1
|
Aschner M, Skalny AV, Paoliello MMB, Tinkova MN, Martins AC, Santamaria A, Lee E, Rocha JBT, Farsky SHP, Tinkov AA. Retinal toxicity of heavy metals and its involvement in retinal pathology. Food Chem Toxicol 2024; 188:114685. [PMID: 38663763 DOI: 10.1016/j.fct.2024.114685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024]
Abstract
The objective of the present review is to discuss epidemiological evidence demonstrating the association between toxic metal (Cd, Pb, Hg, As, Sn, Ti, Tl) exposure and retinal pathology, along with the potential underlying molecular mechanisms. Epidemiological studies demonstrate that Cd, and to a lesser extent Pb exposure, are associated with age-related macular degeneration (AMD), while the existing evidence on the levels of these metals in patients with diabetic retinopathy is scarce. Epidemiological data on the association between other toxic metals and metalloids including mercury (Hg) and arsenic (As), are limited. Clinical reports and laboratory in vivo studies have shown structural alterations in different layers of retina following metal exposure. Examination of retina samples demonstrate that toxic metals can accumulate in the retina, and the rate of accumulation appears to increase with age. Experimental studies in vivo and in vitro studies in APRE-19 and D407 cells demonstrate that toxic metal exposure may cause retinal damage through oxidative stress, apoptosis, DNA damage, mitochondrial dysfunction, endoplasmic reticulum stress, impaired retinogenesis, and retinal inflammation. However, further epidemiological as well as laboratory studies are required for understanding the underlying molecular mechanisms and identifying of the potential therapeutic targets and estimation of the dose-response effects.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Anatoly V Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003, Russia; Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia
| | - Monica M B Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | | | - Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Abel Santamaria
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico; Laboratorio de Nanotecnología y Nanomedicina, Departamento de Cuidado de La Salud, Universidad Autónoma Metropolitana-Xochimilco, Mexico City 04960, Mexico
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Joao B T Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Sandra H P Farsky
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo 05508-000, SP, Brazil
| | - Alexey A Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003, Russia; Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia.
| |
Collapse
|
2
|
Shinoda Y, Akiyama M, Toyama T. Potential Association between Methylmercury Neurotoxicity and Inflammation. Biol Pharm Bull 2023; 46:1162-1168. [PMID: 37661394 DOI: 10.1248/bpb.b23-00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Methylmercury (MeHg) is the causal substrate of Minamata disease and a major environmental toxicant. MeHg is widely distributed, mainly in the ocean, meaning its bioaccumulation in seafood is a considerable problem for human health. MeHg has been intensively investigated and is known to induce inflammatory responses and neurodegeneration. However, the relationship between MeHg-induced inflammatory responses and neurodegeneration is not understood. In the present review, we first describe recent findings showing an association between inflammatory responses and certain MeHg-unrelated neurological diseases caused by neurodegeneration. In addition, cell-specific MeHg-induced inflammatory responses are summarized for the central nervous system including those of microglia, astrocytes, and neurons. We also describe MeHg-induced inflammatory responses in peripheral cells and tissue, such as macrophages and blood. These findings provide a concept of the relationship between MeHg-induced inflammatory responses and neurodegeneration, as well as direction for future research of MeHg-induced neurotoxicity.
Collapse
Affiliation(s)
- Yo Shinoda
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Masahiro Akiyama
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University
| | - Takashi Toyama
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
3
|
Martins B, Novo JP, Fonseca É, Raposo R, Sardão VA, Pereira F, Oriá RB, Fontes-Ribeiro C, Malva J. Necrotic-like BV-2 microglial cell death due to methylmercury exposure. Front Pharmacol 2022; 13:1003663. [PMID: 36408241 PMCID: PMC9667718 DOI: 10.3389/fphar.2022.1003663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/18/2022] [Indexed: 12/01/2022] Open
Abstract
Methylmercury (MeHg) is a dangerous environmental contaminant with strong bioaccumulation in the food chain and neurotoxic properties. In the nervous system, MeHg may cause neurodevelopment impairment and potentially interfere with immune response, compromising proper control of neuroinflammation and aggravating neurodegeneration. Human populations are exposed to environmental contamination with MeHg, especially in areas with strong mining or industrial activity, raising public health concerns. Taking this into consideration, this work aims to clarify pathways leading to acute toxic effects caused by MeHg exposure in microglial cells. BV-2 mouse microglial cells were incubated with MeHg at different concentrations (0.01, 0.1, 1 and 10 µM) for 1 h prior to continuous Lipopolysaccharide (LPS, 0.5 μg/ml) exposure for 6 or 24 h. After cell exposure, reactive oxygen species (ROS), IL-6 and TNF-α cytokines production, inducible nitric oxide synthase (iNOS) expression, nitric oxide (NO) release, metabolic activity, propidium iodide (PI) uptake, caspase-3 and -9 activities and phagocytic activity were assessed. MeHg 10 µM decreased ROS formation, the production and secretion of pro-inflammatory cytokines IL-6, TNF-α, iNOS immunoreactivity, the release of NO in BV-2 cells. Furthermore, MeHg 10 µM decreased the metabolic activity of BV-2 and increased the number of PI-positive cells (necrotic-like cell death) when compared to the respective control group. Besides, MeHg did not interfere with caspase activity or the phagocytic profile of cells. The short-term effects of a high concentration of MeHg on BV-2 microglial cells lead to impaired production of several pro-inflammatory mediators, as well as a higher microglial cell death via necrosis, compromising their neuroinflammatory response. Clarifying the mechanisms underlying MeHg-induced neurotoxicity and neurodegeneration in brain cells is relevant to better understand acute and long-term chronic neuroinflammatory responses following MeHg exposure.
Collapse
Affiliation(s)
- B. Martins
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal,Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - J. P. Novo
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal,Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - É. Fonseca
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal,Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - R. Raposo
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal,Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal,Experimental Biology Core, Health Sciences Center, University of Fortaleza, Fortaleza, Brazil
| | - V. A. Sardão
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal,Center for Neuroscience and Cell Biology (CNC), UC Biotech, University of Coimbra, Cantanhede, Portugal
| | - F. Pereira
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal,Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - R. B. Oriá
- Laboratory of Tissue Healing, Ontogeny, and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - C. Fontes-Ribeiro
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal,Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - J. Malva
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal,Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal,*Correspondence: J. Malva,
| |
Collapse
|
4
|
Sousa AH, Pereira JPG, Malaquias AC, Sagica FDES, de Oliveira EHC. Intracellular accumulation and DNA damage caused by methylmercury in glial cells. J Biochem Mol Toxicol 2022; 36:e23170. [PMID: 35822649 DOI: 10.1002/jbt.23170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/14/2022] [Accepted: 07/01/2022] [Indexed: 11/10/2022]
Abstract
Mercury is widely used in industrial and extractive processes, and the improper disposal of waste or products containing this metal produces a significant impact on ecosystems, causing adverse effects on living organisms, including humans. Exposure to methylmercury, a highly toxic organic compound, causes important neurological and developmental impairments. Recently, the genotoxicity of mercurial compounds has gained prominence as one of the possible mechanisms associated with the neurological effects of mercury, mostly by disturbing the mitotic spindle and causing chromosome loss. In this sense, it is important to investigate if these compounds can also cause direct damage to DNA, such as single and double-strand breaks. Thus, the aim of this study was to investigate the cytotoxic and genotoxic potential of methylmercury in cell lines derived from neurons (B103) and glia (C6), exposed to methylmercury (MeHg) for 24 h, by analyzing cell viability, metabolic activity, and damage to DNA and chromosomes. We found that in comparison to the neuronal cell line, glial cells showed higher tolerance to MeHg, and therefore a higher LC50 and consequent higher intracellular accumulation of Hg, which led to the occurrence of several genotoxic effects, as evidenced by the presence of micronuclei, bridges, sprouts, and chromosomal aberrations.
