, Department of Paediatrics and Paediatric Surgery, University Hospital Centre and University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Paola Bezzi
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
| |
Collapse
|
4
|
Immunostaining for Homer reveals the majority of excitatory synapses in laminae I-III of the mouse spinal dorsal horn. Neuroscience 2016; 329:171-81. [PMID: 27185486 PMCID: PMC4915440 DOI: 10.1016/j.neuroscience.2016.05.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/01/2016] [Accepted: 05/06/2016] [Indexed: 12/25/2022]
Abstract
Identifying glutamatergic synapses is important for tracing synaptic circuits. Most proteins at glutamatergic synapses are masked by tissue fixation. Homer can reveal glutamatergic synapses without the need for antigen retrieval.
The spinal dorsal horn processes somatosensory information before conveying it to the brain. The neuronal organization of the dorsal horn is still poorly understood, although recent studies have defined several distinct populations among the interneurons, which account for most of its constituent neurons. All primary afferents, and the great majority of neurons in laminae I–III are glutamatergic, and a major factor limiting our understanding of the synaptic circuitry has been the difficulty in identifying glutamatergic synapses with light microscopy. Although there are numerous potential targets for antibodies, these are difficult to visualize with immunocytochemistry, because of protein cross-linking following tissue fixation. Although this can be overcome by antigen retrieval methods, these lead to difficulty in detecting other antigens. The aim of this study was to test whether the postsynaptic protein Homer can be used to reveal glutamatergic synapses in the dorsal horn. Immunostaining for Homer gave punctate labeling when viewed by confocal microscopy, and this was restricted to synapses at the ultrastructural level. We found that Homer puncta were colocalized with the AMPA receptor GluR2 subunit, but not with the inhibitory synapse-associated protein gephyrin. We also examined several populations of glutamatergic axons and found that most boutons were in contact with at least one Homer punctum. These results suggest that Homer antibodies can be used to reveal the great majority of glutamatergic synapses without antigen retrieval. This will be of considerable value in tracing synaptic circuits, and also in investigating plasticity of glutamatergic synapses in pain states.
Collapse
|
5
|
Fei F, Li J, Rao W, Liu W, Chen X, Su N, Wang Y, Fei Z. Upregulation of Homer1a Promoted Retinal Ganglion Cell Survival After Retinal Ischemia and Reperfusion via Interacting with Erk Pathway. Cell Mol Neurobiol 2015; 35:1039-48. [PMID: 25924704 DOI: 10.1007/s10571-015-0198-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/16/2015] [Indexed: 11/25/2022]
Abstract
Retinal ischemia and reperfusion (I/R) is extensively involved in ocular diseases, causing retinal ganglion cell (RGCs) death resulting in visual impairment and blindness. Homer1a is considered as an endogenous neuroprotective protein in traumatic brain injury. However, the roles of Homer1a in RGCs I/R injury have not been elucidated. The present study investigated the changes in expression and effect of Homer1a in RGCs both in vitro and in vivo after I/R injury using Western blot, TUNEL assay, gene interference and overexpression, and gene knockout procedures. The levels of Homer1a and phosphorylated Erk (p-Erk) increased in RGCs and retinas after I/R injury. Upregulation of Homer1a in RGCs after I/R injury decreased the level of p-Erk, and mitigated RGCs apoptosis. Conversely, downregulation of Homer1a increased the level of p-Erk, and augmented RGCs apoptosis. Furthermore, inhibition of the p-ERK reduced RGCs apoptosis, and increased the expression of Homer 1a after I/R injury. Finally, the retinas of Homer1a KO mice treated with I/R injury had significantly less dendrites and RGCs, compared with Homer1a WT mice. These findings demonstrated that Homer1a may contribute to RGCs survival after I/R injury by interacting with Erk pathway.
