1
|
Bierhansl L, Gola L, Narayanan V, Dik A, Meuth SG, Wiendl H, Kovac S. Neuronal Mitochondrial Calcium Uniporter (MCU) Deficiency Is Neuroprotective in Hyperexcitability by Modulation of Metabolic Pathways and ROS Balance. Mol Neurobiol 2024; 61:9529-9538. [PMID: 38652352 PMCID: PMC11496325 DOI: 10.1007/s12035-024-04148-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/23/2024] [Indexed: 04/25/2024]
Abstract
Epilepsy is one of the most common neurological disorders in the world. Common epileptic drugs generally affect ion channels or neurotransmitters and prevent the emergence of seizures. However, up to a third of the patients suffer from drug-resistant epilepsy, and there is an urgent need to develop new therapeutic strategies that go beyond acute antiepileptic (antiseizure) therapies towards therapeutics that also might have effects on chronic epilepsy comorbidities such as cognitive decline and depression. The mitochondrial calcium uniporter (MCU) mediates rapid mitochondrial Ca2+ transport through the inner mitochondrial membrane. Ca2+ influx is essential for mitochondrial functions, but longer elevations of intracellular Ca2+ levels are closely associated with seizure-induced neuronal damage, which are underlying mechanisms of cognitive decline and depression. Using neuronal-specific MCU knockout mice (MCU-/-ΔN), we demonstrate that neuronal MCU deficiency reduced hippocampal excitability in vivo. Furthermore, in vitro analyses of hippocampal glioneuronal cells reveal no change in total Ca2+ levels but differences in intracellular Ca2+ handling. MCU-/-ΔN reduces ROS production, declines metabolic fluxes, and consequently prevents glioneuronal cell death. This effect was also observed under pathological conditions, such as the low magnesium culture model of seizure-like activity or excitotoxic glutamate stimulation, whereby MCU-/-ΔN reduces ROS levels and suppresses Ca2+ overload seen in WT cells. This study highlights the importance of MCU at the interface of Ca2+ handling and metabolism as a mediator of stress-related mitochondrial dysfunction, which indicates the modulation of MCU as a potential target for future antiepileptogenic therapy.
Collapse
Affiliation(s)
- Laura Bierhansl
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Lukas Gola
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Venu Narayanan
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Andre Dik
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Heinz Wiendl
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Stjepana Kovac
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
2
|
Ignacio-Mejía I, Contreras-García IJ, Pichardo-Macías LA, García-Cruz ME, Ramírez Mendiola BA, Bandala C, Medina-Campos ON, Pedraza-Chaverri J, Cárdenas-Rodríguez N, Mendoza-Torreblanca JG. Effect of Levetiracetam on Oxidant-Antioxidant Activity during Long-Term Temporal Lobe Epilepsy in Rats. Int J Mol Sci 2024; 25:9313. [PMID: 39273262 PMCID: PMC11395009 DOI: 10.3390/ijms25179313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Epilepsy is a disorder characterized by a predisposition to generate seizures. Levetiracetam (LEV) is an antiseizure drug that has demonstrated oxidant-antioxidant effects during the early stages of epilepsy in several animal models. However, the effect of LEV on oxidant-antioxidant activity during long-term epilepsy has not been studied. Therefore, the objective of the present study was to determine the effects of LEV on the concentrations of five antioxidant enzymes and on the levels of four oxidant stress markers in the hippocampus of rats with temporal lobe epilepsy at 5.7 months after status epilepticus (SE). The results revealed that superoxide dismutase (SOD) activity was significantly greater in the epileptic group (EPI) than in the control (CTRL), CTRL + LEV and EPI + LEV groups. No significant differences were found among the groups' oxidant markers. However, the ratios of SOD/hydrogen peroxide (H2O2), SOD/glutathione peroxidase (GPx) and SOD/GPx + catalase (CAT) were greater in the EPI group than in the CTRL and EPI + LEV groups. Additionally, there was a positive correlation between SOD activity and GPx activity in the EPI + LEV group. LEV-mediated modulation of the antioxidant system appears to be time dependent; at 5.7 months after SE, the role of LEV may be as a stabilizer of the redox state.
Collapse
Affiliation(s)
- Iván Ignacio-Mejía
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados de Sanidad, UDEFA, Mexico City 11200, Mexico
| | - Itzel Jatziri Contreras-García
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados de Sanidad, UDEFA, Mexico City 11200, Mexico
- Laboratorio de Biología de la Reproducción, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico
| | - Luz Adriana Pichardo-Macías
- Departamento de Fisiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City 07738, Mexico
| | - Mercedes Edna García-Cruz
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico
| | | | - Cindy Bandala
- Laboratorio de Neurociencia Traslacional Enfermedades Crónicas y Emergentes, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11410, Mexico
| | - Omar Noel Medina-Campos
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico
| | | |
Collapse
|
3
|
Ismatullah H, Jabeen I, Kiani YS. Structural and functional insight into a new emerging target IP 3R in cancer. J Biomol Struct Dyn 2024; 42:2170-2196. [PMID: 37070253 DOI: 10.1080/07391102.2023.2201332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
Calcium signaling has been identified as an important phenomenon in a plethora of cellular processes. Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ER-residing intracellular calcium (Ca2+) release channels responsible for cell bioenergetics by transferring calcium from the ER to the mitochondria. The recent availability of full-length IP3R channel structure has enabled the researchers to design the IP3 competitive ligands and reveal the channel gating mechanism by elucidating the conformational changes induced by ligands. However, limited knowledge is available for IP3R antagonists and the exact mechanism of action of these antagonists within a tumorigenic environment of a cell. Here in this review a summarized information about the role of IP3R in cell proliferation and apoptosis has been discussed. Moreover, structure and gating mechanism of IP3R in the presence of antagonists have been provided in this review. Additionally, compelling information about ligand-based studies (both agonists and antagonists) has been discussed. The shortcomings of these studies and the challenges toward the design of potent IP3R modulators have also been provided in this review. However, the conformational changes induced by antagonists for channel gating mechanism still display some major drawbacks that need to be addressed. However, the design, synthesis and availability of isoform-specific antagonists is a rather challenging one due to intra-structural similarity within the binding domain of each isoform. HighlightsThe intricate complexity of IP3R's in cellular processes declares them an important target whereby, the recently solved structure depicts the receptor's potential involvement in a complex network of processes spanning from cell proliferation to cell death.Pharmacological inhibition of IP3R attenuates the proliferation or invasiveness of cancers, thus inducing necrotic cell death.Despite significant advancements, there is a tremendous need to design new potential hits to target IP3R, based upon 3D structural features and pharmacophoric patterns.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Humaira Ismatullah
- Department of Sciences, School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Ishrat Jabeen
- Department of Sciences, School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Yusra Sajid Kiani
- Department of Sciences, School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
4
|
Diaz-Villegas V, Pichardo-Macías LA, Juárez-Méndez S, Ignacio-Mejía I, Cárdenas-Rodríguez N, Vargas-Hernández MA, Mendoza-Torreblanca JG, Zamudio SR. Changes in the Dentate Gyrus Gene Expression Profile Induced by Levetiracetam Treatment in Rats with Mesial Temporal Lobe Epilepsy. Int J Mol Sci 2024; 25:1690. [PMID: 38338984 PMCID: PMC10855401 DOI: 10.3390/ijms25031690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Temporal lobe epilepsy (TLE) is one of the most common forms of focal epilepsy. Levetiracetam (LEV) is an antiepileptic drug whose mechanism of action at the genetic level has not been fully described. Therefore, the aim of the present work was to evaluate the relevant gene expression changes in the dentate gyrus (DG) of LEV-treated rats with pilocarpine-induced TLE. Whole-transcriptome microarrays were used to obtain the differential genetic profiles of control (CTRL), epileptic (EPI), and EPI rats treated for one week with LEV (EPI + LEV). Quantitative RT-qPCR was used to evaluate the RNA levels of the genes of interest. According to the results of the EPI vs. CTRL analysis, 685 genes were differentially expressed, 355 of which were underexpressed and 330 of which were overexpressed. According to the analysis of the EPI + LEV vs. EPI groups, 675 genes were differentially expressed, 477 of which were downregulated and 198 of which were upregulated. A total of 94 genes whose expression was altered by epilepsy and modified by LEV were identified. The RT-qPCR confirmed that LEV treatment reversed the increased expression of Hgf mRNA and decreased the expression of the Efcab1, Adam8, Slc24a1, and Serpinb1a genes in the DG. These results indicate that LEV could be involved in nonclassical mechanisms involved in Ca2+ homeostasis and the regulation of the mTOR pathway through Efcab1, Hgf, SLC24a1, Adam8, and Serpinb1a, contributing to reduced hyperexcitability in TLE patients.
Collapse
Affiliation(s)
- Veronica Diaz-Villegas
- Departamento de Fisiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City 07738, Mexico; (V.D.-V.); (L.A.P.-M.)
- Laboratorio de Neurociencias, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Mexico City 04530, Mexico;
| | - Luz Adriana Pichardo-Macías
- Departamento de Fisiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City 07738, Mexico; (V.D.-V.); (L.A.P.-M.)
| | - Sergio Juárez-Méndez
- Laboratorio de Oncología Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico;
| | - Iván Ignacio-Mejía
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados de Sanidad, Universidad del Ejército y Fuerza Aérea, Mexico City 11200, Mexico;
| | - Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Mexico City 04530, Mexico;
| | - Marco Antonio Vargas-Hernández
- Subdirección de Investigación, Escuela Militar de Graduados de Sanidad, Universidad del Ejército y Fuerza Aérea, Mexico City 11200, Mexico;
| | | | - Sergio R. Zamudio
- Departamento de Fisiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City 07738, Mexico; (V.D.-V.); (L.A.P.-M.)
| |
Collapse
|
5
|
Mastrocco A, Prittie J, West C, Clark M. A review of the pharmacology and clinical applications of levetiracetam in dogs and cats. J Vet Emerg Crit Care (San Antonio) 2024; 34:9-22. [PMID: 37987141 DOI: 10.1111/vec.13355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/15/2022] [Accepted: 10/18/2022] [Indexed: 11/22/2023]
Abstract
OBJECTIVE To review and summarize the pharmacology of the antiepileptic drug (AED), levetiracetam (LEV), and to discuss its clinical utility in dogs and cats. DATA SOURCES Veterinary and human peer-reviewed medical literature and the authors' clinical experience. SUMMARY LEV is an AED with mechanisms of action distinct from those of other AEDs. In people and small animals, LEV exhibits linear kinetics, excellent oral bioavailability, and minimal drug-drug interactions. Serious side effects are rarely reported in any species. LEV use is gaining favor for treating epilepsy in small animals and may have wider clinical applications in patients with portosystemic shunts, neuroglycopenia, and traumatic brain injury. In people, LEV may improve cognitive function in patients with dementia. CONCLUSION LEV is a well-tolerated AED with well-documented efficacy in human patients. Although its use is becoming more common in veterinary medicine, its role as a first-line monotherapy in small animal epileptics remains to be determined. This review of the human and animal literature regarding LEV describes its role in epileptic people and animals as well as in other disease states and provides recommendations for clinical usage.