Collapse
Affiliation(s)
- Aline H Sousa
- Programa de Pós Graduação em Epidemiologia e vigilância em Saúde, Instituto Evandro Chagas, Ananindeua, Pará, Brazil.,Seção de Bacteriologia, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - João P G Pereira
- Programa de Pós Graduação em Epidemiologia e vigilância em Saúde, Instituto Evandro Chagas, Ananindeua, Pará, Brazil.,Seção de Meio Ambiente, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - Allan C Malaquias
- Faculdade de Medicina, Universidade Federal do Pará, Campus de Altamira, Pará, Brazil
| | | | - Edivaldo H C de Oliveira
- Seção de Meio Ambiente, Instituto Evandro Chagas, Ananindeua, Pará, Brazil.,Faculdade de Ciências Naturais, ICEN, Universidade Federal do Pará, Belém, Pará, Brazil
| |
Collapse
|
5
|
Fowler J, Tsui MTK, Chavez J, Khan S, Ahmed H, Smith L, Jia Z. Methyl mercury triggers endothelial leukocyte adhesion and increases expression of cell adhesion molecules and chemokines. Exp Biol Med (Maywood) 2021; 246:2522-2532. [PMID: 34308659 DOI: 10.1177/15353702211033812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cardiovascular disease is the leading cause of morbidity, mortality, and health care costs in the USA, and around the world. Among the various risk factors of cardiovascular disease, environmental and dietary exposures to methyl mercury, a highly toxic metal traditionally labeled as a neurotoxin, have been epidemiologically linked to human cardiovascular disease development. However, its role in development and promotion of atherosclerosis, an initial step in more immediately life-threatening cardiovascular diseases, remains unclear. This study was conducted to examine the role that methyl mercury plays in the adhesion of monocytes to human microvascular endothelial cells (HMEC-1), and the underlying mechanisms. Methyl mercury treatment significantly induced the adhesion of monocyte to HMEC-1 endothelial cells, a critical step in atherosclerosis, while also upregulating the expression of proinflammatory cytokines interleukin-6, interleukin-8. Further, methyl mercury treatment also upregulated the chemotactic cytokine monocyte chemoattractant protein-1 and intercellular adhesion molecule-1. These molecules are imperative for the firm adhesion of leukocytes to endothelial cells. Additionally, our results further demonstrated that methyl mercury stimulated a significant increase in NF-κB activation. These findings suggest that NF-κB signaling pathway activation by methyl mercury is an important factor in the binding of monocytes to endothelial cells. Finally, by using flow cytometric analysis, methyl mercury treatment caused a significant increase in necrotic cell death only at higher concentrations without initiating apoptosis. This study provides new insights into the molecular actions of methyl mercury that can lead to endothelial dysfunction, inflammation, and subsequent atherosclerotic development.
Collapse
Affiliation(s)
- Joshua Fowler
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27410, USA
| | - Martin Tsz-Ki Tsui
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27410, USA.,School of Life Sciences, Chinese University of Hong Kong, Hong Kong SAR 00000, China
| | - Jessica Chavez
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27410, USA
| | - Safeera Khan
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27410, USA
| | - Hassan Ahmed
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27410, USA
| | - Lena Smith
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27410, USA
| | - Zhenquan Jia
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27410, USA
| |
Collapse
|
6
|
Novo JP, Martins B, Raposo RS, Pereira FC, Oriá RB, Malva JO, Fontes-Ribeiro C. Cellular and Molecular Mechanisms Mediating Methylmercury Neurotoxicity and Neuroinflammation. Int J Mol Sci 2021; 22:ijms22063101. [PMID: 33803585 PMCID: PMC8003103 DOI: 10.3390/ijms22063101] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/06/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Methylmercury (MeHg) toxicity is a major environmental concern. In the aquatic reservoir, MeHg bioaccumulates along the food chain until it is consumed by riverine populations. There has been much interest in the neurotoxicity of MeHg due to recent environmental disasters. Studies have also addressed the implications of long-term MeHg exposure for humans. The central nervous system is particularly susceptible to the deleterious effects of MeHg, as evidenced by clinical symptoms and histopathological changes in poisoned humans. In vitro and in vivo studies have been crucial in deciphering the molecular mechanisms underlying MeHg-induced neurotoxicity. A collection of cellular and molecular alterations including cytokine release, oxidative stress, mitochondrial dysfunction, Ca2+ and glutamate dyshomeostasis, and cell death mechanisms are important consequences of brain cells exposure to MeHg. The purpose of this review is to organize an overview of the mercury cycle and MeHg poisoning events and to summarize data from cellular, animal, and human studies focusing on MeHg effects in neurons and glial cells. This review proposes an up-to-date compendium that will serve as a starting point for further studies and a consultation reference of published studies.
Collapse
Affiliation(s)
- João P. Novo
- Institute for Clinical and Biomedical Research (iCBR), Center for Innovative Biomedicine and Biotechnology (CIBB), and Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.P.N.); (B.M.); (R.S.R.); (F.C.P.)
| | - Beatriz Martins
- Institute for Clinical and Biomedical Research (iCBR), Center for Innovative Biomedicine and Biotechnology (CIBB), and Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.P.N.); (B.M.); (R.S.R.); (F.C.P.)
| | - Ramon S. Raposo
- Institute for Clinical and Biomedical Research (iCBR), Center for Innovative Biomedicine and Biotechnology (CIBB), and Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.P.N.); (B.M.); (R.S.R.); (F.C.P.)
- Experimental Biology Core, University of Fortaleza, Health Sciences, Fortaleza 60110-001, Brazil
| | - Frederico C. Pereira
- Institute for Clinical and Biomedical Research (iCBR), Center for Innovative Biomedicine and Biotechnology (CIBB), and Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.P.N.); (B.M.); (R.S.R.); (F.C.P.)
| | - Reinaldo B. Oriá
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceará, Fortaleza 60430-270, Brazil;
| | - João O. Malva
- Institute for Clinical and Biomedical Research (iCBR), Center for Innovative Biomedicine and Biotechnology (CIBB), and Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.P.N.); (B.M.); (R.S.R.); (F.C.P.)
- Correspondence: (J.O.M.); (C.F.-R.)
| | - Carlos Fontes-Ribeiro
- Institute for Clinical and Biomedical Research (iCBR), Center for Innovative Biomedicine and Biotechnology (CIBB), and Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.P.N.); (B.M.); (R.S.R.); (F.C.P.)