Collapse
Affiliation(s)
- Fei Fei
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, 71032, People's Republic of China
| | - Juan Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, 15 Changle Xi Road, Xi'an, 710032, People's Republic of China
| | - Wei Rao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, 15 Changle Xi Road, Xi'an, 710032, People's Republic of China
| | - Wenbo Liu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, 15 Changle Xi Road, Xi'an, 710032, People's Republic of China
| | - Xiaoyan Chen
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, 15 Changle Xi Road, Xi'an, 710032, People's Republic of China
| | - Ning Su
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, 15 Changle Xi Road, Xi'an, 710032, People's Republic of China
| | - Yusheng Wang
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, 71032, People's Republic of China.
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, 15 Changle Xi Road, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
6
|
Hagenston AM, Simonetti M. Neuronal calcium signaling in chronic pain. Cell Tissue Res 2014; 357:407-26. [PMID: 25012522 DOI: 10.1007/s00441-014-1942-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/03/2014] [Indexed: 01/03/2023]
Abstract
Acute physiological pain, the unpleasant sensory response to a noxious stimulus, is essential for animals and humans to avoid potential injury. Pathological pain that persists after the original insult or injury has subsided, however, not only results in individual suffering but also imposes a significant cost on society. Improving treatments for long-lasting pathological pain requires a comprehensive understanding of the biological mechanisms underlying pain perception and the development of pain chronicity. In this review, we aim to highlight some of the major findings related to the involvement of neuronal calcium signaling in the processes that mediate chronic pain.
Collapse
Affiliation(s)
- Anna M Hagenston
- University of Heidelberg, Neurobiology, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany,
| | | |
Collapse
|
7
|
Fei F, Rao W, Zhang L, Chen BG, Li J, Fei Z, Chen Z. Downregulation of Homer1b/c improves neuronal survival after traumatic neuronal injury. Neuroscience 2014; 267:187-94. [PMID: 24607348 DOI: 10.1016/j.neuroscience.2014.02.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/04/2014] [Accepted: 02/24/2014] [Indexed: 01/01/2023]
Abstract
Homer protein, a member of the post-synaptic density protein family, plays an important role in the neuronal synaptic activity and is extensively involved in neurological disorders. The present study investigates the role of Homer1b/c in modulating neuronal survival by using an in vitro traumatic neuronal injury model, which was achieved by using a punch device that consisted of 28 stainless steel blades joined together and produced 28 parallel cuts. Downregulation of Homer1b/c by specific siRNA significantly (p<0.05) alleviated the cytoplasmic calcium levels and neuron lactate dehydrogenase release, and ultimately decreased the apoptotic rate after traumatic neuronal injury compared with non-targeting siRNA control treatment in cultured rat cortical neurons. Moreover, the expression of metabotropic glutamate receptor 1a (mGluR1a) was significantly (p<0.05) reduced in the Homer1b/c siRNA-transfected neurons after injury. Therefore, Homer1b/c not only modulated the mGluR1a-inositol 1,4,5-triphosphate receptors-Ca(2+) signal transduction pathway, but also regulated the expression of mGluR1a in mechanical neuronal injury. These findings indicate that the suppression of Homer1b/c expression potentially protects neurons from glutamate excitotoxicity after injury and might be an effective intervention target in traumatic brain injury.
Collapse
Affiliation(s)
- F Fei
- Department of Cell Biology, College of Basic Medicine, Fourth Military Medical University, Xi'an 710032, PR China
| | - W Rao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - L Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - B-G Chen
- Central Laboratory, Tongji University Affiliated Shanghai East Hospital, Shanghai 200120, PR China
| | - J Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Z Fei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China.
| | - Z Chen
- Department of Cell Biology, College of Basic Medicine, Fourth Military Medical University, Xi'an 710032, PR China.
