1
|
Darwish D, Kumar P, Urs K, Dave S. Inhaled Anesthetics: Beyond the Operating Room. J Clin Med 2024; 13:7513. [PMID: 39768435 PMCID: PMC11679802 DOI: 10.3390/jcm13247513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
The development of inhaled anesthetics (IAs) has a rich history dating back many centuries. In modern times they have played a pivotal role in anesthesia and critical care by allowing deep sedation during periods of critical illness and surgery. In addition to their sedating effects, they have many systemic effects allowing for therapy beyond surgical anesthesia. In this narrative review we chronicle the evolution of IAs, from early volatile agents such as ether to the contemporary use of halogenated hydrocarbons. This is followed by a discussion of the mechanisms of action of these agents which primarily involve the modulation of lipid membrane properties and ion channel activity. IAs' systemic effects are also examined, including their effects on the cardiovascular, respiratory, hepatic, renal and nervous systems. We discuss of the role of IAs in treating systemic disease processes including ischemic stroke, delayed cerebral ischemia, status epilepticus, status asthmaticus, myocardial ischemia, and intensive care sedation. We conclude with a review of the practical and logistical challenges of utilizing IAs outside the operating room as well as directions for future research. This review highlights the expanding clinical utility of IAs and their evolving role in the management of a diverse range of disease processes, offering new avenues for therapeutic exploration beyond anesthesia.
Collapse
Affiliation(s)
- Dana Darwish
- Department of Anesthesiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pooja Kumar
- School of Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Khushi Urs
- University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Siddharth Dave
- Department of Anesthesiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
2
|
Xu J, Ye Y, Shen H, Li W, Chen G. Sevoflurane: an opportunity for stroke treatment. Med Gas Res 2024; 14:175-179. [PMID: 39073324 DOI: 10.4103/2045-9912.386952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 04/04/2023] [Indexed: 07/30/2024] Open
Abstract
In developed countries, stroke is the leading cause of death and disability that affects long-term quality of life and its incidence is increasing. The incidence of ischemic stroke is much higher than that of hemorrhagic stroke. Ischemic stroke often leads to very serious neurological sequelae, which severely reduces the patients' quality of life and becomes a social burden. Therefore, ischemic stroke has received increasing attention. As a new type of anesthetic, sevoflurane has a lower solubility, works faster in the human body, and has less impact on the cardiovascular system than isoflurane. At the same time, studies have shown that preconditioning and postconditioning with sevoflurane have a beneficial effect on stroke. We believe that the role of sevoflurane in stroke may be a key area for future research. Therefore, this review mainly summarizes the relevant mechanisms of sevoflurane preconditioning and postconditioning in stroke in the past 20 years, revealing the bright prospects of sevoflurane in stroke treatment.
Collapse
Affiliation(s)
- Jinhui Xu
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | | | | | | | | |
Collapse
|
3
|
Wang C, Cui W, Yu B, Zhou H, Cui Z, Guo P, Yu T, Feng Y. Role of succinylation modification in central nervous system diseases. Ageing Res Rev 2024; 95:102242. [PMID: 38387517 DOI: 10.1016/j.arr.2024.102242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Diseases of the central nervous system (CNS), including stroke, brain tumors, and neurodegenerative diseases, have a serious impact on human health worldwide, especially in elderly patients. The brain, which is one of the body's most metabolically dynamic organs, lacks fuel stores and therefore requires a continuous supply of energy substrates. Metabolic abnormalities are closely associated with the pathogenesis of CNS disorders. Post-translational modifications (PTMs) are essential regulatory mechanisms that affect the functions of almost all proteins. Succinylation, a broad-spectrum dynamic PTM, primarily occurs in mitochondria and plays a crucial regulatory role in various diseases. In addition to directly affecting various metabolic cycle pathways, succinylation serves as an efficient and rapid biological regulatory mechanism that establishes a connection between metabolism and proteins, thereby influencing cellular functions in CNS diseases. This review offers a comprehensive analysis of succinylation and its implications in the pathological mechanisms of CNS diseases. The objective is to outline novel strategies and targets for the prevention and treatment of CNS conditions.
Collapse
Affiliation(s)
- Chao Wang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China
| | - Weigang Cui
- Department of Cardiology, People's Hospital of Rizhao, Rizhao 276800, People's Republic of China
| | - Bing Yu
- Qingdao University, Qingdao 266000, People's Republic of China
| | - Han Zhou
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China
| | - Zhenwen Cui
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China
| | - Pin Guo
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China.
| | - Yugong Feng
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China.
| |
Collapse
|
4
|
Mo Y, Yue E, Shi N, Liu K. The protective effects of curcumin in cerebral ischemia and reperfusion injury through PKC-θ signaling. Cell Cycle 2021; 20:550-560. [PMID: 33618616 DOI: 10.1080/15384101.2021.1889188] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Ischemic stroke is a common cerebrovascular disease with the main cause considered to be cerebral ischemia and reperfusion (I/R), which exerts irreparable injury on nerve cells. Thus, the development of neuroprotective drugs is an urgent concern. Curcumin, a known antioxidant, has been found to have neuroprotective effects. To determine the protective mechanism of curcumin in ischemic stroke, oxygen and glucose deprivation/reoxygenation (OGD/R) was used to treat PC12 cells to mimic the cerebral I/R cell model. Curcumin (20 μM) was applied to OGD/R PC12 cells, followed by Ca2+ concentration, transepithelial electrical resistance (TEER), and cell permeability measurements. The results showed that OGD/R injury induced a decrease in TEER and increases in Ca2+ concentration and cell permeability. In contrast, curcumin alleviated these effects. The protein kinase C θ (PKC-θ) was associated with the protective function of curcumin in the OGD/R cell model. Moreover, the middle cerebral artery occlusion and reperfusion model (MCAO/R) was applied to simulate the I/R rat model. Our results demonstrated that curcumin could reverse the MCAO/R-induced increase in Ca2+ concentration and blood-brain barrier (BBB) disruption. Our study demonstrates the mechanisms by which curcumin exhibited a protective function against cerebral I/R through PKC-θ signaling by reducing BBB dysfunction.
Collapse
Affiliation(s)
- Yun Mo
- Department of Neurology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Erli Yue
- Department of Neurology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Nan Shi
- Department of Neurology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Kangyong Liu
- Department of Neurology, Guizhou Medical University, Guiyang, Guizhou, China.,Department of Neurology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
5
|
Yang WC, Wang Q, Chi LT, Wang YZ, Cao HL, Li WZ. Therapeutic hypercapnia reduces blood-brain barrier damage possibly via protein kinase Cε in rats with lateral fluid percussion injury. J Neuroinflammation 2019; 16:36. [PMID: 30760300 PMCID: PMC6375143 DOI: 10.1186/s12974-019-1427-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/01/2019] [Indexed: 11/17/2022] Open
Abstract
Background This study investigated whether therapeutic hypercapnia (TH) ameliorated blood–brain barrier (BBB) damage and improved the neurologic outcome in a rat model of lateral fluid percussion injury (FPI), and explored the possible underlying mechanism. Methods Rats underwent lateral FPI and received inhalation of 30%O2–70%N2 or 30%O2–N2 plus CO2 to maintain arterial blood CO2 tension (PaCO2) between 80 and 100 mmHg for 3 h. To further explore the possible mechanisms for the protective effects of TH, a PKC inhibitor staurosporine or PKCαβ inhibitor GÖ6976 was administered via intracerebral ventricular injection. Results TH significantly improved neurological function 24 h, 48 h, 7 d, and 14 d after FPI. The wet/dry ratio, computed tomography values, Evans blue content, and histological lesion volume were significantly reduced by TH. Moreover, numbers of survived neurons and the expression of tight junction proteins (ZO-1, occludin, and claudin-5) were significantly elevated after TH treatment at 48-h post-FPI. TH significantly increased the expression of protein kinase Cε (PKCε) at 48-h post-FPI, but did not significantly change the expression of PKCα and PKCβII. PKC inhibitor staurosporine (but not the selective PKCαβ inhibitor-GÖ6976) inhibited the protective effect of TH. Conclusions Therapeutic hypercapnia is a promising candidate that should be further evaluated for clinical treatment. It not only protects the traumatic penumbra from secondary injury and improves histological structure but also maintains the integrity of BBB and reduces neurologic deficits after trauma in a rat model of FPI.