- Correspondence: (J.O.M.); (C.F.-R.)
| |
Collapse
|
7
|
Muniroh M. Methylmercury-induced pro-inflammatory cytokines activation and its preventive strategy using anti-inflammation N-acetyl-l-cysteine: a mini-review. REVIEWS ON ENVIRONMENTAL HEALTH 2020; 35:233-238. [PMID: 32710722 DOI: 10.1515/reveh-2020-0026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
The exposure of methylmercury (MeHg) has become a public health concern because of its neurotoxic effect. Various neurological symptoms were detected in Minamata disease patients, who got intoxicated by MeHg, including paresthesia, ataxia, gait disturbance, sensory disturbances, tremors, visual, and hearing impairments, indicating that MeHg could pass the blood-brain barrier (BBB) and cause impairment of neurons and other brain cells. Previous studies have reported some expected mechanisms of MeHg-induced neurotoxicity including the neuroinflammation pathway. It was characterized by the up-regulation of numerous pro-inflammatory cytokines expression. Therefore, the use of anti-inflammatories such as N-acetyl-l-cysteine (NAC) may act as a preventive compound to protect the brain from MeHg harmful effects. This mini-review will explain detailed information on MeHg-induced pro-inflammatory cytokines activation as well as possible preventive strategies using anti-inflammation NAC to protect brain cells, particularly in in vivo and in vitro studies.
Collapse
Affiliation(s)
- Muflihatul Muniroh
- Department of Physiology, Faculty of Medicine Diponegoro University, Semarang, Central Java, 50275, Indonesia
| |
Collapse
|
8
|
Muniroh M, Gumay AR, Indraswari DA, Bahtiar Y, Hardian H, Bakri S, Maharani N, Karlowee V, Koriyama C, Yamamoto M. Activation of MIP-2 and MCP-5 Expression in Methylmercury-Exposed Mice and Their Suppression by N-Acetyl-L-Cysteine. Neurotox Res 2020; 37:827-834. [PMID: 32040762 DOI: 10.1007/s12640-020-00174-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/15/2020] [Accepted: 02/02/2020] [Indexed: 01/11/2023]
Abstract
Methylmercury (MeHg) is a well-known neurotoxin of the central nervous system (CNS). Neuroinflammation is one of the main pathways of MeHg-induced CNS impairment. This study aims to investigate the expressions of IL-6, MIP-2, and MCP-5, as biomarkers in relation with MeHg-induced CNS impairment and N-acetyl-L-cysteine (NAC) treatment in mice, as well as histopathological changes of brain tissue and clinical symptom such as ataxia. Twenty male Balb/c mice, aged 8-9 weeks, were divided into 4 groups and treated with saline (control), NAC [150 mg/kg body weight (BW) day], MeHg (4 mg Hg/kg BW), or a combination of MeHg and NAC for 17 days. MeHg induced the expression of IL-6, MIP-2, and MCP-5 in the serum, with median values (those in controls) of 55.06 (9.44), 15.94 (9.30), and 458.91 (239.91) mg/dl, respectively, and a statistical significance was observed only in IL-6 expression (p < 0.05). MIP-2 and MCP-5 expressions tended to increase in the cerebrum of MeHg-treated group compared with controls; however, the difference was not statistically significant. MeHg treatment also increased IL-6 expression in the cerebellum (7.73 and 4.81 mg/dl in MeHg-treated group and controls, respectively), with a marginal significance. NAC significantly suppressed MeHg-induced IL-6 and MIP-2 expressions in the serum (p < 0.05 for both), and slightly reduced MCP-5 expression in the cerebrum. Ataxia was observed in all MeHg-treated mice after 9-day exposure as well as the decrease of intact Purkinje cells in brain tissue (p < 0.05). These findings suggest that MeHg induced neurotoxicity by elevating the expression of IL-6, MIP-2, and MCP-5 and causing ataxia symptoms, and NAC reduced MeHg-mediated effects on the CNS.
Collapse
Affiliation(s)
- Muflihatul Muniroh
- Department of Physiology, Faculty of Medicine Diponegoro University, Tembalang Semarang, 50275, Indonesia.
| | - Ainun Rahmasari Gumay
- Department of Physiology, Faculty of Medicine Diponegoro University, Tembalang Semarang, 50275, Indonesia
| | - Darmawati Ayu Indraswari
- Department of Physiology, Faculty of Medicine Diponegoro University, Tembalang Semarang, 50275, Indonesia
| | - Yuriz Bahtiar
- Department of Physiology, Faculty of Medicine Diponegoro University, Tembalang Semarang, 50275, Indonesia
| | - Hardian Hardian
- Department of Physiology, Faculty of Medicine Diponegoro University, Tembalang Semarang, 50275, Indonesia
| | - Saekhol Bakri
- Department of Public Health, Faculty of Medicine Diponegoro University, Semarang, 50275, Indonesia
| | - Nani Maharani
- Department of Pharmacology and Therapy, Faculty of Medicine Diponegoro University, Semarang, 50275, Indonesia
| | - Vega Karlowee
- Department of Anatomical Pathology, Faculty of Medicine Diponegoro University, Semarang, 50275, Indonesia
| | - Chihaya Koriyama
- Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Health Sciences, Kagoshima, 890-8520, Japan
| | - Megumi Yamamoto
- Department of Environment and Public Health, National Institute for Minamata Disease, Kumamoto, 867-0008, Japan
| |
Collapse
|
9
|
Shinoda Y, Ehara S, Tatsumi S, Yoshida E, Takahashi T, Eto K, Kaji T, Fujiwara Y. Methylmercury-induced neural degeneration in rat dorsal root ganglion is associated with the accumulation of microglia/macrophages and the proliferation of Schwann cells. J Toxicol Sci 2019; 44:191-199. [PMID: 30842371 DOI: 10.2131/jts.44.191] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Exposure to organic mercury, especially methylmercury (MeHg), causes Minamata disease, a severe chronic neurological disorder. Minamata disease predominantly affects the central nervous system, and therefore, studies on the mechanisms of MeHg neurotoxicity have focused primarily on the brain. Although the peripheral nervous system is also affected by the organometallic compound and shows signs of neural degeneration, the mechanisms of peripheral MeHg neurotoxicity remain unclear. In the present study, we performed quantitative immunohistochemical analyses of the dorsal root ganglion (DRG) and associated sensory and motor fibers to clarify the mechanisms of MeHg-induced peripheral neurotoxicity in Wistar rats. Methylmercury chloride (6.7 mg/kg/day) was orally administrated for 5 days, followed by 2 days without administration, and this cycle was repeated once again. Seven and 14 days after the beginning of MeHg exposure, rats were anesthetized, and their DRGs and sensory and motor nerve fibers were removed and processed for immunohistochemical analyses. The frozen sections were immunostained for neuronal, Schwann cell, microglial and macrophage markers. DRG sensory neuron somata and axons showed significant degeneration on day 14. At the same time, an accumulation of microglia and the infiltration of macrophages were observed in the DRGs and sensory nerve fibers. In addition, MeHg caused significant Schwann cell proliferation in the sensory nerve fibers. In comparison, there was no noticeable change in the motor fibers. Our findings suggest that in the peripheral nervous system, MeHg toxicity is associated with neurodegenerative changes to DRG sensory neurons and the induction of a neuroprotective and/or enhancement of neurodegenerative host response.