| |
Collapse
|
8
|
Obara I, Goulding SP, Hu JH, Klugmann M, Worley PF, Szumlinski KK. Nerve injury-induced changes in Homer/glutamate receptor signaling contribute to the development and maintenance of neuropathic pain. Pain 2013; 154:1932-1945. [PMID: 23685007 DOI: 10.1016/j.pain.2013.03.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 02/12/2013] [Accepted: 03/26/2013] [Indexed: 11/28/2022]
Abstract
While group 1 metabotropic glutamate receptors (mGluRs) and ionotropic N-methyl-d-aspartate (NMDA) receptors regulate nociception, the precise molecular mechanism(s) contributing to glutamate signaling in chronic pain remain unclear. Here we not only confirmed the key involvement of Homer proteins in neuropathic pain, but also distinguished between the functional roles for different Homer family members and isoforms. Chronic constriction injury (CCI) of the sciatic nerve induced long-lasting, time-dependent increases in the postsynaptic density expression of the constitutively expressed (CC) isoforms Homer1b/c and/or Homer2a/b in the spinal dorsal horn and supraspinal structures involved in nociception (prefrontal cortex, thalamus), that co-occurred with increases in their associated mGluRs, NR2 subunits of the NMDA receptor, and the activation of downstream kinases. Virus-mediated overexpression of Homer1c and Homer2b after spinal (intrathecal) virus injection exacerbated CCI-induced mechanical and cold hypersensitivity, however, Homer1 and Homer2 gene knockout (KO) mice displayed no changes in their neuropathic phenotype. In contrast, overexpression of the immediate early gene (IEG) Homer1a isoform reduced, while KO of Homer1a gene potentiated neuropathic pain hypersensitivity. Thus, nerve injury-induced increases in CC-Homers expression promote pain in pathological states, but IEG-Homer induction protects against both the development and maintenance of neuropathy. Additionally, exacerbated pain hypersensitivity in transgenic mice with reduced Homer binding to mGluR5 supports also an inhibitory role for Homer interactions with mGluR5 in mediating neuropathy. Such data indicate that nerve injury-induced changes in glutamate receptor/Homer signaling contribute in dynamic but distinct ways to neuropathic pain processing, which has relevance for the etiology of chronic pain symptoms and its treatment.
Collapse
Affiliation(s)
- Ilona Obara
- Department of Psychology and The Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA 93106-9660, USA School of Medicine, Pharmacy and Health, Durham University, Queens Campus, Stockton on Tees TS17 6BH, UK Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Translational Neuroscience Facility, School of Medical Sciences, UNSW Kensington Campus, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | | | | | |
Collapse
|
9
|
Obara I, Goulding SP, Gould AT, Lominac KD, Hu JH, Zhang PW, von Jonquieres G, Dehoff M, Xiao B, Seeburg PH, Worley PF, Klugmann M, Szumlinski KK. Homers at the Interface between Reward and Pain. Front Psychiatry 2013; 4:39. [PMID: 23761764 PMCID: PMC3675508 DOI: 10.3389/fpsyt.2013.00039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 05/10/2013] [Indexed: 11/13/2022] Open
Abstract
Pain alters opioid reinforcement, presumably via neuroadaptations within ascending pain pathways interacting with the limbic system. Nerve injury increases expression of glutamate receptors and their associated Homer scaffolding proteins throughout the pain processing pathway. Homer proteins, and their associated glutamate receptors, regulate behavioral sensitivity to various addictive drugs. Thus, we investigated a potential role for Homers in the interactions between pain and drug reward in mice. Chronic constriction injury (CCI) of the sciatic nerve elevated Homer1b/c and/or Homer2a/b expression within all mesolimbic structures examined and for the most part, the Homer increases coincided with elevated mGluR5, GluN2A/B, and the activational state of various down-stream kinases. Behaviorally, CCI mice showed pain hypersensitivity and a conditioned place-aversion (CPA) at a low heroin dose that supported conditioned place-preference (CPP) in naïve controls. Null mutations of Homer1a, Homer1, and Homer2, as well as transgenic disruption of mGluR5-Homer interactions, either attenuated or completely blocked low-dose heroin CPP, and none of the CCI mutant strains exhibited heroin-induced CPA. However, heroin CPP did not depend upon full Homer1c expression within the nucleus accumbens (NAC), as CPP occurred in controls infused locally with small hairpin RNA-Homer1c, although intra-NAC and/or intrathecal cDNA-Homer1c, -Homer1a, and -Homer2b infusions (to best mimic CCI's effects) were sufficient to blunt heroin CPP in uninjured mice. However, arguing against a simple role for CCI-induced increases in either spinal or NAC Homer expression for heroin CPA, cDNA infusion of our various cDNA constructs either did not affect (intrathecal) or attenuated (NAC) heroin CPA. Together, these data implicate increases in glutamate receptor/Homer/kinase activity within limbic structures, perhaps outside the NAC, as possibly critical for switching the incentive motivational properties of heroin following nerve injury, which has relevance for opioid psychopharmacology in individuals suffering from neuropathic pain.
