1
|
Zhang L, Zetter MA, Hernández VS, Hernández-Pérez OR, Jáuregui-Huerta F, Krabichler Q, Grinevich V. Morphological Signatures of Neurogenesis and Neuronal Migration in Hypothalamic Vasopressinergic Magnocellular Nuclei of the Adult Rat. Int J Mol Sci 2024; 25:6988. [PMID: 39000096 PMCID: PMC11241681 DOI: 10.3390/ijms25136988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
The arginine vasopressin (AVP)-magnocellular neurosecretory system (AVPMNS) in the hypothalamus plays a critical role in homeostatic regulation as well as in allostatic motivational behaviors. However, it remains unclear whether adult neurogenesis exists in the AVPMNS. By using immunoreaction against AVP, neurophysin II, glial fibrillar acidic protein (GFAP), cell division marker (Ki67), migrating neuroblast markers (doublecortin, DCX), microglial marker (Ionized calcium binding adaptor molecule 1, Iba1), and 5'-bromo-2'-deoxyuridine (BrdU), we report morphological evidence that low-rate neurogenesis and migration occur in adult AVPMNS in the rat hypothalamus. Tangential AVP/GFAP migration routes and AVP/DCX neuronal chains as well as ascending AVP axonal scaffolds were observed. Chronic water deprivation significantly increased the BrdU+ nuclei within both the supraaoptic (SON) and paraventricular (PVN) nuclei. These findings raise new questions about AVPMNS's potential hormonal role for brain physiological adaptation across the lifespan, with possible involvement in coping with homeostatic adversities.
Collapse
Affiliation(s)
- Limei Zhang
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (M.A.Z.); (V.S.H.); (O.R.H.-P.)
- Section on Molecular Neuroscience, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Mario A. Zetter
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (M.A.Z.); (V.S.H.); (O.R.H.-P.)
- Department of Medicine and Health, University of La Salle, Mexico City 14000, Mexico
| | - Vito S. Hernández
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (M.A.Z.); (V.S.H.); (O.R.H.-P.)
- Section on Molecular Neuroscience, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Oscar R. Hernández-Pérez
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (M.A.Z.); (V.S.H.); (O.R.H.-P.)
| | - Fernando Jáuregui-Huerta
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (M.A.Z.); (V.S.H.); (O.R.H.-P.)
| | - Quirin Krabichler
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 69120 Mannheim, Germany; (Q.K.); (V.G.)
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 69120 Mannheim, Germany; (Q.K.); (V.G.)
| |
Collapse
|
2
|
Harris JP, Mietus CJ, Browne KD, Wofford KL, Keating CE, Brown DP, Johnson BN, Wolf JA, Smith DH, Cohen AS, Duda JE, Cullen DK. Neuronal somatic plasmalemmal permeability and dendritic beading caused by head rotational traumatic brain injury in pigs-An exploratory study. Front Cell Neurosci 2023; 17:1055455. [PMID: 37519631 PMCID: PMC10381956 DOI: 10.3389/fncel.2023.1055455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/23/2023] [Indexed: 08/01/2023] Open
Abstract
Closed-head traumatic brain injury (TBI) is induced by rapid motion of the head, resulting in diffuse strain fields throughout the brain. The injury mechanism(s), loading thresholds, and neuroanatomical distribution of affected cells remain poorly understood, especially in the gyrencephalic brain. We utilized a porcine model to explore the relationships between rapid head rotational acceleration-deceleration loading and immediate alterations in plasmalemmal permeability within cerebral cortex, sub-cortical white matter, and hippocampus. To assess plasmalemmal compromise, Lucifer yellow (LY), a small cell-impermeant dye, was delivered intraventricularly and diffused throughout the parenchyma prior to injury in animals euthanized at 15-min post-injury; other animals (not receiving LY) were survived to 8-h or 7-days. Plasmalemmal permeability preferentially occurred in neuronal somata and dendrites, but rarely in white matter axons. The burden of LY+ neurons increased based on head rotational kinematics, specifically maximum angular velocity, and was exacerbated by repeated TBI. In the cortex, LY+ cells were prominent in both the medial and lateral gyri. Neuronal membrane permeability was observed within the hippocampus and entorhinal cortex, including morphological changes such as beading in dendrites. These changes correlated with reduced fiber volleys and synaptic current alterations at later timepoints in the hippocampus. Further histological observations found decreased NeuN immunoreactivity, increased mitochondrial fission, and caspase pathway activation in both LY+ and LY- cells, suggesting the presence of multiple injury phenotypes. This exploratory study suggests relationships between plasmalemmal disruptions in neuronal somata and dendrites within cortical and hippocampal gray matter as a primary response in closed-head rotational TBI and sets the stage for future, traditional hypothesis-testing experiments.
Collapse
Affiliation(s)
- James P. Harris
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Constance J. Mietus
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kevin D. Browne
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Kathryn L. Wofford
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Carolyn E. Keating
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Daniel P. Brown
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Brian N. Johnson
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Research Institute, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - John A. Wolf
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Douglas H. Smith
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Akiva S. Cohen
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Research Institute, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - John E. Duda
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - D. Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
3
|
Santamaría G, Rengifo AC, Torres-Fernández O. NeuN distribution in brain structures of normal and Zika-infected suckling mice. J Mol Histol 2023:10.1007/s10735-023-10128-7. [PMID: 37199896 DOI: 10.1007/s10735-023-10128-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023]
Abstract
Microcephaly is the more severe brain malformation because of Zika virus infection. Increased vulnerability of neural stem and progenitor cells to Zika infection during prenatal neurodevelopment impairs the complete formation of cortical layers. Normal development of cerebellum is also affected. However, the follow-up of apparently healthy children born to Zika exposed mothers during pregnancy has revealed other neurological sequelae. This suggests Zika infection susceptibility remains in nervous tissue after neurogenesis end, when differentiated neuronal populations predominate. The neuronal nuclear protein (NeuN) is an exclusive marker of postmitotic neurons. Changes in NeuN expression are associated with neuronal degeneration. We have evaluated immunohistochemical expression of NeuN protein in cerebral cortex, hippocampus, and cerebellum of normal and Zika-infected neonatal Balb/c mice. The highest NeuN immunoreactivity was found mainly in neurons of all cortical layers, pyramidal layer of hippocampus, granular layer of dentate gyrus and in internal granular layer of cerebellum. Viral infection caused marked loss of NeuN immunostaining in all these brain areas. This suggests neurodegenerative effects of Zika virus infection during postmitotic neuron maturation and contribute to interpretation of neuropathogenic mechanisms of Zika.
Collapse
Affiliation(s)
- Gerardo Santamaría
- Grupo de Morfología Celular, Instituto Nacional de Salud (INS), Av. Calle 26 No. 51-20, Bogotá, 111321, DC, Colombia
| | - Aura Caterine Rengifo
- Grupo de Morfología Celular, Instituto Nacional de Salud (INS), Av. Calle 26 No. 51-20, Bogotá, 111321, DC, Colombia
| | - Orlando Torres-Fernández
- Grupo de Morfología Celular, Instituto Nacional de Salud (INS), Av. Calle 26 No. 51-20, Bogotá, 111321, DC, Colombia.
| |
Collapse
|
4
|
Hyperbaric Oxygenation Prevents Loss of Immature Neurons in the Adult Hippocampal Dentate Gyrus Following Brain Injury. Int J Mol Sci 2023; 24:ijms24054261. [PMID: 36901691 PMCID: PMC10002298 DOI: 10.3390/ijms24054261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
A growing body of evidence suggests that hyperbaric oxygenation (HBO) may affect the activity of adult neural stem cells (NSCs). Since the role of NSCs in recovery from brain injury is still unclear, the purpose of this study was to investigate the effects of sensorimotor cortex ablation (SCA) and HBO treatment (HBOT) on the processes of neurogenesis in the adult dentate gyrus (DG), a region of the hippocampus that is the site of adult neurogenesis. Ten-week-old Wistar rats were divided into groups: Control (C, intact animals), Sham control (S, animals that underwent the surgical procedure without opening the skull), SCA (animals in whom the right sensorimotor cortex was removed via suction ablation), and SCA + HBO (operated animals that passed HBOT). HBOT protocol: pressure applied at 2.5 absolute atmospheres for 60 min, once daily for 10 days. Using immunohistochemistry and double immunofluorescence labeling, we show that SCA causes significant loss of neurons in the DG. Newborn neurons in the subgranular zone (SGZ), inner-third, and partially mid-third of the granule cell layer are predominantly affected by SCA. HBOT decreases the SCA-caused loss of immature neurons, prevents reduction of dendritic arborization, and increases proliferation of progenitor cells. Our results suggest a protective effect of HBO by reducing the vulnerability of immature neurons in the adult DG to SCA injury.
Collapse
|
5
|
SARS-CoV-2 spike protein induces cognitive deficit and anxiety-like behavior in mouse via non-cell autonomous hippocampal neuronal death. Sci Rep 2022; 12:5496. [PMID: 35361832 PMCID: PMC8970073 DOI: 10.1038/s41598-022-09410-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is accompanied by chronic neurological sequelae such as cognitive decline and mood disorder, but the underlying mechanisms have not yet been elucidated. We explored the possibility that the brain-infiltrating SARS-CoV-2 spike protein contributes to the development of neurological symptoms observed in COVID-19 patients in this study. Our behavioral study showed that administration of SARS-CoV-2 spike protein S1 subunit (S1 protein) to mouse hippocampus induced cognitive deficit and anxiety-like behavior in vivo. These neurological symptoms were accompanied by neuronal cell death in the dorsal and ventral hippocampus as well as glial cell activation. Interestingly, the S1 protein did not directly induce hippocampal cell death in vitro. Rather, it exerted neurotoxicity via glial cell activation, partially through interleukin-1β induction. In conclusion, our data suggest a novel pathogenic mechanism for the COVID-19-associated neurological symptoms that involves glia activation and non-cell autonomous hippocampal neuronal death by the brain-infiltrating S1 protein.
Collapse
|
6
|
Yeh SJ, Hsu PH, Yeh TY, Yang WK, Chang KP, Chiang CS, Tang SC, Tsai LK, Jeng JS, Hsieh ST. Capping Protein Regulator and Myosin 1 Linker 3 (CARMIL3) as a Molecular Signature of Ischemic Neurons in the DWI-T2 Mismatch Areas After Stroke. Front Mol Neurosci 2022; 14:754762. [PMID: 34975397 PMCID: PMC8716926 DOI: 10.3389/fnmol.2021.754762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/29/2021] [Indexed: 11/15/2022] Open
Abstract
Ischemic stroke with a mismatch between diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) or T2-weighted images indicates onset within 4.5 h, but the pathological substrates in the DWI-T2 mismatch and T2(+) areas remain elusive. In this study, proteomics was used to explore (1) the protein expression profiles in the T2(+), mismatch, and contralateral areas, and (2) the protein with the highest expression in the T2(+) area in the brains of male Sprague-Dawley rats within 4.5 h after middle cerebral artery occlusion (MCAO). The expression of the candidate protein was further validated in (1) rat brain subjected to MCAO, (2) rat primary cortical neuronal culture with oxygen-glucose deprivation (OGD), and (3) infarcted human brain tissues. This study showed that apoptosis was observed in the T2(+) and mismatch regions and necroptosis in the T2(+) region of rat brains after MCAO. We identified capping protein regulator and myosin 1 linker 3 (CARMIL3) as the candidate molecule in the T2(+) and mismatch areas, exclusively in neurons, predominantly in the cytoplasm, and most abundant in the mismatch area. The CARMIL3(+) neurons and neurites in the mismatch and T2(+) areas were larger than those in the control area, and associated with (1) increased expression of sulfonylurea receptor 1 (SUR1), indicating edema, (2) accumulation of p62, indicating impaired autophagy, and (3) increase in 8-hydroxy-2′-deoxyguanosine (8-OHdG), indicating oxidative stress. The increased expression of CARMIL3 was validated in a cell model of cortical neurons after OGD and in infarcted human brain tissues. In conclusion, this study shows that the mismatch and T2(+) areas within 4.5 h after ischemia are characterized by upregulated expression of CARMIL3 in neurons, particularly the mismatch area, which is associated with neuronal edema, impaired autophagy, and oxidative stress, indicating that CARMIL3 serves as a molecular signature of brain ischemia.