Collapse
Affiliation(s)
- Yo Shinoda
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Shunsuke Ehara
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Satoshi Tatsumi
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Eiko Yoshida
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Tsutomu Takahashi
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Komyo Eto
- Health and Nursing Facilities for the Aged, Jushindai, Shinwakai
| | - Toshiyuki Kaji
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Yasuyuki Fujiwara
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
10
|
McSorley EM, Yeates AJ, Mulhern MS, van Wijngaarden E, Grzesik K, Thurston SW, Spence T, Crowe W, Davidson PW, Zareba G, Myers GJ, Watson GE, Shamlaye CF, Strain JJ. Associations of maternal immune response with MeHg exposure at 28 weeks' gestation in the Seychelles Child Development Study. Am J Reprod Immunol 2018; 80:e13046. [PMID: 30295973 PMCID: PMC6202202 DOI: 10.1111/aji.13046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 12/30/2022] Open
Abstract
PROBLEM Maternal methylmercury (MeHg) exposure may be associated with immune response during pregnancy. METHOD OF STUDY In the high fish-eating Seychelles Child Development Study Nutrition Cohort 2, we examined the association between maternal MeHg, polyunsaturated fatty acids (PUFA), and immune markers (Th1:Th2; TNF-α, IL-1β, IFN-γ, IL-2, IL-4, IL-5, IL-10, MCP-1, TARC, sFlt-1, VEGF-D, CRP and IL-6) at 28 weeks' gestation. Linear regression examined associations between MeHg exposure and immune markers with and without adjustment for PUFA. RESULTS In all models, as MeHg concentrations increased, the Th1:Th2 ratio, total Th1 and individual Th1 (IL-1β, IL-2, TNF-α) concentrations decreased. MeHg was not associated with total Th2 cytokines but was associated with a decrease in IL-4 and IL-10. MeHg was positively associated with TARC and VEGF-D and negatively associated with CRP. There was a significant interaction between MeHg and the n-6:n-3 ratio, with MeHg associated with a larger decrease in Th1:Th2 at higher n-6:n-3 PUFA ratios. The n-3 PUFA were associated with lower CRP, IL-4 and higher IFN-γ. The n-6 PUFA were associated with higher IL-1β, IL-2, TNF-α, IL-4, IL-10, CRP and IL-6. CONCLUSION Maternal MeHg was associated with markers of immune function at 28 weeks' gestation. A significant interaction between MeHg and the n-6:n-3 ratio on the Th1:Th2 ratio suggests that the n-3 PUFA may mitigate any immunosuppressive associations of MeHg. The n-3 and n-6 PUFA were associated with suppressive and stimulatory immune responses, respectively. Overall, the associations were of small magnitude, and further research is required to determine the clinical significance.
Collapse
Affiliation(s)
- Emeir M. McSorley
- Nutrition Innovation Centre for Food and Health (NICHE)School of Biomedical SciencesUniversity of UlsterColeraineNorthern Ireland
| | - Alison J. Yeates
- Nutrition Innovation Centre for Food and Health (NICHE)School of Biomedical SciencesUniversity of UlsterColeraineNorthern Ireland
| | - Maria S. Mulhern
- Nutrition Innovation Centre for Food and Health (NICHE)School of Biomedical SciencesUniversity of UlsterColeraineNorthern Ireland
| | | | - Katherine Grzesik
- School of Medicine and DentistryUniversity of RochesterRochesterNew York
| | - Sally W. Thurston
- School of Medicine and DentistryUniversity of RochesterRochesterNew York
| | - Toni Spence
- Nutrition Innovation Centre for Food and Health (NICHE)School of Biomedical SciencesUniversity of UlsterColeraineNorthern Ireland
| | - William Crowe
- Nutrition Innovation Centre for Food and Health (NICHE)School of Biomedical SciencesUniversity of UlsterColeraineNorthern Ireland
| | - Philip W. Davidson
- School of Medicine and DentistryUniversity of RochesterRochesterNew York
| | - Grazyna Zareba
- School of Medicine and DentistryUniversity of RochesterRochesterNew York
| | - Gary J. Myers
- School of Medicine and DentistryUniversity of RochesterRochesterNew York
| | - Gene E. Watson
- School of Medicine and DentistryUniversity of RochesterRochesterNew York
| | | | - J. J. Strain
- Nutrition Innovation Centre for Food and Health (NICHE)School of Biomedical SciencesUniversity of UlsterColeraineNorthern Ireland
| |
Collapse
|
11
|
Bjørklund G, Skalny AV, Rahman MM, Dadar M, Yassa HA, Aaseth J, Chirumbolo S, Skalnaya MG, Tinkov AA. Toxic metal(loid)-based pollutants and their possible role in autism spectrum disorder. ENVIRONMENTAL RESEARCH 2018; 166:234-250. [PMID: 29902778 DOI: 10.1016/j.envres.2018.05.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interaction, verbal and non-verbal communication, and stereotypic behaviors. Many studies support a significant relationship between many different environmental factors in ASD etiology. These factors include increased daily exposure to various toxic metal-based environmental pollutants, which represent a cause for concern in public health. This article reviews the most relevant toxic metals, commonly found, environmental pollutants, i.e., lead (Pb), mercury (Hg), aluminum (Al), and the metalloid arsenic (As). Additionally, it discusses how pollutants can be a possible pathogenetic cause of ASD through various mechanisms including neuroinflammation in different regions of the brain, fundamentally occurring through elevation of the proinflammatory profile of cytokines and aberrant expression of nuclear factor kappa B (NF-κB). Due to the worldwide increase in toxic environmental pollution, studies on the role of pollutants in neurodevelopmental disorders, including direct effects on the developing brain and the subjects' genetic susceptibility and polymorphism, are of utmost importance to achieve the best therapeutic approach and preventive strategies.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| | - Anatoly V Skalny
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia; All-Russian Research Institute of Medicinal and Aromatic Plants, Moscow, Russia
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, Bangladesh; Graduate School of Environmental Science, Hokkaido University, Japan
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Heba A Yassa
- Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Jan Aaseth
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, Elverum, Norway; Department of Research, Innlandet Hospital Trust, Brumunddal, Norway
| | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | | | - Alexey A Tinkov
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia
| |
Collapse
|
12
|
Ghizoni H, Ventura M, Colle D, Gonçalves CL, de Souza V, Hartwig JM, Santos DB, Naime AA, Cristina de Oliveira Souza V, Lopes MW, Barbosa F, Brocardo PS, Farina M. Effects of perinatal exposure to n-3 polyunsaturated fatty acids and methylmercury on cerebellar and behavioral parameters in mice. Food Chem Toxicol 2018; 120:603-615. [DOI: 10.1016/j.fct.2018.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022]
|
13
|
Skalny AV, Simashkova NV, Skalnaya MG, Klyushnik TP, Chernova LN, Tinkov AA. Mercury and autism spectrum disorders. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:75-79. [DOI: 10.17116/jnevro20181185275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Branco V, Caito S, Farina M, Teixeira da Rocha J, Aschner M, Carvalho C. Biomarkers of mercury toxicity: Past, present, and future trends. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 20:119-154. [PMID: 28379072 PMCID: PMC6317349 DOI: 10.1080/10937404.2017.1289834] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Mercury (Hg) toxicity continues to represent a global health concern. Given that human populations are mostly exposed to low chronic levels of mercurial compounds (methylmercury through fish, mercury vapor from dental amalgams, and ethylmercury from vaccines), the need for more sensitive and refined tools to assess the effects and/or susceptibility to adverse metal-mediated health risks remains. Traditional biomarkers, such as hair or blood Hg levels, are practical and provide a reliable measure of exposure, but given intra-population variability, it is difficult to establish accurate cause-effect relationships. It is therefore important to identify and validate biomarkers that are predictive of early adverse effects prior to adverse health outcomes becoming irreversible. This review describes the predominant biomarkers used by toxicologists and epidemiologists to evaluate exposure, effect and susceptibility to Hg compounds, weighing on their advantages and disadvantages. Most importantly, and in light of recent findings on the molecular mechanisms underlying Hg-mediated toxicity, potential novel biomarkers that might be predictive of toxic effect are presented, and the applicability of these parameters in risk assessment is examined.