Collapse
Affiliation(s)
- Alicia Mastrocco
- Department of Emergency and Critical Care, The Animal Medical Center, New York, New York, USA
| | - Jennifer Prittie
- Department of Emergency and Critical Care, The Animal Medical Center, New York, New York, USA
| | - Chad West
- Department of Neurology, The Animal Medical Center, New York, New York, USA
| | - Melissa Clark
- Department of Internal Medicine, Gulf Coast Veterinary Specialists, Houston, Texas, USA
| |
Collapse
|
6
|
Kessi M, Chen B, Pang N, Yang L, Peng J, He F, Yin F. The genotype-phenotype correlations of the CACNA1A-related neurodevelopmental disorders: a small case series and literature reviews. Front Mol Neurosci 2023; 16:1222321. [PMID: 37555011 PMCID: PMC10406136 DOI: 10.3389/fnmol.2023.1222321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Genotype-phenotype correlations of the CACNA1A-related neurodevelopmental disorders such as global developmental delay (GDD)/intellectual disability (ID), epileptic encephalopathy (EE), and autism spectrum disorder (ASD) are unknown. We aimed to summarize genotype-phenotype correlations and potential treatment for CACNA1A-related neurodevelopmental disorders. METHODS Six children diagnosed with CACNA1A-related neurodevelopmental disorders at Xiangya Hospital, Central South University from April 2018 to July 2021 were enrolled. The PubMed database was systematically searched for all reported patients with CACNA1A-related neurodevelopmental disorders until February 2023. Thereafter, we divided patients into several groups for comparison. RESULTS Six patients were recruited from our hospital. Three cases presented with epilepsy, five with GDD/ID, five with ataxia, and two with ASD. The variants included p.G701R, p.R279C, p.D1644N, p.Y62C, p.L1422Sfs*8, and p. R1664Q [two gain-of-function (GOF) and four loss-of-function (LOF) variants]. About 187 individuals with GDD/ID harboring 123 variants were found (case series plus data from literature). Of those 123 variants, p.A713T and p.R1664* were recurrent, 37 were LOF, and 7 were GOF. GOF variants were linked with severe-profound GDD/ID while LOF variants were associated with mild-moderate GDD/ID (p = 0.001). The p.A713T variant correlated with severe-profound GDD/ID (p = 0.003). A total of 130 epileptic patients harboring 83 variants were identified. The epileptic manifestations included status epilepticus (n = 64), provoked seizures (n = 49), focal seizures (n = 37), EE (n = 29), absence seizures (n = 26), and myoclonic seizures (n = 10). About 49 (42.20%) patients had controlled seizures while 67 (57.80%) individuals remained with refractory seizures. Status epilepticus correlated with variants located on S4, S5, and S6 (p = 0.000). Among the 83 epilepsy-related variants, 23 were recurrent, 32 were LOF, and 11 were GOF. Status epilepticus was linked with GOF variants (p = 0.000). LOF variants were associated with absence seizures (p = 0.000). Six patients died at an early age (3 months to ≤5 years). We found 18 children with ASD. Thirteen variants including recurrent ones were identified in those 18 cases. GOF changes were more linked to ASD. CONCLUSION The p.A713T variant is linked with severe-profound GDD/ID. More than half of CACNA1A-related epilepsy is refractory. The most common epileptic manifestation is status epilepticus, which correlates with variants located on S4, S5, and S6.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
- Clinical Research Center for Children’s Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
- Clinical Research Center for Children’s Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Pang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
- Clinical Research Center for Children’s Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
- Clinical Research Center for Children’s Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
- Clinical Research Center for Children’s Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
- Clinical Research Center for Children’s Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
- Clinical Research Center for Children’s Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Sciaccaluga M, Ruffolo G, Palma E, Costa C. Traditional and Innovative Anti-seizure Medications Targeting Key Physiopathological Mechanisms: Focus on Neurodevelopment and Neurodegeneration. Curr Neuropharmacol 2023; 21:1736-1754. [PMID: 37143270 PMCID: PMC10514539 DOI: 10.2174/1570159x21666230504160948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
Despite the wide range of compounds currently available to treat epilepsy, there is still no drug that directly tackles the physiopathological mechanisms underlying its development. Indeed, antiseizure medications attempt to prevent seizures but are inefficacious in counteracting or rescuing the physiopathological phenomena that underlie their onset and recurrence, and hence do not cure epilepsy. Classically, the altered excitation/inhibition balance is postulated as the mechanism underlying epileptogenesis and seizure generation. This oversimplification, however, does not account for deficits in homeostatic plasticity resulting from either insufficient or excessive compensatory mechanisms in response to a change in network activity. In this respect, both neurodevelopmental epilepsies and those associated with neurodegeneration may share common underlying mechanisms that still need to be fully elucidated. The understanding of these molecular mechanisms shed light on the identification of new classes of drugs able not only to suppress seizures, but also to present potential antiepileptogenic effects or "disease-modifying" properties.
Collapse
Affiliation(s)
- Miriam Sciaccaluga
- Section of Neurology, S.M. della Misericordia Hospital, Department of Medicine and Surgery, University of Perugia, Piazzale Gambuli 1, Perugia, 06129, Italy
| | - Gabriele Ruffolo
- Department of Physiology and Pharmacology, Istituto Pasteur—Fondazione Cenci Bolognetti, University of Rome, Sapienza, Rome, 00185, Italy
- IRCCS San Raffaele Roma, Rome, 00166, Italy
| | - Eleonora Palma
- Department of Physiology and Pharmacology, Istituto Pasteur—Fondazione Cenci Bolognetti, University of Rome, Sapienza, Rome, 00185, Italy
- IRCCS San Raffaele Roma, Rome, 00166, Italy
| | - Cinzia Costa
- Section of Neurology, S.M. della Misericordia Hospital, Department of Medicine and Surgery, University of Perugia, Piazzale Gambuli 1, Perugia, 06129, Italy
| |
Collapse
|
8
|
Zhou X, Chen Z, Xiao L, Zhong Y, Liu Y, Wu J, Tao H. Intracellular calcium homeostasis and its dysregulation underlying epileptic seizures. Seizure 2022; 103:126-136. [DOI: 10.1016/j.seizure.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/25/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
|
9
|
Dwyer BK, Veenma DCM, Chang K, Schulman H, Van Woerden GM. Case Report: Developmental Delay and Acute Neuropsychiatric Episodes Associated With a de novo Mutation in the CAMK2B Gene (c.328G>A p.Glu110Lys). Front Pharmacol 2022; 13:794008. [PMID: 35620293 PMCID: PMC9127182 DOI: 10.3389/fphar.2022.794008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 04/21/2022] [Indexed: 11/27/2022] Open
Abstract
Mutations in the genes encoding calcium/calmodulin dependent protein kinase II (CAMK2) isoforms cause a newly recognized neurodevelopmental disorder (ND), for which the full clinical spectrum has yet to be described. Here we report the detailed description of a child with a de novo gain of function (GoF) mutation in the gene Ca/Calmodulin dependent protein kinase 2 beta (CAMK2B c.328G > A p.Glu110Lys) who presents with developmental delay and periodic neuropsychiatric episodes. The episodes manifest as encephalopathy with behavioral changes, headache, loss of language and loss of complex motor coordination. Additionally, we provide an overview of the effect of different medications used to try to alleviate the symptoms. We show that medications effective for mitigating the child’s neuropsychiatric symptoms may have done so by decreasing CAMK2 activity and associated calcium signaling; whereas medications that appeared to worsen the symptoms may have done so by increasing CAMK2 activity and associated calcium signaling. We hypothesize that by classifying CAMK2 mutations as “gain of function” or “loss of function” based on CAMK2 catalytic activity, we may be able to guide personalized empiric treatment regimens tailored to specific CAMK2 mutations. In the absence of sufficient patients for traditional randomized controlled trials to establish therapeutic efficacy, this approach may provide a rational approach to empiric therapy for physicians treating patients with dysregulated CAMK2 and associated calcium signaling.
Collapse
Affiliation(s)
- Bonnie K Dwyer
- Department of Maternal Fetal Medicine and Genetics, Palo Alto Medical Foundation, Mountain View, CA, United States
| | - Danielle C M Veenma
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, Netherlands.,ENCORE Expertise Center, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Kiki Chang
- University of Texas Houston Health Science Center, Houston, TX, United States
| | - Howard Schulman
- Department of Neurobiology, Stanford University, School of Medicine, Stanford, CA, United States.,Panorama Research Institute, Sunnyvale, CA, United States
| | - Geeske M Van Woerden
- ENCORE Expertise Center, Erasmus MC, University Medical Center, Rotterdam, Netherlands.,Department of Neuroscience, Erasmus MC, University Medical Center, Rotterdam, Netherlands.,Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
10
|
Contreras-García IJ, Cárdenas-Rodríguez N, Romo-Mancillas A, Bandala C, Zamudio SR, Gómez-Manzo S, Hernández-Ochoa B, Mendoza-Torreblanca JG, Pichardo-Macías LA. Levetiracetam Mechanisms of Action: From Molecules to Systems. Pharmaceuticals (Basel) 2022; 15:ph15040475. [PMID: 35455472 PMCID: PMC9030752 DOI: 10.3390/ph15040475] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Epilepsy is a chronic disease that affects millions of people worldwide. Antiepileptic drugs (AEDs) are used to control seizures. Even though parts of their mechanisms of action are known, there are still components that need to be studied. Therefore, the search for novel drugs, new molecular targets, and a better understanding of the mechanisms of action of existing drugs is still crucial. Levetiracetam (LEV) is an AED that has been shown to be effective in seizure control and is well-tolerable, with a novel mechanism of action through an interaction with the synaptic vesicle protein 2A (SV2A). Moreover, LEV has other molecular targets that involve calcium homeostasis, the GABAergic system, and AMPA receptors among others, that might be integrated into a single mechanism of action that could explain the antiepileptogenic, anti-inflammatory, neuroprotective, and antioxidant properties of LEV. This puts it as a possible multitarget drug with clinical applications other than for epilepsy. According to the above, the objective of this work was to carry out a comprehensive and integrative review of LEV in relation to its clinical uses, structural properties, therapeutical targets, and different molecular, genetic, and systemic action mechanisms in order to consider LEV as a candidate for drug repurposing.
Collapse
Affiliation(s)
| | - Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
| | - Antonio Romo-Mancillas
- Laboratorio de Diseño Asistido por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico;
| | - Cindy Bandala
- Neurociencia Básica, Instituto Nacional de Rehabilitación LGII, Secretaría de Salud, Ciudad de México 14389, Mexico;
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Sergio R. Zamudio
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico;
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico;
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Ciudad de México 06720, Mexico;
| | - Julieta Griselda Mendoza-Torreblanca
- Laboratorio de Neurociencias, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
- Correspondence: (J.G.M.-T.); (L.A.P.-M.); Tel.: +52-55-1084-0900 (ext. 1441) (J.G.M.-T.)
| | - Luz Adriana Pichardo-Macías
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico;
- Correspondence: (J.G.M.-T.); (L.A.P.-M.); Tel.: +52-55-1084-0900 (ext. 1441) (J.G.M.-T.)
| |
Collapse
|
11
|
Defining and overcoming the therapeutic obstacles in canine refractory status epilepticus. Vet J 2022; 283-284:105828. [DOI: 10.1016/j.tvjl.2022.105828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 11/20/2022]
|
12
|
Seystahl K, Oppong FB, Le Rhun E, Hertler C, Stupp R, Nabors B, Chinot O, Preusser M, Gorlia T, Weller M. Associations of levetiracetam use with the safety and tolerability profile of chemoradiotherapy for patients with newly diagnosed glioblastoma. Neurooncol Adv 2022; 4:vdac112. [PMID: 35950086 PMCID: PMC9356690 DOI: 10.1093/noajnl/vdac112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Background
Levetiracetam (LEV) is one of the most frequently used antiepileptic drugs (AED) for brain tumor patients with seizures. We hypothesized that toxicity of LEV and temozolomide-based chemoradiotherapy may overlap.
Methods
Using a pooled cohort of patients with newly diagnosed glioblastoma included in clinical trials prior to chemoradiotherapy (CENTRIC, CORE, AVAglio) or prior to maintenance therapy (ACT-IV), we tested associations of hematologic toxicity, nausea or emesis, fatigue, and psychiatric adverse events during concomitant and maintenance treatment with the use of LEV alone or with other AED versus other AED alone or in combination versus no AED use at the start of chemoradiotherapy and of maintenance treatment.
Results
Of 1681 and 2020 patients who started concomitant chemoradiotherapy and maintenance temozolomide, respectively, 473 and 714 patients (28.1% and 35.3%) were treated with a LEV-containing regimen, 538 and 475 patients (32.0% and 23.5%) with other AED, and 670 and 831 patients (39.9% and 41.1%) had no AED. LEV was associated with higher risk of psychiatric adverse events during concomitant treatment in univariable and multivariable analyses (RR 1.86 and 1.88, P < .001) while there were no associations with hematologic toxicity, nausea or emesis, or fatigue. LEV was associated with reduced risk of nausea or emesis during maintenance treatment in multivariable analysis (HR = 0.80, P = .017) while there were no associations with hematologic toxicity, fatigue, or psychiatric adverse events.