Collapse
Affiliation(s)
- Shin-Joe Yeh
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Pang-Hung Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Ti-Yen Yeh
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wei-Kang Yang
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ko-Ping Chang
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Sung Chiang
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung-Chun Tang
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Kai Tsai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Jiann-Shing Jeng
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung-Tsang Hsieh
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
7
|
Ogino Y, Bernas T, Greer JE, Povlishock JT. Axonal injury following mild traumatic brain injury is exacerbated by repetitive insult and is linked to the delayed attenuation of NeuN expression without concomitant neuronal death in the mouse. Brain Pathol 2021; 32:e13034. [PMID: 34729854 PMCID: PMC8877729 DOI: 10.1111/bpa.13034] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/06/2021] [Accepted: 10/14/2021] [Indexed: 11/30/2022] Open
Abstract
Mild traumatic brain injury (mTBI) affects brain structure and function and can lead to persistent abnormalities. Repetitive mTBI exacerbates the acute phase response to injury. Nonetheless, its long‐term implications remain poorly understood, particularly in the context of traumatic axonal injury (TAI), a player in TBI morbidity via axonal disconnection, synaptic loss and retrograde neuronal perturbation. In contrast to the examination of these processes in the acute phase of injury, the chronic‐phase burden of TAI and/or its implications for retrograde neuronal perturbation or death have received little consideration. To critically assess this issue, murine neocortical tissue was investigated at acute (24‐h postinjury, 24hpi) and chronic time points (28‐days postinjury, 28dpi) after singular or repetitive mTBI induced by central fluid percussion injury (cFPI). Neurons were immunofluorescently labeled for NeuroTrace and NeuN (all neurons), p‐c‐Jun (axotomized neurons) and DRAQ5 (cell nuclei), imaged in 3D and quantified in automated manner. Single mTBI produced axotomy in 10% of neurons at 24hpi and the percentage increased after repetitive injury. The fraction of p‐c‐Jun+ neurons decreased at 28dpi but without neuronal loss (NeuroTrace), suggesting their reorganization and/or repair following TAI. In contrast, NeuN+ neurons decreased with repetitive injury at 24hpi while the corresponding fraction of NeuroTrace+ neurons decreased over 28dpi. Attenuated NeuN expression was linked exclusively to non‐axotomized neurons at 24hpi which extended to the axotomized at 28dpi, revealing a delayed response of the axotomized neurons. Collectively, we demonstrate an increased burden of TAI after repetitive mTBI, which is most striking in the acute phase response to the injury. Our finding of widespread axotomy in large fields of intact neurons contradicts the notion that repetitive mTBI elicits progressive neuronal death, rather, emphasizing the importance of axotomy‐mediated change.
Collapse
Affiliation(s)
- Yasuaki Ogino
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Tytus Bernas
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - John E Greer
- Department of Neurosurgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.,Department of Surgery, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia, USA
| | - John T Povlishock
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
8
|
Anderson MB, Das S, Miller KE. Subcellular localization of neuronal nuclei (NeuN) antigen in size and calcitonin gene-related peptide (CGRP) populations of dorsal root ganglion (DRG) neurons during acute peripheral inflammation. Neurosci Lett 2021; 760:135974. [PMID: 34146639 DOI: 10.1016/j.neulet.2021.135974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Pseudo-unipolar cell bodies of somatosensory primary neurons are located in the dorsal root ganglia (DRG). The somatic and peripheral domains of DRG neurons are often studied in sensory pain research to understand molecular mechanisms involved in the activation of pain and maintenance of inflammation. Adjuvant-induced arthritis (AIA) is an inflammatory model that elicits a robust and rapid onset immune response with a maximal swelling period of 24-48 h and persisting for several weeks. The AIA model in the hind paw of the rat elicits a potent inflammatory response of the dermis and epidermis, leading to protein expression changes for sensitization of many DRG neurons; however, it is unknown if the AIA model in the hind paw of the rat induces DRG neuronal injury, necrosis, or apoptosis at the somatic level. Neuronal nuclei (NeuN) antigen is a biomarker for post-mitotic neurons, neuronal identification, protein alterations, injury, and loss. Calcitonin gene-related peptide (CGRP) is expressed in C and Aδ DRG neurons, a subset of DRG neurons known to play a role in peripheral sensitization. The focus of this research was to evaluate the expression pattern of NeuN immunoreactivity, in size (soma) and CGRP subpopulations of DRG neurons in naïve and inflamed groups. Confirmed by both immunofluorescence and immunoprecipitation, DRG neuronal expression of NeuN was localized to nuclear and cytoplasmic subcellular compartments. NeuN increased within the nucleus of small CGRP positive DRG neurons during inflammation, indicating a potential role for NeuN in a subset of nociceptive neurons.
Collapse
Affiliation(s)
- Michael B Anderson
- Oklahoma State University Center for Health Sciences, Anatomy & Cell Biology (E-453/461), 1111 W 17th St, Tulsa OK, 74135, United States(1).
| | - Subhas Das
- Oklahoma State University Center for Health Sciences, Anatomy & Cell Biology (E-453/461), 1111 W 17th St, Tulsa OK, 74135, United States(1)
| | - Kenneth E Miller
- Oklahoma State University Center for Health Sciences, Anatomy & Cell Biology (E-453/461), 1111 W 17th St, Tulsa OK, 74135, United States(1)
| |
Collapse
|
9
|
Dhir A, Bruun DA, Guignet M, Tsai Y, González E, Calsbeek J, Vu J, Saito N, Tancredi DJ, Harvey DJ, Lein PJ, Rogawski MA. Allopregnanolone and perampanel as adjuncts to midazolam for treating diisopropylfluorophosphate-induced status epilepticus in rats. Ann N Y Acad Sci 2020; 1480:183-206. [PMID: 32915470 PMCID: PMC7756871 DOI: 10.1111/nyas.14479] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/29/2020] [Accepted: 08/06/2020] [Indexed: 12/11/2022]
Abstract
Combinations of midazolam, allopregnanolone, and perampanel were assessed for antiseizure activity in a rat diisopropylfluorophosphate (DFP) status epilepticus model. Animals receiving DFP followed by atropine and pralidoxime exhibited continuous high-amplitude rhythmical electroencephalography (EEG) spike activity and behavioral seizures for more than 5 hours. Treatments were administered intramuscularly 40 min after DFP. Seizures persisted following midazolam (1.8 mg/kg). The combination of midazolam with either allopregnanolone (6 mg/kg) or perampanel (2 mg/kg) terminated EEG and behavioral status epilepticus, but the onset of the perampanel effect was slow. The combination of midazolam, allopregnanolone, and perampanel caused rapid and complete suppression of EEG and behavioral seizures. In the absence of DFP, animals treated with the three-drug combination were sedated but not anesthetized. Animals that received midazolam alone exhibited spontaneous recurrent EEG seizures, whereas those that received the three-drug combination did not, demonstrating antiepileptogenic activity. All combination treatments reduced neurodegeneration as assessed with Fluoro-Jade C staining to a greater extent than midazolam alone, and most reduced astrogliosis as assessed by GFAP immunoreactivity but had mixed effects on markers of microglial activation. We conclude that allopregnanolone, a positive modulator of the GABAA receptor, and perampanel, an AMPA receptor antagonist, are potential adjuncts to midazolam in the treatment of benzodiazepine-refractory organophosphate nerve agent-induced status epilepticus.
Collapse
Affiliation(s)
- Ashish Dhir
- Department of Neurology, School of MedicineUniversity of California, DavisSacramentoCalifornia
| | - Donald A. Bruun
- Department of Molecular Biosciences, School of Veterinary MedicineUniversity of California, DavisDavisCalifornia
| | - Michelle Guignet
- Department of Molecular Biosciences, School of Veterinary MedicineUniversity of California, DavisDavisCalifornia
| | - Yi‐Hua Tsai
- Department of Molecular Biosciences, School of Veterinary MedicineUniversity of California, DavisDavisCalifornia
| | - Eduardo González
- Department of Molecular Biosciences, School of Veterinary MedicineUniversity of California, DavisDavisCalifornia
| | - Jonas Calsbeek
- Department of Molecular Biosciences, School of Veterinary MedicineUniversity of California, DavisDavisCalifornia
| | - Joan Vu
- Department of Molecular Biosciences, School of Veterinary MedicineUniversity of California, DavisDavisCalifornia
| | - Naomi Saito
- Department of Public Health Sciences, School of MedicineUniversity of California, DavisDavisCalifornia
| | - Daniel J. Tancredi
- Department of Pediatrics, School of MedicineUniversity of California, DavisSacramentoCalifornia
| | - Danielle J. Harvey
- Department of Public Health Sciences, School of MedicineUniversity of California, DavisDavisCalifornia
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary MedicineUniversity of California, DavisDavisCalifornia
| | - Michael A. Rogawski
- Department of Neurology, School of MedicineUniversity of California, DavisSacramentoCalifornia
| |
Collapse
|
10
|
Lane M, Carter D, Pescrille JD, Aracava Y, Fawcett WP, Basinger GW, Pereira EFR, Albuquerque EX. Oral Pretreatment with Galantamine Effectively Mitigates the Acute Toxicity of a Supralethal Dose of Soman in Cynomolgus Monkeys Posttreated with Conventional Antidotes. J Pharmacol Exp Ther 2020; 375:115-126. [PMID: 32759369 DOI: 10.1124/jpet.120.265843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/28/2020] [Indexed: 11/22/2022] Open
Abstract
Earlier reports suggested that galantamine, a drug approved to treat mild-to-moderate Alzheimer's disease (AD), and other centrally acting reversible acetylcholinesterase (AChE) inhibitors can serve as adjunct pretreatments against poisoning by organophosphorus compounds, including the nerve agent soman. The present study was designed to determine whether pretreatment with a clinically relevant oral dose of galantamine HBr mitigates the acute toxicity of 4.0×LD50 soman (15.08 µg/kg) in Macaca fascicularis posttreated intramuscularly with the conventional antidotes atropine (0.4 mg/kg), 2-pyridine aldoxime methyl chloride (30 mg/kg), and midazolam (0.32 mg/kg). The pharmacokinetic profile and maximal degree of blood AChE inhibition (∼25%-40%) revealed that the oral doses of 1.5 and 3.0 mg/kg galantamine HBr in these nonhuman primates (NHPs) translate to human-equivalent doses that are within the range used for AD treatment. Subsequent experiments demonstrated that 100% of NHPs pretreated with either dose of galantamine, challenged with soman, and posttreated with conventional antidotes survived 24 hours. By contrast, given the same posttreatments, 0% and 40% of the NHPs pretreated, respectively, with vehicle and pyridostigmine bromide (1.2 mg/kg, oral), a peripherally acting reversible AChE inhibitor approved as pretreatment for military personnel at risk of exposure to soman, survived 24 hours after the challenge. In addition, soman caused extensive neurodegeneration in the hippocampi of saline- or pyridostigmine-pretreated NHPs, but not in the hippocampi of galantamine-pretreated animals. To our knowledge, this is the first study to demonstrate the effectiveness of clinically relevant oral doses of galantamine to prevent the acute toxicity of supralethal doses of soman in NHPs. SIGNIFICANCE STATEMENT: This is the first study to demonstrate that a clinically relevant oral dose of galantamine effectively prevents lethality and neuropathology induced by a supralethal dose of the nerve agent soman in Cynomolgus monkeys posttreated with conventional antidotes. These findings are of major significance for the continued development of galantamine as an adjunct pretreatment against nerve agent poisoning.
Collapse
Affiliation(s)
- Malcolm Lane
- Division of Translational Toxicology, Department of Epidemiology and Public Health (M.L., D.C., J.D.P., Y.A., W.P.F., E.F.R.P., E.X.A.) and Department of Pharmacology (E.F.R.P., E.X.A.), University of Maryland School of Medicine, Baltimore, Maryland; and Countervail Corp., Charlotte, North Carolina (G.W.B.)
| | - D'Arice Carter
- Division of Translational Toxicology, Department of Epidemiology and Public Health (M.L., D.C., J.D.P., Y.A., W.P.F., E.F.R.P., E.X.A.) and Department of Pharmacology (E.F.R.P., E.X.A.), University of Maryland School of Medicine, Baltimore, Maryland; and Countervail Corp., Charlotte, North Carolina (G.W.B.)
| | - Joseph D Pescrille
- Division of Translational Toxicology, Department of Epidemiology and Public Health (M.L., D.C., J.D.P., Y.A., W.P.F., E.F.R.P., E.X.A.) and Department of Pharmacology (E.F.R.P., E.X.A.), University of Maryland School of Medicine, Baltimore, Maryland; and Countervail Corp., Charlotte, North Carolina (G.W.B.)
| | - Yasco Aracava
- Division of Translational Toxicology, Department of Epidemiology and Public Health (M.L., D.C., J.D.P., Y.A., W.P.F., E.F.R.P., E.X.A.) and Department of Pharmacology (E.F.R.P., E.X.A.), University of Maryland School of Medicine, Baltimore, Maryland; and Countervail Corp., Charlotte, North Carolina (G.W.B.)
| | - William P Fawcett
- Division of Translational Toxicology, Department of Epidemiology and Public Health (M.L., D.C., J.D.P., Y.A., W.P.F., E.F.R.P., E.X.A.) and Department of Pharmacology (E.F.R.P., E.X.A.), University of Maryland School of Medicine, Baltimore, Maryland; and Countervail Corp., Charlotte, North Carolina (G.W.B.)
| | - G William Basinger
- Division of Translational Toxicology, Department of Epidemiology and Public Health (M.L., D.C., J.D.P., Y.A., W.P.F., E.F.R.P., E.X.A.) and Department of Pharmacology (E.F.R.P., E.X.A.), University of Maryland School of Medicine, Baltimore, Maryland; and Countervail Corp., Charlotte, North Carolina (G.W.B.)
| | - Edna F R Pereira
- Division of Translational Toxicology, Department of Epidemiology and Public Health (M.L., D.C., J.D.P., Y.A., W.P.F., E.F.R.P., E.X.A.) and Department of Pharmacology (E.F.R.P., E.X.A.), University of Maryland School of Medicine, Baltimore, Maryland; and Countervail Corp., Charlotte, North Carolina (G.W.B.)
| | - Edson X Albuquerque
- Division of Translational Toxicology, Department of Epidemiology and Public Health (M.L., D.C., J.D.P., Y.A., W.P.F., E.F.R.P., E.X.A.) and Department of Pharmacology (E.F.R.P., E.X.A.), University of Maryland School of Medicine, Baltimore, Maryland; and Countervail Corp., Charlotte, North Carolina (G.W.B.)