Collapse
Affiliation(s)
- Vasco Branco
- a Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia , Universidade de Lisboa , Lisboa , Portugal
| | - Sam Caito
- b Department of Molecular Pharmacology , Albert Einstein College of Medicine , Bronx , New York , USA
| | - Marcelo Farina
- c Departamento de Bioquímica, Centro de Ciências Biológicas , Universidade Federal de Santa Catarina , Florianópolis , Brazil
| | - João Teixeira da Rocha
- d Departamento Bioquímica e Biologia Molecular , Universidade Federal de Santa Maria , Santa Maria , RS , Brazil
| | - Michael Aschner
- b Department of Molecular Pharmacology , Albert Einstein College of Medicine , Bronx , New York , USA
| | - Cristina Carvalho
- a Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia , Universidade de Lisboa , Lisboa , Portugal
| |
Collapse
|
15
|
Yamamoto M, Khan N, Muniroh M, Motomura E, Yanagisawa R, Matsuyama T, Vogel CFA. Activation of interleukin-6 and -8 expressions by methylmercury in human U937 macrophages involves RelA and p50. J Appl Toxicol 2016; 37:611-620. [DOI: 10.1002/jat.3411] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 09/22/2016] [Accepted: 10/03/2016] [Indexed: 01/30/2023]
Affiliation(s)
- Megumi Yamamoto
- Integrated Physiology Section, Department of Basic Medical Science; National Institute for Minamata Disease; 4058-18 Hama Minamata, Kumamoto 867-0008 Japan
| | - Noureen Khan
- Department of Epidemiology and Preventive Medicine; Kagoshima University Graduate School of Medical and Dental Sciences; 8-35-1 Sakuragaoka Kagoshima 890-8544 Japan
| | - Muflihatul Muniroh
- Department of Epidemiology and Preventive Medicine; Kagoshima University Graduate School of Medical and Dental Sciences; 8-35-1 Sakuragaoka Kagoshima 890-8544 Japan
| | - Eriko Motomura
- Integrated Physiology Section, Department of Basic Medical Science; National Institute for Minamata Disease; 4058-18 Hama Minamata, Kumamoto 867-0008 Japan
| | - Rie Yanagisawa
- Integrated Physiology Section, Department of Basic Medical Science; National Institute for Minamata Disease; 4058-18 Hama Minamata, Kumamoto 867-0008 Japan
| | - Takami Matsuyama
- Department of Immunology; Kagoshima University Graduate School of Medical and Dental Sciences; 8-35-1 Sakuragaoka Kagoshima 890-8544 Japan
| | - Christoph F. A. Vogel
- Department of Environmental Toxicology and Center for Health and the Environment; University of California; Davis CA 95616 USA
| |
Collapse
|
16
|
Muniroh M, Khan N, Koriyama C, Akiba S, Vogel CFA, Yamamoto M. Suppression of methylmercury-induced IL-6 and MCP-1 expressions by N-acetylcysteine in U-87MG human astrocytoma cells. Life Sci 2015; 134:16-21. [PMID: 26006043 DOI: 10.1016/j.lfs.2015.04.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 04/09/2015] [Accepted: 04/23/2015] [Indexed: 10/23/2022]
Abstract
AIMS The aim of this study was to clarify the involvement of oxidative stress in methylmercury (MeHg)-induced pro-inflammatory cytokine expressions and the suppressive effects of N-acetylcysteine (NAC) in MeHg-induced cytokine expression. MATERIALS AND METHODS Using U-87-MG human astrocytoma cell line, interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1 expressions induced by 4 μM MeHg were measured at mRNA and protein levels. Hydrogen peroxide (H2O2) and superoxide anion (O2(-)) were quantified by flow-cytometry analysis. To examine the suppressive effects of NAC on the cytokine expressions among different timing of NAC treatment, cells were treated with 0.5 or 5mM NAC before, simultaneously, or after MeHg administration. KEY FINDINGS MeHg exposure at 4 μM, a non-cytotoxic concentration, significantly induced MCP-1 and IL-6 expressions at both mRNA and protein levels. A significant increase of H2O2 production but not O2(-) was observed. MeHg-induced expression of MCP-1 and IL-6 mRNA was reduced by 10-20% in the presence of 5mM NAC (co-treatment experiment) compared to cells treated with MeHg only. Pre-treatment of cells with 0.5 or 5mM NAC at 0.5 or 1h and its subsequent washout before MeHg addition suppressed MCP-1 and IL-6 cytokine expressions. Post-treatment of cells with NAC after MeHg addition also suppressed the cytokine induction, but the magnitude of suppression was evidently lower than in co-treated cells even though the H2O2 generation was almost completely suppressed by NAC. SIGNIFICANCE NAC may effectively suppress the MeHg-induced cytokine production through both, inhibition of reactive oxygen species as well as extracellular chelation of MeHg in astrocytes.
Collapse
Affiliation(s)
- Muflihatul Muniroh
- Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan; Department of Physiology, Faculty of Medicine, Diponegoro University, Tembalang, Semarang 50725, Indonesia
| | - Noureen Khan
- Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| | - Chihaya Koriyama
- Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan.
| | - Suminori Akiba
- Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| | - Christoph F A Vogel
- Department of Environmental Toxicology and Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | - Megumi Yamamoto
- Integrated Physiology Section, Department of Basic Medical Science, National Institute for Minamata Disease, 4058-18 Hama, Minamata, Kumamoto 867-0008, Japan
| |
Collapse
|
17
|
Takahashi T, Iwai-Shimada M, Syakushi Y, Kim MS, Hwang GW, Miura N, Naganuma A. Methylmercury induces expression of interleukin-1β and interleukin-19 in mice brains. ACTA ACUST UNITED AC 2015. [DOI: 10.2131/fts.2.239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Tsutomu Takahashi
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Miyuki Iwai-Shimada
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Yukina Syakushi
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Min-Seok Kim
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Gi-Wook Hwang
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Nobuhiko Miura
- Division of Health Effects Research, Japan National Institute of Occupational Safety and Health
| | - Akira Naganuma
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
18
|
Toxic risks and nutritional benefits of traditional diet on near visual contrast sensitivity and color vision in the Brazilian Amazon. Neurotoxicology 2013; 37:173-81. [DOI: 10.1016/j.neuro.2013.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 04/04/2013] [Accepted: 04/19/2013] [Indexed: 11/22/2022]
|
19
|
Astrocytes protect neurons against methylmercury via ATP/P2Y(1) receptor-mediated pathways in astrocytes. PLoS One 2013; 8:e57898. [PMID: 23469098 PMCID: PMC3585279 DOI: 10.1371/journal.pone.0057898] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/27/2013] [Indexed: 11/19/2022] Open
Abstract
Methylmercury (MeHg) is a well known environmental pollutant that induces serious neuronal damage. Although MeHg readily crosses the blood-brain barrier, and should affect both neurons and glial cells, how it affects glia or neuron-to-glia interactions has received only limited attention. Here, we report that MeHg triggers ATP/P2Y1 receptor signals in astrocytes, thereby protecting neurons against MeHg via interleukin-6 (IL-6)-mediated pathways. MeHg increased several mRNAs in astrocytes, among which IL-6 was the highest. For this, ATP/P2Y1 receptor-mediated mechanisms were required because the IL-6 production was (i) inhibited by a P2Y1 receptor antagonist, MRS2179, (ii) abolished in astrocytes obtained from P2Y1 receptor-knockout mice, and (iii) mimicked by exogenously applied ATP. In addition, (iv) MeHg released ATP by exocytosis from astrocytes. As for the intracellular mechanisms responsible for IL-6 production, p38 MAP kinase was involved. MeHg-treated astrocyte-conditioned medium (ACM) showed neuro-protective effects against MeHg, which was blocked by anti-IL-6 antibody and was mimicked by the application of recombinant IL-6. As for the mechanism of neuro-protection by IL-6, an adenosine A1 receptor-mediated pathway in neurons seems to be involved. Taken together, when astrocytes sense MeHg, they release ATP that autostimulates P2Y1 receptors to upregulate IL-6, thereby leading to A1 receptor-mediated neuro-protection against MeHg.