Conclusions
LEV is not associated with reduced tolerability of chemoradiotherapy in patients with glioblastoma regarding hematologic toxicity and fatigue. Antiemetic properties of LEV may be beneficial during maintenance temozolomide.
Collapse
Affiliation(s)
- Katharina Seystahl
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich , Zurich , Switzerland
| | | | - Emilie Le Rhun
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich , Zurich , Switzerland
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich , Zurich , Switzerland
| | - Caroline Hertler
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich , Zurich , Switzerland
| | - Roger Stupp
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center and Departments of Neurosurgery and Neurology, Northwestern University Feinberg School of Medicine , Chicago, IL, USA
| | - Burt Nabors
- University of Alabama at Birmingham, Department of Neurology, Division of Neuro-Oncology , Birmingham, AL , USA
| | - Olivier Chinot
- Aix-Marseille University, AP-HM, Service de Neuro-Oncologie , CHU Timone, Marseille , France
| | - Matthias Preusser
- Division of Oncology, Department of Medicine 1, Medical University of Vienna , Vienna , Austria
| | | | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich , Zurich , Switzerland
| |
Collapse
|
13
|
Combined Pharmacophore and Grid-Independent Molecular Descriptors (GRIND) Analysis to Probe 3D Features of Inositol 1,4,5-Trisphosphate Receptor (IP 3R) Inhibitors in Cancer. Int J Mol Sci 2021; 22:ijms222312993. [PMID: 34884798 PMCID: PMC8657927 DOI: 10.3390/ijms222312993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/18/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022] Open
Abstract
Inositol 1, 4, 5-trisphosphate receptor (IP3R)-mediated Ca2+ signaling plays a pivotal role in different cellular processes, including cell proliferation and cell death. Remodeling Ca2+ signals by targeting the downstream effectors is considered an important hallmark in cancer progression. Despite recent structural analyses, no binding hypothesis for antagonists within the IP3-binding core (IBC) has been proposed yet. Therefore, to elucidate the 3D structural features of IP3R modulators, we used combined pharmacoinformatic approaches, including ligand-based pharmacophore models and grid-independent molecular descriptor (GRIND)-based models. Our pharmacophore model illuminates the existence of two hydrogen-bond acceptors (2.62 Å and 4.79 Å) and two hydrogen-bond donors (5.56 Å and 7.68 Å), respectively, from a hydrophobic group within the chemical scaffold, which may enhance the liability (IC50) of a compound for IP3R inhibition. Moreover, our GRIND model (PLS: Q2 = 0.70 and R2 = 0.72) further strengthens the identified pharmacophore features of IP3R modulators by probing the presence of complementary hydrogen-bond donor and hydrogen-bond acceptor hotspots at a distance of 7.6-8.0 Å and 6.8-7.2 Å, respectively, from a hydrophobic hotspot at the virtual receptor site (VRS). The identified 3D structural features of IP3R modulators were used to screen (virtual screening) 735,735 compounds from the ChemBridge database, 265,242 compounds from the National Cancer Institute (NCI) database, and 885 natural compounds from the ZINC database. After the application of filters, four compounds from ChemBridge, one compound from ZINC, and three compounds from NCI were shortlisted as potential hits (antagonists) against IP3R. The identified hits could further assist in the design and optimization of lead structures for the targeting and remodeling of Ca2+ signals in cancer.
Collapse
|
14
|
Osuntokun OS, Abdulwahab UF, Akanji NO, Adedokun KI, Adekomi AD, Olayiwola G. Anticonvulsant and neuroprotective effects of carbamazepine-levetiracetam adjunctive treatment in convulsive status epilepticus rat model: Inhibition of cholinergic transmission. Neurosci Lett 2021; 762:136167. [PMID: 34389480 DOI: 10.1016/j.neulet.2021.136167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/29/2021] [Accepted: 08/06/2021] [Indexed: 11/30/2022]
Abstract
This study evaluated the anticonvulsant and neuroprotective effects of carbamazepine (CBZ), levetiracetam (LEV), and CBZ + LEV adjunctive treatment in convulsive status epilepticus (CSE) rat model. Twenty-five male Wistar rats were randomized into five groups (n = 5). Groups I and II received 0.2 ml of normal saline intraperitoneally (i.p), while groups III-V received CBZ (25 mg/kg i.p), LEV (50 mg/kg i.p) or combination of sub-therapeutic doses of CBZ (12.5 mg/kg i.p) and LEV (25 mg/kg i.p). Thirty minutes later, seizure was kindled with pilocarpine hydrochloride (350 mg/kg) in group II-V rats. Seizure indices, markers of excitotoxicity, and astroglioses were determined, while the hippocampal morphometry was also evaluated. The data was analysed using descriptive and inferential statistics, while the results were presented as mean ± SEM in graphs or tables, and the level of significance was taken at p < 0.05. The anticonvulsant treatments delayed the inception of seizure indices (p = 0.0006), while the percentage mortality decreased significantly (p = 0.0001) in all the treatment groups. The hippocampal concentrations of acetylcholine, malondialdehyde, and tissue necrotic factor-alpha decreased significantly (p = 0.0077) in all the treated group relative to the positive control. The reactive astrogliosis in the hippocampus (CA 1) increased significantly (p = 0.0001) compared with the control but abrogated in all the treatment groups relative to the positive control. The anticonvulsant and neuroprotective effects are in this order: LEV < CBZ + CBZ < CBZ. The drug efficacy is attributable to the inhibition of cholinergic transmission.
Collapse
Affiliation(s)
- Opeyemi Samson Osuntokun
- Department of Physiology, Faculty of Basic Medical Sciences, Federal University Oye Ekiti, Ekiti State, Nigeria.
| | - Umar Faruq Abdulwahab
- Department of Physiology, Faculty of Basic Medical Sciences, Osun State University Osogbo, Nigeria
| | - Nafisat Omolola Akanji
- Department of Physiology, Faculty of Basic Medical Sciences, Osun State University Osogbo, Nigeria
| | - Kabiru Isola Adedokun
- Department of Physiology, Faculty of Basic Medical Sciences, Osun State University Osogbo, Nigeria
| | | | - Gbola Olayiwola
- Department of Clinical Pharmacy and Pharmacy Administration, Faculty of Pharmacy Obafemi, Awolowo University, Ile-Ife, Osun State, Nigeria
| |
Collapse
|
15
|
Levetiracetam treatment leads to functional recovery after thoracic or cervical injuries of the spinal cord. NPJ Regen Med 2021; 6:11. [PMID: 33654068 PMCID: PMC7977146 DOI: 10.1038/s41536-021-00121-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 02/01/2021] [Indexed: 01/31/2023] Open
Abstract
Spinal cord injury (SCI) leads to dramatic impairments of motor, sensory, and autonomic functions of affected individuals. Following the primary injury, there is an increased release of glutamate that leads to excitotoxicity and further neuronal death. Therefore, modulating glutamate excitotoxicity seems to be a promising target to promote neuroprotection during the acute phase of the injury. In this study, we evaluated the therapeutic effect of a FDA approved antiepileptic drug (levetiracetam-LEV), known for binding to the synaptic vesicle protein SV2A in the brain and spinal cord. LEV therapy was tested in two models of SCI-one affecting the cervical and other the thoracic level of the spinal cord. The treatment was effective on both SCI models. Treated animals presented significant improvements on gross and fine motor functions. The histological assessment revealed a significant decrease of cavity size, as well as higher neuronal and oligodendrocyte survival on treated animals. Molecular analysis revealed that LEV acts by stabilizing the astrocytes allowing an effective uptake of the excess glutamate from the extracellular space. Overall, our results demonstrate that Levetiracetam may be a promising drug for acute management of SCI.
Collapse
|
16
|
Calame DG, Herman I, Riviello JJ. A de novo heterozygous rare variant in SV2A causes epilepsy and levetiracetam-induced drug-resistant status epilepticus. Epilepsy Behav Rep 2021; 15:100425. [PMID: 33554103 PMCID: PMC7844124 DOI: 10.1016/j.ebr.2020.100425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 11/01/2022] Open
Abstract
SV2A encodes a neuronal synaptic vesicle glycoprotein essential for neurotransmitter release. Altered SV2A function leads to epilepsy in animal models, yet only two reports of human variants have linked SV2A to syndromic drug-resistant epileptic encephalopathies and epilepsy. SV2A is also the binding site for the commonly used antiseizure medication levetiracetam (LEV). However, information about how rare SV2A variants influence LEV response is lacking. Here, we report a two-year-old child with new-onset epilepsy found to have a de novo heterozygous rare variant in SV2A (NM_014849.5:c.1978G>A;p.Gly660Arg) who developed refractory status epilepticus after escalation of LEV treatment for initial baseline seizure control. This report provides additional evidence that monoallelic pathogenic SV2A variants cause epilepsy and that genetic variation in SV2A could lead to paradoxical seizure worsening when treated with LEV.
Collapse
Affiliation(s)
- Daniel G Calame
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX 77030, United States
| | - Isabella Herman
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX 77030, United States
| | - James J Riviello
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX 77030, United States
| |
Collapse
|
17
|
Phillips KF, Deshpande LS. Calcium Hypothesis of Gulf War Illness: Role of Calcium Ions in Neurological Morbidities in a DFP-Based Rat Model for Gulf War Illness. Neurosci Insights 2020; 15:2633105520979841. [PMID: 33354668 PMCID: PMC7734545 DOI: 10.1177/2633105520979841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/19/2020] [Indexed: 12/27/2022] Open
Abstract
Gulf War Illness (GWI) refers to a multi-system disorder that afflicts approximately 30% of First Gulf War (GW) veterans. Amongst the symptoms exhibited, mood and memory impairment are commonly reported by GW veterans. Exposure to organophosphate (OP) compounds which target the cholinergic system is considered a leading cause for GWI symptoms. It is hypothesized that chronic OP-based war-time stimulation of cholinergic signaling led to recruitment of excitatory glutamatergic signaling and other downstream signaling cascades leading to neuronal injury, neuroinflammation, generation of reactive oxygen species, oxidative stress, and mitochondrial damage within the central nervous system. These findings have been observed in both experimental models and GWI veterans. In this context the role of calcium (Ca2+) signaling in GWI has come to the forefront. Here we present our Ca2+ hypothesis of GWI that suggests sustained neuronal Ca2+ elevations serve as a molecular trigger for pathological synaptic plasticity that has allowed for the persistence of GWI symptoms. Subsequently we discuss that therapeutic targeting of Ca2+ homeostatic mechanisms provides novel targets for effective treatment of GWI-related neurological signs in our rodent model.
Collapse
Affiliation(s)
| | - Laxmikant S Deshpande
- Department of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, USA
- Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, USA
| |
Collapse
|
18
|
Deshpande LS, Blair RE, Halquist M, Kosmider L, DeLorenzo RJ. Intramuscular atenolol and levetiracetam reduce mortality in a rat model of paraoxon-induced status epilepticus. Ann N Y Acad Sci 2020; 1480:219-232. [PMID: 32961584 DOI: 10.1111/nyas.14500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/21/2020] [Accepted: 09/01/2020] [Indexed: 12/01/2022]
Abstract
Organophosphorus (OP) compounds are chemical threat agents and are irreversible inhibitors of the enzyme acetylcholinesterase that lead to a hypercholinergic response that could include status epilepticus (SE). SE particularly targets the heart and brain and despite existing therapies, it is still associated with significant mortality and morbidity. Here, we investigated the effect of intramuscular (i.m.) adjunct therapy consisting of atenolol (AT) and levetiracetam (LV) when administered after paraoxon (POX)-induced SE. The combination therapy was administered twice daily for 2, 7, or 14 days. POX exposure in rats produced rapid SE onset that was treated with atropine, pralidoxime chloride, and midazolam. Here, AT + LV therapy produced significant reductions in POX SE mortality assessed at 30 days post-SE. AT + LV therapy exhibited muscle pathology inflammation scores that were not significantly different from saline-treated controls. Pharmacokinetic analyses revealed that the i.m. route achieved faster and stabler plasma therapeutic levels for both AT and LV under OP SE conditions compared with oral administrations. Our data provide evidence of the safety and efficacy of i.m. AT + LV therapy for reducing mortality following POX SE.