Collapse
Affiliation(s)
- Wan-Chao Yang
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qi Wang
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lai-Ting Chi
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue-Zhen Wang
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong-Ling Cao
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wen-Zhi Li
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China. .,Anesthesiology Key Laboratory, Education Department, Harbin Medical University, No. 246 Xuefu Road, Harbin, 150086, China.
| |
Collapse
|
6
|
Kumar V, Weng YC, Wu YC, Huang YT, Chou WH. PKCε phosphorylation regulates the mitochondrial translocation of ATF2 in ischemia-induced neurodegeneration. BMC Neurosci 2018; 19:76. [PMID: 30497386 PMCID: PMC6267029 DOI: 10.1186/s12868-018-0479-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/27/2018] [Indexed: 11/10/2022] Open
Abstract
Background Global cerebral ischemia triggers neurodegeneration in the hippocampal CA1 region, but the mechanism of neuronal death remains elusive. The epsilon isoform of protein kinase C (PKCε) has recently been identified as a master switch that controls the nucleocytoplasmic trafficking of ATF2 and the survival of melanoma cells. It is of interest to assess the role of PKCε–ATF2 signaling in neurodegeneration. Results Phosphorylation of ATF2 at Thr-52 was reduced in the hippocampus of PKCε null mice, suggesting that ATF2 is a phosphorylation substrate of PKCε. PKCε protein concentrations were significantly reduced 4, 24, 48 and 72 h after transient global cerebral ischemia, resulting in translocation of nuclear ATF2 to the mitochondria. Degenerating neurons staining positively with Fluoro-Jade C exhibited cytoplasmic ATF2. Conclusions Our results support the hypothesis that PKCε regulates phosphorylation and nuclear sequestration of ATF2 in hippocampal neurons during ischemia-induced neurodegeneration.
Collapse
Affiliation(s)
- Varun Kumar
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, OH, 44242, USA
| | - Yi-Chinn Weng
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, 35053, Taiwan, ROC
| | - Yu-Chieh Wu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, 35053, Taiwan, ROC
| | - Yu-Ting Huang
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, 35053, Taiwan, ROC
| | - Wen-Hai Chou
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, OH, 44242, USA. .,Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, 35053, Taiwan, ROC.
| |
Collapse
|
7
|
Kumar V, Weng YC, Wu YC, Huang YT, Liu TH, Kristian T, Liu YL, Tsou HH, Chou WH. Genetic inhibition of PKCε attenuates neurodegeneration after global cerebral ischemia in male mice. J Neurosci Res 2018; 97:444-455. [PMID: 30488977 DOI: 10.1002/jnr.24362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/31/2018] [Accepted: 11/13/2018] [Indexed: 11/08/2022]
Abstract
Global cerebral ischemia that accompanies cardiac arrest is a major cause of morbidity and mortality. Protein Kinase C epsilon (PKCε) is a member of the novel PKC subfamily and plays a vital role in ischemic preconditioning. Pharmacological activation of PKCε before cerebral ischemia confers neuroprotection. The role of endogenous PKCε after cerebral ischemia remains elusive. Here we used male PKCε-null mice to assess the effects of PKCε deficiency on neurodegeneration after transient global cerebral ischemia (tGCI). We found that the cerebral vasculature, blood flow, and the expression of other PKC isozymes were not altered in the PKCε-null mice. Spatial learning and memory was impaired after tGCI, but the impairment was attenuated in male PKCε-null mice as compared to male wild-type controls. A significant reduction in Fluoro-Jade C labeling and mitochondrial release of cytochrome C in the hippocampus was found in male PKCε-null mice after tGCI. Male PKCε-null mice expressed increased levels of PKCδ in the mitochondria, which may prevent the translocation of PKCδ from the cytosol to the mitochondria after tGCI. Our results demonstrate the neuroprotective effects of PKCε deficiency on neurodegeneration after tGCI, and suggest that reduced mitochondrial translocation of PKCδ may contribute to the neuroprotective action in male PKCε-null mice.
Collapse
Affiliation(s)
- Varun Kumar
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, Ohio
| | - Yi-Chinn Weng
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Yu-Chieh Wu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Yu-Ting Huang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Tung-Hsia Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Tibor Kristian
- Department of Anesthesiology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Hsiao-Hui Tsou
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan.,Graduate Institute of Biostatistics, College of Public Health, China Medical University, Taichung, Taiwan
| | - Wen-Hai Chou
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, Ohio.,Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
8
|
Liu Z, Khalil RA. Evolving mechanisms of vascular smooth muscle contraction highlight key targets in vascular disease. Biochem Pharmacol 2018; 153:91-122. [PMID: 29452094 PMCID: PMC5959760 DOI: 10.1016/j.bcp.2018.02.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/12/2018] [Indexed: 12/11/2022]
Abstract
Vascular smooth muscle (VSM) plays an important role in the regulation of vascular function. Identifying the mechanisms of VSM contraction has been a major research goal in order to determine the causes of vascular dysfunction and exaggerated vasoconstriction in vascular disease. Major discoveries over several decades have helped to better understand the mechanisms of VSM contraction. Ca2+ has been established as a major regulator of VSM contraction, and its sources, cytosolic levels, homeostatic mechanisms and subcellular distribution have been defined. Biochemical studies have also suggested that stimulation of Gq protein-coupled membrane receptors activates phospholipase C and promotes the hydrolysis of membrane phospholipids into inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 stimulates initial Ca2+ release from the sarcoplasmic reticulum, and is buttressed by Ca2+ influx through voltage-dependent, receptor-operated, transient receptor potential and store-operated channels. In order to prevent large increases in cytosolic Ca2+ concentration ([Ca2+]c), Ca2+ removal mechanisms promote Ca2+ extrusion via the plasmalemmal Ca2+ pump and Na+/Ca2+ exchanger, and Ca2+ uptake by the sarcoplasmic reticulum and mitochondria, and the coordinated activities of these Ca2+ handling mechanisms help to create subplasmalemmal Ca2+ domains. Threshold increases in [Ca2+]c form a Ca2+-calmodulin complex, which activates myosin light chain (MLC) kinase, and causes MLC phosphorylation, actin-myosin interaction, and VSM contraction. Dissociations in the relationships between [Ca2+]c, MLC phosphorylation, and force have suggested additional Ca2+ sensitization mechanisms. DAG activates protein kinase C (PKC) isoforms, which directly or indirectly via mitogen-activated protein kinase phosphorylate the actin-binding proteins calponin and caldesmon and thereby enhance the myofilaments force sensitivity to Ca2+. PKC-mediated phosphorylation of PKC-potentiated phosphatase inhibitor protein-17 (CPI-17), and RhoA-mediated activation of Rho-kinase (ROCK) inhibit MLC phosphatase and in turn increase MLC phosphorylation and VSM contraction. Abnormalities in the Ca2+ handling mechanisms and PKC and ROCK activity have been associated with vascular dysfunction in multiple vascular disorders. Modulators of [Ca2+]c, PKC and ROCK activity could be useful in mitigating the increased vasoconstriction associated with vascular disease.
Collapse
Affiliation(s)
- Zhongwei Liu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Morris-Blanco KC, Dave KR, Saul I, Koronowski KB, Stradecki HM, Perez-Pinzon MA. Protein Kinase C Epsilon Promotes Cerebral Ischemic Tolerance Via Modulation of Mitochondrial Sirt5. Sci Rep 2016; 6:29790. [PMID: 27435822 PMCID: PMC4951704 DOI: 10.1038/srep29790] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/24/2016] [Indexed: 01/21/2023] Open
Abstract
Sirtuin 5 (SIRT5) is a mitochondrial-localized NAD(+)-dependent lysine desuccinylase and a major regulator of the mitochondrial succinylome. We wanted to determine whether SIRT5 is activated by protein kinase C epsilon (PKCε)-mediated increases in mitochondrial Nampt and whether SIRT5 regulates mitochondrial bioenergetics and neuroprotection against cerebral ischemia. In isolated mitochondria from rat cortical cultures, PKCε activation increased SIRT5 levels and desuccinylation activity in a Nampt-dependent manner. PKCε activation did not lead to significant modifications in SIRT3 activity, the major mitochondrial lysine deacetylase. Assessments of mitochondrial bioenergetics in the cortex of wild type (WT) and SIRT5-/- mice revealed that SIRT5 regulates oxygen consumption in the presence of complex I, complex II, and complex IV substrates. To explore the potential role of SIRT5 in PKCε-mediated protection, we compared WT and SIRT5-/- mice by employing both in vitro and in vivo ischemia paradigms. PKCε-mediated decreases in cell death following oxygen-glucose deprivation were abolished in cortical cultures harvested from SIRT5-/- mice. Furthermore, PKCε failed to prevent cortical degeneration following MCAO in SIRT5-/- mice. Collectively this demonstrates that SIRT5 is an important mitochondrial enzyme for protection against metabolic and ischemic stress following PKCε activation in the brain.