| |
Collapse
|
11
|
Keating CE, Browne KD, Duda JE, Cullen DK. Neurons in Subcortical Oculomotor Regions Are Vulnerable to Plasma Membrane Damage after Repetitive Diffuse Traumatic Brain Injury in Swine. J Neurotrauma 2020; 37:1918-1932. [PMID: 32178582 DOI: 10.1089/neu.2019.6738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Oculomotor deficits, such as insufficiencies in accommodation, convergence, and saccades, are common following traumatic brain injury (TBI). Previous studies in patients with mild TBI attributed these deficits to insufficient activation of subcortical oculomotor nuclei, although the exact mechanism is unknown. A possible cause for neuronal dysfunction in these regions is biomechanically induced plasma membrane permeability. We used our established porcine model of head rotational TBI to investigate whether cell permeability changes occurred in subcortical oculomotor areas following single or repetitive TBI, with repetitive injuries separated by 15 min, 3 days, or 7 days. Swine were subjected to sham conditions or head rotational acceleration in the sagittal plane using a HYGE pneumatic actuator. Two hours prior to the final injury, the cell-impermeant dye Lucifer Yellow was injected into the ventricles to diffuse throughout the interstitial space to assess plasmalemmal permeability. Animals were sacrificed 15 min after the final injury for immunohistological analysis. Brain regions examined for cell membrane permeability included caudate, substantia nigra pars reticulata, superior colliculus, and cranial nerve oculomotor nuclei. We found that the distribution of permeabilized neurons varied depending on the number and spacing of injuries. Repetitive injuries separated by 15 min or 3 days resulted in the most permeability. Many permeabilized cells lost neuron-specific nuclear protein reactivity, although no neuronal loss occurred acutely after injury. Microglia contacted and appeared to begin phagocytosing permeabilized neurons in repetitively injured animals. These pathologies within oculomotor areas may mediate transient dysfunction and/or degeneration that may contribute to oculomotor deficits following diffuse TBI.
Collapse
Affiliation(s)
- Carolyn E Keating
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kevin D Browne
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John E Duda
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA.,Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - D Kacy Cullen
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Bravo-Caparrós I, Ruiz-Cantero MC, Perazzoli G, Cronin SJF, Vela JM, Hamed MF, Penninger JM, Baeyens JM, Cobos EJ, Nieto FR. Sigma-1 receptors control neuropathic pain and macrophage infiltration into the dorsal root ganglion after peripheral nerve injury. FASEB J 2020; 34:5951-5966. [PMID: 32157739 DOI: 10.1096/fj.201901921r] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/17/2020] [Accepted: 02/27/2020] [Indexed: 12/14/2022]
Abstract
Neuron-immune interaction in the dorsal root ganglia (DRG) plays a pivotal role in the neuropathic pain development after nerve injury. Sigma-1 receptor (Sig-1R) is expressed by DRG neurons but its role in neuropathic pain is not fully understood. We investigated the effect of peripheral Sig-1R on neuroinflammation in the DRG after spared (sciatic) nerve injury (SNI) in mice. Nerve injury induced a decrease in NeuN staining along with the nuclear eccentricity and ATF3 expression in the injured DRG. Sig-1R was present in all DRG neurons examined, and after SNI this receptor translocated to the periphery of the soma and the vicinity of the nucleus, especially in injured ATF3 + neurons. In WT mice, injured DRG produced the chemokine CCL2, and this was followed by massive infiltration of macrophages/monocytes, which clustered mainly around sensory neurons with translocated Sig-1R, accompanied by robust IL-6 increase and mechanical allodynia. In contrast, Sig-1R knockout (Sig-1R-KO) mice showed reduced levels of CCL2, decreased macrophage/monocyte infiltration into DRG, and less IL-6 and neuropathic mechanical allodynia after SNI. Our findings point to an important role of peripheral Sig-1R in sensory neuron-macrophage/monocyte communication in the DRG after peripheral nerve injury; thus, these receptors may contribute to the neuropathic pain phenotype.
Collapse
Affiliation(s)
- Inmaculada Bravo-Caparrós
- Department of Pharmacology, School of Medicine, University of Granada, Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria IBS. GRANADA, Granada, Spain
| | - M Carmen Ruiz-Cantero
- Department of Pharmacology, School of Medicine, University of Granada, Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria IBS. GRANADA, Granada, Spain
| | - Gloria Perazzoli
- Instituto de Investigación Biosanitaria IBS. GRANADA, Granada, Spain
- Department of Human Anatomy and Embryology, School of Medicine, University of Granada, Granada, Spain
| | | | - José M Vela
- Drug Discovery and Preclinical Development, Esteve, Barcelona, Spain
| | - Mohamed F Hamed
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Josef M Penninger
- Institute of Molecular Biotechnology, Vienna, Austria
- Department of Medical Genetics, Life Science Institute, University of British Columbia, Vancouver, Canada
| | - José M Baeyens
- Department of Pharmacology, School of Medicine, University of Granada, Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria IBS. GRANADA, Granada, Spain
| | - Enrique J Cobos
- Department of Pharmacology, School of Medicine, University of Granada, Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria IBS. GRANADA, Granada, Spain
- Teófilo Hernando Institute for Drug Discovery, Madrid, Spain
| | - Francisco R Nieto
- Department of Pharmacology, School of Medicine, University of Granada, Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria IBS. GRANADA, Granada, Spain
| |
Collapse
|
13
|
Tichanek F, Salomova M, Jedlicka J, Kuncova J, Pitule P, Macanova T, Petrankova Z, Tuma Z, Cendelin J. Hippocampal mitochondrial dysfunction and psychiatric-relevant behavioral deficits in spinocerebellar ataxia 1 mouse model. Sci Rep 2020; 10:5418. [PMID: 32214165 PMCID: PMC7096488 DOI: 10.1038/s41598-020-62308-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
Spinocerebellar ataxia 1 (SCA1) is a devastating neurodegenerative disease associated with cerebellar degeneration and motor deficits. However, many patients also exhibit neuropsychiatric impairments such as depression and apathy; nevertheless, the existence of a causal link between the psychiatric symptoms and SCA1 neuropathology remains controversial. This study aimed to explore behavioral deficits in a knock-in mouse SCA1 (SCA1154Q/2Q) model and to identify the underlying neuropathology. We found that the SCA1 mice exhibit previously undescribed behavioral impairments such as increased anxiety- and depressive-like behavior and reduced prepulse inhibition and cognitive flexibility. Surprisingly, non-motor deficits characterize the early SCA1 stage in mice better than does ataxia. Moreover, the SCA1 mice exhibit significant hippocampal atrophy with decreased plasticity-related markers and markedly impaired neurogenesis. Interestingly, the hippocampal atrophy commences earlier than the cerebellar degeneration and directly reflects the individual severity of some of the behavioral deficits. Finally, mitochondrial respirometry suggests profound mitochondrial dysfunction in the hippocampus, but not in the cerebellum of the young SCA1 mice. These findings imply the essential role of hippocampal impairments, associated with profound mitochondrial dysfunction, in SCA1 behavioral deficits. Moreover, they underline the view of SCA1 as a complex neurodegenerative disease and suggest new avenues in the search for novel SCA1 therapies.
Collapse
Affiliation(s)
- Filip Tichanek
- Department of Pathological Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia. .,Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.
| | - Martina Salomova
- Department of Pathological Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Jan Jedlicka
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Mitochondrial Laboratory, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Jitka Kuncova
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Mitochondrial Laboratory, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Pavel Pitule
- Laboratory of Tumor Biology, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Tereza Macanova
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Zuzana Petrankova
- Department of Pathological Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Zdenek Tuma
- Laboratory of Proteomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Jan Cendelin
- Department of Pathological Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| |
Collapse
|
14
|
Perkins LN, Semu D, Shen J, Boas DA, Gardner TJ. High-density microfibers as a potential optical interface to reach deep brain regions. J Neural Eng 2018; 15:066002. [PMID: 30127101 PMCID: PMC6239906 DOI: 10.1088/1741-2552/aadbb2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Optical techniques for recording and manipulating neural activity have traditionally been constrained to superficial brain regions due to light scattering. New techniques are needed to extend optical access to large 3D volumes in deep brain areas, while retaining local connectivity. APPROACH We have developed a method to implant bundles of hundreds or thousands of optical microfibers, each with a diameter of 8 μm. During insertion, each fiber moves independently, following a path of least resistance. The fibers achieve near total internal reflection, enabling optically interfacing with the tissue near each fiber aperture. MAIN RESULTS At a depth of 3 mm, histology shows fibers consistently splay over 1 mm in diameter throughout the target region. Immunohistochemical staining after chronic implants reveals neurons in close proximity to the fiber tips. Models of photon fluence indicate that fibers can be used as a stimulation light source to precisely activate distinct patterns of neurons by illuminating a subset of fibers in the bundle. By recording fluorescent beads diffusing in water, we demonstrate the recording capability of the fibers. SIGNIFICANCE Our histology, modeling and fluorescent bead recordings suggest that the optical microfibers may provide a minimally invasive, stable, bidirectional interface for recording or stimulating genetic probes in deep brain regions-a hyper-localized form of fiber photometry.
Collapse
Affiliation(s)
- L Nathan Perkins
- Graduate Program in Neuroscience, Boston University, Boston, MA 02215, United States of America
| | | | | | | | | |
Collapse
|
15
|
Potentiation of antiseizure and neuroprotective efficacy of standard nerve agent treatment by addition of tariquidar. Neurotoxicology 2018; 68:167-176. [DOI: 10.1016/j.neuro.2018.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/08/2018] [Accepted: 08/15/2018] [Indexed: 12/25/2022]
|
16
|
Brücken A, Bleilevens C, Berger P, Nolte K, Gaisa NT, Rossaint R, Marx G, Derwall M, Fries M. Effects of inhaled nitric oxide on outcome after prolonged cardiac arrest in mild therapeutic hypothermia treated rats. Sci Rep 2018; 8:6743. [PMID: 29713000 PMCID: PMC5928159 DOI: 10.1038/s41598-018-25213-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/10/2018] [Indexed: 12/28/2022] Open
Abstract
Guidelines endorse targeted temperature management to reduce neurological sequelae and mortality after cardiac arrest (CA). Additional therapeutic approaches are lacking. Inhaled nitric oxide (iNO) given post systemic ischemia/reperfusion injury improves outcomes. Attenuated inflammation by iNO might be crucial in brain protection. iNO augmented mild therapeutic hypothermia (MTH) may improve outcome after CA exceeding the effect of MTH alone. Following ten minutes of CA and three minutes of cardiopulmonary resuscitation, 20 male Sprague-Dawley rats were randomized to receive MTH at 33 °C for 6hrs or MTH + 20ppm iNO for 5hrs; one group served as normothermic control. During the experiment blood was taken for biochemical evaluation. A neurological deficit score was calculated daily for seven days post CA. On day seven, brains and hearts were harvested for histological evaluation. Treatment groups showed a significant decrease in lactate levels six hours post resuscitation in comparison to controls. TNF-α release was significantly lower in MTH + iNO treated animals only at four hours post ROSC. While only the combination of MTH and iNO improved neurological function in a statistically significant manner in comparison to controls on days 4–7 after CA, there was no significant difference between groups treated with MTH and MTH + iNO.
Collapse
Affiliation(s)
- Anne Brücken
- Department of Intensive Care Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.
| | - Christian Bleilevens
- Department of Anaesthesiology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Philipp Berger
- Department of Anaesthesiology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Kay Nolte
- Institute of Neuropathology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Nadine T Gaisa
- Institute of Pathology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Rolf Rossaint
- Department of Anaesthesiology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Gernot Marx
- Department of Intensive Care Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Matthias Derwall
- Department of Intensive Care Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Michael Fries
- Department of Anaesthesiology, St. Vincenz Hospital Limburg, Auf dem Schafsberg, 65549, Limburg, Germany
| |
Collapse
|
17
|
Virgili J, Lebbadi M, Tremblay C, St-Amour I, Pierrisnard C, Faucher-Genest A, Emond V, Julien C, Calon F. Characterization of a 3xTg-AD mouse model of Alzheimer's disease with the senescence accelerated mouse prone 8 (SAMP8) background. Synapse 2018; 72. [DOI: 10.1002/syn.22025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Jessica Virgili
- Faculté de Pharmacie; Université Laval; Quebec Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| | - Meryem Lebbadi
- Faculté de Pharmacie; Université Laval; Quebec Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| | - Cyntia Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| | - Isabelle St-Amour
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| | - Caroline Pierrisnard
- Faculté de Pharmacie; Université Laval; Quebec Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| | - Audrey Faucher-Genest
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| | - Vincent Emond
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| | - Carl Julien
- Faculté de Pharmacie; Université Laval; Quebec Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| | - Frédéric Calon
- Faculté de Pharmacie; Université Laval; Quebec Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| |
Collapse
|
18
|
Kim G, Vahedi S, Gefen T, Weintraub S, Bigio EH, Mesulam MM, Geula C. Asymmetric TDP pathology in primary progressive aphasia with right hemisphere language dominance. Neurology 2018; 90:e396-e403. [PMID: 29305438 PMCID: PMC5791793 DOI: 10.1212/wnl.0000000000004891] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/12/2017] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To quantitatively examine the regional densities and hemispheric distribution of the 43-kDa transactive response DNA-binding protein (TDP-43) inclusions, neurons, and activated microglia in a left-handed patient with right hemisphere language dominance and logopenic-variant primary progressive aphasia (PPA). METHODS Phosphorylated TDP-43 inclusions, neurons, and activated microglia were visualized with immunohistochemical and histologic methods. Markers were quantified bilaterally with unbiased stereology in language- and memory-related cortical regions. RESULTS Clinical MRI indicated cortical atrophy in the right hemisphere, mostly in the temporal lobe. Significantly higher densities of TDP-43 inclusions were present in right language-related temporal regions compared to the left or to other right hemisphere regions. The memory-related entorhinal cortex (ERC) and language regions without significant atrophy showed no asymmetry. Activated microglia displayed extensive asymmetry (R > L). A substantial density of neurons remained in all areas and showed no hemispheric asymmetry. However, perikaryal size was significantly smaller in the right hemisphere across all regions except the ERC. To demonstrate the specificity of this finding, sizes of residual neurons were measured in a right-handed case with PPA and were found to be smaller in the language-dominant left hemisphere. CONCLUSIONS The distribution of TDP-43 inclusions and microglial activation in right temporal language regions showed concordance with anatomic distribution of cortical atrophy and clinical presentation. The results revealed no direct relationship between density of TDP-43 inclusions and activated microglia. Reduced size of the remaining neurons is likely to contribute to cortical atrophy detected by MRI. These findings support the conclusion that there is no obligatory relationship between logopenic PPA and Alzheimer pathology.
