1
|
Sato T, Sugaya T, Talukder AH, Tsushima Y, Sasaki S, Uchida K, Sato T, Ikoma Y, Sakimura K, Fukuda A, Matsui K, Itoi K. Dual action of serotonin on local excitatory and inhibitory neural circuits regulating the corticotropin-releasing factor neurons in the paraventricular nucleus of the hypothalamus. J Neuroendocrinol 2023; 35:e13351. [PMID: 37901949 DOI: 10.1111/jne.13351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023]
Abstract
Serotonergic neurons originating from the raphe nuclei have been proposed to regulate corticotropin-releasing factor (CRF) neurons in the paraventricular nucleus of the hypothalamus (PVH). Since glutamate- and γ-aminobutyric acid (GABA)-containing neurons, constituting the hypothalamic local circuits, innervate PVH CRF neurons, we examined whether they mediate the actions of serotonin (5-hydroxytryptamine [5-HT]) on CRF neurons. Spontaneous excitatory postsynaptic currents (sEPSCs) or spontaneous inhibitory postsynaptic currents (sIPSCs) were recorded in PVH CRF neurons, under whole cell patch-clamp, using the CRF-modified yellow fluorescent protein (Venus) ΔNeo mouse. Serotonin elicited an increase in the frequency of sEPSCs in 77% of the cells and a decrease in the frequency of sIPSCs in 71% of the cells, tested in normal medium. Neither the amplitude nor decay time of sEPSC and sIPSC was affected, thus the site(s) of action of serotonin may be presynaptic. In the presence of tetrodotoxin (TTX), serotonin had no significant effects on either parameter of sEPSC or sIPSC, indicating that the effects of serotonin are action potential-dependent, and that the presynaptic interneurons are largely intact within the slice; distant neurons may exist, though, since some 20%-30% of neurons did not respond to serotonin without TTX. We next examined through what receptor subtype(s) serotonin exerts its effects on presynaptic interneurons. DOI (5-HT2A/2C agonist) mimicked the action of serotonin on the sIPSCs, and the serotonin-induced decrease in sIPSC frequency was inhibited by a selective 5-HT2C antagonist RS102221. 8-OH-DPAT (5-HT1A/7 agonist) mimicked the action of serotonin on the sEPSCs, and the serotonin-induced increase in sEPSC frequency was inhibited by a selective 5-HT7 antagonist SB269970. Thus, serotonin showed a dual action on PVH CRF neurons, by upregulating glutamatergic- and downregulating GABAergic interneurons; the former may partly be mediated by 5-HT7 receptors, whereas the latter by 5-HT2C receptors. The CRF-Venus ΔNeo mouse was useful for the electrophysiological examination.
Collapse
Affiliation(s)
- Takayuki Sato
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Takuma Sugaya
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Ashraf Hossain Talukder
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Yuki Tsushima
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Shotaro Sasaki
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Katsuya Uchida
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Tatsuya Sato
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Yoko Ikoma
- Super-Network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Atsuo Fukuda
- Department of Physiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ko Matsui
- Super-Network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Keiichi Itoi
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
- Super-Network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Department of Neuroendocrinology, Graduate School of Medicine, Tohoku University, Sendai, Japan
- Department of Nursing, Tohoku Fukushi University, Sendai, Japan
| |
Collapse
|
2
|
Piszár I, Lőrincz ML. Differential Serotonergic Modulation of Synaptic Inputs to the Olfactory Cortex. Int J Mol Sci 2023; 24:ijms24031950. [PMID: 36768274 PMCID: PMC9916768 DOI: 10.3390/ijms24031950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Serotonin (5-hydroxytriptamine, 5-HT) is an important monoaminergic neuromodulator involved in a variety of physiological and pathological functions. It has been implicated in the regulation of sensory functions at various stages of multiple modalities, but its mechanisms and functions in the olfactory system have remained elusive. Combining electrophysiology, optogenetics and pharmacology, here we show that afferent (feed-forward) pathway-evoked synaptic responses are boosted, whereas feedback responses are suppressed by presynaptic 5-HT1B receptors in the anterior piriform cortex (aPC) in vitro. Blocking 5-HT1B receptors also reduces the suppressive effects of serotonergic photostimulation of baseline firing in vivo. We suggest that by regulating the relative weights of synaptic inputs to aPC, 5-HT finely tunes sensory inputs in the olfactory cortex.