Collapse
Affiliation(s)
- Kahlilia C. Morris-Blanco
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kunjan R. Dave
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Isabel Saul
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kevin B. Koronowski
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Holly M. Stradecki
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Miguel A. Perez-Pinzon
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
10
|
Ringvold HC, Khalil RA. Protein Kinase C as Regulator of Vascular Smooth Muscle Function and Potential Target in Vascular Disorders. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:203-301. [PMID: 28212798 PMCID: PMC5319769 DOI: 10.1016/bs.apha.2016.06.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vascular smooth muscle (VSM) plays an important role in maintaining vascular tone. In addition to Ca2+-dependent myosin light chain (MLC) phosphorylation, protein kinase C (PKC) is a major regulator of VSM function. PKC is a family of conventional Ca2+-dependent α, β, and γ, novel Ca2+-independent δ, ɛ, θ, and η, and atypical ξ, and ι/λ isoforms. Inactive PKC is mainly cytosolic, and upon activation it undergoes phosphorylation, maturation, and translocation to the surface membrane, the nucleus, endoplasmic reticulum, and other cell organelles; a process facilitated by scaffold proteins such as RACKs. Activated PKC phosphorylates different substrates including ion channels, pumps, and nuclear proteins. PKC also phosphorylates CPI-17 leading to inhibition of MLC phosphatase, increased MLC phosphorylation, and enhanced VSM contraction. PKC could also initiate a cascade of protein kinases leading to phosphorylation of the actin-binding proteins calponin and caldesmon, increased actin-myosin interaction, and VSM contraction. Increased PKC activity has been associated with vascular disorders including ischemia-reperfusion injury, coronary artery disease, hypertension, and diabetic vasculopathy. PKC inhibitors could test the role of PKC in different systems and could reduce PKC hyperactivity in vascular disorders. First-generation PKC inhibitors such as staurosporine and chelerythrine are not very specific. Isoform-specific PKC inhibitors such as ruboxistaurin have been tested in clinical trials. Target delivery of PKC pseudosubstrate inhibitory peptides and PKC siRNA may be useful in localized vascular disease. Further studies of PKC and its role in VSM should help design isoform-specific PKC modulators that are experimentally potent and clinically safe to target PKC in vascular disease.
Collapse
Affiliation(s)
- H C Ringvold
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - R A Khalil
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
11
|
Zhao W, Wang P, Ma J, Liu YH, Li Z, Li ZQ, Wang ZH, Chen LY, Xue YX. MiR-34a regulates blood-tumor barrier function by targeting protein kinase Cε. Mol Biol Cell 2015; 26:1786-96. [PMID: 25788289 PMCID: PMC4436826 DOI: 10.1091/mbc.e14-10-1474] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/12/2015] [Indexed: 11/21/2022] Open
Abstract
It is shown for the first time that overexpression of miR-34a increases blood–tumor barrier permeability by targeting PKCε, which is activated by p-PKCε and directly regulates the expression of tight junction–related proteins. MicroRNA-34a (miR-34a) functions to regulate protein expression at the posttranscriptional level by binding the 3′ UTR of target genes and regulates functions of vascular endothelial cells. However, the role of miR-34a in regulating blood–tumor barrier (BTB) permeability remains unknown. In this study, we show that miR-34a overexpression leads to significantly increased permeability of BTB, whereas miR-34a silencing reduces the permeability of the BTB. In addition, miR-34a overexpression significantly down-regulates the expression and distribution of tight junction–related proteins in glioma endothelial cells (GECs), paralleled by protein kinase Cε (PKCε) reduction. Moreover, luciferase reporter gene analysis shows that PKCε is the target gene of miR-34a. We also show that cotransfection of miR-34a and PKCε inversely coregulates BTB permeability and protein expression levels of tight junction–related proteins. Pretreatment of ψεRACK, a PKCε-specific activator, decreases BTB permeability in miR-34a–overexpressed GECs and up-regulates expression levels of tight junction proteins. In contrast, pretreatment of εV1-2, a specific PKCε inhibitor, gives opposite results. Collectively, our findings indicate that miR-34a regulates BTB function by targeting PKCε; after phosphorylation, PKCε is activated and contributes to regulation of the expression of tight junction–related proteins, ultimately altering BTB permeability.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Neurobiology, China Medical University, Shenyang 110122, China Department of Physiology, College of Basic Medicine, China Medical University, Shenyang 110122, China
| | - Ping Wang
- Department of Neurobiology, China Medical University, Shenyang 110122, China Department of Physiology, College of Basic Medicine, China Medical University, Shenyang 110122, China
| | - Jun Ma
- Department of Neurobiology, China Medical University, Shenyang 110122, China Department of Physiology, College of Basic Medicine, China Medical University, Shenyang 110122, China
| | - Yun-Hui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Zhi-Qing Li
- Department of Neurobiology, China Medical University, Shenyang 110122, China Department of Physiology, College of Basic Medicine, China Medical University, Shenyang 110122, China
| | - Zhen-Hua Wang
- Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110122, China
| | - Liang-Yu Chen
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yi-Xue Xue
- Department of Neurobiology, China Medical University, Shenyang 110122, China Department of Physiology, College of Basic Medicine, China Medical University, Shenyang 110122, China
| |
Collapse
|
12
|
Arandarcikaite O, Jokubka R, Borutaite V. Neuroprotective effects of nitric oxide donor NOC-18 against brain ischemia-induced mitochondrial damages: role of PKG and PKC. Neurosci Lett 2015; 586:65-70. [DOI: 10.1016/j.neulet.2014.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/01/2014] [Accepted: 09/03/2014] [Indexed: 10/24/2022]
|
13
|
Neumann JT, Thompson JW, Raval AP, Cohan CH, Koronowski KB, Perez-Pinzon MA. Increased BDNF protein expression after ischemic or PKC epsilon preconditioning promotes electrophysiologic changes that lead to neuroprotection. J Cereb Blood Flow Metab 2015; 35:121-30. [PMID: 25370861 PMCID: PMC4294405 DOI: 10.1038/jcbfm.2014.185] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/02/2014] [Accepted: 10/03/2014] [Indexed: 01/06/2023]
Abstract
Ischemic preconditioning (IPC) via protein kinase C epsilon (PKCɛ) activation induces neuroprotection against lethal ischemia. Brain-derived neurotrophic factor (BDNF) is a pro-survival signaling molecule that modulates synaptic plasticity and neurogenesis. Interestingly, BDNF mRNA expression increases after IPC. In this study, we investigated whether IPC or pharmacological preconditioning (PKCɛ activation) promoted BDNF-induced neuroprotection, if neuroprotection by IPC or PKCɛ activation altered neuronal excitability, and whether these changes were BDNF-mediated. We used both in vitro (hippocampal organotypic cultures and cortical neuronal-glial cocultures) and in vivo (acute hippocampal slices 48 hours after preconditioning) models of IPC or PKCɛ activation. BDNF protein expression increased 24 to 48 hours after preconditioning, where inhibition of the BDNF Trk receptors abolished neuroprotection against oxygen and glucose deprivation (OGD) in vitro. In addition, there was a significant decrease in neuronal firing frequency and increase in threshold potential 48 hours after preconditioning in vivo, where this threshold modulation was dependent on BDNF activation of Trk receptors in excitatory cortical neurons. In addition, 48 hours after PKCɛ activation in vivo, the onset of anoxic depolarization during OGD was significantly delayed in hippocampal slices. Overall, these results suggest that after IPC or PKCɛ activation, there are BDNF-dependent electrophysiologic modifications that lead to neuroprotection.