Collapse
Affiliation(s)
- Garam Kim
- From the Cognitive Neurology and Alzheimer's Disease Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Shahrooz Vahedi
- From the Cognitive Neurology and Alzheimer's Disease Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Tamar Gefen
- From the Cognitive Neurology and Alzheimer's Disease Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Sandra Weintraub
- From the Cognitive Neurology and Alzheimer's Disease Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Eileen H Bigio
- From the Cognitive Neurology and Alzheimer's Disease Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Marek-Marsel Mesulam
- From the Cognitive Neurology and Alzheimer's Disease Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Changiz Geula
- From the Cognitive Neurology and Alzheimer's Disease Center, Feinberg School of Medicine, Northwestern University, Chicago, IL.
| |
Collapse
|
19
|
Ferrara-Bowens TM, Chandler JK, Guignet MA, Irwin JF, Laitipaya K, Palmer DD, Shumway LJ, Tucker LB, McCabe JT, Wegner MD, Johnson EA. Neuropathological and behavioral sequelae in IL-1R1 and IL-1Ra gene knockout mice after soman (GD) exposure. Neurotoxicology 2017; 63:43-56. [DOI: 10.1016/j.neuro.2017.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 08/28/2017] [Accepted: 08/28/2017] [Indexed: 01/03/2023]
|
20
|
Sakhaie MH, Soleimani M, Pourheydar B, Majd Z, Atefimanesh P, Asl SS, Mehdizadeh M. Effects of Extremely Low-Frequency Electromagnetic Fields on Neurogenesis and Cognitive Behavior in an Experimental Model of Hippocampal Injury. Behav Neurol 2017; 2017:9194261. [PMID: 29259353 PMCID: PMC5702423 DOI: 10.1155/2017/9194261] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/23/2017] [Accepted: 08/08/2017] [Indexed: 01/19/2023] Open
Abstract
Exposure to extremely low-frequency electromagnetic fields may induce constant modulation in neuronal plasticity. In recent years, tremendous efforts have been made to design a suitable strategy for enhancing adult neurogenesis, which seems to be deterred due to brain senescence and several neurodegenerative diseases. In this study, we evaluated the effects of ELF-EMF on neurogenesis and memory, following treatment with trimethyltin chloride (TMT) as a neurotoxicant. The mice in all groups (n = 56) were injected with BrdU during the experiment for seven consecutive days to label newborn cells. Spatial memory was assessed by the Morris water maze (MWM) test. By the end of the experiment, neurogenesis and neuronal differentiation were assessed in the hippocampus, using immunohistochemistry and Western blot analysis. Based on the findings, exposure to ELF-EMF enhanced spatial learning and memory in the MWM test. ELF-EMF exposure significantly enhanced the number of BrdU+ and NeuN+ cells in the dentate gyrus of adult mice (P < 0.001 and P < 0.05, resp.). Western blot analysis revealed significant upregulation of NeuroD2 in ELF-EMF-exposed mice compared to the TMT-treated group (P < 0.05). These findings suggest that ELF-EMF might have clinical implications for the improvement of neurodegenerative processes and could help develop a novel therapeutic approach in regenerative medicine.
Collapse
Affiliation(s)
- Mohammad Hassan Sakhaie
- Cellular and Molecular Research Center and Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, Arak University of Medical Sciences, Arak, Iran
| | - Mansoureh Soleimani
- Cellular and Molecular Research Center and Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | - Bagher Pourheydar
- Urmia University of Medical Sciences, Faculty of Medicine, Neurophysiology Research Center, Department of Anatomy, Urmia, Iran
| | - Zahra Majd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Pezhman Atefimanesh
- Cellular and Molecular Research Center, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Soleimani Asl
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Anatomy Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehdi Mehdizadeh
- Cellular and Molecular Research Center, Faculty of Advanced Technologies in Medicine, Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Yousef A, Robinson JL, Irwin DJ, Byrne MD, Kwong LK, Lee EB, Xu Y, Xie SX, Rennert L, Suh E, Van Deerlin VM, Grossman M, Lee VMY, Trojanowski JQ. Neuron loss and degeneration in the progression of TDP-43 in frontotemporal lobar degeneration. Acta Neuropathol Commun 2017; 5:68. [PMID: 28877758 PMCID: PMC5586052 DOI: 10.1186/s40478-017-0471-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022] Open
Abstract
Frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) is associated with the accumulation of pathological neuronal and glial intracytoplasmic inclusions as well as accompanying neuron loss. We explored if cortical neurons detected by NeuN decreased with increasing TDP-43 inclusion pathology in the postmortem brains of 63 patients with sporadic and familial FTLD-TDP. Semi-automated quantitative algorithms to quantify histology in tissue sections stained with antibodies specific for pathological or phosphorylated TDP-43 (pTDP-43) and NeuN were developed and validated in affected (cerebral cortex) and minimally affected (cerebellar cortex) brain regions of FTLD-TDP cases. Immunohistochemistry (IHC) for NeuN and other neuronal markers found numerous neurons lacking reactivity, suggesting NeuN may reflect neuron health rather than neuron loss in FTLD. We found three patterns of NeuN and pTDP-43 reactivity in our sample of cortical tissue representing three intracortical region-specific stages of FTLD-TDP progression: Group 1 showed low levels of pathological pTDP-43 and high levels NeuN, while Group 2 showed increased levels of pTDP-43, and Group 3 tissues were characterized by reduced staining for both pTDP-43 and NeuN. Comparison of non-C9orf72/GRN FTLD-TDP with cases linked to both GRN mutations and C9orf72 expansions showed a significantly increased frequency of Group 3 histopathology in the latter cases, suggesting more advanced cortical disease. Hence, we propose that IHC profiles of pTDP-43 and NeuN reflect the burden of pTDP-43 and its deleterious effects on neuron health.
Collapse
|
22
|
Ngwenya A, Nahirney J, Brinkman B, Williams L, Iwaniuk AN. Comparison of estimates of neuronal number obtained using the isotropic fractionator method and unbiased stereology in day old chicks (Gallus domesticus). J Neurosci Methods 2017; 287:39-46. [PMID: 28587893 DOI: 10.1016/j.jneumeth.2017.05.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/28/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND The relative size and neuronal density of brain regions are important metrics in both comparative and experimental studies in neuroscience. Consequently, it is imperative to have accurate, reliable and reproducible methods of quantifying cell number. NEW METHOD The isotropic fractionator (IF) method estimates the number of neurons and non-neurons in the central nervous system by homogenizing tissue into discrete nuclei and determining the proportion of neurons from non-neurons using immunohistochemistry (Herculano- Herculano-Houzel and Lent, 2005). COMPARISON WITH EXISTING METHOD One of the advantages of IF is that it is considerably faster than stereology. However, as the method is relatively new, concerns about its accuracy remain, particularly whether homogenization results in underestimation of cell number. In this study, we compared estimates of neuronal number in the telencephalon and 'rest of brain' (i.e. the diencephalon and brainstem excluding the optic lobes) of day old chicks using the IF method and stereology. RESULTS In the telencephalon, there was a significant difference in estimates of neuronal number between the 2 methods, but not estimates of neuronal density (neurons/mg of tissue). Whereas in the 'rest of brain', there was a significant difference in estimates of neuronal density, but not neuronal number. In all cases, stereological estimates were lower than those obtained using the IF method. CONCLUSION Despite the statistically significant differences, there was considerable overlap (all estimates were within 16% of one another) between estimates obtained using the two methods suggesting that the two methods provide comparable estimates of neuronal number in birds.
Collapse
Affiliation(s)
- Ayanda Ngwenya
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.
| | - Janae Nahirney
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Ben Brinkman
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Lauren Williams
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Andrew N Iwaniuk
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
23
|
Influence of argon on temperature modulation and neurological outcome in hypothermia treated rats following cardiac arrest. Resuscitation 2017; 117:32-39. [PMID: 28579371 DOI: 10.1016/j.resuscitation.2017.05.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/24/2017] [Accepted: 05/29/2017] [Indexed: 11/21/2022]
Abstract
AIM OF THE STUDY Combining xenon and mild therapeutic hypothermia (MTH) after cardiac arrest (CA) confers a degree of protection that is greater than either of the two interventions alone. However, xenon is very costly which might preclude a widespread use. We investigated whether the inexpensive gas argon would enhance hypothermia induced neurologic recovery in a similar manner. METHODS Following nine minutes of CA and three minutes of cardiopulmonary resuscitation 21 male Sprague-Dawley rats were randomized to receive MTH (33°C for 6h), MTH plus argon (70% for 1h), or no treatment. A first day condition score assessed behaviour, motor activity and overall condition. A neurological deficit score (NDS) was calculated daily for seven days following the experiment before the animals were killed and the brains harvested for histopathological analysis. RESULTS All animals survived. Animals that received MTH alone showed best overall neurologic function. Strikingly, this effect was abolished in the argon-augmented MTH group, where animals showed worse neurologic outcome being significant in the first day condition score and on day one to three and five in the NDS in comparison to MTH treated rats. Results were reflected by the neurohistopathological analysis. CONCLUSION Our study demonstrates that argon augmented MTH does not improve functional recovery after CA in rats, but may even worsen neurologic function in this model.
Collapse
|
24
|
Lazar S, Egoz I, Brandeis R, Chapman S, Bloch-Shilderman E, Grauer E. Propagation of damage in the rat brain following sarin exposure: Differential progression of early processes. Toxicol Appl Pharmacol 2016; 310:87-97. [DOI: 10.1016/j.taap.2016.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/07/2016] [Accepted: 09/12/2016] [Indexed: 02/07/2023]
|
25
|
You W, Zuo G, Shen H, Tian X, Li H, Zhu H, Yin J, Zhang T, Wang Z. Potential dual role of nuclear factor-kappa B in experimental subarachnoid hemorrhage-induced early brain injury in rabbits. Inflamm Res 2016; 65:975-984. [PMID: 27554683 DOI: 10.1007/s00011-016-0980-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/18/2016] [Accepted: 08/11/2016] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE AND DESIGN Nuclear factor-kappa B (NF-κB) has multiple physiological and pathological functions. The role of NF-κB can be protective or destructive. We aim to investigate the biphasic activation of NF-κB in brain after subarachnoid hemorrhage (SAH). MATERIAL OR SUBJECTS Eighty male New Zealand rabbits are assigned to control, SAH, vehicle, and pyrrolidine dithiocarbamate (PDTC) groups. TREATMENT PDTC (3 mg/kg, dissolved in saline) was injected into cisterna magna. METHODS Immunofluorescence and electrophoretic mobility shift assay experiments were performed to assess the activation of NF-κB. The levels of inflammatory and apoptosis mediators were detected by ELISA and real-time polymerase chain reaction. Nissl and immunofluorescent stain was performed to evaluate neuron injury. RESULTS NF-κB activity in the brain cortex showed two peaks after SAH. Inflammatory mediators exhibited similar time course. PDTC could significantly inhibit the NF-κB activity and inflammatory mediators. Suppressing the early NF-κB activity significantly decreased neuron injury, while inhibiting the late one could statistically increase neuron injury. CONCLUSIONS The biphasic NF-κB activation in the brain cortex after SAH played a decisive role on neuronal fate through the inflammatory signaling pathway. The early NF-κB activity contributed to neuron damage after SAH. Nevertheless, the late activated NF-κB may serve as a protector.