Collapse
|
20
|
Role of IL-6 in the etiology of hyperexcitable neuropsychiatric conditions: experimental evidence and therapeutic implications. Future Med Chem 2012. [DOI: 10.4155/fmc.12.156] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Many neuropsychiatric conditions are primed or triggered by different types of stressors. The mechanisms through which stress induces neuropsychiatric disease are complex and incompletely understood. A ‘double hit’ hypothesis of neuropsychiatric disease postulates that stress induces maladaptive behavior in two phases separated by a dormant period. Recent research shows that the pleiotropic cytokine IL-6 is released centrally and peripherally following physical and psychological stress. In this article, we analyze evidence from clinics and animal models suggesting that stress-induced elevation in the levels of IL-6 may play a key role in the etiology of a heterogeneous family of hyperexcitable central conditions including epilepsy, schizophrenic psychoses, anxiety and disorders of the autistic spectrum. The cellular mechanism leading to hyperexcitable conditions might be a decrease in inhibitory/excitatory synaptic balance in either or both temporal phases of the conditions. Following these observations, we discuss how they may have important implications for optimal prophylactic and therapeutic pharmacological treatment.
Collapse
|
21
|
Yao L, Hu DN, Chen M, Li SS. Subtoxic levels hydrogen peroxide-induced expression of interleukin-6 by epidermal melanocytes. Arch Dermatol Res 2012; 304:831-8. [DOI: 10.1007/s00403-012-1277-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 07/12/2012] [Accepted: 07/20/2012] [Indexed: 10/28/2022]
|
22
|
Morphological evidence of neurotoxicity in retina after methylmercury exposure. Neurotoxicology 2012; 33:407-15. [DOI: 10.1016/j.neuro.2012.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 04/03/2012] [Accepted: 04/10/2012] [Indexed: 11/20/2022]
|
23
|
Fretham SJ, Caito S, Martinez-Finley EJ, Aschner M. Mechanisms and Modifiers of Methylmercury-Induced Neurotoxicity. Toxicol Res (Camb) 2012; 1:32-38. [PMID: 27795823 DOI: 10.1039/c2tx20010d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The neurotoxic consequences of methylmercury (MeHg) exposure have long been known, however a complete understanding of the mechanisms underlying this toxicity is elusive. Recent epidemiological and experimental studies have provided many mechanistic insights, particularly into the contribution of genetic and environmental factors that interact with MeHg to modify toxicity. This review will outline cellular processes directly and indirectly affected by MeHg, including oxidative stress, cellular signaling and gene expression, and discuss genetic, environmental and nutritional factors capable of modifying MeHg toxicity.
Collapse
Affiliation(s)
- Stephanie Jb Fretham
- Department of Pediatrics and Department of Pharmacology, and the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Samuel Caito
- Department of Pediatrics and Department of Pharmacology, and the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ebany J Martinez-Finley
- Department of Pediatrics and Department of Pharmacology, and the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael Aschner
- Department of Pediatrics and Department of Pharmacology, and the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
24
|
Ni M, Li X, Rocha JBT, Farina M, Aschner M. Glia and methylmercury neurotoxicity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2012; 75:1091-1101. [PMID: 22852858 PMCID: PMC4059390 DOI: 10.1080/15287394.2012.697840] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Methylmercury (MeHg) is a global environmental pollutant with significant adverse effects on human health. As the major target of MeHg, the central nervous system (CNS) exhibits the most recognizable poisoning symptoms. The role of the two major nonneuronal cell types, astrocytes and microglia, in response to MeHg exposure was recently compared. These two cell types share several common features in MeHg toxicity, but interestingly, these cells types also exhibit distinct response kinetics, indicating a cell-specific role in mediating MeHg-induced neurotoxicity. The aim of this study was to review the most recent literature and summarize key features of glial responses to this organometal.
Collapse
Affiliation(s)
- Mingwei Ni
- Department of Surgery, New York Hospital Medical Center Queens, New York City, New York, USA
| | - Xin Li
- Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - João B. T. Rocha
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Michael Aschner
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
25
|
Wormser U, Brodsky B, Milatovic D, Finkelstein Y, Farina M, Rocha JB, Aschner M. Protective effect of a novel peptide against methylmercury-induced toxicity in rat primary astrocytes. Neurotoxicology 2011; 33:763-8. [PMID: 22186600 DOI: 10.1016/j.neuro.2011.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/02/2011] [Accepted: 12/06/2011] [Indexed: 10/14/2022]
Abstract
Methylmercury (MeHg) is an environmental neurotoxicant associated with aberrant central nervous system (CNS) functions. In this study, we examined the protective effect of a novel anti-inflammatory and cytoprotective nonapeptide, termed IIIM1, against MeHg-induced toxicity in cultured rat neonatal primary astrocytes. Astrocytes were pretreated for 66 h with 5 μg/ml IIIM1 (4.95 μM) followed by 6 h exposure to MeHg (5 μM). MeHg significantly increased F(2)-isoprostane generation, a lipid peroxidation biomarker of oxidative injury and this effect was significantly reduced upon pre-treatment with IIIM1. The MeHg-induced increase in levels of prostaglandin E(2) (PGE(2)), biomarkers of inflammatory responses, was also decreased in the peptide-treated cells. Mass spectrometry analysis revealed no chemical or binding interaction between MeHg and IIIM1, indicating that intracellular cytoprotective mechanism of action accounts for the neuroprotection rather than direct intracellular neutralization of the neurotoxicant with the peptide. These findings point to therapeutic potential for IIIM1 in a plethora of conditions associated with reactive oxygen species (ROS) generation. The implication of these findings may prove beneficial in designing new treatment modalities that efficiently suppress neurotoxicity, triggered not only by MeHg, but also by other metals and environmental agents, as well as chronic disease conditions that inherently increase reactive radical production and inflammatory signaling.