Collapse
Affiliation(s)
- Jake T Neumann
- 1] Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA [2] Evelyn F. McKnight Brain Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA [3] Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| | - John W Thompson
- 1] Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA [2] Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| | - Ami P Raval
- 1] Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA [2] Evelyn F. McKnight Brain Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA [3] Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| | - Charles H Cohan
- 1] Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA [2] Evelyn F. McKnight Brain Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA [3] Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA [4] Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| | - Kevin B Koronowski
- 1] Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA [2] Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA [3] Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| | - Miguel A Perez-Pinzon
- 1] Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA [2] Evelyn F. McKnight Brain Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA [3] Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA [4] Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
14
|
Lucke-Wold BP, Turner RC, Logsdon AF, Simpkins JW, Alkon DL, Smith KE, Chen YW, Tan Z, Huber JD, Rosen CL. Common mechanisms of Alzheimer's disease and ischemic stroke: the role of protein kinase C in the progression of age-related neurodegeneration. J Alzheimers Dis 2015; 43:711-24. [PMID: 25114088 PMCID: PMC4446718 DOI: 10.3233/jad-141422] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ischemic stroke and Alzheimer's disease (AD), despite being distinct disease entities, share numerous pathophysiological mechanisms such as those mediated by inflammation, immune exhaustion, and neurovascular unit compromise. An important shared mechanistic link is acute and chronic changes in protein kinase C (PKC) activity. PKC isoforms have widespread functions important for memory, blood-brain barrier maintenance, and injury repair that change as the body ages. Disease states accelerate PKC functional modifications. Mutated forms of PKC can contribute to neurodegeneration and cognitive decline. In some cases the PKC isoforms are still functional but are not successfully translocated to appropriate locations within the cell. The deficits in proper PKC translocation worsen stroke outcome and amyloid-β toxicity. Cross talk between the innate immune system and PKC pathways contribute to the vascular status within the aging brain. Unfortunately, comorbidities such as diabetes, obesity, and hypertension disrupt normal communication between the two systems. The focus of this review is to highlight what is known about PKC function, how isoforms of PKC change with age, and what additional alterations are consequences of stroke and AD. The goal is to highlight future therapeutic targets that can be applied to both the treatment and prevention of neurologic disease. Although the pathology of ischemic stroke and AD are different, the similarity in PKC responses warrants further investigation, especially as PKC-dependent events may serve as an important connection linking age-related brain injury.
Collapse
Affiliation(s)
- Brandon P. Lucke-Wold
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, USA
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Ryan C. Turner
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, USA
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Aric F. Logsdon
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, USA
| | - James W. Simpkins
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Daniel L. Alkon
- Blanchette Rockefeller Neurosciences Institute, Morgantown, WV, USA
| | - Kelly E. Smith
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, USA
| | - Yi-Wen Chen
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Zhenjun Tan
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, USA
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Jason D. Huber
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, USA
| | - Charles L. Rosen
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, USA
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
- Correspondence to: Charles L. Rosen, MD, PhD, Department of Neurosurgery, West Virginia University School of Medicine, One Medical Center Drive, Suite 4300, Health Sciences Center, PO Box 9183, Morgantown, WV 26506-9183, USA. Tel.: +1 304 293 5041; Fax: +1 304 293 4819;
| |
Collapse
|
15
|
Lee H, Park YH, Jeon YT, Hwang JW, Lim YJ, Kim E, Park SY, Park HP. Sevoflurane post-conditioning increases nuclear factor erythroid 2-related factor and haemoxygenase-1 expression via protein kinase C pathway in a rat model of transient global cerebral ischaemia. Br J Anaesth 2014; 114:307-18. [PMID: 25163467 DOI: 10.1093/bja/aeu268] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The antioxidant mechanism of sevoflurane post-conditioning-induced neuroprotection remains unclear. We determined whether sevoflurane post-conditioning induces nuclear factor erythroid 2-related factor (Nrf2, a master transcription factor regulating antioxidant defence genes) and haemoxygenase-1 (HO-1, an antioxidant enzyme) expression, and whether protein kinase C (PKC) is involved in Nrf2 activation, in a rat model of transient global cerebral ischaemia/reperfusion (I/R) injury. METHODS Eighty-six rats were assigned to five groups: sham (n=6), control (n=20), sevoflurane post-conditioning (two cycles with 2 vol% sevoflurane inhalation for 10 min, n=20), chelerythrine (a PKC inhibitor; 5 mg kg(-1) i.v. administration, n=20), and sevoflurane post-conditioning plus chelerythrine (n=20). The levels of nuclear Nrf2 and cytoplasmic HO-1 were assessed 1 or 7 days after ischaemia (n=10 each, apart from the sham group, n=3). RESULTS On day 1 but not day 7 post-ischaemia, Nrf2 and HO-1 expression were significantly higher in the sevoflurane post-conditioning group than in the control group. Chelerythrine administration reduced the elevated Nrf2 and HO-1 expression induced by sevoflurane post-conditioning. CONCLUSIONS Sevoflurane post-conditioning increased Nrf2/HO-1 expression via PKC signalling in the early phase after transient global cerebral I/R injury, suggesting that activation of antioxidant enzymes may be responsible for sevoflurane post-conditioning-induced neuroprotection in the early phase after cerebral I/R injury.
Collapse
Affiliation(s)
- H Lee
- Department of Anaesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Y H Park
- Department of Anaesthesiology and Pain Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Y T Jeon
- Department of Anaesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - J W Hwang
- Department of Anaesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Y J Lim
- Department of Anaesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - E Kim
- Department of Anaesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - S Y Park
- Department of Anaesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - H P Park
- Department of Anaesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
16
|
Yan H, Ma YL, Gui YZ, Wang SM, Wang XB, Gao F, Wang YP. MG132, a proteasome inhibitor, enhances LDL uptake in HepG2 cells in vitro by regulating LDLR and PCSK9 expression. Acta Pharmacol Sin 2014; 35:994-1004. [PMID: 25042549 DOI: 10.1038/aps.2014.52] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/16/2014] [Indexed: 12/11/2022] Open
Abstract
AIM Expression of liver low-density lipoprotein receptor (LDLR), a determinant regulator in cholesterol homeostasis, is tightly controlled at multiple levels. The aim of this study was to examine whether proteasome inhibition could affect LDLR expression and LDL uptake in liver cells in vitro. METHODS HepG2 cells were examined. Real-time PCR and Western blot analysis were used to determine the mRNA and protein levels, respectively. DiI-LDL uptake assay was used to quantify the LDLR function. Luciferase assay system was used to detect the activity of proprotein convertase subtilisin/kexin type 9 (PCSK9, a major protein mediating LDLR degradation) promoter. Specific siRNAs were used to verify the involvement of PCSK9. RESULTS Treatment of HepG2 cells with the specific proteasome inhibitor MG132 (0.03-3 μmol/L) dose-dependently increased LDLR mRNA and protein levels, as well as LDL uptake. Short-term treatment with MG132 (0.3 μmol/L, up to 8 h) significantly increased both LDLR mRNA and protein levels in HepG2 cells, which was blocked by the specific PKC inhibitors GF 109203X, Gö 6983 or staurosporine. In contrast, a longer treatment with MG132 (0.3 μmol/L, 24 h) did not change LDLR mRNA, but markedly increased LDLR protein by reducing PCSK9-mediated lysosome LDLR degradation. Furthermore, MG132 time-dependently suppressed PCSK9 expression in the HepG2 cells through a SREBP-1c related pathway. Combined treatment with MG132 (0.3 μmol/L) and pravastatin (5 μmol/L) strongly promoted LDLR expression and LDL uptake in HepG2 cells, and blocked the upregulation of PCSK9 caused by pravastatin alone. CONCLUSION Inhibition of proteasome by MG132 in HepG2 cells plays dual roles in LDLR and PCSK9 expression, and exerts a beneficial effect on cholesterol homeostasis.
Collapse
|
17
|
Tan B, Tan J, Du H, Quan Z, Xu X, Jiang X, Luo C, Wu X. HepaCAM inhibits clear cell renal carcinoma 786-0 cell proliferation via blocking PKCε translocation from cytoplasm to plasma membrane. Mol Cell Biochem 2014; 391:95-102. [PMID: 24515280 DOI: 10.1007/s11010-014-1991-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/29/2014] [Indexed: 01/01/2023]
Abstract
Hepatocyte cell adhesion molecule (HepaCAM) plays a crucial role in tumor progression and has been recognized as a novel tumor suppressor gene. The high protein expression level of protein kinase Cε (PKCε) has been discovered in many tumor types. In the present study, we determined HepaCAM and PKCε protein levels in human clear cell renal cell carcinoma (ccRCC) tissues and analyzed the correlation between them. We observed an inverse relationship in the expression of HepaCAM and PKCε in ccRCC and adjacent normal tissues. In ccRCC tissue, HepaCAM expression was undetectable while PKCε expression was high; the opposite was found in the adjacent normal tissue. Western blot analysis demonstrated that PKCε cytosolic protein levels increased while plasma membrane protein levels decreased without any change in total protein following infection of the ccRCC cell line 786-0 with adenovirus-GFP-HepaCAM (Ad-GFP-HepaCAM). Moreover, the application of Ad-GFP-HepaCAM combined with a PKCε-specific translocation inhibitor (εV1-2) effectively inhibited 786-0 cell growth. Ad-mediated expression of HepaCAM in 786-0 cells reduced the levels of phosphorylated AKT and cyclin D1 and inhibited cell proliferation. In summary, our studies point to interesting connections between HepaCAM and PKCε in tissues and in vitro. HepaCAM may prevent the translocation of PKCε from cytosolic to particulate fractions, resulting in the inhibition of 786-0 cell proliferation. Therapeutic manipulation of these novel protein targets may provide new ways of treating ccRCC.