Collapse
Affiliation(s)
- Wanchun You
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Gang Zuo
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China.,Department of Neurosurgery, The First People's Hospital of Taicang City, Taicang, 215400, China
| | - Haitao Shen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Xiaodi Tian
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Haiying Li
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Haiping Zhu
- Department of Neurosurgery, Changshu No. 1 People's Hospital, Changshu, 215500, China.
| | - Jun Yin
- Department of Neurosurgery, Taixing Chinese Medicine Hospital, Taixing, 225400, China.
| | - Tiejun Zhang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Zhong Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| |
Collapse
|
26
|
González-Fernández C, Mancuso R, del Valle J, Navarro X, Rodríguez FJ. Wnt Signaling Alteration in the Spinal Cord of Amyotrophic Lateral Sclerosis Transgenic Mice: Special Focus on Frizzled-5 Cellular Expression Pattern. PLoS One 2016; 11:e0155867. [PMID: 27192435 PMCID: PMC4871528 DOI: 10.1371/journal.pone.0155867] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/05/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis is a chronic neurodegenerative disease characterized by progressive paralysis due to degeneration of motor neurons by unknown causes. Recent evidence shows that Wnt signaling is involved in neurodegenerative processes, including Amyotrophic Lateral Sclerosis. However, to date, little is known regarding the expression of Wnt signaling components in this fatal condition. In the present study we used transgenic SOD1G93A mice to evaluate the expression of several Wnt signaling components, with special focus on Frizzled-5 cellular expression alteration along disease progression. FINDINGS Based on previous studies demonstrating the expression of Wnts and their transcriptional regulation during Amyotrophic lateral sclerosis development, we have analyzed the mRNA expression of several Wnt signaling components in the spinal cord of SOD1G93A transgenic mice at different stages of the disease by using real time quantitative PCR analysis. Strikingly, one of the molecules that seemed not to be altered at mRNA level, Frizzled-5, showed a clear up-regulation at late stages in neurons, as evidenced by immunofluorescence assays. Moreover, increased Frizzled-5 appears to correlate with a decrease in NeuN signal in these cells, suggesting a correlation between neuronal affectation and the increased expression of this receptor. CONCLUSIONS Our data suggest the involvement of Wnt signaling pathways in the pathophysiology of Amyotrophic Lateral Sclerosis and, more specifically, the implication of Frizzled-5 receptor in the response of neuronal cells against neurodegeneration. Nevertheless, further experimental studies are needed to shed light on the specific role of Frizzled-5 and the emerging but increasing Wnt family of proteins research field as a potential target for this neuropathology.
Collapse
Affiliation(s)
| | - Renzo Mancuso
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Jaume del Valle
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Xavier Navarro
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | | |
Collapse
|
27
|
Kim JY, Sun W, Park E, Lee J, Kim H, Shin YI, Kim YH, Chang WH. Day/night difference in extradural cortical stimulation for motor relearning in a subacute stroke rat model. Restor Neurol Neurosci 2016; 34:379-87. [PMID: 26923617 DOI: 10.3233/rnn-150593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE The aim of this study was to assess the proper timing of extradural cortical stimulation (ECS) on the motor relearning in a rat model of subacute photothrombotic stroke. METHODS Photothrombotic infarction was induced on the dominant sensorimotor cortex in male Sprague-Dawley rats after training in a single-pellet reaching task (SPRT). Rats were randomly divided into three groups after stroke: ECS during the inactive period (Day-ECS group), ECS during the active period (Night-ECS group) and no ECS (Non-stimulated group). Six sham-operated rats were assigned to the control group. The Day- and Night-ECS group received continuous ECS for 12 hours during the day or night for 2 weeks from day 4 after the stroke. Behavioral assessment with SPRT was performed daily. RESULTS SPRT showed a significantly faster and greater improvement in the Day and Night-ECS groups than in the Non-stimulated group. In the Day- and Night-ECS groups, the success rate of SPRT differed significantly from Non-stimulated group on day 11 and day 8, respectively. In addition, the Night-ECS group showed a significantly higher SPRT success rate than the Day-ECS group from days 10 to 13. CONCLUSION ECS during the active period might be more effective for motor relearning in the subacute stroke rat model.
Collapse
Affiliation(s)
- Joo Yeon Kim
- Department of Anatomy and Division of Brain Korea 21 Plus Biomedical Science, Korea University College of Medicine, Seoul, Korea
| | - Woong Sun
- Department of Anatomy and Division of Brain Korea 21 Plus Biomedical Science, Korea University College of Medicine, Seoul, Korea
| | - Eunhee Park
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jiyeong Lee
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyun Kim
- Department of Anatomy and Division of Brain Korea 21 Plus Biomedical Science, Korea University College of Medicine, Seoul, Korea
| | - Yong-Il Shin
- Department of Rehabilitation Medicine, Pusan National University College of Medicine, Pusan National University Yangsan Hospital, Pusan, Korea
| | - Yun-Hee Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Science and Technology, Department of Medical Device Management & Research, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Won Hyuk Chang
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
28
|
Hahn YK, Masvekar RR, Xu R, Hauser KF, Knapp PE. Chronic HIV-1 Tat and HIV reduce Rbfox3/NeuN: evidence for sex-related effects. Curr HIV Res 2015; 13:10-20. [PMID: 25760045 DOI: 10.2174/1570162x13666150311163733] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/17/2014] [Accepted: 02/13/2015] [Indexed: 11/22/2022]
Abstract
The NeuN antibody has been widely used to identify and quantify neurons in normal and disease situations based on binding to a nuclear epitope in most types of neurons. This epitope was recently identified as the RNA-binding, feminizing locus on X-3 (Rbfox3), a member of the larger, mammalian Fox1 family of RNA binding proteins. Fox1 proteins recognize a unique UGCAUG mRNA motif and regulate alternative splicing of precursor mRNA to control post-transcriptional events important in neuronal differentiation and central nervous system development. Recent clinical findings show that Rbfox3/NeuN gene dosage is altered in certain human neurodevelopmental disorders, and redistribution has been noted in HIV(+) tissue. We hypothesized that HIV-1 Tat might affect Rbfox3/NeuN expression, and examined this question in vivo using inducible transgenic mice, and in vitro using human mesencephalic-derived neurons. Rbfox3/NeuN expression and localization in HIV+ basal ganglia and hippocampus was also examined. Chronic Tat exposure reduced Rbfox3/NeuN protein levels and increased cytoplasmic localization, similar to the effect of HIV exposure. Cytoplasmic Rbfox3/NeuN signal has occasionally been reported, although the meaning or function of cytoplasmic versus nuclear localization remains speculative. Importantly, Rbfox3/NeuN reductions were more significant in male mice. Although Rbfox3/NeuN-expressing cells were significantly decreased by Tat exposure, stereology showed that Nissl(+) neuron numbers remained normal. Thus, loss of Rbfox3/NeuN may relate more to functional change than to neuron loss. The effects of Tat by itself are highly relevant to HIV(+) individuals maintained on antiretroviral therapy, since Tat is released from infected cells even when viral replication is inhibited.
Collapse
Affiliation(s)
- Yun Kyung Hahn
- Department of Anatomy & Neurobiology, MCV Campus, Virginia Commonwealth University, P.O. Box 980709, Richmond, VA 23298-0709, USA.
| | | | | | | | | |
Collapse
|
29
|
Kim DH, Choi BR, Jeon WK, Han JS. Impairment of intradimensional shift in an attentional set-shifting task in rats with chronic bilateral common carotid artery occlusion. Behav Brain Res 2015; 296:169-176. [PMID: 26365458 DOI: 10.1016/j.bbr.2015.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/25/2015] [Accepted: 09/07/2015] [Indexed: 01/08/2023]
Abstract
Studies of rats with chronic bilateral common carotid artery occlusion (BCCAo), an animal model for vascular dementia (VaD), have reported hippocampus-dependent memory impairment and associated neuropathologies. Patients with VaD also experience attentional shifting dysfunction. However, animal models of VaD have not been used to study attentional function. Therefore, the present study examined attentional function in rats with BCCAo, using attentional set-shifting task (ASST) that required rats to choose a food-baited pot from 2 possible pots. ASST included 6 consecutive sessions including simple discrimination, compound discrimination, intradimensional shifting, extradimensional shifting, and reversals. The BCCAo rats were significantly slower at learning the intradimensional set-shifting task compared to control rats. Previous studies have demonstrated that the cingulate cortex and medial prefrontal cortex are critical to intradimensional and extradimensional set-shifting, respectively. Additionally, inflammatory responses and neuronal dysfunction were observed in rats with chronic BCCAo. In addition, OX-6 positive microglia significantly increased in the forceps minor white matter of BCCAo rats, and glutamate decarboxylase signals co-localized with NeuN were reduced in the anterior cingulate cortex of BCCAo rats, compared to control rats. Impaired neuronal and GABAergic neuronal integrity in the anterior cingulate cortex, damage to white matter, and attentional impairments observed in BCCAo rats suggest dysfunction of brain structures that are associated with attentional impairments observed in patients with VaD.
Collapse
Affiliation(s)
- Dong-Hee Kim
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Bo-Ryoung Choi
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Won Kyung Jeon
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea
| | - Jung-Soo Han
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea.
| |
Collapse
|
30
|
Duan W, Zhang YP, Hou Z, Huang C, Zhu H, Zhang CQ, Yin Q. Novel Insights into NeuN: from Neuronal Marker to Splicing Regulator. Mol Neurobiol 2015; 53:1637-1647. [PMID: 25680637 DOI: 10.1007/s12035-015-9122-5] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/01/2015] [Indexed: 01/07/2023]
Abstract
Neuronal nuclei (NeuN) is a well-recognized "marker" that is detected exclusively in post-mitotic neurons and was initially identified through an immunological screen to produce neuron-specific antibodies. Immunostaining evidence indicates that NeuN is distributed in the nuclei of mature neurons in nearly all parts of the vertebrate nervous system. NeuN is highly conserved among species and is stably expressed during specific stages of development. Therefore, NeuN has been considered to be a reliable marker of mature neurons for the past two decades. However, this role has been challenged by recent studies indicating that NeuN staining is variable and even absent during certain diseases and specific physiological states. More importantly, despite the widespread use of the anti-NeuN antibody, the natural identity of the NeuN protein remained elusive for 17 years. NeuN was recently eventually identified as an epitope of Rbfox3, which is a novel member of the Rbfox1 family of splicing factors. This identification might provide a novel perspective on NeuN expression during both physiological and pathological conditions. This review summarizes the current progress on the biochemical identity and biological significance of NeuN and recommends caution when applying NeuN immunoreactivity as a definitive marker of mature neurons in certain diseases and specific physiological states.
Collapse
Affiliation(s)
- Wei Duan
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China
| | - Yu-Ping Zhang
- Department of Pediatrics, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China
| | - Zhi Hou
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China
| | - Chen Huang
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - He Zhu
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA.,Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA.,Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.,The Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, 37232, USA
| | - Chun-Qing Zhang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China.
| | - Qing Yin
- Department of Rehabilitation and Physical Therapy, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China.
| |
Collapse
|
31
|
Belogurov A, Kuzina E, Kudriaeva A, Kononikhin A, Kovalchuk S, Surina Y, Smirnov I, Lomakin Y, Bacheva A, Stepanov A, Karpova Y, Lyupina Y, Kharybin O, Melamed D, Ponomarenko N, Sharova N, Nikolaev E, Gabibov A. Ubiquitin-independent proteosomal degradation of myelin basic protein contributes to development of neurodegenerative autoimmunity. FASEB J 2015; 29:1901-13. [PMID: 25634956 PMCID: PMC4415016 DOI: 10.1096/fj.14-259333] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 12/22/2014] [Indexed: 11/18/2022]
Abstract
Recent findings indicate that the ubiquitin–proteasome system is involved in the pathogenesis of cancer as well as autoimmune and several neurodegenerative diseases, and is thus a target for novel therapeutics. One disease that is related to aberrant protein degradation is multiple sclerosis, an autoimmune disorder involving the processing and presentation of myelin autoantigens that leads to the destruction of axons. Here, we show that brain-derived proteasomes from SJL mice with experimental autoimmune encephalomyelitis (EAE) in an ubiquitin-independent manner generate significantly increased amounts of myelin basic protein peptides that induces cytotoxic lymphocytes to target mature oligodendrocytes ex vivo. Ten times enhanced release of immunogenic peptides by cerebral proteasomes from EAE-SJL mice is caused by a dramatic shift in the balance between constitutive and β1ihigh immunoproteasomes in the CNS of SJL mice with EAE. We found that during EAE, β1i is increased in resident CNS cells, whereas β5i is imported by infiltrating lymphocytes through the blood–brain barrier. Peptidyl epoxyketone specifically inhibits brain-derived β1ihigh immunoproteasomes in vitro (kobs/[I] = 240 M−1s−1), and at a dose of 0.5 mg/kg, it ameliorates ongoing EAE in vivo. Therefore, our findings provide novel insights into myelin metabolism in pathophysiologic conditions and reveal that the β1i subunit of the immunoproteasome is a potential target to treat autoimmune neurologic diseases.—Belogurov Jr., A., Kuzina, E., Kudriaeva, A., Kononikhin, A., Kovalchuk, S., Surina, Y., Smirnov, I., Lomakin, Y., Bacheva, A., Stepanov, A., Karpova, Y., Lyupina, Y., Kharybin, O., Melamed, D., Ponomarenko, N., Sharova, N., Nikolaev, E., Gabibov, A. Ubiquitin-independent proteosomal degradation of myelin basic protein contributes to development of neurodegenerative autoimmunity.