Collapse
Affiliation(s)
- Ildikó Piszár
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, 6726 Szeged, Hungary
| | - Magor L. Lőrincz
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, 6726 Szeged, Hungary
- Department of Physiology, University of Szeged, 6720 Szeged, Hungary
- Neuroscience Division, Cardiff University, Cardiff CF10 3AX, UK
- Correspondence:
| |
Collapse
|
3
|
Arakawa H, Higuchi Y. Exocrine scent marking: Coordinative role of arginine vasopressin in the systemic regulation of social signaling behaviors. Neurosci Biobehav Rev 2022; 136:104597. [PMID: 35248677 DOI: 10.1016/j.neubiorev.2022.104597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 12/25/2022]
Abstract
Arginine vasopressin (AVP) is a neurohypophysial hormone that coordinatively regulates central socio-emotional behavior and peripheral control of antidiuretic fluid homeostasis. Most mammals, including rodents, utilize exocrine or urine-contained scent marking as a social signaling tool that facilitates social adaptation. The exocrine scent marking behavior is postulated to fine-tune sensory and cognitive abilities to recognize key social features via exocrine/urinary olfactory cues and subsequently control exocrine deposition or urinary marking through the mediation of osmotic fluid balance. AVP is implicated as a major player in controlling both recognition and signaling responses. This review provides constructive hypotheses on the coordinative processes of the AVP neurohypophysial circuits in the systemic regulations of fluid control and social-communicative behavior, via the expression of exocrine scent marking, and further emphasizes a potential role of AVP in a common mechanism underlying social communication in rodents.
Collapse
Affiliation(s)
- Hiroyuki Arakawa
- Depertment of Systems Physiology, University of the Ryukyus School of Medicine, Okinawa, Japan.
| | - Yuki Higuchi
- Depertment of Systems Physiology, University of the Ryukyus School of Medicine, Okinawa, Japan
| |
Collapse
|
4
|
Grassi D, Marraudino M, Garcia-Segura LM, Panzica GC. The hypothalamic paraventricular nucleus as a central hub for the estrogenic modulation of neuroendocrine function and behavior. Front Neuroendocrinol 2022; 65:100974. [PMID: 34995643 DOI: 10.1016/j.yfrne.2021.100974] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022]
Abstract
Estradiol and hypothalamic paraventricular nucleus (PVN) help coordinate reproduction with body physiology, growth and metabolism. PVN integrates hormonal and neural signals originating in the periphery, generating an output mediated both by its long-distance neuronal projections, and by a variety of neurohormones produced by its magnocellular and parvocellular neurosecretory cells. Here we review the cyto-and chemo-architecture, the connectivity and function of PVN and the sex-specific regulation exerted by estradiol on PVN neurons and on the expression of neurotransmitters, neuromodulators, neuropeptides and neurohormones in PVN. Classical and non-classical estrogen receptors (ERs) are expressed in neuronal afferents to PVN and in specific PVN interneurons, projecting neurons, neurosecretory neurons and glial cells that are involved in the input-output integration and coordination of neurohormonal signals. Indeed, PVN ERs are known to modulate body homeostatic processes such as autonomic functions, stress response, reproduction, and metabolic control. Finally, the functional implications of the estrogenic modulation of the PVN for body homeostasis are discussed.
Collapse
Affiliation(s)
- D Grassi
- Department of Anatomy, Histology and Neuroscience, Universidad Autonoma de Madrid, Madrid, Spain
| | - M Marraudino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Torino, Italy
| | - L M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - G C Panzica
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Torino, Italy; Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy.