Collapse
Affiliation(s)
- Bing Tan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Tsirimonaki E, Fedonidis C, Pneumaticos SG, Tragas AA, Michalopoulos I, Mangoura D. PKCε signalling activates ERK1/2, and regulates aggrecan, ADAMTS5, and miR377 gene expression in human nucleus pulposus cells. PLoS One 2013; 8:e82045. [PMID: 24312401 PMCID: PMC3842981 DOI: 10.1371/journal.pone.0082045] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 10/29/2013] [Indexed: 12/25/2022] Open
Abstract
The protein kinase C (PKC) signaling, a major regulator of chondrocytic differentiation, has been also implicated in pathological extracellular matrix remodeling, and here we investigate the mechanism of PKCε-dependent regulation of the chondrocytic phenotype in human nucleus pulposus (NP) cells derived from herniated disks. NP cells from each donor were successfully propagated for 25+ culture passages, with remarkable tolerance to repeated freeze-and-thaw cycles throughout long-term culturing. More specifically, after an initial downregulation of COL2A1, a stable chondrocytic phenotype was attested by the levels of mRNA expression for aggrecan, biglycan, fibromodulin, and lumican, while higher expression of SOX-trio and Patched-1 witnessed further differentiation potential. NP cells in culture also exhibited a stable molecular profile of PKC isoforms: throughout patient samples and passages, mRNAs for PKC α, δ, ε, ζ, η, ι, and µ were steadily detected, whereas β, γ, and θ were not. Focusing on the signalling of PKCε, an isoform that may confer protection against degeneration, we found that activation with the PKCε-specific activator small peptide ψεRACK led sequentially to a prolonged activation of ERK1/2, increased abundance of the early gene products ATF, CREB1, and Fos with concurrent silencing of transcription for Ki67, and increases in mRNA expression for aggrecan. More importantly, ψεRACK induced upregulation of hsa-miR-377 expression, coupled to decreases in ADAMTS5 and cleaved aggrecan. Therefore, PKCε activation in late passage NP cells may represent a molecular basis for aggrecan availability, as part of an PKCε/ERK/CREB/AP-1-dependent transcriptional program that includes upregulation of both chondrogenic genes and microRNAs. Moreover, this pathway should be considered as a target for understanding the molecular mechanism of IVD degeneration and for therapeutic restoration of degenerated disks.
Collapse
Affiliation(s)
| | | | - Spiros G. Pneumaticos
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Department of Orthopedics, Athens Medical School, University of Athens, Athens, Greece
| | | | | | - Dimitra Mangoura
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- * E-mail:
| |
Collapse
|
19
|
Tan Z, Turner RC, Leon RL, Li X, Hongpaisan J, Zheng W, Logsdon AF, Naser ZJ, Alkon DL, Rosen CL, Huber JD. Bryostatin improves survival and reduces ischemic brain injury in aged rats after acute ischemic stroke. Stroke 2013; 44:3490-7. [PMID: 24172582 DOI: 10.1161/strokeaha.113.002411] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND PURPOSE Bryostatin, a potent protein kinase C (PKC) activator, has demonstrated therapeutic efficacy in preclinical models of associative memory, Alzheimer disease, global ischemia, and traumatic brain injury. In this study, we tested the hypothesis that administration of bryostatin provides a therapeutic benefit in reducing brain injury and improving stroke outcome using a clinically relevant model of cerebral ischemia with tissue plasminogen activator reperfusion in aged rats. METHODS Acute cerebral ischemia was produced by reversible occlusion of the right middle cerebral artery (MCAO) in 18- to 20-month-old female Sprague-Dawley rats using an autologous blood clot with tissue plasminogen activator-mediated reperfusion. Bryostatin was administered at 6 hours post-MCAO, then at 3, 6, 9, 12, 15, and 18 days after MCAO. Functional assessment was conducted at 2, 7, 14, and 21 days after MCAO. Lesion volume and hemispheric swelling/atrophy were performed at 2, 7, and 21 days post-MCAO. Histological assessment of PKC isozymes was performed at 24 hours post-MCAO. RESULTS Bryostatin-treated rats showed improved survival post-MCAO, especially during the first 4 days. Repeated administration of bryostatin post-MCAO resulted in reduced infarct volume, hemispheric swelling/atrophy, and improved neurological function at 21 days post-MCAO. Changes in αPKC expression and εPKC expression in neurons were noted in bryostatin-treated rats at 24 hours post-MCAO. CONCLUSIONS Repeated bryostatin administration post-MCAO protected the brain from severe neurological injury post-MCAO. Bryostatin treatment improved survival rate, reduced lesion volume, salvaged tissue in infarcted hemisphere by reducing necrosis and peri-infarct astrogliosis, and improved functional outcome after MCAO.
Collapse
Affiliation(s)
- Zhenjun Tan
- From the Department of Neurosurgery, School of Medicine (Z.T., R.C.T., R.L.L., X.L., Z.J.N., C.L.R.), Blanchette Rockefeller Neuroscience Institute (J.H., W.Z., D.L.A.), and Department of Basic Pharmaceutical Science, School of Pharmacy (A.F.L., J.D.H.), West Virginia University Health Sciences Center, Morgantown, WV
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Thompson JW, Dave KR, Saul I, Narayanan SV, Perez-Pinzon MA. Epsilon PKC increases brain mitochondrial SIRT1 protein levels via heat shock protein 90 following ischemic preconditioning in rats. PLoS One 2013; 8:e75753. [PMID: 24058702 PMCID: PMC3772907 DOI: 10.1371/journal.pone.0075753] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 08/18/2013] [Indexed: 01/11/2023] Open
Abstract
Ischemic preconditioning is a neuroprotective mechanism whereby a sublethal ischemic exposure is protective against a subsequent lethal ischemic attack. We previously demonstrated that SIRT1, a nuclear localized stress-activated deacetylase, is vital for ischemic preconditioning neuroprotection. However, a recent study demonstrated that SIRT1 can also localize to the mitochondria. Mitochondrial localized SIRT1 may allow for a direct protection of mitochondria following ischemic preconditioning. The objective of this study was to determine whether ischemic preconditioning increases brain mitochondrial SIRT1 protein levels and to determine the role of PKCɛ and HSP90 in targeting SIRT1 to the mitochondria. Here we report that preconditioning rats, with 2 min of global cerebral ischemia, induces a delayed increase in non-synaptic mitochondrial SIRT1 protein levels which was not observed in synaptic mitochondria. This increase in mitochondrial SIRT1 protein was found to occur only in neuronal cells and was mediated by PKCε activation. Inhibition of HSP90, a protein chaperone involved in mitochondrial protein import, prevented preconditioning induced increases in mitochondrial SIRT1 and PKCε protein. Our work provides new insights into a possible direct role of SIRT1 in modulating mitochondrial function under both normal and stress conditions, and to a possible role of mitochondrial SIRT1 in activating preconditioning induced ischemic tolerance.
Collapse
Affiliation(s)
- John W. Thompson
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Kunjan R. Dave
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Isabel Saul
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Srinivasan V. Narayanan
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Miguel A. Perez-Pinzon
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
21
|
PKC-epsilon activation is required for recognition memory in the rat. Behav Brain Res 2013; 253:280-9. [PMID: 23911427 DOI: 10.1016/j.bbr.2013.07.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 07/18/2013] [Accepted: 07/22/2013] [Indexed: 11/20/2022]
Abstract
Activation of PKCɛ, an abundant and developmentally regulated PKC isoform in the brain, has been implicated in memory throughout life and across species. Yet, direct evidence for a mechanistic role for PKCɛ in memory is still lacking. Hence, we sought to evaluate this in rats, using short-term treatments with two PKCɛ-selective peptides, the inhibitory ɛV1-2 and the activating ψɛRACK, and the novel object recognition task (NORT). Our results show that the PKCɛ-selective activator ψɛRACK, did not have a significant effect on recognition memory. In the short time frames used, however, inhibition of PKCɛ activation with the peptide inhibitor ɛV1-2 significantly impaired recognition memory. Moreover, when we addressed at the molecular level the immediate proximal signalling events of PKCɛ activation in acutely dissected rat hippocampi, we found that ψɛRACK increased in a time-dependent manner phosphorylation of MARCKS and activation of Src, Raf, and finally ERK1/2, whereas ɛV1-2 inhibited all basal activity of this pathway. Taken together, these findings present the first direct evidence that PKCɛ activation is an essential molecular component of recognition memory and point toward the use of systemically administered PKCɛ-regulating peptides as memory study tools and putative therapeutic agents.