Collapse
Affiliation(s)
- Alexey Belogurov
- *Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Kazan Federal University, Kazan, Republic of Tatarstan, Russia; Institute of Gene Biology, Russian Acedemy of Sciences, Moscow, Russia; Chemistry Department of Moscow State University, Moscow, Russia; Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia; Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia; Research Institute of Physico-Chemical Medicine, Moscow, Russia; **Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia; Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia; and Assaf Harofeh Medical Center, Zerifin, Israel
| | - Ekaterina Kuzina
- *Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Kazan Federal University, Kazan, Republic of Tatarstan, Russia; Institute of Gene Biology, Russian Acedemy of Sciences, Moscow, Russia; Chemistry Department of Moscow State University, Moscow, Russia; Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia; Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia; Research Institute of Physico-Chemical Medicine, Moscow, Russia; **Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia; Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia; and Assaf Harofeh Medical Center, Zerifin, Israel
| | - Anna Kudriaeva
- *Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Kazan Federal University, Kazan, Republic of Tatarstan, Russia; Institute of Gene Biology, Russian Acedemy of Sciences, Moscow, Russia; Chemistry Department of Moscow State University, Moscow, Russia; Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia; Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia; Research Institute of Physico-Chemical Medicine, Moscow, Russia; **Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia; Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia; and Assaf Harofeh Medical Center, Zerifin, Israel
| | - Alexey Kononikhin
- *Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Kazan Federal University, Kazan, Republic of Tatarstan, Russia; Institute of Gene Biology, Russian Acedemy of Sciences, Moscow, Russia; Chemistry Department of Moscow State University, Moscow, Russia; Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia; Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia; Research Institute of Physico-Chemical Medicine, Moscow, Russia; **Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia; Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia; and Assaf Harofeh Medical Center, Zerifin, Israel
| | - Sergey Kovalchuk
- *Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Kazan Federal University, Kazan, Republic of Tatarstan, Russia; Institute of Gene Biology, Russian Acedemy of Sciences, Moscow, Russia; Chemistry Department of Moscow State University, Moscow, Russia; Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia; Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia; Research Institute of Physico-Chemical Medicine, Moscow, Russia; **Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia; Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia; and Assaf Harofeh Medical Center, Zerifin, Israel
| | - Yelena Surina
- *Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Kazan Federal University, Kazan, Republic of Tatarstan, Russia; Institute of Gene Biology, Russian Acedemy of Sciences, Moscow, Russia; Chemistry Department of Moscow State University, Moscow, Russia; Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia; Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia; Research Institute of Physico-Chemical Medicine, Moscow, Russia; **Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia; Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia; and Assaf Harofeh Medical Center, Zerifin, Israel
| | - Ivan Smirnov
- *Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Kazan Federal University, Kazan, Republic of Tatarstan, Russia; Institute of Gene Biology, Russian Acedemy of Sciences, Moscow, Russia; Chemistry Department of Moscow State University, Moscow, Russia; Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia; Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia; Research Institute of Physico-Chemical Medicine, Moscow, Russia; **Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia; Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia; and Assaf Harofeh Medical Center, Zerifin, Israel
| | - Yakov Lomakin
- *Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Kazan Federal University, Kazan, Republic of Tatarstan, Russia; Institute of Gene Biology, Russian Acedemy of Sciences, Moscow, Russia; Chemistry Department of Moscow State University, Moscow, Russia; Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia; Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia; Research Institute of Physico-Chemical Medicine, Moscow, Russia; **Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia; Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia; and Assaf Harofeh Medical Center, Zerifin, Israel
| | - Anna Bacheva
- *Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Kazan Federal University, Kazan, Republic of Tatarstan, Russia; Institute of Gene Biology, Russian Acedemy of Sciences, Moscow, Russia; Chemistry Department of Moscow State University, Moscow, Russia; Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia; Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia; Research Institute of Physico-Chemical Medicine, Moscow, Russia; **Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia; Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia; and Assaf Harofeh Medical Center, Zerifin, Israel
| | - Alexey Stepanov
- *Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Kazan Federal University, Kazan, Republic of Tatarstan, Russia; Institute of Gene Biology, Russian Acedemy of Sciences, Moscow, Russia; Chemistry Department of Moscow State University, Moscow, Russia; Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia; Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia; Research Institute of Physico-Chemical Medicine, Moscow, Russia; **Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia; Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia; and Assaf Harofeh Medical Center, Zerifin, Israel
| | - Yaroslava Karpova
- *Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Kazan Federal University, Kazan, Republic of Tatarstan, Russia; Institute of Gene Biology, Russian Acedemy of Sciences, Moscow, Russia; Chemistry Department of Moscow State University, Moscow, Russia; Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia; Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia; Research Institute of Physico-Chemical Medicine, Moscow, Russia; **Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia; Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia; and Assaf Harofeh Medical Center, Zerifin, Israel
| | - Yulia Lyupina
- *Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Kazan Federal University, Kazan, Republic of Tatarstan, Russia; Institute of Gene Biology, Russian Acedemy of Sciences, Moscow, Russia; Chemistry Department of Moscow State University, Moscow, Russia; Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia; Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia; Research Institute of Physico-Chemical Medicine, Moscow, Russia; **Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia; Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia; and Assaf Harofeh Medical Center, Zerifin, Israel
| | - Oleg Kharybin
- *Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Kazan Federal University, Kazan, Republic of Tatarstan, Russia; Institute of Gene Biology, Russian Acedemy of Sciences, Moscow, Russia; Chemistry Department of Moscow State University, Moscow, Russia; Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia; Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia; Research Institute of Physico-Chemical Medicine, Moscow, Russia; **Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia; Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia; and Assaf Harofeh Medical Center, Zerifin, Israel
| | - Dobroslav Melamed
- *Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Kazan Federal University, Kazan, Republic of Tatarstan, Russia; Institute of Gene Biology, Russian Acedemy of Sciences, Moscow, Russia; Chemistry Department of Moscow State University, Moscow, Russia; Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia; Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia; Research Institute of Physico-Chemical Medicine, Moscow, Russia; **Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia; Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia; and Assaf Harofeh Medical Center, Zerifin, Israel
| | - Natalia Ponomarenko
- *Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Kazan Federal University, Kazan, Republic of Tatarstan, Russia; Institute of Gene Biology, Russian Acedemy of Sciences, Moscow, Russia; Chemistry Department of Moscow State University, Moscow, Russia; Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia; Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia; Research Institute of Physico-Chemical Medicine, Moscow, Russia; **Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia; Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia; and Assaf Harofeh Medical Center, Zerifin, Israel
| | - Natalia Sharova
- *Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Kazan Federal University, Kazan, Republic of Tatarstan, Russia; Institute of Gene Biology, Russian Acedemy of Sciences, Moscow, Russia; Chemistry Department of Moscow State University, Moscow, Russia; Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia; Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia; Research Institute of Physico-Chemical Medicine, Moscow, Russia; **Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia; Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia; and Assaf Harofeh Medical Center, Zerifin, Israel
| | - Eugene Nikolaev
- *Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Kazan Federal University, Kazan, Republic of Tatarstan, Russia; Institute of Gene Biology, Russian Acedemy of Sciences, Moscow, Russia; Chemistry Department of Moscow State University, Moscow, Russia; Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia; Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia; Research Institute of Physico-Chemical Medicine, Moscow, Russia; **Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia; Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia; and Assaf Harofeh Medical Center, Zerifin, Israel
| | - Alexander Gabibov
- *Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Kazan Federal University, Kazan, Republic of Tatarstan, Russia; Institute of Gene Biology, Russian Acedemy of Sciences, Moscow, Russia; Chemistry Department of Moscow State University, Moscow, Russia; Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia; Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia; Research Institute of Physico-Chemical Medicine, Moscow, Russia; **Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia; Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia; and Assaf Harofeh Medical Center, Zerifin, Israel
| |
Collapse
|
32
|
Han H, Wei W, Duan W, Guo Y, Li Y, Wang J, Bi Y, Li C. Autophagy-linked FYVE protein (Alfy) promotes autophagic removal of misfolded proteins involved in amyotrophic lateral sclerosis (ALS). In Vitro Cell Dev Biol Anim 2014; 51:249-63. [PMID: 25385288 DOI: 10.1007/s11626-014-9832-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 09/30/2014] [Indexed: 12/12/2022]
Abstract
Autophagy-linked FYVE (Alfy) is a protein implicated in the selective degradation of aggregated proteins. In our present study, we found that Alfy was recruited into the aggregated G93A-SOD1 in transgenic mice with amyotrophic lateral sclerosis (ALS). We demonstrated that Alfy overexpression could decrease the expression of mutant proteins via the autophagosome-lysosome pathway, and thereby, the toxicity of mutant proteins was reduced. The clearance of the mutant proteins in NSC34 cells was significantly inhibited in an Alfy knockdown cellular model. We therefore deduced that Alfy translocalization likely is involved in the pathogenesis of ALS. Alfy may be developed into a useful target for ALS therapy.
Collapse
Affiliation(s)
- Huihui Han
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei Province, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Woeffler-Maucler C, Beghin A, Ressnikoff D, Bezin L, Marinesco S. Automated immunohistochemical method to quantify neuronal density in brain sections: application to neuronal loss after status epilepticus. J Neurosci Methods 2014; 225:32-41. [PMID: 24462622 DOI: 10.1016/j.jneumeth.2014.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 12/28/2022]
Abstract
BACKGROUND To study neurotoxic processes, it is necessary to quantify the number of neurons in a given brain structure and estimate neuronal loss. Neuronal densities can be estimated by immunohistochemical quantitation of a neuronal marker such as the protein NeuN. However, NeuN expression may vary, depending on certain pathophysiological conditions and bias such quantifications. NEW METHOD We have developed a simple automatic quantification of neuronal densities in brain sections stained with DAPI and antibody to NeuN. This method determines the number of DAPI-positive nuclei also positive for NeuN in at least two adjacent sections within a Z-stack of optical sections. RESULTS We tested this method in animals with induced status epilepticus (SE) a state of intractable persistent seizure that produces extensive neuronal injury. We found that SE significantly reduced neuronal density in the piriform cortex, the amygdala, the dorsal thalamus, the CA3 area of the hippocampus, the dentate gyrus and the hilus, but not in the somatosensory cortex or the CA1 area. SE resulted in increases in the total density of cellular nuclei within these brain structures, suggesting gliosis. COMPARISON WITH EXISTING METHODS This automated method was more accurate than simply estimating the overall NeuN fluorescence intensity in the brain section, and as accurate, but less time-consuming, than manual cell counts. CONCLUSION This method simplifies and accelerates the unbiased quantification of neuronal density. It can be easily applied to other models of brain injury and neurodegeneration, or used to screen the efficacy of neuroprotective treatments.
Collapse
Affiliation(s)
- Caroline Woeffler-Maucler
- Université de Lyon, Lyon, France; INSERM, Institut National de la Santé et de la Recherche Médicale, U1028, Lyon Neuroscience Research Center, Lyon, France; CNRS, Centre National de la Recherche Scientifique, UMR5292, Lyon Neuroscience Research Center, Lyon, France
| | - Anne Beghin
- Université de Lyon, Lyon, France; Centre Commun de Quantimétrie, Lyon F-69008, France
| | - Denis Ressnikoff
- Université de Lyon, Lyon, France; Centre Commun de Quantimétrie, Lyon F-69008, France
| | - Laurent Bezin
- Université de Lyon, Lyon, France; INSERM, Institut National de la Santé et de la Recherche Médicale, U1028, Lyon Neuroscience Research Center, Lyon, France; CNRS, Centre National de la Recherche Scientifique, UMR5292, Lyon Neuroscience Research Center, Lyon, France; IDÉE, Institut Des ÉpilepsiEs, Lyon, France
| | - Stéphane Marinesco
- Université de Lyon, Lyon, France; INSERM, Institut National de la Santé et de la Recherche Médicale, U1028, Lyon Neuroscience Research Center, Lyon, France; CNRS, Centre National de la Recherche Scientifique, UMR5292, Lyon Neuroscience Research Center, Lyon, France; Plate-forme technologique AniRA-Neurochem, Lyon F-69000, France.
| |
Collapse
|
34
|
An T, Shi P, Duan W, Zhang S, Yuan P, Li Z, Wu D, Xu Z, Li C, Guo Y. Oxidative stress and autophagic alteration in brainstem of SOD1-G93A mouse model of ALS. Mol Neurobiol 2014; 49:1435-48. [PMID: 24390572 DOI: 10.1007/s12035-013-8623-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/15/2013] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disease involving both upper and lower motor neurons. The mechanism of motor neuron degeneration is still unknown. Although many studies have been performed on spinal motor neurons, few have been reported on brainstem and its motor nuclei. The aim of this study was to investigate oxidative stress and autophagic changes in the brainstem and representative motor nuclei of superoxide dismutase 1 (SOD1)-G93A mouse model of ALS. The expression levels of cluster of differentiation molecule 11b (CD11b), glial fibrillary acidic protein, glutamate-cysteine ligase catalytic subunit, heme oxygenase-1, NAD(P)H: quinone oxidoreductase 1, voltage-dependent anion-selective channel protein 1, Sequestosome 1/p62 (p62), microtubule-associated protein 1 light chain 3B (LC3), and SOD1 proteins in brainstem were examined by Western blot analysis. Immunohistochemistry and immunofluorescence were performed to identify the cellular localization of SOD1, p62, and LC3B, respectively. The results showed that there were progressive asctrocytic proliferation and microglial activation, induction of antioxidant proteins, and increased p62 and LC3II expression in brainstem of SOD1-G93A mice. Additionally, SOD1 and p62 accumulated in hypoglossal, facial, and red nuclei, but not in oculomotor nucleus. Furthermore, electron microscope showed increased autophagic vacuoles in affected brainstem motor nuclei. Our results indicate that brainstem share similar gliosis, oxidative stress, and autophagic changes as the spinal cord in SOD1-G93A mice. Thus, SOD1 accumulation in astrocytes and neurons, oxidative stress, and altered autophagy are involved in motor neuron degeneration in the brainstem, similar to the motor neurons in spinal cord. Therefore, therapeutic trials in the SOD1G93A mice need to target the brainstem in addition to the spinal cord.