Collapse
Affiliation(s)
- Ilona Obara
- Department of Psychology, Neuroscience Research Institute, University of California at Santa Barbara Santa Barbara, CA, USA ; School of Medicine, Pharmacy and Health, Queen's Campus, University of Durham Stockton on Tees, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Luo P, Li X, Fei Z, Poon W. Scaffold protein Homer 1: implications for neurological diseases. Neurochem Int 2012; 61:731-8. [PMID: 22749857 DOI: 10.1016/j.neuint.2012.06.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 06/16/2012] [Accepted: 06/20/2012] [Indexed: 11/17/2022]
Abstract
Homer proteins are commonly known as scaffold proteins at postsynaptic density. Homer 1 is a widely studied member of the Homer protein family, comprising both synaptic structure and mediating postsynaptic signaling transduction. Both an immediate-early gene encoding a Homer 1 variant and a constitutively expressed Homer 1 variant regulate receptor clustering and trafficking, intracellular calcium homeostasis, and intracellular molecule complex formation. Substantial preclinical investigations have implicated that each of these Homer 1 variants are associated with the etiology of many neurological diseases, such as pain, mental retardation syndromes, Alzheimer's disease, schizophrenia, drug-induced addiction, and traumatic brain injury.
Collapse
Affiliation(s)
- Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | | | | | | |
Collapse
|
11
|
Knockdown of Synaptic Scaffolding Protein Homer 1b/c Attenuates Secondary Hyperalgesia Induced by Complete Freund's Adjuvant in Rats. Anesth Analg 2011; 113:1501-8. [DOI: 10.1213/ane.0b013e31822c0b98] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Homer1a signaling in the amygdala counteracts pain-related synaptic plasticity, mGluR1 function and pain behaviors. Mol Pain 2011; 7:38. [PMID: 21595930 PMCID: PMC3121594 DOI: 10.1186/1744-8069-7-38] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 05/19/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Group I metabotropic glutamate receptor (mGluR1/5) signaling is an important mechanism of pain-related plasticity in the amygdala that plays a key role in the emotional-affective dimension of pain. Homer1a, the short form of the Homer1 family of scaffolding proteins, disrupts the mGluR-signaling complex and negatively regulates nociceptive plasticity at spinal synapses. Using transgenic mice overexpressing Homer1a in the forebrain (H1a-mice), we analyzed synaptic plasticity, pain behavior and mGluR1 function in the basolateral amygdala (BLA) in a model of arthritis pain. FINDINGS In contrast to wild-type mice, H1a-mice mice did not develop increased pain behaviors (spinal reflexes and audible and ultrasonic vocalizations) after induction of arthritis in the knee joint. Whole-cell patch-clamp recordings in brain slices showed that excitatory synaptic transmission from the BLA to the central nucleus (CeA) did not change in arthritic H1a-mice but increased in arthritic wild-type mice. A selective mGluR1 antagonist (CPCCOEt) had no effect on enhanced synaptic transmission in slices from H1a-BLA mice with arthritis but inhibited transmission in wild-type mice with arthritis as in our previous studies in rats. CONCLUSIONS The results show that Homer1a expressed in forebrain neurons, prevents the development of pain hypersensitivity in arthritis and disrupts pain-related plasticity at synapses in amygdaloid nuclei. Furthermore, Homer1a eliminates the effect of an mGluR1 antagonist, which is consistent with the well-documented disruption of mGluR1 signaling by Homer1a. These findings emphasize the important role of mGluR1 in pain-related amygdala plasticity and provide evidence for the involvement of Homer1 proteins in the forebrain in the modulation of pain hypersensitivity.