Collapse
|
22
|
Monti M, Donnini S, Morbidelli L, Giachetti A, Mochly-Rosen D, Mignatti P, Ziche M. PKCε activation promotes FGF-2 exocytosis and induces endothelial cell proliferation and sprouting. J Mol Cell Cardiol 2013; 63:107-17. [PMID: 23880610 DOI: 10.1016/j.yjmcc.2013.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 07/11/2013] [Indexed: 11/19/2022]
Abstract
Protein kinase C epsilon (PKCε) activation controls fibroblast growth factor-2 (FGF-2) angiogenic signaling. Here, we examined the effect of activating PKCε on FGF-2 dependent vascular growth and endothelial activation. ψεRACK, a selective PKCε agonist induces pro-angiogenic responses in endothelial cells, including formation of capillary like structures and cell growth. These effects are mediated by FGF-2 export to the cell membrane, as documented by biotinylation and immunofluorescence, and FGF-2/FGFR1 signaling activation, as attested by ERK1/2-STAT-3 phosphorylation and de novo FGF-2 synthesis. Similarly, vascular endothelial growth factor (VEGF) activates PKCε in endothelial cells, and promotes FGF-2 export and FGF-2/FGFR1 signaling activation. ψεRACK fails to elicit responses in FGF-2(-/-) endothelial cells, and in cells pretreated with methylamine (MeNH2), an exocytosis inhibitor, indicating that both intracellular FGF-2 and its export toward the membrane are required for the ψεRACK activity. In vivo ψεRACK does not induce angiogenesis in the rabbit cornea. However, ψεRACK promotes VEGF angiogenic responses, an effect sustained by endothelial FGF-2 release and synthesis, since anti-FGF-2 antibody strongly attenuates VEGF responses. The results demonstrate that PKCε stimulation promotes angiogenesis and modulates VEGF activity, by inducing FGF-2 release and autocrine signaling.
Collapse
Affiliation(s)
- Martina Monti
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Thompson JW, Narayanan SV, Perez-Pinzon MA. Redox signaling pathways involved in neuronal ischemic preconditioning. Curr Neuropharmacol 2013; 10:354-69. [PMID: 23730259 PMCID: PMC3520045 DOI: 10.2174/157015912804143577] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 07/23/2012] [Accepted: 08/16/2012] [Indexed: 12/28/2022] Open
Abstract
There is extensive evidence that the restoration of blood flow following cerebral ischemia contributes greatly to the pathophysiology of ischemia mediated brain injury. The initiating stimulus of reperfusion injury is believed to be the excessive production of reactive oxygen (ROS) and nitrogen (RNS) species by the mitochondria. ROS and RNS generation leads to mitochondrial protein, lipid and DNA oxidation which impedes normal mitochondrial physiology and initiates cellular death pathways. However not all ROS and RNS production is detrimental. It has been demonstrated that low levels of ROS production are protective and may serve as a trigger for activation of ischemic preconditioning. Ischemic preconditioning is a neuroprotective mechanism which is activated upon a brief sublethal ischemic exposure and is sufficient to provide protection against a subsequent lethal ischemic insult. Numerous proteins and signaling pathways have been implicated in the ischemic preconditioning neuroprotective response. In this review we examine the origin and mechanisms of ROS and RNS production following ischemic/reperfusion and the role of free radicals in modulating proteins associated with ischemic preconditioning neuroprotection.
Collapse
Affiliation(s)
- John W Thompson
- Cerebral Vascular Disease Research Center, Department of Neurology, University of Miami, Miller School of Medicine, Miami, Fl 33136
| | | | | |
Collapse
|
24
|
Abstract
Protein kinase C (PKC) has been a tantalizing target for drug discovery ever since it was first identified as the receptor for the tumour promoter phorbol ester in 1982. Although initial therapeutic efforts focused on cancer, additional indications--including diabetic complications, heart failure, myocardial infarction, pain and bipolar disorder--were targeted as researchers developed a better understanding of the roles of eight conventional and novel PKC isozymes in health and disease. Unfortunately, both academic and pharmaceutical efforts have yet to result in the approval of a single new drug that specifically targets PKC. Why does PKC remain an elusive drug target? This Review provides a short account of some of the efforts, challenges and opportunities in developing PKC modulators to address unmet clinical needs.
Collapse
|
25
|
Sun X, Budas GR, Xu L, Barreto GE, Mochly-Rosen D, Giffard RG. Selective activation of protein kinase C∊ in mitochondria is neuroprotective in vitro and reduces focal ischemic brain injury in mice. J Neurosci Res 2013; 91:799-807. [PMID: 23426889 DOI: 10.1002/jnr.23186] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 11/13/2012] [Accepted: 11/13/2012] [Indexed: 01/08/2023]
Abstract
Activation of protein kinase C∊ (PKC∊) confers protection against neuronal ischemia/reperfusion. Activation of PKC∊ leads to its translocation to multiple intracellular sites, so a mitochondria-selective PKC∊ activator was used to test the importance of mitochondrial activation to the neuroprotective effect of PKC∊. PKC∊ can regulate key cytoprotective mitochondrial functions, including electron transport chain activity, reactive oxygen species (ROS) generation, mitochondrial permeability transition, and detoxification of reactive aldehydes. We tested the ability of mitochondria-selective activation of PKC∊ to protect primary brain cell cultures or mice subjected to ischemic stroke. Pretreatment with either general PKC∊ activator peptide, TAT-Ψ∊RACK, or mitochondrial-selective PKC∊ activator, TAT-Ψ∊HSP90, reduced cell death induced by simulated ischemia/reperfusion in neurons, astrocytes, and mixed neuronal cultures. The protective effects of both TAT-Ψ∊RACK and TAT-Ψ∊HSP90 were blocked by the PKC∊ antagonist ∊V1-2 , indicating that protection requires PKC∊ interaction with its anchoring protein, TAT-∊RACK. Further supporting a mitochondrial mechanism for PKC∊, neuroprotection by TAT-Ψ∊HSP90 was associated with a marked delay in mitochondrial membrane depolarization and significantly attenuated ROS generation during ischemia. Importantly, TAT-Ψ∊HSP90 reduced infarct size and reduced neurological deficit in C57/BL6 mice subjected to middle cerebral artery occlusion and 24 hr of reperfusion. Thus selective activation of mitochondrial PKC∊ preserves mitochondrial function in vitro and improves outcome in vivo, suggesting potential therapeutic value clinically when brain ischemia is anticipated, including neurosurgery and cardiac surgery.
Collapse
Affiliation(s)
- Xiaoyun Sun
- Department of Anesthesia, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
26
|
Gundimeda U, McNeill TH, Elhiani AA, Schiffman JE, Hinton DR, Gopalakrishna R. Green tea polyphenols precondition against cell death induced by oxygen-glucose deprivation via stimulation of laminin receptor, generation of reactive oxygen species, and activation of protein kinase Cε. J Biol Chem 2012; 287:34694-708. [PMID: 22879598 DOI: 10.1074/jbc.m112.356899] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
As the development of synthetic drugs for the prevention of stroke has proven challenging, utilization of natural products capable of preconditioning neuronal cells against ischemia-induced cell death would be a highly useful complementary approach. In this study using an oxygen-glucose deprivation and reoxygenation (OGD/R) model in PC12 cells, we show that 2-day pretreatment with green tea polyphenols (GTPP) and their active ingredient, epigallocatechin-3-gallate (EGCG), protects cells from subsequent OGD/R-induced cell death. A synergistic interaction was observed between GTPP constituents, with unfractionated GTPP more potently preconditioning cells than EGCG. GTPP-induced preconditioning required the 67-kDa laminin receptor (67LR), to which EGCG binds with high affinity. 67LR also mediated the generation of reactive oxygen species (ROS) via activation of NADPH oxidase. An exogenous ROS-generating system bypassed 67LR to induce preconditioning, suggesting that sublethal levels of ROS are indeed an important mediator in GTPP-induced preconditioning. This role for ROS was further supported by the fact that antioxidants blocked GTPP-induced preconditioning. Additionally, ROS induced an activation and translocation of protein kinase C (PKC), particularly PKCε from the cytosol to the membrane/mitochondria, which was also blocked by antioxidants. The crucial role of PKC in GTPP-induced preconditioning was supported by use of its specific inhibitors. Preconditioning was increased by conditional overexpression of PKCε and decreased by its knock-out with siRNA. Collectively, these results suggest that GTPP stimulates 67LR and thereby induces NADPH oxidase-dependent generation of ROS, which in turn induces activation of PKC, particularly prosurvival isoenzyme PKCε, resulting in preconditioning against cell death induced by OGD/R.