Collapse
Affiliation(s)
- Laxmikant S Deshpande
- Department of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia.,Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Robert E Blair
- Department of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Matthew Halquist
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Leon Kosmider
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Robert J DeLorenzo
- Department of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia.,Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
19
|
Phillips KF, Santos E, Blair RE, Deshpande LS. Targeting Intracellular Calcium Stores Alleviates Neurological Morbidities in a DFP-Based Rat Model of Gulf War Illness. Toxicol Sci 2020; 169:567-578. [PMID: 30859209 PMCID: PMC6542335 DOI: 10.1093/toxsci/kfz070] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gulf War Illness (GWI) is a chronic multi-symptom disorder afflicting the veterans of the First Gulf War, and includes neurological symptoms characterized by depression and memory deficits. Chronic exposure to organophosphates (OPs) is considered a leading cause for GWI, yet its pathobiology is not fully understood. We recently observed chronic elevations in neuronal Ca2+ levels ([Ca2+]i) in an OP-diisopropyl fluorophosphate (DFP)-based rat model for GWI. This study was aimed at identifying mechanisms underlying elevated [Ca2+]i in this DFP model and investigating whether their therapeutic targeting could improve GWI-like neurological morbidities. Male Sprague-Dawley rats (9 weeks) were exposed to DFP (0.5 mg/kg, s.c., 1×-daily for 5 days) and at 3 months postDFP exposure, behavior was assessed and rats were euthanized for protein estimations and ratiometric Fura-2 [Ca2+]i estimations in acutely dissociated hippocampal neurons. In DFP rats, a sustained elevation in intracellular Ca2+ levels occurred, and pharmacological blockade of Ca2+-induced Ca2+-release mechanisms significantly lowered elevated [Ca2+]i in DFP neurons. Significant reductions in the protein levels of the ryanodine receptor (RyR) stabilizing protein Calstabin2 were also noted. Such a posttranslational modification would render RyR “leaky” resulting in sustained DFP [Ca2+]i elevations. Antagonism of RyR with levetiracetam significantly lower elevated [Ca2+]i in DFP neurons and improved GWI-like behavioral symptoms. Since Ca2+ is a major second messenger molecule, such chronic increases in its levels could underlie pathological synaptic plasticity that expresses itself as GWI morbidities. Our studies show that treatment with drugs targeted at blocking intracellular Ca2+ release could be effective therapies for GWI neurological morbidities.
Collapse
Affiliation(s)
| | | | | | - Laxmikant S Deshpande
- Departments of Neurology.,Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298
| |
Collapse
|
20
|
Inositol 1,4,5-Trisphosphate Receptors in Human Disease: A Comprehensive Update. J Clin Med 2020; 9:jcm9041096. [PMID: 32290556 PMCID: PMC7231134 DOI: 10.3390/jcm9041096] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/30/2020] [Accepted: 04/10/2020] [Indexed: 12/22/2022] Open
Abstract
Inositol 1,4,5-trisphosphate receptors (ITPRs) are intracellular calcium release channels located on the endoplasmic reticulum of virtually every cell. Herein, we are reporting an updated systematic summary of the current knowledge on the functional role of ITPRs in human disorders. Specifically, we are describing the involvement of its loss-of-function and gain-of-function mutations in the pathogenesis of neurological, immunological, cardiovascular, and neoplastic human disease. Recent results from genome-wide association studies are also discussed.
Collapse
|
21
|
Klein P, Friedman A, Hameed MQ, Kaminski RM, Bar-Klein G, Klitgaard H, Koepp M, Jozwiak S, Prince DA, Rotenberg A, Twyman R, Vezzani A, Wong M, Löscher W. Repurposed molecules for antiepileptogenesis: Missing an opportunity to prevent epilepsy? Epilepsia 2020; 61:359-386. [PMID: 32196665 PMCID: PMC8317585 DOI: 10.1111/epi.16450] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Abstract
Prevention of epilepsy is a great unmet need. Acute central nervous system (CNS) insults such as traumatic brain injury (TBI), cerebrovascular accidents (CVA), and CNS infections account for 15%-20% of all epilepsy. Following TBI and CVA, there is a latency of days to years before epilepsy develops. This allows treatment to prevent or modify postinjury epilepsy. No such treatment exists. In animal models of acquired epilepsy, a number of medications in clinical use for diverse indications have been shown to have antiepileptogenic or disease-modifying effects, including medications with excellent side effect profiles. These include atorvastatin, ceftriaxone, losartan, isoflurane, N-acetylcysteine, and the antiseizure medications levetiracetam, brivaracetam, topiramate, gabapentin, pregabalin, vigabatrin, and eslicarbazepine acetate. In addition, there are preclinical antiepileptogenic data for anakinra, rapamycin, fingolimod, and erythropoietin, although these medications have potential for more serious side effects. However, except for vigabatrin, there have been almost no translation studies to prevent or modify epilepsy using these potentially "repurposable" medications. We may be missing an opportunity to develop preventive treatment for epilepsy by not evaluating these medications clinically. One reason for the lack of translation studies is that the preclinical data for most of these medications are disparate in terms of types of injury, models within different injury type, dosing, injury-treatment initiation latencies, treatment duration, and epilepsy outcome evaluation mode and duration. This makes it difficult to compare the relative strength of antiepileptogenic evidence across the molecules, and difficult to determine which drug(s) would be the best to evaluate clinically. Furthermore, most preclinical antiepileptogenic studies lack information needed for translation, such as dose-blood level relationship, brain target engagement, and dose-response, and many use treatment parameters that cannot be applied clinically, for example, treatment initiation before or at the time of injury and dosing higher than tolerated human equivalent dosing. Here, we review animal and human antiepileptogenic evidence for these medications. We highlight the gaps in our knowledge for each molecule that need to be filled in order to consider clinical translation, and we suggest a platform of preclinical antiepileptogenesis evaluation of potentially repurposable molecules or their combinations going forward.
Collapse
Affiliation(s)
- Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, Maryland
| | - Alon Friedman
- Departments of Physiology and Cell Biology, and Brain and Cognitive Science, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Departments of Medical Neuroscience and Brain Repair Center, Dalhousie University, Halifax, Canada
| | - Mustafa Q. Hameed
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rafal M. Kaminski
- Neurosymptomatic Domains Section, Roche Pharma Research & Early Development, Roche Innovation Center, Basel, Switzerland
| | - Guy Bar-Klein
- McKusick-Nathans Institute of Genetic Medicine, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Henrik Klitgaard
- Neurosciences Therapeutic Area, UCB Pharma, Braine-l’Alleud, Belgium
| | - Mathias Koepp
- Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, UK
| | - Sergiusz Jozwiak
- Department of Pediatric Neurology, Warsaw Medical University, Warsaw, Poland
| | - David A. Prince
- Neurology and the Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Alexander Rotenberg
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Annamaria Vezzani
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Scientific Institute for Research and Health Care, Milan, Italy
| | - Michael Wong
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
22
|
Liu J, McDaid L, Araque A, Wade J, Harkin J, Karim S, Henshall DC, Connolly NMC, Johnson AP, Tyrrell AM, Timmis J, Millard AG, Hilder J, Halliday DM. GABA Regulation of Burst Firing in Hippocampal Astrocyte Neural Circuit: A Biophysical Model. Front Cell Neurosci 2019; 13:335. [PMID: 31396055 PMCID: PMC6664076 DOI: 10.3389/fncel.2019.00335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 07/08/2019] [Indexed: 12/30/2022] Open
Abstract
It is now widely accepted that glia cells and gamma-aminobutyric acidergic (GABA) interneurons dynamically regulate synaptic transmission and neuronal activity in time and space. This paper presents a biophysical model that captures the interaction between an astrocyte cell, a GABA interneuron and pre/postsynaptic neurons. Specifically, GABA released from a GABA interneuron triggers in astrocytes the release of calcium (Ca2+) from the endoplasmic reticulum via the inositol 1, 4, 5-trisphosphate (IP3) pathway. This results in gliotransmission which elevates the presynaptic transmission probability rate (PR) causing weight potentiation and a gradual increase in postsynaptic neuronal firing, that eventually stabilizes. However, by capturing the complex interactions between IP3, generated from both GABA and the 2-arachidonyl glycerol (2-AG) pathway, and PR, this paper shows that this interaction not only gives rise to an initial weight potentiation phase but also this phase is followed by postsynaptic bursting behavior. Moreover, the model will show that there is a presynaptic frequency range over which burst firing can occur. The proposed model offers a novel cellular level mechanism that may underpin both seizure-like activity and neuronal synchrony across different brain regions.
Collapse
Affiliation(s)
- Junxiu Liu
- School of Computing, Engineering and Intelligent Systems, Ulster University, Derry, United Kingdom
| | - Liam McDaid
- School of Computing, Engineering and Intelligent Systems, Ulster University, Derry, United Kingdom
| | - Alfonso Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - John Wade
- School of Computing, Engineering and Intelligent Systems, Ulster University, Derry, United Kingdom
| | - Jim Harkin
- School of Computing, Engineering and Intelligent Systems, Ulster University, Derry, United Kingdom
| | - Shvan Karim
- School of Computing, Engineering and Intelligent Systems, Ulster University, Derry, United Kingdom
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Niamh M C Connolly
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Anju P Johnson
- Department of Electronic Engineering, University of York, York, United Kingdom
| | - Andy M Tyrrell
- Department of Electronic Engineering, University of York, York, United Kingdom
| | - Jon Timmis
- Department of Electronic Engineering, University of York, York, United Kingdom
| | - Alan G Millard
- Department of Electronic Engineering, University of York, York, United Kingdom
| | - James Hilder
- Department of Electronic Engineering, University of York, York, United Kingdom
| | - David M Halliday
- Department of Electronic Engineering, University of York, York, United Kingdom
| |
Collapse
|
23
|
Títoff V, Moury HN, Títoff IB, Kelly KM. Seizures, Antiepileptic Drugs, and CKD. Am J Kidney Dis 2019; 73:90-101. [DOI: 10.1053/j.ajkd.2018.03.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/06/2018] [Indexed: 01/19/2023]
|
24
|
Chong PN, Sangu M, Huat TJ, Reza F, Begum T, Yusoff AAM, Jaafar H, Abdullah JM. Trkb-IP3 Pathway Mediating Neuroprotection in Rat Hippocampal Neuronal Cell Culture Following Induction of Kainic Acid. Malays J Med Sci 2018; 25:28-45. [PMID: 30914877 PMCID: PMC6422567 DOI: 10.21315/mjms2018.25.6.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/17/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Following brain injury, development of hippocampal sclerosis often led to the temporal lobe epilepsy which is sometimes resistant to common anti-epileptic drugs. Cellular and molecular changes underlying epileptogenesis in animal models were studied, however, the underlying mechanisms of kainic acid (KA) mediated neuronal damage in rat hippocampal neuron cell culture alone has not been elucidated yet. METHODS Embryonic day 18 (E-18) rat hippocampus neurons were cultured with poly-L-lysine coated glass coverslips. Following optimisation, KA (0.5 μM), a chemoconvulsant agent, was administered at three different time-points (30, 60 and 90 min) to induce seizure in rat hippocampal neuronal cell culture. We examined cell viability, neurite outgrowth density and immunoreactivity of the hippocampus neuron culture by measuring brain derived neurotrophic factor (BDNF), γ-amino butyric acid A (GABAA) subunit α-1 (GABRA1), tyrosine receptor kinase B (TrkB), and inositol trisphosphate receptor (IP3R/IP3) levels. RESULTS The results revealed significantly decreased and increased immunoreactivity changes in TrkB (a BDNF receptor) and IP3R, respectively, at 60 min time point. CONCLUSION The current findings suggest that TrkB and IP3 could have a neuroprotective role which could be a potential pharmacological target for anti-epilepsy drugs.