Collapse
Affiliation(s)
- Ting An
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei Province, 050000, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Riascos D, Buriticá E, Jiménez E, Castro O, Guzmán F, Palacios M, Garcia-Cairasco N, Geula C, Escobar M, Pimienta H. Neurodegenerative Diversity in human cortical contusion: Histological analysis of tissue derived from decompressive craniectomy. Brain Res 2013; 1537:86-99. [DOI: 10.1016/j.brainres.2013.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 09/16/2013] [Indexed: 11/30/2022]
|
36
|
Villapol S, Wang Y, Adams M, Symes AJ. Smad3 deficiency increases cortical and hippocampal neuronal loss following traumatic brain injury. Exp Neurol 2013; 250:353-65. [PMID: 24120438 DOI: 10.1016/j.expneurol.2013.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 09/11/2013] [Accepted: 10/03/2013] [Indexed: 12/13/2022]
Abstract
Transforming growth factor-β (TGF-β) signaling is involved in pathological processes following brain injury. TGF-β signaling through Smad3 contributes significantly to the immune response and glial scar formation after brain injury. However, TGF-β is also neuroprotective, suggesting that Smad3 signaling may also be involved in neuroprotection after injury. We found expression of the TGF-β type II receptor (TβRII) and Smad3 protein to be strongly and rapidly induced in neurons in the ipsilateral cortex and CA1 region of the hippocampus after stab wound injury. In contrast, astrocytic expression of TβRII and Smad3 was induced more slowly. Comparison of the response of wild-type and Smad3 null mice to cortical stab wound injury showed a more pronounced loss of neuronal viability in Smad3 null mice. Neuronal density was more strongly reduced in Smad3 null mice than in wild-type mice at 1 and 3days post lesion in both the ipsilateral cortex and hippocampal CA1 region. Fluoro-Jade B, TUNEL staining, and cleaved caspase-3 staining also demonstrated increased neuronal degeneration at early time points after injury in the ipsilateral hemisphere in Smad3 null mice. Taken together, our results suggest that TGF-β cytokine family signaling through Smad3 protects neurons in the damaged cortex and hippocampus at early time points after injury.
Collapse
Affiliation(s)
- Sonia Villapol
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | |
Collapse
|
37
|
Li Y, Lein PJ, Liu C, Bruun DA, Giulivi C, Ford GD, Tewolde T, Ross-Inta C, Ford BD. Neuregulin-1 is neuroprotective in a rat model of organophosphate-induced delayed neuronal injury. Toxicol Appl Pharmacol 2012; 262:194-204. [PMID: 22583949 DOI: 10.1016/j.taap.2012.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 04/30/2012] [Accepted: 05/03/2012] [Indexed: 02/02/2023]
Abstract
Current medical countermeasures against organophosphate (OP) nerve agents are effective in reducing mortality, but do not sufficiently protect the CNS from delayed brain damage and persistent neurological symptoms. In this study, we examined the efficacy of neuregulin-1 (NRG-1) in protecting against delayed neuronal cell death following acute intoxication with the OP diisopropylflurophosphate (DFP). Adult male Sprague-Dawley rats were pretreated with pyridostigmine (0.1 mg/kg BW, i.m.) and atropine methylnitrate (20 mg/kg BW, i.m.) prior to DFP (9 mg/kg BW, i.p.) intoxication to increase survival and reduce peripheral signs of cholinergic toxicity but not prevent DFP-induced seizures or delayed neuronal injury. Pretreatment with NRG-1 did not protect against seizures in rats exposed to DFP. However, neuronal injury was significantly reduced in most brain regions by pretreatment with NRG-1 isoforms NRG-EGF (3.2 μg/kg BW, i.a) or NRG-GGF2 (48 μg/kg BW, i.a.) as determined by FluroJade-B labeling in multiple brain regions at 24 h post-DFP injection. NRG-1 also blocked apoptosis and oxidative stress-mediated protein damage in the brains of DFP-intoxicated rats. Administration of NRG-1 at 1h after DFP injection similarly provided significant neuroprotection against delayed neuronal injury. These findings identify NRG-1 as a promising adjuvant therapy to current medical countermeasures for enhancing neuroprotection against acute OP intoxication.
Collapse
Affiliation(s)
- Yonggang Li
- Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Krajewska M, You Z, Rong J, Kress C, Huang X, Yang J, Kyoda T, Leyva R, Banares S, Hu Y, Sze CH, Whalen MJ, Salmena L, Hakem R, Head BP, Reed JC, Krajewski S. Neuronal deletion of caspase 8 protects against brain injury in mouse models of controlled cortical impact and kainic acid-induced excitotoxicity. PLoS One 2011; 6:e24341. [PMID: 21957448 PMCID: PMC3174961 DOI: 10.1371/journal.pone.0024341] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 08/09/2011] [Indexed: 11/25/2022] Open
Abstract
Background Acute brain injury is an important health problem. Given the critical position of caspase 8 at the crossroads of cell death pathways, we generated a new viable mouse line (Ncasp8−/−), in which the gene encoding caspase 8 was selectively deleted in neurons by cre-lox system. Methodology/Principal Findings Caspase 8 deletion reduced rates of neuronal cell death in primary neuronal cultures and in whole brain organotypic coronal slice cultures prepared from 4 and 8 month old mice and cultivated up to 14 days in vitro. Treatments of cultures with recombinant murine TNFα (100 ng/ml) or TRAIL (250 ng/mL) plus cyclohexamide significantly protected neurons against cell death induced by these apoptosis-inducing ligands. A protective role of caspase 8 deletion in vivo was also demonstrated using a controlled cortical impact (CCI) model of traumatic brain injury (TBI) and seizure-induced brain injury caused by kainic acid (KA). Morphometric analyses were performed using digital imaging in conjunction with image analysis algorithms. By employing virtual images of hundreds of brain sections, we were able to perform quantitative morphometry of histological and immunohistochemical staining data in an unbiased manner. In the TBI model, homozygous deletion of caspase 8 resulted in reduced lesion volumes, improved post-injury motor performance, superior learning and memory retention, decreased apoptosis, diminished proteolytic processing of caspases and caspase substrates, and less neuronal degeneration, compared to wild type, homozygous cre, and caspase 8-floxed control mice. In the KA model, Ncasp8−/− mice demonstrated superior survival, reduced seizure severity, less apoptosis, and reduced caspase 3 processing. Uninjured aged knockout mice showed improved learning and memory, implicating a possible role for caspase 8 in cognitive decline with aging. Conclusions Neuron-specific deletion of caspase 8 reduces brain damage and improves post-traumatic functional outcomes, suggesting an important role for this caspase in pathophysiology of acute brain trauma.
Collapse
Affiliation(s)
- Maryla Krajewska
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Zerong You
- Neuroscience Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Juan Rong
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Christina Kress
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Xianshu Huang
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Jinsheng Yang
- Neuroscience Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Tiffany Kyoda
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Ricardo Leyva
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Steven Banares
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Yue Hu
- Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
- VA San Diego Healthcare System, San Diego, California, United States of America
| | - Chia-Hung Sze
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Michael J. Whalen
- Neuroscience Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Leonardo Salmena
- Department of Medical Biophysics, Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Razqallah Hakem
- Department of Medical Biophysics, Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Brian P. Head
- Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
| | - John C. Reed
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- * E-mail: (SK); (JCR)
| | - Stan Krajewski
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- * E-mail: (SK); (JCR)
| |
Collapse
|
39
|
Collombet JM. Nerve agent intoxication: Recent neuropathophysiological findings and subsequent impact on medical management prospects. Toxicol Appl Pharmacol 2011; 255:229-41. [DOI: 10.1016/j.taap.2011.07.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/07/2011] [Accepted: 07/08/2011] [Indexed: 01/14/2023]
|
40
|
Li Y, Lein PJ, Liu C, Bruun DA, Tewolde T, Ford G, Ford BD. Spatiotemporal pattern of neuronal injury induced by DFP in rats: a model for delayed neuronal cell death following acute OP intoxication. Toxicol Appl Pharmacol 2011; 253:261-9. [PMID: 21513723 DOI: 10.1016/j.taap.2011.03.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 03/25/2011] [Accepted: 03/31/2011] [Indexed: 01/16/2023]
Abstract
Organophosphate (OP) neurotoxins cause acute cholinergic toxicity and seizures resulting in delayed brain damage and persistent neurological symptoms. Testing novel strategies for protecting against delayed effects of acute OP intoxication has been hampered by the lack of appropriate animal models. In this study, we characterize the spatiotemporal pattern of cellular injury after acute intoxication with the OP diisopropylfluorophosphate (DFP). Adult male Sprague-Dawley rats received pyridostigmine (0.1 mg/kg, im) and atropine methylnitrate (20mg/kg, im) prior to DFP (9 mg/kg, ip) administration. All DFP-treated animals exhibited moderate to severe seizures within minutes after DFP injection but survived up to 72 h. AChE activity was significantly depressed in the cortex, hippocampus, subcortical brain tissue and cerebellum at 1h post-DFP injection and this inhibition persisted for up to 72 h. Analysis of neuronal injury by Fluoro-Jade B (FJB) labeling revealed delayed neuronal cell death in the hippocampus, cortex, amygdala and thalamus, but not the cerebellum, starting at 4h and persisting until 72 h after DFP treatment, although temporal profiles varied between brain regions. At 24h post-DFP injection, the pattern of FJB labeling corresponded to TUNEL staining in most brain regions, and FJB-positive cells displayed reduced NeuN immunoreactivity but were not immunopositive for astrocytic (GFAP), oligodendroglial (O4) or macrophage/microglial (ED1) markers, demonstrating that DFP causes a region-specific delayed neuronal injury mediated in part by apoptosis. These findings indicate the feasibility of this model for testing neuroprotective strategies, and provide insight regarding therapeutic windows for effective pharmacological intervention following acute OP intoxication.
Collapse
Affiliation(s)
- Yonggang Li
- Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Collombet JM, Béracochéa D, Liscia P, Piérard C, Lallement G, Filliat P. Long-term effects of cytokine treatment on cognitive behavioral recovery and neuronal regeneration in soman-poisoned mice. Behav Brain Res 2011; 221:261-70. [PMID: 21396966 DOI: 10.1016/j.bbr.2011.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 03/01/2011] [Accepted: 03/03/2011] [Indexed: 01/19/2023]
Abstract
Increasing numbers of reports have substantiated to date, a beneficial influence of cytokine treatment on neurogenesis processes in damaged rodent brains. Most of these investigations further revealed that cytokine treatment induces either partial or full recovery of cognitive behavior impaired by cerebral lesions. Hence, we investigated the effects of a cytokine treatment on neuronal regeneration and cognitive behavior in mice subjected to nerve agent exposure. Subcutaneous injection of a mixture of 40 μg/kg fibroblast growth factor-2 (FGF-2) and epidermal growth factor (EGF) was administered daily over 8 days to soman-poisoned mice (1.2 LD50 soman). Memory performances (T-maze and Morris water maze) and emotional behavior (elevated plus maze; auditory and contextual response in a fear conditioning task) were assessed on post-soman days 30 and 90. Brains were collected on post-soman days 9, 30 and 90 so as to perform NeuN-immunohistochemistry in the hippocampus and amygdala (neuronal regeneration quantification). Following soman-induced brain lesions, a spontaneous neuronal regeneration occurred in both the hippocampus and amygdala. Cytokine treatment enhanced neuronal regeneration in the hippocampus however not in the amygdala. Soman poisoning fostered altogether memory impairments as well as anxiety or fear-like behavioral disturbances in mice. A spontaneous recovery of standard emotional behavior occurred overtime. Such a recovery displayed significantly enhanced speed under cytokine treatment. Unfortunately, no memory performance recovery was evidenced in soman-intoxicated mice whether treated or not with cytokines.