Collapse
|
13
|
Changes in calcineurin message, enzyme activity and protein content in the spinal dorsal horn are associated with chronic constriction injury of the rat sciatic nerve. Neuroscience 2011; 188:142-7. [PMID: 21596102 DOI: 10.1016/j.neuroscience.2011.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/15/2011] [Accepted: 05/03/2011] [Indexed: 11/23/2022]
Abstract
Plasticity in the spinal dorsal horn is thought to underlie the development of neuropathic pain. Calcineurin (protein phosphatase 3) plays an important role in plasticity in the brain. Here we examined whether chronic constriction injury (CCI) of the sciatic nerve modifies calcineurin expression in the spinal dorsal horn. Male rats were assigned to control (uninjured), sham-operated or CCI groups. CCI animals exhibited both a shift in weight bearing and a reduction in paw withdrawal latencies as signs of pain behavior. At 3 days (3D) the pain behavior was associated with a significant increase in calcineurin gene expression, enzyme activity and content of its Aα isoform in the ipsilateral spinal dorsal horn. In contrast, while the pain behavior persisted at 7 days (7D) calcineurin gene expression returned to control levels and activity and protein content decreased. A single intrathecal injection of MK-801 15 min before the ligation attenuated both signs of pain behavior in 3D but not 7D CCI animals. The same pre-treatment also prevented the CCI-associated increases in calcineurin in these animals. These data suggested an involvement of calcineurin in CCI-elicited neuropathic pain. The time-dependent divergent changes in calcineurin expression may underlie the different phases of neuropathic pain development.
Collapse
|
14
|
Schwartzman RJ, Alexander GM, Grothusen JR. The use of ketamine in complex regional pain syndrome: possible mechanisms. Expert Rev Neurother 2011; 11:719-734. [DOI: 10.1586/ern.11.31] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
15
|
Miletic G, Dumitrascu CI, Honstad CE, Micic D, Miletic V. Loose ligation of the rat sciatic nerve elicits early accumulation of Shank1 protein in the post-synaptic density of spinal dorsal horn neurons. Pain 2010; 149:152-159. [PMID: 20171009 DOI: 10.1016/j.pain.2010.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 01/29/2010] [Accepted: 02/01/2010] [Indexed: 11/17/2022]
Abstract
Plasticity in the spinal dorsal horn may contribute to the development of pain following peripheral nerve injury. Shank proteins are a constituent family of the post-synaptic density (PSD), and they may play a role in synaptic plasticity through activity-dependent synaptic remodeling and growth. In this study we examined the early consequences of the loose ligation of the sciatic nerve on Shank1 protein and message levels in the PSD of spinal dorsal horn neurons. Four hours after sciatic ligation, the protein levels of Shank1 increased in the ipsilateral PSD of ligated animals. In contrast, no changes were detected in the contralateral PSD of these ligated animals, or either the ipsilateral or contralateral PSD of sham-operated animals. Shank1 was linked to the PSD marker protein PSD-95 and the NR2B subunit of NMDA receptors. The ligated animals also exhibited two early signs of pain behavior, a shift in weight distribution and thermal hyperalgesia. There was no overall change in Shank1 message in either ligated or sham-operated animals. The accumulation of Shank1 in the PSD was abolished by intrathecal pre-treatment with anisomycin or Shank1 siRNA, but not with non-target siRNA. The same pre-treatment prevented both the early signs of pain behavior. Intrathecal pre-treatment with either MK-801 or U0126 similarly prevented the Shank1 accumulation and alleviated both the behavioral signs of pain. The early accumulation of Shank1 in the PSD of dorsal horn neurons may be a necessary step in the injury-associated plasticity that in time leads to the development of persistent pain.