| |
Collapse
|
5
|
Ellerbrock I, Sandström A, Tour J, Fanton S, Kadetoff D, Schalling M, Jensen KB, Sitnikov R, Kosek E. Serotonergic gene-to-gene interaction is associated with mood and GABA concentrations but not with pain-related cerebral processing in fibromyalgia subjects and healthy controls. Mol Brain 2021; 14:81. [PMID: 33980291 PMCID: PMC8117625 DOI: 10.1186/s13041-021-00789-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/05/2021] [Indexed: 11/24/2022] Open
Abstract
The neurotransmitter serotonin, involved in the regulation of pain and emotion, is critically regulated by the 5‐HT1A autoreceptor and the serotonin transporter (5-HTT). Polymorphisms of these genes affect mood and endogenous pain modulation, both demonstrated to be altered in fibromyalgia subjects (FMS). Here, we tested the effects of genetic variants of the 5‐HT1A receptor (CC/G-carriers) and 5-HTT (high/intermediate/low expression) on mood, pain sensitivity, cerebral processing of evoked pain (functional MRI) and concentrations of GABA and glutamate (MR spectroscopy) in rostral anterior cingulate cortex (rACC) and thalamus in FMS and healthy controls (HC). Interactions between serotonin-relevant genes were found in affective characteristics, with genetically inferred high serotonergic signalling (5-HT1A CC/5-HTThigh genotypes) being more favourable across groups. Additionally, 5‐HT1A CC homozygotes displayed higher pain thresholds than G-carriers in HC but not in FMS. Cerebral processing of evoked pressure pain differed between groups in thalamus with HC showing more deactivation than FMS, but was not influenced by serotonin-relevant genotypes. In thalamus, we observed a 5‐HT1A-by-5-HTT and group-by-5-HTT interaction in GABA concentrations, with the 5-HTT high expressing genotype differing between groups and 5‐HT1A genotypes. No significant effects were seen for glutamate or in rACC. To our knowledge, this is the first report of this serotonergic gene-to-gene interaction associated with mood, both among FMS (depression) and across groups (anxiety). Additionally, our findings provide evidence of an association between the serotonergic system and thalamic GABA concentrations, with individuals possessing genetically inferred high serotonergic signalling exhibiting the highest GABA concentrations, possibly enhancing GABAergic inhibitory effects via 5-HT.
Collapse
Affiliation(s)
- Isabel Ellerbrock
- Department of Clinical Neuroscience, Karolinska Insitutet, Nobels väg 9, 17177, Stockholm, Sweden. .,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden.
| | - Angelica Sandström
- Department of Clinical Neuroscience, Karolinska Insitutet, Nobels väg 9, 17177, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Jeanette Tour
- Department of Clinical Neuroscience, Karolinska Insitutet, Nobels väg 9, 17177, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden.,Department of Oncology, Blekinge Hospital, Karlskrona, Sweden
| | - Silvia Fanton
- Department of Clinical Neuroscience, Karolinska Insitutet, Nobels väg 9, 17177, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Diana Kadetoff
- Department of Clinical Neuroscience, Karolinska Insitutet, Nobels väg 9, 17177, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden.,Stockholm Spine Center, Löwenströmska Hospital, Upplands Väsby, Sweden
| | - Martin Schalling
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Karin B Jensen
- Department of Clinical Neuroscience, Karolinska Insitutet, Nobels väg 9, 17177, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Rouslan Sitnikov
- MRI Research Center, Karolinska University Hospital, Stockholm, Sweden
| | - Eva Kosek
- Department of Clinical Neuroscience, Karolinska Insitutet, Nobels väg 9, 17177, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden.,Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Sheng JA, Bales NJ, Myers SA, Bautista AI, Roueinfar M, Hale TM, Handa RJ. The Hypothalamic-Pituitary-Adrenal Axis: Development, Programming Actions of Hormones, and Maternal-Fetal Interactions. Front Behav Neurosci 2021; 14:601939. [PMID: 33519393 PMCID: PMC7838595 DOI: 10.3389/fnbeh.2020.601939] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022] Open
Abstract
The hypothalamic-pituitary-adrenal axis is a complex system of neuroendocrine pathways and feedback loops that function to maintain physiological homeostasis. Abnormal development of the hypothalamic-pituitary-adrenal (HPA) axis can further result in long-term alterations in neuropeptide and neurotransmitter synthesis in the central nervous system, as well as glucocorticoid hormone synthesis in the periphery. Together, these changes can potentially lead to a disruption in neuroendocrine, behavioral, autonomic, and metabolic functions in adulthood. In this review, we will discuss the regulation of the HPA axis and its development. We will also examine the maternal-fetal hypothalamic-pituitary-adrenal axis and disruption of the normal fetal environment which becomes a major risk factor for many neurodevelopmental pathologies in adulthood, such as major depressive disorder, anxiety, schizophrenia, and others.