Collapse
Affiliation(s)
- Usha Gundimeda
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | | | | | |
Collapse
|
27
|
Lymphocyte cell kinase activation mediates neuroprotection during ischemic preconditioning. J Neurosci 2012; 32:7278-86. [PMID: 22623673 DOI: 10.1523/jneurosci.6273-11.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The molecular mechanisms underlying preconditioning (PC), a powerful endogenous neuroprotective phenomenon, remain to be fully elucidated. Once identified, these endogenous mechanisms could be manipulated for therapeutic gain. We investigated whether lymphocyte cell kinase (Lck), a member of the Src kinases family, mediates PC. We used both in vitro primary cortical neurons and in vivo mouse cerebral focal ischemia models of preconditioning, cellular injury, and neuroprotection. Genetically engineered mice deficient in Lck, gene silencing using siRNA, and pharmacological approaches were used. Cortical neurons preconditioned with sublethal exposure to NMDA or oxygen glucose deprivation (OGD) exhibited enhanced Lck kinase activity, and were resistant to injury on subsequent exposure to lethal levels of NMDA or OGD. Lck gene silencing using siRNA abolished tolerance against both stimuli. Lck-/- mice or neurons isolated from Lck-/- mice did not exhibit PC-induced tolerance. An Lck antagonist administered to wild-type mice significantly attenuated the neuroprotective effect of PC in the mouse focal ischemia model. Using pharmacological and gene silencing strategies, we also showed that PKCε is an upstream regulator of Lck, and Fyn is a downstream target of Lck. We have discovered that Lck plays an essential role in PC in both cellular and animal models of stroke. Our data also show that the PKCε-Lck-Fyn axis is a key mediator of PC. These findings provide new opportunities for stroke therapy development.
Collapse
|
28
|
Ye Z, Huang YM, Wang E, Zuo ZY, Guo QL. Sevoflurane-induced delayed neuroprotection involves mitoKATP channel opening and PKC ε activation. Mol Biol Rep 2012; 39:5049-57. [DOI: 10.1007/s11033-011-1290-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 11/30/2011] [Indexed: 11/29/2022]
|
29
|
Lin HW, Della-Morte D, Thompson JW, Gresia VL, Narayanan SV, DeFazio RA, Raval AP, Saul I, Dave KR, Morris KC, Si ML, Perez-Pinzon M. Differential effects of delta and epsilon protein kinase C in modulation of postischemic cerebral blood flow. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 737:63-9. [PMID: 22259083 PMCID: PMC4086166 DOI: 10.1007/978-1-4614-1566-4_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Cerebral ischemia causes cerebral blood flow (CBF) derangements resulting in neuronal damage by enhanced protein kinase C delta (δPKC) levels leading to hippocampal and cortical neuronal death after ischemia. Contrarily, activation of εPKC mediates ischemic tolerance by decreasing vascular tone providing neuroprotection. However, whether part of this protection is due to the role of differential isozymes of PKCs on CBF following cerebral ischemia remains poorly understood. Rats pretreated with a δPKC specific inhibitor (δV1-1, 0.5 mg/kg) exhibited attenuation of hyperemia and latent hypoperfusion characterized by vasoconstriction followed by vasodilation of microvessels after two-vessel occlusion plus hypotension. In an asphyxial cardiac arrest (ACA) model, rats treated with δ V1-1 (pre- and postischemia) exhibited improved perfusion after 24 h and less hippocampal CA1 and cortical neuronal death 7 days after ACA. On the contrary, εPKC-selective peptide activator, conferred neuroprotection in the CA1 region of the rat hippocampus 30 min before induction of global cerebral ischemia and decreased regional CBF during the reperfusion phase. These opposing effects of δ v. εPKC suggest a possible therapeutic potential by modulating CBF preventing neuronal damage after cerebral ischemia.
Collapse
Affiliation(s)
- Hung Wen Lin
- Department of Neurology, Cerebral Vascular Disease Research Center, D4-5 University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - David Della-Morte
- Department of Neurology, Cerebral Vascular Disease Research Center, D4-5 University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - John W. Thompson
- Department of Neurology, Cerebral Vascular Disease Research Center, D4-5 University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Victoria L. Gresia
- Department of Neurology, Cerebral Vascular Disease Research Center, D4-5 University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Srinivasan V. Narayanan
- Department of Neurology, Cerebral Vascular Disease Research Center, D4-5 University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - R. Anthony DeFazio
- Department of Neurology, Cerebral Vascular Disease Research Center, D4-5 University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Ami P. Raval
- Department of Neurology, Cerebral Vascular Disease Research Center, D4-5 University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Isabel Saul
- Department of Neurology, Cerebral Vascular Disease Research Center, D4-5 University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Kunjan R. Dave
- Department of Neurology, Cerebral Vascular Disease Research Center, D4-5 University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Kahlilia C. Morris
- Department of Neurology, Cerebral Vascular Disease Research Center, D4-5 University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Min-Liang Si
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| | - Miguel Perez-Pinzon
- Department of Neurology, Cerebral Vascular Disease Research Center, D4-5 University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
30
|
Bu X, Zhang N, Yang X, Liu Y, Du J, Liang J, Xu Q, Li J. Proteomic analysis of cPKCβII-interacting proteins involved in HPC-induced neuroprotection against cerebral ischemia of mice. J Neurochem 2011; 117:346-56. [PMID: 21291475 DOI: 10.1111/j.1471-4159.2011.07209.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hypoxic preconditioning (HPC) initiates intracellular signaling pathway to provide protection against subsequent cerebral ischemic injuries, and its mechanism may provide molecular targets for therapy in stroke. According to our study of conventional protein kinase C βII (cPKCβII) activation in HPC, the role of cPKCβII in HPC-induced neuroprotection and its interacting proteins were determined in this study. The autohypoxia-induced HPC and middle cerebral artery occlusion (MCAO)-induced cerebral ischemia mouse models were prepared as reported. We found that HPC reduced 6 h MCAO-induced neurological deficits, infarct volume, edema ratio and cell apoptosis in peri-infarct region (penumbra), but cPKCβII inhibitors Go6983 and LY333531 blocked HPC-induced neuroprotection. Proteomic analysis revealed that the expression of four proteins in cytosol and eight proteins in particulate fraction changed significantly among 49 identified cPKCβII-interacting proteins in cortex of HPC mice. In addition, HPC could inhibit the decrease of phosphorylated collapsin response mediator protein-2 (CRMP-2) level and increase of CRMP-2 breakdown product. TAT-CRMP-2 peptide, which prevents the cleavage of endogenous CRMP-2, could inhibit CRMP-2 dephosphorylation and proteolysis as well as the infarct volume of 6 h MCAO mice. This study is the first to report multiple cPKCβII-interacting proteins in HPC mouse brain and the role of cPKCβII-CRMP-2 in HPC-induced neuroprotection against early stages of ischemic injuries in mice.