Collapse
Affiliation(s)
- Pei Nei Chong
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Muthuraju Sangu
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Tee Jong Huat
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Faruque Reza
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Tahamina Begum
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Hasnan Jaafar
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Jafri Malin Abdullah
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
- Centre for Neuroscience Services and Research, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
25
|
Fukuyama K, Okada M. Effects of levetiracetam on astroglial release of kynurenine-pathway metabolites. Br J Pharmacol 2018; 175:4253-4265. [PMID: 30153331 DOI: 10.1111/bph.14491] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Several preclinical studies have demonstrated the unique profiles of levetiracetam (LEV), inhibits spontaneous absence epilepsy models but does not affect traditional convulsion models; however, the detailed pharmacological mechanisms of action of LEV remain to be clarified. EXPERIMENTAL APPROACH We determined the interaction between LEV and IFNγ regarding astroglial release of anti-convulsive (kynurenic acid and xanthurenic acid), pro-convulsive (quinolinic acid) and anti-convulsive but pro-absence (cinnabarinic acid) kynurenine-pathway metabolites from rat cortical primary cultured astrocytes using ultra-HPLC equipped with MS. KEY RESULTS IFNγ increased basal astroglial release of cinnabarinic acid and quinolinic acid but decreased that of kynurenic acid and xanthurenic acid. IFNγ enhanced inositol 1,4,5-trisphosphate (IP3 ) receptor agonist (adenophostin A, AdA)-induced astroglial release of kynurenine-pathway metabolites, without affecting AMPA-induced release. LEV increased basal astroglial release of kynurenic acid and xanthurenic acid without affecting cinnabarinic acid or quinolinic acid. Chronic and acute LEV administration inhibited AMPA- and AdA-induced kynurenine-pathway metabolite release. Upon chronic administration, LEV enhanced stimulatory effects of IFNγ on kynurenic acid and xanthurenic acid, and reduced its stimulatory effects on cinnabarinic acid and quinolinic acid. Furthermore, LEV inhibited stimulatory effects of chronic IFNγ on AdA-induced release of kynurenine-pathway metabolites. CONCLUSIONS AND IMPLICATIONS This study demonstrated several mechanisms of LEV: (i) inhibition of AMPA- and AdA-induced astroglial release, (ii) inhibition of IFNγ-induced IP3 receptor activation and (iii) inhibition of release of cinnabarinic acid and quinolinic acid with activation of that of kynurenic acid induced by IFNγ. These combined actions of LEV may contribute to its unique profile.
Collapse
Affiliation(s)
- Kouji Fukuyama
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| | - Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| |
Collapse
|
26
|
Marino S, Vitaliti G, Marino SD, Pavone P, Provvidenti S, Romano C, Falsaperla R. Pyridoxine Add-On Treatment for the Control of Behavioral Adverse Effects Induced by Levetiracetam in Children: A Case-Control Prospective Study. Ann Pharmacother 2018; 52:645-649. [PMID: 29442544 DOI: 10.1177/1060028018759637] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Few studies on adult and pediatric patients have shown pyridoxine efficacy as additional therapy for those receiving levetiracetam (LEV) to prevent and mitigate behavioral adverse effects (BAEs). OBJECTIVE The aim of our study was to analyze the safety and efficacy of pyridoxine supplementation in the prevention of LEV adverse effects, including suicidal ideation. METHODS This randomized, case-control trial included patients receiving LEV as monotherapy treatment. Patients were subdivided into 2 groups, according to whether they were treated with LEV only (group 1) or LEV with supplemental pyridoxine (group 2). RESULTS In both cohorts, the most frequent BAEs were irritability/aggression followed by depression and confusion. Those patients (92%) who initiated pyridoxine after 1 month of LEV treatment did not need to change or suspend LEV ( P < 0.001), and BAE improved after 9.06 ± 3.05 days of pyridoxine supplementation. None of the patients complained of symptoms of pyridoxine toxicity, and no new adverse effects of LEV off-label were reported. CONCLUSIONS In our study, we found pyridoxine to be safe and effective in controlling LEV-induced BAEs in children.
Collapse
Affiliation(s)
- Silvia Marino
- 1 University Hospital Policlinico-Vittorio Emanuele, Catania, Italy
| | | | | | - Piero Pavone
- 1 University Hospital Policlinico-Vittorio Emanuele, Catania, Italy
| | | | - Catia Romano
- 1 University Hospital Policlinico-Vittorio Emanuele, Catania, Italy
| | | |
Collapse
|
27
|
Phillips KF, Deshpande LS, DeLorenzo RJ. Hypothermia Reduces Mortality, Prevents the Calcium Plateau, and Is Neuroprotective Following Status Epilepticus in Rats. Front Neurol 2018; 9:438. [PMID: 29942282 PMCID: PMC6005175 DOI: 10.3389/fneur.2018.00438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/24/2018] [Indexed: 12/13/2022] Open
Abstract
Status Epilepticus (SE) is a major neurological emergency and is considered a leading cause of Acquired Epilepsy (AE). We have shown that SE produces neuronal injury and prolonged alterations in hippocampal calcium levels ([Ca2+]i) that may underlie the development of AE. Interventions preventing the SE-induced Ca2+ plateau could therefore prove to be beneficial in lowering the development of AE after SE. Hypothermia is used clinically to prevent neurological complications associated with Traumatic Brain Injury, cardiac arrest, and stroke. Here, we investigated whether hypothermia prevented the development of Ca2+ plateau following SE. SE was induced in hippocampal neuronal cultures (HNC) by exposing them to no added MgCl2 solution for 3 h. To terminate SE, low Mg2+ solution was washed off with 31°C (hypothermic) or 37°C (normothermic) physiological recording solution. [Ca2+]i was estimated with ratiometric Fura-2 imaging. HNCs washed with hypothermic solution exhibited [Ca2+]i ratios, which were significantly lower than ratios obtained from HNCs washed with normothermic solution. For in vivo SE, the rat pilocarpine (PILO) model was used. Moderate hypothermia (30–33°C) in rats was induced at 30-min post-SE using chilled ethanol spray in a cold room. Hypothermia following PILO-SE significantly reduced mortality. Hippocampal neurons isolated from hypothermia-treated PILO SE rats exhibited [Ca2+]i ratios which were significantly lower than ratios obtained from PILO SE rats. Hypothermia also provided significant neuroprotection against SE-induced delayed hippocampal injury as characterized by decreased FluoroJade C labeling in hypothermia-treated PILO SE rats. We previously demonstrated that hypothermia reduced Ca2+ entry via N-methyl-D-aspartate and ryanodine receptors in HNC. Together, our studies indicate that by targeting these two receptor systems hypothermia could interfere with epileptogenesis and prove to be an effective therapeutic intervention for reducing SE-induced AE.
Collapse
Affiliation(s)
- Kristin F Phillips
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, United States
| | - Laxmikant S Deshpande
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, United States.,Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Robert J DeLorenzo
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, United States.,Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
28
|
Li X, Poschmann S, Chen Q, Fazeli W, Oundjian NJ, Snoeijen-Schouwenaars FM, Fricke O, Kamsteeg EJ, Willemsen M, Wang QK. De novo BK channel variant causes epilepsy by affecting voltage gating but not Ca 2+ sensitivity. Eur J Hum Genet 2018; 26:220-229. [PMID: 29330545 PMCID: PMC5839055 DOI: 10.1038/s41431-017-0073-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/06/2017] [Accepted: 11/23/2017] [Indexed: 12/30/2022] Open
Abstract
Epilepsy is one of the most common neurological diseases and it causes profound morbidity and mortality. We identified the first de novo variant in KCNMA1 (c.2984 A > G (p.(N995S)))-encoding the BK channel-that causes epilepsy, but not paroxysmal dyskinesia, in two independent families. The c.2984 A > G (p.(N995S)) variant markedly increased the macroscopic potassium current by increasing both the channel open probability and channel open dwell time. The c.2984 A > G (p.(N995S)) variant did not affect the calcium sensitivity of the channel. We also identified three other variants of unknown significance (c.1554 G > T (p.(K518N)), c.1967A > C (p.(E656A)), and c.3476 A > G (p.(N1159S))) in three separate patients with divergent epileptic phenotypes. However, these variants did not affect the BK potassium current, and are therefore unlikely to be disease-causing. These results demonstrate that BK channel variants can cause epilepsy without paroxysmal dyskinesia. The underlying molecular mechanism can be increased activation of the BK channel by increased sensitivity to the voltage-dependent activation without affecting the sensitivity to the calcium-dependent activation. Our data suggest that the BK channel may represent a drug target for the treatment of epilepsy. Our data highlight the importance of functional electrophysiological studies of BK channel variants in distinguishing whether a genomic variant of unknown significance is a disease-causing variant or a benign variant.
Collapse
Affiliation(s)
- Xia Li
- Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | | | - Qiuyun Chen
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Department of Cardiovascular Medicine, Cleveland Clinic, OH, USA
- Department of Genetics and Genome Science, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Walid Fazeli
- University Children's Hospital Cologne, Pediatric Neurology, Cologne, Germany
| | | | | | - Oliver Fricke
- Department of Child and Adolescent Psychiatry and Neuropediatrics, Gemeinschaftskrankenhaus Herdecke, Witten/Herdecke, Germany
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, HB Nijmegen, The Netherlands
| | - Marjolein Willemsen
- Department of Human Genetics, Radboud University Medical Center, HB Nijmegen, The Netherlands.
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands.
| | - Qing Kenneth Wang
- Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Department of Cardiovascular Medicine, Cleveland Clinic, OH, USA.
- Department of Genetics and Genome Science, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
29
|
Haberman RP, Branch A, Gallagher M. Targeting Neural Hyperactivity as a Treatment to Stem Progression of Late-Onset Alzheimer's Disease. Neurotherapeutics 2017; 14:662-676. [PMID: 28560709 PMCID: PMC5509635 DOI: 10.1007/s13311-017-0541-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sporadic late-onset Alzheimer's disease (LOAD), the most common form of dementia in the elderly, causes progressive and severe loss of cognitive abilities. With greater numbers of people living to advanced ages, LOAD will increasingly burden both the healthcare system and society. There are currently no available disease-modifying therapies, and the failure of several recent pathology-based strategies has highlighted the urgent need for effective therapeutic targets. With aging as the greatest risk factor for LOAD, targeting mechanisms by which aging contributes to disease could prove an effective strategy to delay progression to clinical dementia by intervention in elderly individuals in an early prodromal stage of disease. Excess neural activity in the hippocampus, a recently described phenomenon associated with age-dependent memory loss, was first identified in animal models of aging and subsequently translated to clinical conditions of aging and early-stage LOAD. Critically, elevated activity was similarly localized to specific circuits within the hippocampal formation in aged animals and humans. Here we review evidence for hippocampal hyperactivity as a significant contributor to age-dependent cognitive decline and the progressive accumulation of pathology in LOAD. We also describe studies demonstrating the efficacy of reducing hyperactivity with an initial test therapy, levetiracetam (Keppra), an atypical antiepileptic. By targeting excess neural activity, levetiracetam may improve cognition and attenuate the accumulation of pathology contributing to progression to the dementia phase of LOAD.
Collapse
Affiliation(s)
- Rebecca P Haberman
- Department of Psychological and Brain Sciences, The Johns Hopkins University, 3400 North Charles Street, 116 Dunning Hall, Baltimore, MD, 21218, USA.
| | - Audrey Branch
- Department of Psychological and Brain Sciences, The Johns Hopkins University, 3400 North Charles Street, 116 Dunning Hall, Baltimore, MD, 21218, USA
| | - Michela Gallagher
- Department of Psychological and Brain Sciences, The Johns Hopkins University, 3400 North Charles Street, 116 Dunning Hall, Baltimore, MD, 21218, USA
| |
Collapse
|
30
|
Sendrowski K, Sobaniec P, Poskrobko E, Rusak M, Sobaniec W. Unfavorable effect of levetiracetam on cultured hippocampal neurons after hyperthermic injury. Pharmacol Rep 2017; 69:462-468. [PMID: 31994103 DOI: 10.1016/j.pharep.2017.01.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND The aim of this study was to examine the viability of neurons and the putative neuroprotective effects of second-generation antiepileptic drug, levetiracetam (LEV), on cultured hippocampal neurons injured by hyperthermia. METHODS Primary cultures of rat's hippocampal neurons at 7 day in vitro (DIV) were incubated in the presence or absence of LEV in varied concentrations under hyperthermic conditions. Cultures were heated in a temperature of 40 °C for 24 h or in a temperature of 41 °C for 6 h. Flow cytometry with Annexin V/PI staining as well as fluorescent microscopy assay were used for counting and establishing neurons as viable, necrotic or apoptotic. Additionally, the release of lactate dehydrogenase (LDH) to the culture medium, as a marker of cell death, was evaluated. Assessment was performed after 9DIV and 10 DIV. RESULTS Incubation of hippocampal cultures in hyperthermic conditions resulted in statistically significant increase in the number of injured neurons when compared with non-heated control cultures. Intensity of neuronal destruction was dependent on temperature-value. When incubation temperature 40 °C was used, over 80% of the population of neurons remained viable after 10 DIV. Under higher temperature 41 °C, only less than 60% of neurons were viable after 10 DIV. Both apoptotic and necrotic pathways of neuronal death induced by hyperthermia were confirmed by Annexin V/PI staining. CONCLUSIONS LEV showed no neuroprotective effects in the current model of hyperthermia in vitro. Moreover, drug, especially when used in higher concentrations, exerted unfavorable intensification of aponecrosis of cultured hippocampal neurons.