Collapse
Affiliation(s)
- Julietta A. Sheng
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Natalie J. Bales
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Sage A. Myers
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Anna I. Bautista
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Mina Roueinfar
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Taben M. Hale
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Robert J. Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, United States
| |
Collapse
|
7
|
Sunstrum JK, Inoue W. Heterosynaptic modulation in the paraventricular nucleus of the hypothalamus. Neuropharmacology 2018; 154:87-95. [PMID: 30408488 DOI: 10.1016/j.neuropharm.2018.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/18/2018] [Accepted: 11/03/2018] [Indexed: 12/21/2022]
Abstract
The stress response-originally described by Hans Selye as "the nonspecific response of the body to any demand made upon it"-is chiefly mediated by the hypothalamic-pituitary-adrenal (HPA) axis and is activated by diverse sensory stimuli that inform threats to homeostasis. The diversity of signals regulating the HPA axis is partly achieved by the complexity of afferent inputs that converge at the apex of the HPA axis: this apex is formed by a group of neurosecretory neurons that synthesize corticotropin-releasing hormone (CRH) in the paraventricular nucleus of the hypothalamus (PVN). The afferent synaptic inputs onto these PVN-CRH neurons originate from a number of brain areas, and PVN-CRH neurons respond to a long list of neurotransmitters/neuropeptides. Considering this complexity, an important question is how these diverse afferent signals independently and/or in concert influence the excitability of PVN-CRH neurons. While many of these inputs directly act on the postsynaptic PVN-CRH neurons for the summation of signals, accumulating data indicates that they also modulate each other's transmission in the PVN. This mode of transmission, termed heterosynaptic modulation, points to mechanisms through which the activity of a specific modulatory input (conveying a specific sensory signal) can up- or down-regulate the efficacy of other afferent synapses (mediating other stress modalities) depending on receptor expression for and spatial proximity to the heterosynaptic signals. Here, we review examples of heterosynaptic modulation in the PVN and discuss its potential role in the regulation of PVN-CRH neurons' excitability and resulting HPA axis activity. This article is part of the Special Issue entitled 'Hypothalamic Control of Homeostasis'.
Collapse
Affiliation(s)
- Julia K Sunstrum
- Neuroscience Program, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Wataru Inoue
- Neuroscience Program, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada; Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
8
|
Cruz-Martínez AM, Tejas-Juárez JG, Mancilla-Díaz JM, Florán-Garduño B, López-Alonso VE, Escartín-Pérez RE. CB1 receptors in the paraventricular nucleus of the hypothalamus modulate the release of 5-HT and GABA to stimulate food intake in rats. Eur Neuropsychopharmacol 2018; 28:1247-1259. [PMID: 30217553 DOI: 10.1016/j.euroneuro.2018.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/13/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022]
Abstract
Endocannabinoids and their receptors not only contribute to the control of natural processes of appetite regulation and energy balance but also have an important role in the pathogenesis of obesity. CB1 receptors (CB1R) are expressed in several hypothalamic nuclei, including the paraventricular nucleus (PVN), where induce potent orexigenic responses. Activation of CB1R in the PVN induces hyperphagia by modulating directly or indirectly orexigenic and anorexigenic signals; however, interaction among these mediators has not been clearly defined. CB1R mRNA is expressed in serotonergic neurons that innervate the PVN, and activation of 5-HT receptors in the PVN constitutes an important satiety signal. Some GABAergic terminals are negatively influenced by 5-HT, suggesting that the hyperphagic effect of CB1R activation could involve changes in serotonergic and GABAergic signaling in the PVN. Accordingly, the present study was aimed to characterize the neurochemical mechanisms related to the hyperphagic effects induced by activation of CB1R in the PVN, studying in vitro and in vivo changes induced by direct activation these receptors. Here, we have found that the neurochemical mechanisms activated by stimulation of CB1 receptors in the PVN involve inhibition of 5-HT release, resulting in a decrease of serotonergic activity mediated by 5-HT1A and 5-HT1B receptors and inducing disinhibition of GABA release to stimulate food intake. In conclusion, these neurochemical changes in the PVN are determinant to the cannabinoid-induced stimulation of food intake. Our findings provide evidence of a functional connection among CB1R and serotonergic and GABAergic systems on the control of appetite regulation mediated by endocannabinoids.