Collapse
Affiliation(s)
- Gordana Miletic
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
16
|
Miletic G, Driver AM, Miyabe-Nishiwaki T, Miletic V. Early changes in Homer1 proteins in the spinal dorsal horn are associated with loose ligation of the rat sciatic nerve. Anesth Analg 2009; 109:2000-7. [PMID: 19923532 DOI: 10.1213/ane.0b013e3181beea9b] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Plasticity in the spinal dorsal horn is thought to underlie, at least in part, pain behavior after peripheral nerve injury. Homer1 proteins play an important role in synaptic plasticity through an activity-dependent remodeling of the postsynaptic density (PSD). In this study, we examined the early consequences of the loose ligation of the sciatic nerve on the levels of Homer1a and Homer1b/c proteins in the PSD of spinal dorsal horn neurons. METHODS Male rats were randomly assigned to control, sham-operated, or ligated groups. Four hours after sciatic exposure or ligation, the animals were anesthetized and killed. Dorsal horn ipsilateral and contralateral quadrants were homogenized and centrifuged to obtain a PSD-containing LP1 fraction. Homer1 isoforms were identified in Western immunoblots. In some animals, Homer1 small interfering RNA (siRNA), nontarget siRNA, MK-801, or U01026 was injected intrathecally before surgery to assess the effects of this treatment on the levels of Homer1 isoforms and on 2 signs of injury-associated pain behavior, a shift in weight-bearing distribution and thermal hyperalgesia. RESULTS In ligated animals, the protein levels of Homer1a increased and those of Homer1b/c decreased in the ipsilateral LP1 fraction of the spinal dorsal horn. In contrast, no changes were detected in the contralateral LP1 fraction of ligated animals or the ipsilateral or contralateral LP1 fraction of sham-operated animals. Intrathecal injections of Homer1 siRNA, but not nontarget siRNA, 2 h before the ligation prevented the accumulation of Homer1a and loss of Homer1b/c in the ipsilateral LP1 fraction. The same pretreatment with Homer1 siRNA also alleviated both a shift in weight-bearing behavior and thermal hyperalgesia in the ligated animals. Intrathecal injections of MK-801 or U0126 15 min before the ligation similarly prevented the injury-associated changes in Homer1 protein levels and the behavioral signs of pain. CONCLUSION The ligation-associated changes in the protein levels of Homer1a and Homer1b/c in the ipsilateral PSD of spinal dorsal horn neurons may be an important early reflection of the injury-associated plasticity that in time leads to the development of persistent pain.