Collapse
Affiliation(s)
- Krzysztof Sendrowski
- Department of Pediatric Neurology and Rehabilitation, Medical University of Bialystok, Białystok, Poland.
| | - Piotr Sobaniec
- Department of Pediatric Neurology and Rehabilitation, Medical University of Bialystok, Białystok, Poland
| | - Elżbieta Poskrobko
- Department of Pediatric Laboratory Diagnostic, Medical University of Bialystok, Białystok, Poland
| | - Małgorzata Rusak
- Department of Hematological Diagnostics, Medical University of Bialystok, Białystok, Poland
| | - Wojciech Sobaniec
- Department of Pediatric Neurology and Rehabilitation, Medical University of Bialystok, Białystok, Poland
| |
Collapse
|
31
|
Sexual Dimorphism in a Reciprocal Interaction of Ryanodine and IP 3 Receptors in the Induction of Hyperalgesic Priming. J Neurosci 2017; 37:2032-2044. [PMID: 28115480 DOI: 10.1523/jneurosci.2911-16.2017] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 12/15/2022] Open
Abstract
Hyperalgesic priming, a model of pain chronification in the rat, is mediated by ryanodine receptor-dependent calcium release. Although ryanodine induces priming in both sexes, females are 5 orders of magnitude more sensitive, by an estrogen receptor α (EsRα)-dependent mechanism. An inositol 1,4,5-triphosphate (IP3) receptor inhibitor prevented the induction of priming by ryanodine. For IP3 induced priming, females were also more sensitive. IP3-induced priming was prevented by pretreatment with inhibitors of the sarcoendoplasmic reticulum calcium ATPase and ryanodine receptor. Antisense to EsRα prevented the induction of priming by low-dose IP3 in females. The induction of priming by an EsRα agonist was ryanodine receptor-dependent and prevented by the IP3 antagonist. Thus, an EsRα-dependent bidirectional interaction between endoplasmic reticulum IP3 and ryanodine receptor-mediated calcium signaling is present in the induction of hyperalgesic priming, in females. In cultured male DRG neurons, IP3 (100 μm) potentiated depolarization-induced transients produced by extracellular application of high-potassium solution (20 mm, K20), in nociceptors incubated with β-estradiol. This potentiation of depolarization-induced calcium transients was blocked by the IP3 antagonist, and not observed in the absence of IP3 IP3 potentiation was also blocked by ryanodine receptor antagonist. The application of ryanodine (2 nm), instead of IP3, also potentiated K20-induced calcium transients in the presence of β-estradiol, in an IP3 receptor-dependent manner. Our results point to an EsRα-dependent, reciprocal interaction between IP3 and ryanodine receptors that contributes to sex differences in hyperalgesic priming.SIGNIFICANCE STATEMENT The present study demonstrates a mechanism that plays a role in the marked sexual dimorphism observed in a model of the transition to chronic pain, hyperalgesic priming. This mechanism involves a reciprocal interaction between the endoplasmic reticulum receptors, IP3 and ryanodine, in the induction of priming, regulated by estrogen receptor α in the nociceptor of female rats. The presence of this signaling pathway modulating the susceptibility of nociceptors to develop plasticity may contribute to our understanding of sex differences observed clinically in chronic pain syndromes.
Collapse
|
32
|
Berridge MJ. The Inositol Trisphosphate/Calcium Signaling Pathway in Health and Disease. Physiol Rev 2016; 96:1261-96. [DOI: 10.1152/physrev.00006.2016] [Citation(s) in RCA: 377] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many cellular functions are regulated by calcium (Ca2+) signals that are generated by different signaling pathways. One of these is the inositol 1,4,5-trisphosphate/calcium (InsP3/Ca2+) signaling pathway that operates through either primary or modulatory mechanisms. In its primary role, it generates the Ca2+ that acts directly to control processes such as metabolism, secretion, fertilization, proliferation, and smooth muscle contraction. Its modulatory role occurs in excitable cells where it modulates the primary Ca2+ signal generated by the entry of Ca2+ through voltage-operated channels that releases Ca2+ from ryanodine receptors (RYRs) on the internal stores. In carrying out this modulatory role, the InsP3/Ca2+ signaling pathway induces subtle changes in the generation and function of the voltage-dependent primary Ca2+ signal. Changes in the nature of both the primary and modulatory roles of InsP3/Ca2+ signaling are a contributory factor responsible for the onset of a large number human diseases.
Collapse
Affiliation(s)
- Michael J. Berridge
- Laboratory of Molecular Signalling, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| |
Collapse
|
33
|
Itoh K, Ishihara Y, Komori R, Nochi H, Taniguchi R, Chiba Y, Ueno M, Takata-Tsuji F, Dohgu S, Kataoka Y. Levetiracetam treatment influences blood-brain barrier failure associated with angiogenesis and inflammatory responses in the acute phase of epileptogenesis in post-status epilepticus mice. Brain Res 2016; 1652:1-13. [PMID: 27693413 DOI: 10.1016/j.brainres.2016.09.038] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/09/2016] [Accepted: 09/26/2016] [Indexed: 12/18/2022]
Abstract
Our previous study showed that treatment with levetiracetam (LEV) after status epilepticus (SE) termination by diazepam might prevent the development of spontaneous recurrent seizures via the inhibition of neurotoxicity induced by brain edema events. In the present study, we determined the possible molecular and cellular mechanisms of LEV treatment after termination of SE. To assess the effect of LEV against the brain alterations after SE, we focused on blood-brain barrier (BBB) dysfunction associated with angiogenesis and brain inflammation. The consecutive treatment of LEV inhibited the temporarily increased BBB leakage in the hippocampus two days after SE. At the same time point, the LEV treatment significantly inhibited the increase in the number of CD31-positive endothelial immature cells and in the expression of angiogenic factors. These findings suggested that the increase in neovascularization led to an increase in BBB permeability by SE-induced BBB failure, and these brain alterations were prevented by LEV treatment. Furthermore, in the acute phase of the latent period, pro-inflammatory responses for epileptogenic targets in microglia and astrocytes of the hippocampus activated, and these upregulations of pro-inflammatory-related molecules were inhibited by LEV treatment. These findings suggest that LEV is likely involved in neuroprotection via anti-angiogenesis and anti-inflammatory activities against BBB dysfunction in the acute phase of epileptogenesis after SE.
Collapse
Affiliation(s)
- Kouichi Itoh
- Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa 769-2193, Japan.
| | - Yasuhiro Ishihara
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima 739-8521, Japan
| | - Rie Komori
- Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa 769-2193, Japan
| | - Hiromi Nochi
- Laboratory for Pharmaceutical Health Sciences, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa 769-2193, Japan
| | - Ruri Taniguchi
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima 739-8521, Japan
| | - Yoichi Chiba
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Masaki Ueno
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Fuyuko Takata-Tsuji
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Shinya Dohgu
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Yasufumi Kataoka
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| |
Collapse
|
34
|
Khaspekov LG, Sharonova IN, Kolbaev SN. Modeling of acquired postischemic epileptogenesis in cultures of neural cells and tissue. NEUROCHEM J+ 2016. [DOI: 10.1134/s1819712416030077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Barker-Haliski ML, Vanegas F, Mau MJ, Underwood TK, White HS. Acute cognitive impact of antiseizure drugs in naive rodents and corneal-kindled mice. Epilepsia 2016; 57:1386-97. [PMID: 27466022 DOI: 10.1111/epi.13476] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Some antiseizure drugs (ASDs) are associated with cognitive liability in patients with epilepsy, thus ASDs without this risk would be preferred. Little comparative pharmacology exists with ASDs in preclinical models of cognition. Few pharmacologic studies exist on the acute effects in rodents with chronic seizures. Predicting risk for cognitive impact with preclinical models may supply valuable ASD differentiation data. METHODS ASDs (phenytoin [PHT]; carbamazepine [CBZ]; valproic acid [VPA]; lamotrigine [LTG]; phenobarbital [PB]; tiagabine [TGB]; retigabine [RTG]; topiramate [TPM]; and levetiracetam [LEV]) were administered equivalent to maximal electroshock median effective dose ([ED50]; mice, rats), or median dose necessary to elicit minimal motor impairment (median toxic dose [TD50]; rats). Cognition models with naive adult rodents were novel object/place recognition (NOPR) task with CF-1 mice, and Morris water maze (MWM) with Sprague-Dawley rats. Selected ASDs were also administered to rats prior to testing in an open field. The effect of chronic seizures and ASD administration on cognitive performance in NOPR was also determined with corneal-kindled mice. Mice that did not achieve kindling criterion (partially kindled) were included to examine the effect of electrical stimulation on cognitive performance. Sham-kindled and age-matched mice were also tested. RESULTS No ASD (ED50) affected latency to locate the MWM platform; TD50 of PB, RTG, TPM, and VPA reduced this latency. In naive mice, CBZ and VPA (ED50) reduced time with the novel object. Of interest, no ASD (ED50) affected performance of fully kindled mice in NOPR, whereas CBZ and LEV improved cognitive performance of partially kindled mice. SIGNIFICANCE Standardized approaches to the preclinical evaluation of an ASD's potential cognitive impact are needed to inform drug development. This study demonstrated acute, dose- and model-dependent effects of therapeutically relevant doses of ASDs on cognitive performance of naive mice and rats, and corneal-kindled mice. This study highlights the challenge of predicting clinical adverse effects with preclinical models.
Collapse
Affiliation(s)
- Melissa L Barker-Haliski
- Department of Pharmacology and Toxicology, Anticonvulsant Drug Development Program, University of Utah, Salt Lake City, Utah, U.S.A
| | - Fabiola Vanegas
- Department of Pharmacology and Toxicology, Anticonvulsant Drug Development Program, University of Utah, Salt Lake City, Utah, U.S.A
| | - Matthew J Mau
- Department of Pharmacology and Toxicology, Anticonvulsant Drug Development Program, University of Utah, Salt Lake City, Utah, U.S.A
| | - Tristan K Underwood
- Department of Pharmacology and Toxicology, Anticonvulsant Drug Development Program, University of Utah, Salt Lake City, Utah, U.S.A
| | - H Steve White
- Department of Pharmacology and Toxicology, Anticonvulsant Drug Development Program, University of Utah, Salt Lake City, Utah, U.S.A
| |
Collapse
|
36
|
Deshpande LS, Blair RE, Phillips KF, DeLorenzo RJ. Role of the calcium plateau in neuronal injury and behavioral morbidities following organophosphate intoxication. Ann N Y Acad Sci 2016; 1374:176-83. [PMID: 27327161 DOI: 10.1111/nyas.13122] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/04/2016] [Accepted: 05/10/2016] [Indexed: 12/28/2022]
Abstract
Organophosphate (OP) chemicals include nerve agents and pesticides, and there is a growing concern of OP-based chemical attacks against civilians. Current antidotes are essential in limiting immediate mortality associated with OP exposure. However, further research is needed to identify the molecular mechanisms underlying long-term neurological deficits following survival of OP toxicity in order to develop effective therapeutics. We have developed rat survival models of OP-induced status epilepticus (SE) that mimic chronic mortality and morbidity following OP intoxication. We have observed significant elevations in hippocampal calcium levels after OP SE that persisted for weeks following initial survival. Drugs inhibiting intracellular calcium-induced calcium release, such as dantrolene, levetiracetam, and carisbamate, lowered OP SE-mediated protracted calcium elevations. Given the critical role of calcium signaling in modulating behavior and cell death mechanisms, drugs targeted at preventing the development of the calcium plateau could enhance neuroprotection, help reduce morbidity, and improve outcomes following survival of OP SE.