Collapse
Affiliation(s)
- Ana María Cruz-Martínez
- Department of Pharmacology, CINVESTAV-IPN, 2508 Av. Instituto Politécnico Nacional, San Pedro Zacatenco, Ciudad de México 07360, México
| | - Juan Gabriel Tejas-Juárez
- Multidisciplinary Academic Division of Comalcalco, Universidad Juárez Autónoma de Tabasco, Ranchería Sur 4(ª) Sección, Tabasco 86650, México
| | - Juan Manuel Mancilla-Díaz
- Laboratory of Neurobiology of Eating, Universidad Nacional Autónoma de México, FES Iztacala, 1 Av. de los Barrios, Los Reyes Iztacala, Tlalnepantla 54090, México
| | - Benjamín Florán-Garduño
- Department of Physiology, Biophysics and Neuroscience, CINVESTAV-IPN, 2508 Av. Instituto Politécnico Nacional, San Pedro Zacatenco, Ciudad de México 07360, México
| | - Verónica Elsa López-Alonso
- Laboratory of Neurobiology of Eating, Universidad Nacional Autónoma de México, FES Iztacala, 1 Av. de los Barrios, Los Reyes Iztacala, Tlalnepantla 54090, México
| | - Rodrigo Erick Escartín-Pérez
- Laboratory of Neurobiology of Eating, Universidad Nacional Autónoma de México, FES Iztacala, 1 Av. de los Barrios, Los Reyes Iztacala, Tlalnepantla 54090, México.
| |
Collapse
|
9
|
Bromek E, Rysz M, Haduch A, Wójcikowski J, Daniel WA. Activation of 5-HT1A Receptors in the Hypothalamic Paraventricular Nuclei Negatively Regulates Cytochrome P450 Expression and Activity in Rat Liver. Drug Metab Dispos 2018; 46:786-793. [DOI: 10.1124/dmd.117.079632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/14/2018] [Indexed: 12/19/2022] Open
|
10
|
Patkar OL, Belmer A, Holgate JY, Tarren JR, Shariff MR, Morgan M, Fogarty MJ, Bellingham MC, Bartlett SE, Klenowski PM. The antihypertensive drug pindolol attenuates long-term but not short-term binge-like ethanol consumption in mice. Addict Biol 2017; 22:679-691. [PMID: 27273539 DOI: 10.1111/adb.12359] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 11/03/2015] [Accepted: 12/02/2015] [Indexed: 12/15/2022]
Abstract
Alcohol dependence is a debilitating disorder with current therapies displaying limited efficacy and/or compliance. Consequently, there is a critical need for improved pharmacotherapeutic strategies to manage alcohol use disorders (AUDs). Previous studies have shown that the development of alcohol dependence involves repeated cycles of binge-like ethanol intake and abstinence. Therefore, we used a model of binge-ethanol consumption (drinking-in-the-dark) in mice to test the effects of compounds known to modify the activity of neurotransmitters implicated in alcohol addiction. From this, we have identified the FDA-approved antihypertensive drug pindolol, as a potential candidate for the management of AUDs. We show that the efficacy of pindolol to reduce ethanol consumption is enhanced following long-term (12 weeks) binge-ethanol intake, compared with short-term (4 weeks) intake. Furthermore, pindolol had no effect on locomotor activity or consumption of the natural reward sucrose. Because pindolol acts as a dual beta-adrenergic antagonist and 5-HT1A/1B partial agonist, we examined its effect on spontaneous synaptic activity in the basolateral amygdala (BLA), a brain region densely innervated by serotonin and norepinephrine-containing fibres. Pindolol increased spontaneous excitatory post-synaptic current frequency of BLA principal neurons from long-term ethanol-consuming mice but not naïve mice. Additionally, this effect was blocked by the 5-HT1A/1B receptor antagonist methiothepin, suggesting that altered serotonergic activity in the BLA may contribute to the efficacy of pindolol to reduce ethanol intake following long-term exposure. Although further mechanistic investigations are required, this study demonstrates the potential of pindolol as a new treatment option for AUDs that can be fast-tracked into human clinical studies.