Collapse
Affiliation(s)
- Xiangning Bu
- Department of Neurobiology and Beijing Institute for Neuroscience, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Wang Q, Li X, Chen Y, Wang F, Yang Q, Chen S, Min Y, Li X, Xiong L. Activation of Epsilon Protein Kinase C-Mediated Anti-Apoptosis Is Involved in Rapid Tolerance Induced by Electroacupuncture Pretreatment Through Cannabinoid Receptor Type 1. Stroke 2011; 42:389-96. [PMID: 21183751 DOI: 10.1161/strokeaha.110.597336] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Qiang Wang
- From the Department of Anesthesiology (Q.W., X.L., F.W., Q.Y., S.Y., Y.M., L.X., L.X.), Xijing Hospital, Fourth Military Medical University, Xi'an, China; Center for Biomedical Research on Pain (Y.C.), College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xuying Li
- From the Department of Anesthesiology (Q.W., X.L., F.W., Q.Y., S.Y., Y.M., L.X., L.X.), Xijing Hospital, Fourth Military Medical University, Xi'an, China; Center for Biomedical Research on Pain (Y.C.), College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yanke Chen
- From the Department of Anesthesiology (Q.W., X.L., F.W., Q.Y., S.Y., Y.M., L.X., L.X.), Xijing Hospital, Fourth Military Medical University, Xi'an, China; Center for Biomedical Research on Pain (Y.C.), College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Feng Wang
- From the Department of Anesthesiology (Q.W., X.L., F.W., Q.Y., S.Y., Y.M., L.X., L.X.), Xijing Hospital, Fourth Military Medical University, Xi'an, China; Center for Biomedical Research on Pain (Y.C.), College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Qianzi Yang
- From the Department of Anesthesiology (Q.W., X.L., F.W., Q.Y., S.Y., Y.M., L.X., L.X.), Xijing Hospital, Fourth Military Medical University, Xi'an, China; Center for Biomedical Research on Pain (Y.C.), College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Shaoyang Chen
- From the Department of Anesthesiology (Q.W., X.L., F.W., Q.Y., S.Y., Y.M., L.X., L.X.), Xijing Hospital, Fourth Military Medical University, Xi'an, China; Center for Biomedical Research on Pain (Y.C.), College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yuyuan Min
- From the Department of Anesthesiology (Q.W., X.L., F.W., Q.Y., S.Y., Y.M., L.X., L.X.), Xijing Hospital, Fourth Military Medical University, Xi'an, China; Center for Biomedical Research on Pain (Y.C.), College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xin Li
- From the Department of Anesthesiology (Q.W., X.L., F.W., Q.Y., S.Y., Y.M., L.X., L.X.), Xijing Hospital, Fourth Military Medical University, Xi'an, China; Center for Biomedical Research on Pain (Y.C.), College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Lize Xiong
- From the Department of Anesthesiology (Q.W., X.L., F.W., Q.Y., S.Y., Y.M., L.X., L.X.), Xijing Hospital, Fourth Military Medical University, Xi'an, China; Center for Biomedical Research on Pain (Y.C.), College of Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
32
|
Della-Morte D, Raval AP, Dave KR, Lin HW, Perez-Pinzon MA. Post-ischemic activation of protein kinase C ε protects the hippocampus from cerebral ischemic injury via alterations in cerebral blood flow. Neurosci Lett 2011; 487:158-62. [PMID: 20951185 PMCID: PMC3004991 DOI: 10.1016/j.neulet.2010.10.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 10/05/2010] [Accepted: 10/05/2010] [Indexed: 11/17/2022]
Abstract
Protein kinase C (PKC) is a family of serine/threonine-isozymes that are involved in many signaling events in normal and disease states. Previous studies from our lab have demonstrated that ɛPKC plays a pivotal role in neuroprotection induced by ischemic preconditioning. However, the role of ɛPKC during and after brain ischemia is not clearly defined. Therefore, in the present study, we tested the hypothesis that activation of ɛPKC during an ischemic event is neuroprotective. Furthermore, other studies have demonstrated that ɛPKC mediates cerebral ischemic tolerance in the rat brain by decreasing vascular tone. Thus, we also tested the effects of ɛPKC activation during ischemia on cerebral blood flow (CBF). We found that ψɛ-Receptors for Activated C Kinase (RACK), a ɛPKC-selective peptide activator, injected intravenously 30min before induction of global cerebral ischemia conferred neuroprotection in the CA1 region of the rat hippocampus. Moreover, measurements of CBF before, during, and after cerebral ischemia revealed a significant reduction in the reperfusion phase of rats pretreated with ψɛRACK as compared to Tat peptide (vehicle). Our results suggest that ɛPKC can protect the rat brain against ischemic damage by regulating CBF. Thus, ɛPKC may be one of the treatment modalities against ischemic injury.
Collapse
Affiliation(s)
- D Della-Morte
- Department of Neurology, University of Miami, Miami, FL 33101, USA
| | | | | | | | | |
Collapse
|
33
|
Totoń E, Ignatowicz E, Skrzeczkowska K, Rybczyńska M. Protein kinase Cε as a cancer marker and target for anticancer therapy. Pharmacol Rep 2011; 63:19-29. [DOI: 10.1016/s1734-1140(11)70395-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 06/10/2010] [Indexed: 01/23/2023]
|
34
|
Kim EJ, Raval AP, Hirsch N, Perez-Pinzon MA. Ischemic preconditioning mediates cyclooxygenase-2 expression via nuclear factor-kappa B activation in mixed cortical neuronal cultures. Transl Stroke Res 2010; 1:40-7. [PMID: 20606709 PMCID: PMC2893355 DOI: 10.1007/s12975-009-0006-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear factor-kappaB (NF-κB) activation occurs following ischemic preconditioning (IPC) in brain. However, the upstream signaling messengers and down-stream targets of NF-κB required for induction of IPC remain undefined. In a previous study, we demonstrated that epsilon protein kinase c (εPKC) was a key mediator of IPC in brain. Activation of εPKC induced cyclooygenase-2 (COX-2) expression and conferred ischemic tolerance in the neuronal and hippocampal slice models. Here, we hypothesized that IPC-mediated COX-2 expression was mediated by NF-κB. We tested this hypothesis in mixed cortical neuron/astrocyte cell cultures. To simulate IPC or ischemia, cell cultures were exposed to 1 or 4 h of oxygen-glucose deprivation, respectively. Our results demonstrated translocation of p65 and p50 subunits of NF-κB into nucleus following IPC or εPKC activation. NF-κB inhibition with pyrrolidine dithiocarbamate (10 μM) abolished IPC or εPKC activator-mediated neuroprotection indicating that NF-κB activation was involved in ischemic tolerance. In parallel studies, inhibition of either εPKC or the extracellular signal-regulated kinase (ERK 1/2) pathway reduced IPC-induced NF-κB activation. Finally, inhibition of NF-κB blocked IPC-induced COX-2 expression. In conclusion, we demonstrated that IPC-signaling cascade comprises εPKC activation→ERK1/2 activation→NF-κB translocation to nucleus→COX-2 expression resulting in neuroprotection in mixed neuronal culture.
Collapse
Affiliation(s)
- Eun Joo Kim
- Cerebral Vascular Disease Research Center, Department of Neurology and Neuroscience Program (D4-5), University of Miami Miller School of Medicine, P.O. Box 016960, Miami, FL 33101, USA
| | - Ami P. Raval
- Cerebral Vascular Disease Research Center, Department of Neurology and Neuroscience Program (D4-5), University of Miami Miller School of Medicine, P.O. Box 016960, Miami, FL 33101, USA
| | - Nina Hirsch
- Cerebral Vascular Disease Research Center, Department of Neurology and Neuroscience Program (D4-5), University of Miami Miller School of Medicine, P.O. Box 016960, Miami, FL 33101, USA
| | - Miguel A. Perez-Pinzon
- Cerebral Vascular Disease Research Center, Department of Neurology and Neuroscience Program (D4-5), University of Miami Miller School of Medicine, P.O. Box 016960, Miami, FL 33101, USA
| |
Collapse
|
35
|
Churchill EN, Qvit N, Mochly-Rosen D. Rationally designed peptide regulators of protein kinase C. Trends Endocrinol Metab 2009; 20:25-33. [PMID: 19056296 PMCID: PMC2714361 DOI: 10.1016/j.tem.2008.10.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 09/30/2008] [Accepted: 10/01/2008] [Indexed: 11/23/2022]
Abstract
Protein-protein interactions sequester enzymes close to their substrates. Protein kinase C (PKC) is one example of a ubiquitous signaling molecule with effects that are dependent upon localization. Short peptides derived from interaction sites between each PKC isozyme and its receptor for activated C kinase act as highly specific inhibitors and have become available as selective drugs in basic research and animal models of human diseases, such as myocardial infarction and hyperglycemia. Whereas the earlier inhibitory peptides are highly specific, we believe that peptides targeting additional interactions between PKC and selective substrates will generate even more selective tools that regulate different functions of individual isozymes. Here, we discuss the methodologies and applications for identifying selective regulators of PKC.
Collapse
Affiliation(s)
- Eric N Churchill
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|