Collapse
Affiliation(s)
- Laxmikant S Deshpande
- Departments of Neurology, Virginia Commonwealth University, Richmond, Virginia.,Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Robert E Blair
- Departments of Neurology, Virginia Commonwealth University, Richmond, Virginia
| | - Kristin F Phillips
- Departments of Neurology, Virginia Commonwealth University, Richmond, Virginia
| | - Robert J DeLorenzo
- Departments of Neurology, Virginia Commonwealth University, Richmond, Virginia.,Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
37
|
Navarro V, Dagron C, Elie C, Lamhaut L, Demeret S, Urien S, An K, Bolgert F, Tréluyer JM, Baulac M, Carli P. Prehospital treatment with levetiracetam plus clonazepam or placebo plus clonazepam in status epilepticus (SAMUKeppra): a randomised, double-blind, phase 3 trial. Lancet Neurol 2015; 15:47-55. [PMID: 26627366 DOI: 10.1016/s1474-4422(15)00296-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/06/2015] [Accepted: 10/09/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND Generalised convulsive status epilepticus (GCSE) should be treated quickly. Benzodiazepines are the only drug treatment available so far that is effective before admission to hospital. We assessed whether addition of the antiepileptic drug levetiracetam to the benzodiazepine clonazepam would improve prehospital treatment of GCSE. METHODS We did a prehospital, randomised, double-blind, phase 3, placebo-controlled, superiority trial to determine the efficacy of adding intravenous levetiracetam (2.5 g) to clonazepam (1 mg) in treatment of GCSE in 13 emergency medical service centres and 26 hospital departments in France. Randomisation was done at the Paris Descartes Clinical Research Unit with a list of random numbers generated by computer. Adults with convulsions lasting longer than 5 min were randomly assigned (1:1) by prehospital physicians to receive levetiracetam or placebo in combination with clonazepam. All physicians and paramedics were masked to group assignments. If the status epilepticus lasted beyond 5 min after drug injection, a second dose of 1 mg clonazepam was given. The primary outcome was cessation of convulsions within 15 min of drug injection. We analysed the modified intention-to-treat population that had received at least one injection of clonazepam and levetiracetam or placebo, excluding patients without valid consent and those randomised more than once. The trial is registered at EudraCT, number 2007-005782-35. FINDINGS Between July 20, 2009, and Dec 15, 2012, 107 patients were randomly assigned to receive placebo and 96 were assigned to receive levetiracetam. The trial was discontinued on Dec 15, 2012 when interim analysis showed no evidence of a treatment difference, and 68 patients in each group were included in the modified intention-to-treat analysis. Convulsions stopped at 15 min of drug injection in 57 of 68 patients (84%) receiving clonazepam and placebo and in 50 of 68 patients (74%) receiving clonazepam and levetiracetam (percentage difference -10.3%, 95% CI -24.0 to 3.4). Three deaths, 19 of 47 (40 %) serious adverse events, and 90 of 197 (46%) non-serious events were reported in the levetiracetam group, and four deaths, 28 of 47 (60%) serious events, and 107 of 197 (54%) non-serious events were reported in the placebo group. INTERPRETATION The addition of levetiracetam to clonazepam treatment presented no advantage over clonazepam treatment alone in the control of GCSE before admission to hospital. Future prehospital trials could assess the efficacy of clonazepam alone as a first-line treatment in status epilepticus and the efficacy of a second injection of clonazepam with another antiepileptic drug as second-line treatment. FUNDING UCB Pharma.
Collapse
Affiliation(s)
- Vincent Navarro
- Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière Hospital, Epilepsy Unit, and Brain and Spine Institute, Pitié-Salpêtrière Hospital and Université Pierre et Marie Curie, Paris, France.
| | - Christelle Dagron
- AP-HP, Necker-Enfants Malades Hospital, SAMU 75, and Université Paris Descartes, Paris, France
| | - Caroline Elie
- AP-HP, Paris Descartes Clinical Research Unit/Clinical Investigation Centre and Université Paris Descartes, France
| | - Lionel Lamhaut
- AP-HP, Necker-Enfants Malades Hospital, SAMU 75, and Université Paris Descartes, Paris, France
| | - Sophie Demeret
- AP-HP, Pitié-Salpêtrière Hospital, Neurological Intensive Care Unit, Paris, France
| | - Saïk Urien
- AP-HP, Paris Descartes Clinical Research Unit/Clinical Investigation Centre and Université Paris Descartes, France
| | - Kim An
- AP-HP, Necker-Enfants Malades Hospital, SAMU 75, and Université Paris Descartes, Paris, France
| | - Francis Bolgert
- AP-HP, Pitié-Salpêtrière Hospital, Neurological Intensive Care Unit, Paris, France
| | - Jean-Marc Tréluyer
- AP-HP, Paris Descartes Clinical Research Unit/Clinical Investigation Centre and Université Paris Descartes, France
| | - Michel Baulac
- Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière Hospital, Epilepsy Unit, and Brain and Spine Institute, Pitié-Salpêtrière Hospital and Université Pierre et Marie Curie, Paris, France
| | - Pierre Carli
- AP-HP, Necker-Enfants Malades Hospital, SAMU 75, and Université Paris Descartes, Paris, France
| | | |
Collapse
|
38
|
Homozygous Mutation in Synaptic Vesicle Glycoprotein 2A Gene Results in Intractable Epilepsy, Involuntary Movements, Microcephaly, and Developmental and Growth Retardation. Pediatr Neurol 2015; 52:642-6.e1. [PMID: 26002053 DOI: 10.1016/j.pediatrneurol.2015.02.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/06/2015] [Accepted: 02/11/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND Synaptic vesicle protein 2A (SV2a) is the binding site of the antiepileptic drug levetiracetam and the only known synaptic vesicle target of an epilepsy medication. To date, no pathogenic mutation in SV2A, which is the gene encoding synaptic vesicle glycoprotein 2A, has been identified in humans. We report a homozygous mutation in the SV2A gene in a patient with intractable epilepsy. METHODS We investigated a patient with intractable epilepsy, involuntary movements, microcephaly, and developmental and growth retardation. Both parents were multiply consanguineous and an earlier-born brother of the proband had a similar course and died at 7 months of age. Detailed clinical history, imaging, electroencephalograph and metabolic testing were obtained. Full exome sequencing was performed using genomic DNA isolated from the patient and both parents. RESULTS Exome sequencing identified a homozygous arginine to glutamine mutation in amino acid position 383 (R383Q) in exon 5 of the SV2A gene. Both parents were carriers for the R383Q variant, suggesting that R383Q is a recessive mutation. There were no other candidate alterations in the exome that could explain the phenotype in the proband. The amino acid arginine at position 383 of SV2a gene is evolutionally conserved throughout vertebrates. R383Q change is not observed in known healthy cohorts, exome databases, or the Database of Single Nucleotide Polymorphisms. The R383Q mutation is located in the second adenine binding domain in SV2a protein and may alter adenine nucleotides binding to SV2a. CONCLUSION Our report provides the elusive evidence that an SV2A mutation can be a cause of epilepsy in humans. Levetiracetam, which binds to SV2A, was not effective as an antiepileptic medication. The location of the mutation in our patient supports an important role of adenine nucleotides binding in SV2A function.
Collapse
|
39
|
Deshpande LS, Carter DS, Phillips KF, Blair RE, DeLorenzo RJ. Development of status epilepticus, sustained calcium elevations and neuronal injury in a rat survival model of lethal paraoxon intoxication. Neurotoxicology 2014; 44:17-26. [PMID: 24785379 DOI: 10.1016/j.neuro.2014.04.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 01/23/2023]
Abstract
Paraoxon (POX) is an active metabolite of organophosphate (OP) pesticide parathion that has been weaponized and used against civilian populations. Exposure to POX produces high mortality. OP poisoning is often associated with chronic neurological disorders. In this study, we optimize a rat survival model of lethal POX exposures in order to mimic both acute and long-term effects of POX intoxication. Male Sprague-Dawley rats injected with POX (4mg/kg, ice-cold PBS, s.c.) produced a rapid cholinergic crisis that evolved into status epilepticus (SE) and death within 6-8min. The EEG profile for POX induced SE was characterized and showed clinical and electrographic seizures with 7-10Hz spike activity. Treatment of 100% lethal POX intoxication with an optimized three drug regimen (atropine, 2mg/kg, i.p., 2-PAM, 25mg/kg, i.m. and diazepam, 5mg/kg, i.p.) promptly stopped SE and reduced acute mortality to 12% and chronic mortality to 18%. This model is ideally suited to test effective countermeasures against lethal POX exposure. Animals that survived the POX SE manifested prolonged elevations in hippocampal [Ca(2+)]i (Ca(2+) plateau) and significant multifocal neuronal injury. POX SE induced Ca(2+) plateau had its origin in Ca(2+) release from intracellular Ca(2+) stores since inhibition of ryanodine/IP3 receptor lowered elevated Ca(2+) levels post SE. POX SE induced neuronal injury and alterations in Ca(2+) dynamics may underlie some of the long term morbidity associated with OP toxicity.
Collapse
Affiliation(s)
| | - Dawn S Carter
- Departments of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Kristin F Phillips
- Departments of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Robert E Blair
- Departments of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Robert J DeLorenzo
- Departments of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA; Departments of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; Departments of Molecular Biophysics and Biochemistry, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
40
|
Deshpande LS, Delorenzo RJ. Mechanisms of levetiracetam in the control of status epilepticus and epilepsy. Front Neurol 2014; 5:11. [PMID: 24550884 PMCID: PMC3907711 DOI: 10.3389/fneur.2014.00011] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/17/2014] [Indexed: 11/27/2022] Open
Abstract
Status epilepticus (SE) is a major clinical emergency that is associated with high mortality and morbidity. SE causes significant neuronal injury and survivors are at a greater risk of developing acquired epilepsy and other neurological morbidities, including depression and cognitive deficits. Benzodiazepines and some anticonvulsant agents are drugs of choice for initial SE management. Despite their effectiveness, over 40% of SE cases are refractory to the initial treatment with two or more medications. Thus, there is an unmet need of developing newer anti-SE drugs. Levetiracetam (LEV) is a widely prescribed anti-epileptic drug that has been reported to be used in SE cases, especially in benzodiazepine-resistant SE or where phenytoin cannot be used due to allergic side-effects. Levetiracetam’s non-classical anti-epileptic mechanisms of action, favorable pharmacokinetic profile, general lack of central depressant effects, and lower incidence of drug interactions contribute to its use in SE management. This review will focus on LEV’s unique mechanism of action that makes it a viable candidate for SE treatment.