Collapse
Affiliation(s)
- Uri Wormser
- Institute of Drug Research, School of Pharmacy, the Hebrew University, 91120 Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
26
|
Farina M, Aschner M, Rocha JBT. Oxidative stress in MeHg-induced neurotoxicity. Toxicol Appl Pharmacol 2011; 256:405-17. [PMID: 21601588 PMCID: PMC3166649 DOI: 10.1016/j.taap.2011.05.001] [Citation(s) in RCA: 241] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/01/2011] [Accepted: 05/02/2011] [Indexed: 12/20/2022]
Abstract
Methylmercury (MeHg) is an environmental toxicant that leads to long-lasting neurological and developmental deficits in animals and humans. Although the molecular mechanisms mediating MeHg-induced neurotoxicity are not completely understood, several lines of evidence indicate that oxidative stress represents a critical event related to the neurotoxic effects elicited by this toxicant. The objective of this review is to summarize and discuss data from experimental and epidemiological studies that have been important in clarifying the molecular events which mediate MeHg-induced oxidative damage and, consequently, toxicity. Although unanswered questions remain, the electrophilic properties of MeHg and its ability to oxidize thiols have been reported to play decisive roles to the oxidative consequences observed after MeHg exposure. However, a close examination of the relationship between low levels of MeHg necessary to induce oxidative stress and the high amounts of sulfhydryl-containing antioxidants in mammalian cells (e.g., glutathione) have led to the hypothesis that nucleophilic groups with extremely high affinities for MeHg (e.g., selenols) might represent primary targets in MeHg-induced oxidative stress. Indeed, the inhibition of antioxidant selenoproteins during MeHg poisoning in experimental animals has corroborated this hypothesis. The levels of different reactive species (superoxide anion, hydrogen peroxide and nitric oxide) have been reported to be increased in MeHg-exposed systems, and the mechanisms concerning these increments seem to involve a complex sequence of cascading molecular events, such as mitochondrial dysfunction, excitotoxicity, intracellular calcium dyshomeostasis and decreased antioxidant capacity. This review also discusses potential therapeutic strategies to counteract MeHg-induced toxicity and oxidative stress, emphasizing the use of organic selenocompounds, which generally present higher affinity for MeHg when compared to the classically studied agents.
Collapse
Affiliation(s)
- Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Michael Aschner
- Department of Pediatrics and Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - João B. T. Rocha
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
27
|
Bassett T, Bach P, Chan HM. Effects of methylmercury on the secretion of pro-inflammatory cytokines from primary microglial cells and astrocytes. Neurotoxicology 2011; 33:229-34. [PMID: 22037494 DOI: 10.1016/j.neuro.2011.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 10/10/2011] [Accepted: 10/13/2011] [Indexed: 10/16/2022]
Abstract
Glial cells, including oligodendrocytes, astrocytes and microglia are important to proper central nervous system (CNS) function. Deregulation or changes to CNS populations of astrocytes and microglia in particular are expected to play a role in many neurodegenerative diseases, including Parkinson's disease, amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD). Previous studies have reported methylmercury (MeHg) induced changes in glial cell function; however, the effects of MeHg on these cells remains poorly understood. This study aims to examine the effect of MeHg on the secretion of pro-inflammatory cytokines from microglia and astrocytes. The impact of the microglia/astrocyte ratio on cytokine secretion was also examined. Microglia and astrocytes were cultured from the brains of neo-natal BALB/C mice and dosed with MeHg (0-1 μM) and stimulated with PAM(3)CSK(4) (PAM(3)), a toll-like receptor (TLR) ligand. After this, the secretion of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) and interleukin-1-beta (IL-1β) was measured by ELISA. MeHg reduced the secretion of IL-6 in a dose dependant manner but did not effect the secretion of TNF-α. No change in IL-1β was observed in any treatments, indicating that PAM(3) cannot induce the secretion of this cytokine from glial cells. Additionally, the ratio of microglia/astrocyte had an effect on the secretion of IL-6 but not TNF-α. These results indicate that MeHg can modify the response of glial cells and the interactions with astrocytes can affect the response of the microglia cells in culture. These results are significant in understanding the potential relationship with MeHg and neurodegenerative diseases and for the interpretation of results of future in vitro studies using monoculture.
Collapse
Affiliation(s)
- Tyler Bassett
- Community Health Sciences Program, University of Northern British Columbia, Prince George, BC, Canada
| | | | | |
Collapse
|
28
|
Chang JY. Methylmercury-induced IL-6 release requires phospholipase C activities. Neurosci Lett 2011; 496:152-6. [PMID: 21513770 DOI: 10.1016/j.neulet.2011.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 03/23/2011] [Accepted: 04/05/2011] [Indexed: 10/18/2022]
Abstract
Methylmercury (MeHg) is a neurotoxin capable of causing severe damage to the CNS, especially in the developing fetus. Glia in the CNS release a number of cytokines that are important for proper CNS development and function. We reported earlier that MeHg could induce interleukin-6 (IL-6) release in primary mouse glia. This finding is significant considering previous reports indicating that sustained IL-6 exposure could be detrimental to cerebellar granule neurons, one of the major cellular targets of MeHg cytotoxicity. By using pharmacological antagonists against phophatidycholine- and phosphoinositol-specific phospholipase C, the current study indicated that phospholipase C activity was necessary for MeHg-induced IL-6 release. Results from pharmacological antagonists further suggested that the calcium signaling initiated by phospholipase C appeared essential for this event. In contrast, protein kinase C activity did not appear to be important. Even though mitogen-activated protein kinases were important for IL-6 release in some experimental systems, these enzymes did not appear to be required for MeHg-induced IL-6 release in glia. Based on these data and those reported by us and others, there is a possibility that MeHg-induced phospholipase C activation initiates a calcium signaling that causes phospholipase A(2) activation. This, in turn, leads to arachidonic acid and lysophosphatidyl choline generation, both of which are potent inducers for IL-6 release.
Collapse
Affiliation(s)
- Jason Y Chang
- Department of Neurobiology and Developmental Sciences, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
29
|
Ni M, Li X, Yin Z, Sidoryk-Węgrzynowicz M, Jiang H, Farina M, Rocha JBT, Syversen T, Aschner M. Comparative study on the response of rat primary astrocytes and microglia to methylmercury toxicity. Glia 2011; 59:810-20. [PMID: 21351162 DOI: 10.1002/glia.21153] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 01/11/2011] [Indexed: 12/16/2022]
Abstract
As the two major glial cell types in the brain, astrocytes and microglia play pivotal but different roles in maintaining optimal brain function. Although both cell types have been implicated as major targets of methylmercury (MeHg), their sensitivities and adaptive responses to this metal can vary given their distinctive properties and physiological functions. This study was carried out to compare the responses of astrocytes and microglia following MeHg treatment, specifically addressing the effects of MeHg on cell viability, reactive oxygen species (ROS) generation and glutathione (GSH) levels, as well as mercury (Hg) uptake and the expression of NF-E2-related factor 2 (Nrf2). Results showed that microglia are more sensitive to MeHg than astrocytes, a finding that is consistent with their higher Hg uptake and lower basal GSH levels. Microglia also demonstrated higher ROS generation compared with astrocytes. Nrf2 and its downstream genes were upregulated in both cell types, but with different kinetics (much faster in microglia). In summary, microglia and astrocytes each exhibit a distinct sensitivity to MeHg, resulting in their differential temporal adaptive responses. These unique sensitivities appear to be dependent on the cellular thiol status of the particular cell type.