Collapse
Affiliation(s)
- Gordana Miletic
- Department of Anesthesiology, University of Wisconsin, Madison, WI 53706-1509, USA
| | | | | | | |
Collapse
|
17
|
Central sensitization: a generator of pain hypersensitivity by central neural plasticity. THE JOURNAL OF PAIN 2009; 10:895-926. [PMID: 19712899 DOI: 10.1016/j.jpain.2009.06.012] [Citation(s) in RCA: 2286] [Impact Index Per Article: 152.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 06/08/2009] [Accepted: 06/08/2009] [Indexed: 02/08/2023]
Abstract
UNLABELLED Central sensitization represents an enhancement in the function of neurons and circuits in nociceptive pathways caused by increases in membrane excitability and synaptic efficacy as well as to reduced inhibition and is a manifestation of the remarkable plasticity of the somatosensory nervous system in response to activity, inflammation, and neural injury. The net effect of central sensitization is to recruit previously subthreshold synaptic inputs to nociceptive neurons, generating an increased or augmented action potential output: a state of facilitation, potentiation, augmentation, or amplification. Central sensitization is responsible for many of the temporal, spatial, and threshold changes in pain sensibility in acute and chronic clinical pain settings and exemplifies the fundamental contribution of the central nervous system to the generation of pain hypersensitivity. Because central sensitization results from changes in the properties of neurons in the central nervous system, the pain is no longer coupled, as acute nociceptive pain is, to the presence, intensity, or duration of noxious peripheral stimuli. Instead, central sensitization produces pain hypersensitivity by changing the sensory response elicited by normal inputs, including those that usually evoke innocuous sensations. PERSPECTIVE In this article, we review the major triggers that initiate and maintain central sensitization in healthy individuals in response to nociceptor input and in patients with inflammatory and neuropathic pain, emphasizing the fundamental contribution and multiple mechanisms of synaptic plasticity caused by changes in the density, nature, and properties of ionotropic and metabotropic glutamate receptors.
Collapse
|
18
|
Costigan M, Scholz J, Woolf CJ. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci 2009; 32:1-32. [PMID: 19400724 DOI: 10.1146/annurev.neuro.051508.135531] [Citation(s) in RCA: 1365] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neuropathic pain is triggered by lesions to the somatosensory nervous system that alter its structure and function so that pain occurs spontaneously and responses to noxious and innocuous stimuli are pathologically amplified. The pain is an expression of maladaptive plasticity within the nociceptive system, a series of changes that constitute a neural disease state. Multiple alterations distributed widely across the nervous system contribute to complex pain phenotypes. These alterations include ectopic generation of action potentials, facilitation and disinhibition of synaptic transmission, loss of synaptic connectivity and formation of new synaptic circuits, and neuroimmune interactions. Although neural lesions are necessary, they are not sufficient to generate neuropathic pain; genetic polymorphisms, gender, and age all influence the risk of developing persistent pain. Treatment needs to move from merely suppressing symptoms to a disease-modifying strategy aimed at both preventing maladaptive plasticity and reducing intrinsic risk.
Collapse
Affiliation(s)
- Michael Costigan
- Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02129, USA.
| | | | | |
Collapse
|
19
|
Abstract
Homer proteins are best known as scaffold proteins at the post-synaptic density where they facilitate synaptic signalling and are thought to be required for learning and memory. Evidence implicating Homer proteins in the development of the nervous system is also steadily accumulating. Homer is highly conserved and is expressed at key developmental time points in the nervous system of several species. Homer regulates intracellular calcium homeostasis, clustering and trafficking of receptors and proteins at the cytosolic surface of the plasma membrane, transcription and translation, and cytoskeletal organization. Each of these functions has obvious potential to regulate neuronal development, and indeed Homer is implicated in several pathologies associated with the developing nervous system. Current data justify more critical experimental approaches to the role of Homer in the developing nervous system and related neurological disorders.
Collapse
Affiliation(s)
- Lisa Foa
- Laboratory of Molecular Neurobiology, School of Medicine, University of Tasmania, Hobart, Australia.