Collapse
Affiliation(s)
- Omkar L. Patkar
- Translational Research Institute Queensland University of Technology Brisbane Australia
- Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology Brisbane Australia
| | - Arnauld Belmer
- Translational Research Institute Queensland University of Technology Brisbane Australia
- Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology Brisbane Australia
| | - Joan Y. Holgate
- Translational Research Institute Queensland University of Technology Brisbane Australia
- Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology Brisbane Australia
| | - Josephine R. Tarren
- Translational Research Institute Queensland University of Technology Brisbane Australia
- Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology Brisbane Australia
| | - Masroor R. Shariff
- Translational Research Institute Queensland University of Technology Brisbane Australia
- Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology Brisbane Australia
| | - Michael Morgan
- Translational Research Institute Queensland University of Technology Brisbane Australia
- Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology Brisbane Australia
| | - Matthew J. Fogarty
- School of Biomedical Sciences The University of Queensland Brisbane Australia
| | - Mark C. Bellingham
- School of Biomedical Sciences The University of Queensland Brisbane Australia
| | - Selena E. Bartlett
- Translational Research Institute Queensland University of Technology Brisbane Australia
- Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology Brisbane Australia
| | - Paul M. Klenowski
- Translational Research Institute Queensland University of Technology Brisbane Australia
- Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology Brisbane Australia
| |
Collapse
|
11
|
Rubio-Casillas A, Rodríguez-Quintero C, Rodríguez-Manzo G, Fernández-Guasti A. Unraveling the modulatory actions of serotonin on male rat sexual responses. Neurosci Biobehav Rev 2015; 55:234-46. [DOI: 10.1016/j.neubiorev.2015.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 03/25/2015] [Accepted: 05/04/2015] [Indexed: 12/29/2022]
|
12
|
Ostrowski TD, Ostrowski D, Hasser EM, Kline DD. Depressed GABA and glutamate synaptic signaling by 5-HT1A receptors in the nucleus tractus solitarii and their role in cardiorespiratory function. J Neurophysiol 2014; 111:2493-504. [PMID: 24671532 PMCID: PMC4044435 DOI: 10.1152/jn.00764.2013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 03/19/2014] [Indexed: 11/22/2022] Open
Abstract
Serotonin (5-HT), and its 5-HT1A receptor (5-HT1AR) subtype, is a powerful modulator of the cardiorespiratory system and its sensory reflexes. The nucleus tractus solitarii (nTS) serves as the first central station for visceral afferent integration and is critical for cardiorespiratory reflex responses. However, the physiological and synaptic role of 5-HT1ARs in the nTS is relatively unknown. In the present study, we examined the distribution and modulation of 5-HT1ARs on cardiorespiratory and synaptic parameters in the nTS. 5-HT1ARs were widely distributed to cell bodies within the nTS but not synaptic terminals. In anesthetized rats, activation of 5-HT1ARs by microinjection of the 5-HT1AR agonist 8-OH-DPAT into the caudal nTS decreased minute phrenic neural activity via a reduction in phrenic amplitude. In brain stem slices, 8-OH-DPAT decreased the amplitude of glutamatergic tractus solitarii-evoked excitatory postsynaptic currents, and reduced overall spontaneous excitatory nTS network activity. These effects persisted in the presence of GABAA receptor blockade and were antagonized by coapplication of 5-HT1AR blocker WAY-100135. 5-HT1AR blockade alone had no effect on tractus solitarii-evoked excitatory postsynaptic currents, but increased excitatory network activity. On the other hand, GABAergic nTS-evoked inhibitory postsynaptic currents did not change by activation of the 5-HT1ARs, but spontaneous inhibitory nTS network activity decreased. Blocking 5-HT1ARs tended to increase nTS-evoked inhibitory postsynaptic currents and inhibitory network activity. Taken together, 5-HT1ARs in the caudal nTS decrease breathing, likely via attenuation of afferent transmission, as well as overall nTS network activity.
Collapse
Affiliation(s)
- Tim D Ostrowski
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Daniela Ostrowski
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Eileen M Hasser
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - David D Kline
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
13
|
Handa RJ, Weiser MJ. Gonadal steroid hormones and the hypothalamo-pituitary-adrenal axis. Front Neuroendocrinol 2014; 35:197-220. [PMID: 24246855 PMCID: PMC5802971 DOI: 10.1016/j.yfrne.2013.11.001] [Citation(s) in RCA: 299] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 10/04/2013] [Accepted: 11/07/2013] [Indexed: 12/17/2022]
Abstract
The hypothalamo-pituitary-adrenal (HPA) axis represents a complex neuroendocrine feedback loop controlling the secretion of adrenal glucocorticoid hormones. Central to its function is the paraventricular nucleus of the hypothalamus (PVN) where neurons expressing corticotropin releasing factor reside. These HPA motor neurons are a primary site of integration leading to graded endocrine responses to physical and psychological stressors. An important regulatory factor that must be considered, prior to generating an appropriate response is the animal's reproductive status. Thus, PVN neurons express androgen and estrogen receptors and receive input from sites that also express these receptors. Consequently, changes in reproduction and gonadal steroid levels modulate the stress response and this underlies sex differences in HPA axis function. This review examines the make up of the HPA axis and hypothalamo-pituitary-gonadal (HPG) axis and the interactions between the two that should be considered when exploring normal and pathological responses to environmental stressors.