Collapse
Affiliation(s)
- Jean-Marc Collombet
- Département Soutien Médico-Chirurgical des Forces, IRBA, BP 73, 91223 Brétigny sur Orge Cedex, France.
| | | | | | | | | | | |
Collapse
|
42
|
Cathepsin D plays a crucial role in the trimethyltin-induced hippocampal neurodegeneration process. Neuroscience 2011; 174:160-70. [DOI: 10.1016/j.neuroscience.2010.11.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/21/2010] [Accepted: 11/11/2010] [Indexed: 11/20/2022]
|
43
|
Comparative neuroanatomical and temporal characterization of FluoroJade-positive neurodegeneration after status epilepticus induced by systemic and intrahippocampal pilocarpine in Wistar rats. Brain Res 2011; 1374:43-55. [DOI: 10.1016/j.brainres.2010.12.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 12/02/2010] [Accepted: 12/04/2010] [Indexed: 11/20/2022]
|
44
|
Effect of combination therapy with sodium ozagrel and panax ginseng on transient cerebral ischemia model in rats. J Biomed Biotechnol 2011; 2010:893401. [PMID: 21274269 PMCID: PMC3022223 DOI: 10.1155/2010/893401] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 12/08/2010] [Indexed: 12/24/2022] Open
Abstract
Sodium ozagrel (SO) prevents platelet aggregation and vasoconstriction in the cerebral ischemia. It plays an important role in the prevention of brain damage induced by cerebral ischemia/reperfusion. Recently, many animal studies have suggested that the Panax ginseng (PG) has neuroprotective effects in the ischemic brain. In this study, we assessed the neuroprotective effects that come from a combination therapy of SO and PG in rat models with middle cerebral artery occlusion (MCAO). Animals with MCAO were assigned randomly to one of the following four groups: (1) control (Con) group, (2) SO group (3 mg/kg, intravenously), (3) PG group (200 mg/kg, oral feeding), and (4) SO + PG group. The rats were subjected to a neurobehavior test including adhesive removal test and rotarod test at 1, 3, 7, 10, and 15 days after MCAO. The cerebral ischemic volume was quantified by Metamorph imaging software after 2-3-5-triphenyltetrazolium (TTC) staining. The neuronal cell survival and astrocytes expansion were assessed by immunohistofluorescence staining. In the adhesive removal test, the rats of PG or SO + PG group showed significantly better performance than those of the control group (Con: 88.1 ± 24.8, PG: 43.6 ± 11, SO + PG: 11.8 ± 7, P < .05). Notably, the combination therapy group (SO + PG) showed better performance than the SO group alone (SO: 56 ± 12, SO + PG: 11.8 ± 7, P < .05). In TTC staining for infarct volume, cerebral ischemic areas were also significantly reduced in the PG group and SO + PG group (Con: 219 ± 32, PG: 117 ± 8, SO + PG: 99 ± 11, P < .05). Immunohistofluorescence staining results showed that the group which received SO + PG group therapy had neuron cells in the normal range. They also had a low number of astrocytes and apoptotic cells compared with the control or SO group in the peri-infarction area. During astrocytes staining, compared to the SO + PG group, the PG group showed only minor differences in the number of NeuN-positive cells and quantitative analysis of infarct volume. In conclusion, these studies showed that in MCAO rat models, the combination therapy with SO and PG may provide better neuroprotective effects such as higher neuronal cell survival and inhibition of astrocytes expansion than monotherapy with SO alone.
Collapse
|
45
|
Phosphorylation dynamics regulate Hsp27-mediated rescue of neuronal plasticity deficits in tau transgenic mice. J Neurosci 2010; 30:15374-82. [PMID: 21084594 DOI: 10.1523/jneurosci.3155-10.2010] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Molecular chaperones regulate the aggregation of a number of proteins that pathologically misfold and accumulate in neurodegenerative diseases. Identifying ways to manipulate these proteins in disease models is an area of intense investigation; however, the translation of these results to the mammalian brain has progressed more slowly. In this study, we investigated the ability of one of these chaperones, heat shock protein 27 (Hsp27), to modulate tau dynamics. Recombinant wild-type Hsp27 and a genetically altered version of Hsp27 that is perpetually pseudo-phosphorylated (3×S/D) were generated. Both Hsp27 variants interacted with tau, and atomic force microscopy and dynamic light scattering showed that both variants also prevented tau filament formation. However, extrinsic genetic delivery of these two Hsp27 variants to tau transgenic mice using adeno-associated viral particles showed that wild-type Hsp27 reduced neuronal tau levels, whereas 3×S/D Hsp27 was associated with increased tau levels. Moreover, rapid decay in hippocampal long-term potentiation (LTP) intrinsic to this tau transgenic model was rescued by wild-type Hsp27 overexpression but not by 3×S/D Hsp27. Because the 3×S/D Hsp27 mutant cannot cycle between phosphorylated and dephosphorylated states, we can conclude that Hsp27 must be functionally dynamic to facilitate tau clearance from the brain and rescue LTP; however, when this property is compromised, Hsp27 may actually facilitate accumulation of soluble tau intermediates.
Collapse
|
46
|
Norwood BA, Bumanglag AV, Osculati F, Sbarbati A, Marzola P, Nicolato E, Fabene PF, Sloviter RS. Classic hippocampal sclerosis and hippocampal-onset epilepsy produced by a single "cryptic" episode of focal hippocampal excitation in awake rats. J Comp Neurol 2010; 518:3381-407. [PMID: 20575073 DOI: 10.1002/cne.22406] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In refractory temporal lobe epilepsy, seizures often arise from a shrunken hippocampus exhibiting a pattern of selective neuron loss called "classic hippocampal sclerosis." No single experimental injury has reproduced this specific pathology, suggesting that hippocampal atrophy might be a progressive "endstage" pathology resulting from years of spontaneous seizures. We posed the alternative hypothesis that classic hippocampal sclerosis results from a single excitatory event that has never been successfully modeled experimentally because convulsive status epilepticus, the insult most commonly used to produce epileptogenic brain injury, is too severe and necessarily terminated before the hippocampus receives the needed duration of excitation. We tested this hypothesis by producing prolonged hippocampal excitation in awake rats without causing convulsive status epilepticus. Two daily 30-minute episodes of perforant pathway stimulation in Sprague-Dawley rats increased granule cell paired-pulse inhibition, decreased epileptiform afterdischarge durations during 8 hours of subsequent stimulation, and prevented convulsive status epilepticus. Similarly, one 8-hour episode of reduced-intensity stimulation in Long-Evans rats, which are relatively resistant to developing status epilepticus, produced hippocampal discharges without causing status epilepticus. Both paradigms immediately produced the extensive neuronal injury that defines classic hippocampal sclerosis, without giving any clinical indication during the insult that an injury was being inflicted. Spontaneous hippocampal-onset seizures began 16-25 days postinjury, before hippocampal atrophy developed, as demonstrated by sequential magnetic resonance imaging. These results indicate that classic hippocampal sclerosis is uniquely produced by a single episode of clinically "cryptic" excitation. Epileptogenic insults may often involve prolonged excitation that goes undetected at the time of injury.
Collapse
Affiliation(s)
- Braxton A Norwood
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona 85724, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
A murine model for sarin exposure using the carboxylesterase inhibitor CBDP. Neurotoxicology 2010; 31:502-8. [DOI: 10.1016/j.neuro.2010.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 03/25/2010] [Accepted: 05/17/2010] [Indexed: 11/20/2022]
|
48
|
Latini L, Geloso MC, Corvino V, Giannetti S, Florenzano F, Viscomi MT, Michetti F, Molinari M. Trimethyltin intoxication up-regulates nitric oxide synthase in neurons and purinergic ionotropic receptor 2 in astrocytes in the hippocampus. J Neurosci Res 2010; 88:500-9. [PMID: 19795376 DOI: 10.1002/jnr.22238] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nitric oxide (NO) and purinergic ionotropic receptors (P2X) mediate cellular events in the central nervous system (CNS) under physiological conditions as well as during pathological events, and they have been recently proposed to interact in mediating CNS response to injury (Viscomi et al. [2004] Neuroscience 123:393-404; Florenzano et al. [2008] Pflugers Arch. 452:622-644). Trimethyltin (TMT) is an organotin compound that generates neurotoxic effects, and it has been used in a model of neurodegenerative disease and memory dysfunction. TMT causes neuronal death and reactive gliosis primarily in the hippocampus and other limbic regions. In the present study, we examined the degenerative events and the expression of nitric oxide synthase (NOS) and P2X receptor subtypes (P2X(1,2,4,7)Rs) that were induced by TMT administration at different time points (3, 7, 14, and 21 days) by conventional and confocal microscopy and Western blotting. Massive glial activation and neuronal death in the CA1 and CA3 regions were observed after TMT treatment. In these areas, astrocytic P2X(2)R and neuronal NOS were temporarily enhanced in association with the progression of neuronal death. In the hippocampus, the physiological expression of P2X(1)R, P2X(4)R, and P2X(7)R was not modified by TMT. The present data demonstrate that, as in other neurodegenerative models, TMT-induced hippocampal degeneration is associated with nitrergic and purinergic activations. Nevertheless, at odds with previous data, in this model the two systems are active in segregated cell populations, namely, P2XR in astrocytes and NOS in neurons. Finally, the temporal relations between P2XR and NOS expression and neuronal degeneration suggest interactions between P2XR/NO signaling and cell survival.
Collapse
|
49
|
Lapter S, Marom A, Meshorer A, Elmann A, Sharabi A, Vadai E, Neufeld A, Sztainberg Y, Gil S, Getselter D, Chen A, Mozes E. Amelioration of brain pathology and behavioral dysfunction in mice with lupus following treatment with a tolerogenic peptide. ACTA ACUST UNITED AC 2010; 60:3744-54. [PMID: 19950283 DOI: 10.1002/art.25013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Central nervous system (CNS) involvement in systemic lupus erythematosus (SLE) is manifested by neurologic deficits and psychiatric disorders. The aim of this study was to examine SLE-associated CNS pathology in lupus-prone (NZBxNZW)F1 (NZB/NZW) mice, and to evaluate the ameliorating effects of treatment with a tolerogenic peptide, hCDR1 (human first complementarity-determining region), on these manifestations. METHODS Histopathologic analyses of brains from lupus-prone NZB/NZW mice treated with vehicle, hCDR1, or a control scrambled peptide were performed. The messenger RNA expression of SLE-associated cytokines and apoptosis-related molecules from the hippocampi was determined. Anxiety-like behavior was assessed by open-field tests and dark/light transfer tests, and memory deficit was assessed using a novel object recognition test. RESULTS Infiltration was evident in the hippocampi of the lupus-afflicted mice, and the presence of CD3+ T cells as well as IgG and complement C3 complex deposition was observed. Furthermore, elevated levels of gliosis and loss of neuronal nuclei immunoreactivity were also observed in the hippocampi of the mice with lupus. Treatment with hCDR1 ameliorated the histopathologic changes. Treatment with hCDR1 down-regulated the high expression of interleukin-1beta (IL-1beta), IL-6, IL-10, interferon-gamma, transforming growth factor beta, and the proapoptotic molecule caspase 8 in the hippocampi of the mice with lupus, and up-regulated expression of the antiapoptotic bcl-xL gene. Diseased mice exhibited increased anxiety-like behavior and memory deficit. Treatment with hCDR1 improved these parameters, as assessed by behavior tests. CONCLUSION Treatment with hCDR1 ameliorated CNS pathology and improved the tested cognitive and mood-related behavior of the mice with lupus. Thus, hCDR1 is a novel candidate for the treatment of CNS lupus.
Collapse
|
50
|
Collombet JM, Elias M, Gotthard G, Four E, Renault F, Joffre A, Baubichon D, Rochu D, Chabrière E. Eukaryotic DING proteins are endogenous: an immunohistological study in mouse tissues. PLoS One 2010; 5:e9099. [PMID: 20161715 PMCID: PMC2817009 DOI: 10.1371/journal.pone.0009099] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 01/20/2010] [Indexed: 11/19/2022] Open
Abstract
Background DING proteins encompass an intriguing protein family first characterized by their conserved N-terminal sequences. Some of these proteins seem to have key roles in various human diseases, e.g., rheumatoid arthritis, atherosclerosis, HIV suppression. Although this protein family seems to be ubiquitous in eukaryotes, their genes are consistently lacking from genomic databases. Such a lack has considerably hampered functional studies and has fostered therefore the hypothesis that DING proteins isolated from eukaryotes were in fact prokaryotic contaminants. Principal Findings In the framework of our study, we have performed a comprehensive immunological detection of DING proteins in mice. We demonstrate that DING proteins are present in all tissues tested as isoforms of various molecular weights (MWs). Their intracellular localization is tissue-dependant, being exclusively nuclear in neurons, but cytoplasmic and nuclear in other tissues. We also provide evidence that germ-free mouse plasma contains as much DING protein as wild-type. Significance Hence, data herein provide a valuable basis for future investigations aimed at eukaryotic DING proteins, revealing that these proteins seem ubiquitous in mouse tissue. Our results strongly suggest that mouse DING proteins are endogenous. Moreover, the determination in this study of the precise cellular localization of DING proteins constitute a precious evidence to understand their molecular involvements in their related human diseases.
Collapse
Affiliation(s)
- Jean-Marc Collombet
- Département de Toxicologie, Institut de Recherche Biomédicale des Armées, Centre de Recherche du Service de Santé des Armées, La Tronche, France
| | - Mikael Elias
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique-Aix Marseille Université, Marseille, France
| | - Guillaume Gotthard
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique-Aix Marseille Université, Marseille, France
| | - Elise Four
- Département de Toxicologie, Institut de Recherche Biomédicale des Armées, Centre de Recherche du Service de Santé des Armées, La Tronche, France
| | - Frédérique Renault
- Département de Toxicologie, Institut de Recherche Biomédicale des Armées, Centre de Recherche du Service de Santé des Armées, La Tronche, France
| | - Aurélie Joffre
- Service de Microscopie et d'Imagerie Médicale, Institut de Recherche Biomédicale des Armées, Centre de Recherche du Service de Santé des Armées, La Tronche, France
| | - Dominique Baubichon
- Département de Toxicologie, Institut de Recherche Biomédicale des Armées, Centre de Recherche du Service de Santé des Armées, La Tronche, France
| | - Daniel Rochu
- Département de Toxicologie, Institut de Recherche Biomédicale des Armées, Centre de Recherche du Service de Santé des Armées, La Tronche, France
| | - Eric Chabrière
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique-Aix Marseille Université, Marseille, France
- * E-mail:
| |
Collapse
|