| | | |
Collapse
|
20
|
Pitcher MH, Ribeiro-da-Silva A, Coderre TJ. Effects of inflammation on the ultrastructural localization of spinal cord dorsal horn group I metabotropic glutamate receptors. J Comp Neurol 2007; 505:412-23. [PMID: 17912745 DOI: 10.1002/cne.21506] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Inflammatory pain is thought to induce functional plasticity of spinal dorsal horn neurons and may produce changes in glutamate receptor expression. Plasticity of group I metabotropic glutamate receptors (mGluR1 and mGluR5) is important in various neuronal systems, and these receptors are also known to modulate nociceptive neurotransmission in the spinal dorsal horn. The present study aimed at determining whether persistent inflammatory pain produces alterations in intracellular and plasma membrane-associated mGluR1alpha and mGluR5 in spinal cord dorsal horn. Persistent inflammation was induced in male Long Evans rats by a unilateral intraplantar injection of 100 muL of complete Freund's adjuvant (CFA). Three days after the CFA injection thermal withdrawal latencies were obtained prior to processing of transverse spinal cord sections for preembedding immunogold labeling after incubation in primary antibody for mGluR1alpha or mGluR5. Using electron microscopy, we quantified immunogold-labeled mGluR1alpha and mGluR5 profiles, located in lamina V and I-II, respectively, of both CFA-treated rats and untreated control rats. Compared to untreated rats, CFA-treated rats had a significant increase in the number of plasma membrane-associated mGluR5 immunogold-labeled particles in lamina I-II neurons of the spinal cord. Although no changes to mGluR1alpha expression were found in CFA-treated rats, plasma membrane-associated mGluR1alpha was significantly closer to the synapse. Therefore, in CFA-treated rats there was a specific increase in the ratio of plasma membrane-associated versus intracellular immunogold-labeled particles for mGluR5, and lateral movement of mGluR1alpha toward the synapse, indicating that peripheral inflammation-induced trafficking of group I mGluRs in spinal dorsal horn neurons may be an important factor in the development of plastic changes associated with inflammation-induced chronic pain.
Collapse
Affiliation(s)
- Mark H Pitcher
- Department of Anesthesia, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
21
|
Iasevoli F, Polese D, Ambesi-Impiombato A, Muscettola G, de Bartolomeis A. Ketamine-related expression of glutamatergic postsynaptic density genes: Possible implications in psychosis. Neurosci Lett 2007; 416:1-5. [PMID: 17317002 DOI: 10.1016/j.neulet.2007.01.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 01/19/2007] [Accepted: 01/19/2007] [Indexed: 11/24/2022]
Abstract
Systemic administration of ketamine, a non-competitive antagonist of the N-methyl-d-aspartate receptor (NMDA-R), produces a condition of NMDA-R hypofunction, which is considered one of the putative molecular mechanisms involved in psychosis. In this study, we evaluated the effect of ketamine on glutamatergic markers of the postsynaptic density (PSD), a pivotal site for dopamine-glutamate interaction. We assessed gene expression of Homer1a, alpha and betaCaMKII, and dopamine transporter (DAT) by two different doses of ketamine. These genes were chosen because of their impact on signal transduction and dopamine-glutamate interplay in postsynaptic density. Moreover, Homer1a is modulated by antipsychotics and represents a candidate gene for schizophrenia. Male Sprague-Dawley rats were injected with saline, 12mg/kg ketamine or 50mg/kg ketamine, and sacrificed 90 minutes after injections. In situ hybridization histochemistry was used to quantitate the rate of gene expression in rat forebrain. Homer1a was induced by 50mg/kg ketamine in ventral striatum and by both 50 and 12mg/kg ketamine in nucleus accumbens, whereas gene expression was not affected in dorsal striatum. alphaCaMKII was increased by 12mg/kg ketamine against saline in almost all subregions assessed. betaCaMKII was not affected by ketamine. DAT was increased by both doses of ketamine in the ventro-tegmental area and substantia nigra pars compacta. We suggest that these changes may represent molecular adaptations to the perturbation in glutamatergic transmission induced by ketamine blockade of NMDA receptors and may be implicated in molecular alterations occurring in schizophrenia.
Collapse
Affiliation(s)
- Felice Iasevoli
- Laboratory of Molecular Psychiatry and Psychopharmacotherapy, Section of Psychiatry, Department of Neuroscience, University School of Medicine Federico II, Via Pansini 5, Naples, Italy
| | | | | | | | | |
Collapse
|