Collapse
Affiliation(s)
- Robert J Handa
- Department of Basic Medical Science, The University of Arizona College of Medicine, Phoenix, AZ 85004, United States.
| | - Michael J Weiser
- DSM Nutritional Products Ltd., R&D Human Nutrition and Health, Boulder, CO 80301, United States
| |
Collapse
|
14
|
Yang HT, Cummings KJ. Brain stem serotonin protects blood pressure in neonatal rats exposed to episodic anoxia. J Appl Physiol (1985) 2013; 115:1733-41. [PMID: 24136109 DOI: 10.1152/japplphysiol.00970.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In neonatal rodents, a loss of brain stem serotonin [5-hydroxytryptamine (5-HT)] in utero or at birth compromises anoxia-induced gasping and the recovery of heart rate (HR) and breathing with reoxygenation (i.e., autoresuscitation). How mean arterial pressure (MAP) is influenced after an acute loss of brain stem 5-HT content is unknown. We hypothesized that a loss of 5-HT for ∼1 day would compromise MAP during episodic anoxia. We injected 6-fluorotryptophan (20 mg/kg ip) into rat pups (postnatal days 9-10 or 11-13, n = 22 treated, 24 control), causing a ∼70% loss of brain stem 5-HT. Pups were exposed to a maximum of 15 anoxic episodes, separated by 5 min of room air to allow autoresuscitation. In younger pups, we measured breathing frequency and tidal volume using "head-out" plethysmography and HR from the electrocardiogram. In older pups, we used whole body plethysmography to detect gasping, while monitoring MAP. Gasp latency and the time required for respiratory, HR, and MAP recovery following each episode were determined. Despite normal gasp latency, breathing frequency and a larger tidal volume (P < 0.001), 5-HT-deficient pups survived one-half the number of episodes as controls (P < 0.001). The anoxia-induced decrease in MAP experienced by 5-HT-deficient pups was double that of controls (P = 0.017), despite the same drop in HR (P = 0.48). MAP recovery was delayed ∼10 s by 5-HT deficiency (P = 0.001). Our data suggest a loss of brain stem 5-HT leads to a pronounced, premature loss of MAP in response to episodic anoxia. These data may help explain why some sudden infant death syndrome cases die from what appears to be cardiovascular collapse during apparent severe hypoxia.
Collapse
Affiliation(s)
- Hsiao T Yang
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | | |
Collapse
|
15
|
Mickle A, Kannampalli P, Bruckert M, Miranda A, Banerjee B, Sengupta JN. Pronociceptive effect of 5-HT(1A) receptor agonist on visceral pain involves spinal N-methyl-D-aspartate (NMDA) receptor. Neuroscience 2012; 219:243-54. [PMID: 22626644 DOI: 10.1016/j.neuroscience.2012.05.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 05/09/2012] [Accepted: 05/09/2012] [Indexed: 12/12/2022]
Abstract
The functional role of serotonergic 5-HT(1A) receptors in the modulation of visceral pain is controversial. The objective of this study was to systematically examine the mechanism and site of action of a selective 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)-tetralin (DPAT) on visceral pain. In the behavioral model of visceral pain, systemic injection (5-250 μg/kg) of DPAT produced a significant increase in the viscero-motor response (VMR) to colorectal distension (CRD) and this effect was blocked by the selective 5-HT(1A) receptor antagonist WAY-100135 (5 mg/kg, s.c.). Similarly, intrathecal (i.t.) injection (5 μmol) of DPAT into the lumbo-sacral (L6-S1) spinal cord produced a significant increase in VMR. The administration of N-methyl D-aspartate (NMDA) receptor antagonist AP5 (50 μg/kg) prior to DPAT injection completely blocked the pronociceptive effect of DPAT. Similarly, DPAT failed to increase VMR in rats chronically treated with NR1 subunit-targeted antisense oligonucleotide (ON), whereas the drug increased VMR in rats treated with mismatched-ON. Chronic i.t. injection of allylglycine (AG), a γ-amino decarboxylase (GAD) enzyme inhibitor, produced significant increase in VMRs, suggesting that the inhibition of GABA synthesis produces pronociception. In AG-treated rats, i.t. injection of DPAT failed to further increase in VMR, suggesting that the DPAT action is linked to GABA release. Similarly, WAY-100135 failed to attenuate VMR in AG-treated rats, suggesting that unlike DPAT, AG action is not via the activation of 5-HT(1A) receptors. In electrophysiology experiments, DPAT (50 μg/kg) significantly increased the responses of spinal neurons to CRD, but did not influence the mechanotransduction property of CRD-sensitive pelvic nerve afferent fibers. The effect of DPAT on spinal neurons remained unaffected when tested in spinal-transected (C1-C2) rats. These results indicate that the 5-HT(1A) receptor agonist DPAT produces pronociceptive effects, primarily via the activation of presynaptic 5-HT(1A) receptors in GABAergic neuron to restrict GABA release and thereby disinhibits the excitatory glutamatergic neurons in the spinal cord.