Collapse
Affiliation(s)
| | - Robert J Delorenzo
- Department of Neurology, Virginia Commonwealth University , Richmond, VA , USA ; Department of Pharmacology and Toxicology, Virginia Commonwealth University , Richmond, VA , USA ; Department of Biochemistry, Virginia Commonwealth University , Richmond, VA , USA
| |
Collapse
|
41
|
Zhou L, Yang B, Wang Y, Zhang HL, Chen RW, Wang YB. Bradykinin regulates the expression of claudin-5 in brain microvascular endothelial cells via calcium-induced calcium release. J Neurosci Res 2014; 92:597-606. [PMID: 24464430 DOI: 10.1002/jnr.23350] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 11/08/2013] [Accepted: 11/25/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Lei Zhou
- Department of Neurosurgery; First Affiliated Hospital of China Medical University; Shenyang People's Republic of China
| | - Bo Yang
- Department of Neurosurgery; General Hospital of Jixi Mining Conglomerate; Jixi People's Republic of China
| | - Yong Wang
- Department of Neurosurgery; First Affiliated Hospital of China Medical University; Shenyang People's Republic of China
| | - Hong-Liang Zhang
- Department of Neurosurgery; First Affiliated Hospital of China Medical University; Shenyang People's Republic of China
| | - Run-Wei Chen
- Department of Neurosurgery; First Affiliated Hospital of China Medical University; Shenyang People's Republic of China
| | - Yi-Bao Wang
- Department of Neurosurgery; First Affiliated Hospital of China Medical University; Shenyang People's Republic of China
| |
Collapse
|
42
|
Florek-Luszczki M, Wlaz A, Luszczki JJ. Interactions of levetiracetam with carbamazepine, phenytoin, topiramate and vigabatrin in the mouse 6Hz psychomotor seizure model – A type II isobolographic analysis. Eur J Pharmacol 2014; 723:410-8. [DOI: 10.1016/j.ejphar.2013.10.063] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 10/22/2013] [Accepted: 10/31/2013] [Indexed: 10/26/2022]
|
43
|
Cuomo O, Rispoli V, Leo A, Politi GB, Vinciguerra A, di Renzo G, Cataldi M. The antiepileptic drug levetiracetam suppresses non-convulsive seizure activity and reduces ischemic brain damage in rats subjected to permanent middle cerebral artery occlusion. PLoS One 2013; 8:e80852. [PMID: 24236205 PMCID: PMC3827478 DOI: 10.1371/journal.pone.0080852] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/11/2013] [Indexed: 02/06/2023] Open
Abstract
The antiepileptic drug Levetiracetam (Lev) has neuroprotective properties in experimental stroke, cerebral hemorrhage and neurotrauma. In these conditions, non-convulsive seizures (NCSs) propagate from the core of the focal lesion into perilesional tissue, enlarging the damaged area and promoting epileptogenesis. Here, we explore whether Lev neuroprotective effect is accompanied by changes in NCS generation or propagation. In particular, we performed continuous EEG recordings before and after the permanent occlusion of the middle cerebral artery (pMCAO) in rats that received Lev (100 mg/kg) or its vehicle immediately before surgery. Both in Lev-treated and in control rats, EEG activity was suppressed after pMCAO. In control but not in Lev-treated rats, EEG activity reappeared approximately 30-45 min after pMCAO. It initially consisted in single spikes and, then, evolved into spike-and-wave and polyspike-and-wave discharges. In Lev-treated rats, only rare spike events were observed and the EEG power was significantly smaller than in controls. Approximately 24 hours after pMCAO, EEG activity increased in Lev-treated rats because of the appearance of polyspike events whose power was, however, significantly smaller than in controls. In rats sacrificed 24 hours after pMCAO, the ischemic lesion was approximately 50% smaller in Lev-treated than in control rats. A similar neuroprotection was observed in rats sacrificed 72 hours after pMCAO. In conclusion, in rats subjected to pMCAO, a single Lev injection suppresses NCS occurrence for at least 24 hours. This electrophysiological effect could explain the long lasting reduction of ischemic brain damage caused by this drug.
Collapse
Affiliation(s)
- Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, Federico II University of Naples, Naples, Italy
| | - Vincenzo Rispoli
- Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Antonio Leo
- Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Giovanni Bosco Politi
- Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Antonio Vinciguerra
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, Federico II University of Naples, Naples, Italy
| | - Gianfranco di Renzo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, Federico II University of Naples, Naples, Italy
| | - Mauro Cataldi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, Federico II University of Naples, Naples, Italy
- * E-mail:
| |
Collapse
|
44
|
Harada S, Tanaka S, Takahashi Y, Matsumura H, Shimamoto C, Nakano T, Kuwabara H, Sawabe Y, Nakahari T. Inhibition of Ca(2+)-regulated exocytosis by levetiracetam, a ligand for SV2A, in antral mucous cells of guinea pigs. Eur J Pharmacol 2013; 721:185-92. [PMID: 24076180 DOI: 10.1016/j.ejphar.2013.09.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 09/14/2013] [Accepted: 09/19/2013] [Indexed: 11/18/2022]
Abstract
Levtiracetam (Lev), an inhibitor of SV2A (synaptic vesicle protein A2), affected the ATP-dependent priming of Ca(2+)-regulated exocytosis in antral mucous cells of guinea pig. In antral mucous cells, the Ca(2+)-regulated exocytosis, which is activated by acetylcholine (ACh), consists of an initial peak that declines rapidly (initial phase) followed by a second slower decline (late phase). Dinitrophenol (DNP), which depletes ATP, inhibits the ATP-dependent priming. DNP abolished the initial phase by reducing the number of primed granules, Lev decreased the frequency of initial phase, but not in the presence of DNP. Moreover, 8-bromoguanosine 3'5'-cyclic monophosphate (8BrcGMP) accelerates the ATP-dependent priming. 8BrcGMP enhances the frequency of initial phase by increasing the number of primed granule. Lev added prior to 8BrcGMP addition decreased the frequency of initial phase, but Lev added after 8BrcGMP addition did not. Thus, Lev affected the granules in the process of priming, but it did not affect the granules already primed. Lev did not affect [Ca(2+)]i in unstimulated or ACh-stimulated antral mucous cells. Immunohistochemistry and western blotting demonstrated that SV2A exists in antral mucous cells. The results suggest that SV2A plays an essential role in maintaining the process of ATP-dependent priming in antral mucous cells. In conclusion, Lev decreases the frequency of Ca(2+)-regulated exocytosis the number of primed granules by inhibiting SV2A functions, leading to a decrease in antral mucous cells.
Collapse
Affiliation(s)
- Saeko Harada
- Nakahari Project of Central Research Laboratory, Osaka Medical College, Takatsuki 569-8686, Japan; Laboratory of Pharmacotherapy, Osaka University of Pharmaceutical Sciences, Takatsuki 569-1094, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
McQuail JA, Davis KN, Miller F, Hampson RE, Deadwyler SA, Howlett AC, Nicolle MM. Hippocampal Gαq/₁₁ but not Gαo-coupled receptors are altered in aging. Neuropharmacology 2013; 70:63-73. [PMID: 23347951 DOI: 10.1016/j.neuropharm.2013.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 01/08/2013] [Accepted: 01/10/2013] [Indexed: 10/27/2022]
Abstract
Normal aging may limit the signaling efficacy of certain GPCRs by disturbing the function of specific Gα-subunits and leading to deficient modulation of intracellular functions that subserve synaptic plasticity, learning and memory. Evidence suggests that Gαq/₁₁ is more sensitive to the effects of aging relative to other Gα-subunits, including Gαo. To test this hypothesis, the functionality of Gαq/₁₁ and Gαo were compared in the hippocampus of young (6 months) and aged (24 months) F344 × BNF₁ hybrid rats assessed for spatial learning ability. Basal GTPγS-binding to Gαq/₁₁ was significantly elevated in aged rats relative to young and but not reliably associated with spatial learning. mAChR stimulation of Gαq/₁₁ with oxotremorine-M produced equivocal GTPγS-binding between age groups although values tended to be lower in the aged hippocampus and were inversely related to basal activity. Downstream Gαq/₁₁ function was measured in hippocampal subregion CA₁ by determining changes in [Ca(2+)]i after mAChR and mGluR (DHPG) stimulation. mAChR-stimulated peak change in [Ca(2+)]i was lower in aged CA₁ relative to young while mGluR-mediated integrated [Ca(2+)]i responses tended to be larger in aged. GPCR modulation of [Ca(2+)]i was observed to depend on intracellular stores to a greater degree in aged than young. In contrast, measures of Gαo-mediated GTPγS-binding were stable across age, including basal, mAChR-, GABABR (baclofen)-stimulated levels. Overall, the data indicate that aging selectively modulates the activity of Gαq/₁₁ within the hippocampus leading to deficient modulation of [Ca(2+)]i following stimulation of mAChRs but these changes are not related to spatial learning.
Collapse
Affiliation(s)
- Joseph A McQuail
- Neuroscience Program, Wake Forest University Graduate School of Arts & Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Fukuyama K, Tanahashi S, Nakagawa M, Yamamura S, Motomura E, Shiroyama T, Tanii H, Okada M. Levetiracetam inhibits neurotransmitter release associated with CICR. Neurosci Lett 2012; 518:69-74. [DOI: 10.1016/j.neulet.2012.03.056] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 11/27/2022]
|
47
|
Ozcan M, Ayar A. Modulation of action potential and calcium signaling by levetiracetam in rat sensory neurons. J Recept Signal Transduct Res 2012; 32:156-62. [DOI: 10.3109/10799893.2012.672993] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
The anticonvulsant levetiracetam for the treatment of pain in polyneuropathy: A randomized, placebo-controlled, cross-over trial. Eur J Pain 2012; 15:608-14. [DOI: 10.1016/j.ejpain.2010.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 11/02/2010] [Accepted: 11/21/2010] [Indexed: 11/18/2022]
|
49
|
Butler TR, Prendergast MA. Neuroadaptations in adenosine receptor signaling following long-term ethanol exposure and withdrawal. Alcohol Clin Exp Res 2011; 36:4-13. [PMID: 21762181 DOI: 10.1111/j.1530-0277.2011.01586.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ethanol affects the function of neurotransmitter systems, resulting in neuroadaptations that alter neural excitability. Adenosine is one such receptor system that is changed by ethanol exposure. The current review is focused on the A(1) and the A(2A) receptor subtypes in the context of ethanol-related neuroadaptations and ethanol withdrawal because these subtypes (i) are activated by basal levels of adenosine, (ii) have been most well-studied for their role in neuroprotection and ethanol-related phenomena, and (iii) are the primary site of action for caffeine in the brain, a substance commonly ingested with ethanol. It is clear that alterations in adenosinergic signaling mediate many of the effects of acute ethanol administration, particularly with regard to motor function and sedation. Further, prolonged ethanol exposure has been shown to produce adaptations in the cell surface expression or function of both A(1) and the A(2A) receptor subtypes, effects that likely promote neuronal excitability during ethanol withdrawal. As a whole, these findings demonstrate a significant role for ethanol-induced adaptations in adenosine receptor signaling that likely influence neuronal function, viability, and relapse to ethanol intake following abstinence.
Collapse
Affiliation(s)
- Tracy R Butler
- Department of Psychology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, USA.
| | | |
Collapse
|
50
|
Abstract
Levetiracetam (Keppra®, E Keppra®) is an established second-generation antiepileptic drug (AED). Worldwide, levetiracetam is most commonly approved as adjunctive treatment of partial onset seizures with or without secondary generalization; other approved indications include monotherapy treatment of partial onset seizures with or without secondary generalization, and adjunctive treatment of myoclonic seizures associated with juvenile myoclonic epilepsy and primary generalized tonic-clonic (GTC) seizures associated with idiopathic generalized epilepsy. Levetiracetam has a novel structure and unique mechanisms of action. Unlike other AEDs, the mechanisms of action of levetiracetam appear to involve neuronal binding to synaptic vesicle protein 2A, inhibiting calcium release from intraneuronal stores, opposing the activity of negative modulators of GABA- and glycin-gated currents and inhibiting excessive synchronized activity between neurons. In addition, levetiracetam inhibits N-type calcium channels. Levetiracetam is associated with rapid and complete absorption, high oral bioavailability, minimal metabolism that consists of hydrolysis of the acetamide group, and primarily renal elimination. It lacks cytochrome P450 isoenzyme-inducing potential and is not associated with clinically significant pharmacokinetic interactions with other drugs, including other AEDs. The efficacy of oral immediate-release levetiracetam in controlling seizures has been established in numerous randomized, double-blind, controlled, multicentre trials in patients with epilepsy. Adjunctive levetiracetam reduced the frequency of seizures in paediatric and adult patients with refractory partial onset seizures to a significantly greater extent than placebo. Monotherapy with levetiracetam was noninferior to that with carbamazepine controlled release in controlling seizures in patients with newly diagnosed partial onset seizures. Levetiracetam also provided seizure control relative to placebo as adjunctive therapy in patients with idiopathic generalized epilepsy with myoclonic seizures or GTC seizures. In addition, patients receiving oral levetiracetam showed improvements in measures of health-related quality of life relative to those receiving placebo. Although treatment-emergent adverse events were commonly reported in the clinical trials of levetiracetam, the overall proportion of patients who experienced at least one treatment-emergent adverse event was broadly similar in the levetiracetam and placebo treatment groups, with most events being mild to moderate in severity. Levetiracetam is not associated with cognitive impairment or drug-induced weight gain, but has been associated with behavioural adverse effects in some patients.
Collapse
|