Collapse
Affiliation(s)
- Mingwei Ni
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ni M, Aschner M. Neonatal rat primary microglia: isolation, culturing, and selected applications. ACTA ACUST UNITED AC 2011; Chapter 12:Unit 12.17. [PMID: 20960423 DOI: 10.1002/0471140856.tx1217s43] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Microglial cells elaborate trophic factors and cytokines and remove toxins and debris from the extracellular space in the central nervous system, acting analogously to peripheral macrophages. Over the past two decades, increased attention has been directed at the role of microglia, not only in normal physiology, but also in mediating neurotoxicity. Activation of microglia is inherent to multiple neurodegenerative disorders and exposure to toxic compounds. In large measure, these revelations have come about as a result of technologies that enable researchers to obtain high yield and purity primary cultures of rodent microglia. The mechanical isolation protocol discussed in this unit offers an economical method to isolate large amounts of microglia in a short and not too labor-intensive manner. Most importantly, it ensures a high yield of cells with great reproducibility. Given the ever-increasing importance of microglia to the field of neurotoxicology research, the ability to isolate large quantities of primary microglia makes it possible to investigate the role and mechanisms associated with microglial modulation of neurotoxicity. We provide a detailed description on the methods that are routinely used in our laboratory for the isolation and culture of microglia, with emphasis on the steps that are deemed most critical for obtaining pure and healthy cultures.
Collapse
Affiliation(s)
- Mingwei Ni
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | |
Collapse
|
31
|
Ni M, Li X, Yin Z, Jiang H, Sidoryk-Wegrzynowicz M, Milatovic D, Cai J, Aschner M. Methylmercury induces acute oxidative stress, altering Nrf2 protein level in primary microglial cells. Toxicol Sci 2010; 116:590-603. [PMID: 20421342 DOI: 10.1093/toxsci/kfq126] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The neurotoxicity of methylmercury (MeHg) is well documented in both humans and animals. MeHg causes acute and chronic damage to multiple organs, most profoundly the central nervous system (CNS). Microglial cells are derived from macrophage cell lineage, making up approximately 12% of cells in the CNS, yet their role in MeHg-induced neurotoxicity is not well defined. The purpose of the present study was to characterize microglial vulnerability to MeHg and their potential adaptive response to acute MeHg exposure. We examined the effects of MeHg on microglial viability, reactive oxygen species (ROS) generation, glutathione (GSH) level, redox homeostasis, and Nrf2 protein expression. Our data showed that MeHg (1-5 microM) treatment caused a rapid (within 1 min) concentration- and time-dependent increase in ROS generation, accompanied by a statistically significant decrease in the ratio of GSH and its oxidized form glutathione disulfide (GSSG) (GSH:GSSG ratio). MeHg increased the cytosolic Nrf2 protein level within 1 min of exposure, followed by its nuclear translocation after 10 min of treatment. Consistent with the nuclear translocation of Nrf2, quantitative real-time PCR revealed a concentration-dependent increase in the messenger RNA level of Ho-1, Nqo1, and xCT 30 min post MeHg exposure, whereas Nrf2 knockdown greatly reduced the upregulation of these genes. Furthermore, we observed increased microglial death upon Nrf2 knockdown by the small hairpin RNA approach. Taken together, our study has demonstrated that microglial cells are exquisitely sensitive to MeHg and respond rapidly to MeHg by upregulating the Nrf2-mediated antioxidant response.
Collapse
Affiliation(s)
- Mingwei Ni
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Chang JY, Tsai PF. IL-6 release from mouse glia caused by MeHg requires cytosolic phospholipase A2 activation. Neurosci Lett 2009; 461:85-9. [PMID: 19539721 DOI: 10.1016/j.neulet.2009.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Revised: 06/02/2009] [Accepted: 06/11/2009] [Indexed: 11/28/2022]
Abstract
Methylmercury is a potent neurotoxin that causes severe neurological disorders in fetuses and young children. Recent studies indicated that MeHg could alter levels of immune mediators produced by cells of the central nervous system. Results from this study indicated that MeHg could greatly induce IL-6 release from primary mouse glial cultures. This property was not shared by other cytotoxic heavy metals, such as CdCl(2) or HgCl(2). MeHg was known to induce cytosolic phospholipase A(2) (PLA(2)) activation and expression, and this enzyme was required for IL-6 induction in some experimental systems. Further experiments using structurally distinct pharmacological agents were performed to test the hypothesis that MeHg induced PLA(2) activation was necessary for MeHg induced IL-6 release. Results indicated that AACOCF(3) (>or=10 microM), MAFP (>or=0.625 microM) and BEL (>or=0.625 microM) significantly reduced MeHg induced IL-6 release in glia. However, these PLA(2) inhibitors did not block MeHg induced GSH depletion. These results suggested that PLA(2) activation was required for MeHg to induce glial IL-6 release.
Collapse
Affiliation(s)
- Jason Y Chang
- Department of Neurobiology and Developmental Sciences, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | |
Collapse
|
33
|
Involvement of Rho-kinase in tumor necrosis factor-alpha-induced interleukin-6 release from C6 glioma cells. Neurochem Int 2009; 55:438-45. [PMID: 19427347 DOI: 10.1016/j.neuint.2009.04.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 04/10/2009] [Accepted: 04/23/2009] [Indexed: 11/20/2022]
Abstract
Tumor necrosis factor (TNF)-alpha stimulated interleukin (IL)-6 release and induced the phosphorylation of myosin phosphatase targeting subunit (MYPT)-1, a Rho-kinase substrate. The IL-6 release was significantly suppressed by Y-27632 and fasudil, Rho-kinase inhibitors. Although IkappaB inhibitor suppressed the TNF-alpha-induced IL-6 release, the Rho-kinase inhibitors did not affect the TNF-alpha-induced IkappaB phosphorylation. TNF-alpha induced the phosphorylation of p38 mitogen-activated protein (MAP) kinase, stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK), and p44/p42 MAP kinase. The TNF-alpha-induced IL-6 release was suppressed by SB203580, a p38 MAPK inhibitor, or SP600125, a SAPK/JNK inhibitor, but not by PD98059, a MAP kinase/extracellular signal-regulated kinase kinase inhibitor. The Rho-kinase inhibitors attenuated the TNF-alpha-induced phosphorylation of both p38 MAP kinase and SAPK/JNK. Rho-kinase, which has been used for the clinical treatment of cerebral vasospasms, may be involved in other central nervous system (CNS) disorders such as traumatic injury, stroke, neurodegenerative disease and neuropathic pain. TNF-alpha, a proinflammatory cytokine that affects the CNS through cytokines, such as IL-6, release from neurons, astrocytes and microglia. Therefore, we investigated the involvement of Rho-kinase in the TNF-alpha-induced IL-6 release from rat C6 glioma cells. These results strongly suggest that Rho-kinase regulates the TNF-alpha-induced IL-6 release at a point upstream from p38 MAPK and SAPK/JNK in C6 glioma cells. Therefore, Rho-kinase inhibitor may be considered to be a new clinical candidate for the treatment of CNS disorders in addition to cerebral vasospasms.
Collapse
|
34
|
|