Collapse
Affiliation(s)
- A Mickle
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | |
Collapse
|
16
|
Aguilera G, Liu Y. The molecular physiology of CRH neurons. Front Neuroendocrinol 2012; 33:67-84. [PMID: 21871477 PMCID: PMC4341841 DOI: 10.1016/j.yfrne.2011.08.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 07/31/2011] [Accepted: 08/02/2011] [Indexed: 01/14/2023]
Abstract
Corticotropin releasing hormone (CRH) is essential for stress adaptation by mediating hypothalamic-pituitary-adrenal (HPA) axis, behavioral and autonomic responses to stress. Activation of CRH neurons depends on neural afferents from the brain stem and limbic system, leading to sequential CRH release and synthesis. CRH transcription is required to restore mRNA and peptide levels, but termination of the response is essential to prevent pathology associated with chronic elevations of CRH and HPA axis activity. Inhibitory feedback mediated by glucocorticoids and intracellular production of the repressor, Inducible Cyclic AMP Early Repressor (ICER), limit the magnitude and duration of CRH neuronal activation. Induction of CRH transcription is mediated by the cyclic AMP/protein kinase A/cyclic AMP responsive element binding protein (CREB)-dependent pathways, and requires cyclic AMP-dependent nuclear translocation of the CREB co-activator, Transducer of Regulated CREB activity (TORC). This article reviews current knowledge on the mechanisms regulating CRH neuron activity.
Collapse
Affiliation(s)
- Greti Aguilera
- Section on Endocrine Physiology, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shiver Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, United States.
| | | |
Collapse
|
17
|
Chen QH, Toney GM. In vivo discharge properties of hypothalamic paraventricular nucleus neurons with axonal projections to the rostral ventrolateral medulla. J Neurophysiol 2009; 103:4-15. [PMID: 19889858 DOI: 10.1152/jn.00094.2009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The hypothalamic paraventricular nucleus (PVN) and rostral ventrolateral medulla (RVLM) are key components of a neural network that generates and regulates sympathetic nerve activity (SNA). Although each region has been extensively studied, little is presently known about the in vivo discharge properties of individual PVN neurons that directly innervate the RVLM. Here extracellular recording was performed in anesthetized rats, and antidromic stimulation was used to identify single PVN neurons with axonal projections to the RVLM (n = 94). Neurons were divided into two groups that had either unbranched axons terminating in the RVLM (i.e., PVN-RVLM neurons, n = 65) or collateralized axons targeting both the RVLM and spinal cord [i.e., PVN-RVLM/intermediolateral cell column (IML) neurons, n = 29]. Many PVN-RVLM (32/65, 49%) and PVN-RVLM/IML (17/29, 59%) neurons were spontaneously active. The average firing frequency was not different across groups. Spike-triggered averaging revealed that spontaneous discharge of most neurons was temporally correlated with renal SNA (PVN-RVLM: 12/21, 57%; PVN-RVLM/IML: 6/9, 67%). Time histograms triggered by the electrocardiogram (ECG) R-wave indicated that discharge of most cells was also cardiac rhythmic (PVN-RVLM: 25/32, 78%; PVN-RVLM/IML: 10/17, 59%). Raising and lowering arterial blood pressure to increase and decrease arterial baroreceptor input caused a corresponding decrease and increase in firing frequency among cells of both groups (PVN-RVLM: 9/13, 69%; PVN-RVLM/IML: 4/4, 100%). These results indicate that PVN-RVLM and PVN-RVLM/IML neurons are both capable of contributing to basal sympathetic activity and its baroreflex modulation.
Collapse
Affiliation(s)
- Qing-Hui Chen
- Dept. of Physiology, University of Texas Health Science Center, 7703 Floyd Curl Dr., San Antonio, TX 78229-3900, USA
| | | |
Collapse
|