1
|
Catalbas K, Pattnaik T, Congdon S, Nelson C, Villano LC, Sweeney P. Hypothalamic AgRP neurons regulate the hyperphagia of lactation. Mol Metab 2024; 86:101975. [PMID: 38925247 PMCID: PMC11268337 DOI: 10.1016/j.molmet.2024.101975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
OBJECTIVE The lactational period is associated with profound hyperphagia to accommodate the energy demands of nursing. These changes are important for the long-term metabolic health of the mother and children as altered feeding during lactation increases the risk of mothers and offspring developing metabolic disorders later in life. However, the specific behavioral mechanisms and neural circuitry mediating the hyperphagia of lactation are incompletely understood. METHODS Here, we utilized home cage feeding devices to characterize the dynamics of feeding behavior in lactating mice. A combination of pharmacological and behavioral assays were utilized to determine how lactation alters meal structure, circadian aspects of feeding, hedonic feeding, and sensitivity to hunger and satiety signals in lactating mice. Finally, we utilized chemogenetic, immunohistochemical, and in vivo imaging approaches to characterize the role of hypothalamic agouti-related peptide (AgRP) neurons in lactational-hyperphagia. RESULTS The lactational period is associated with increased meal size, altered circadian patterns of feeding, reduced sensitivity to gut-brain satiety signals, and enhanced sensitivity to negative energy balance. Hypothalamic AgRP neurons display increased sensitivity to negative energy balance and altered in vivo activity during the lactational state. Further, using in vivo imaging approaches we demonstrate that AgRP neurons are directly activated by lactation. Chemogenetic inhibition of AgRP neurons acutely reduces feeding in lactating mice, demonstrating an important role for these neurons in lactational-hyperphagia. CONCLUSIONS Together, these results show that lactation collectively alters multiple components of feeding behavior and position AgRP neurons as an important cellular substrate mediating the hyperphagia of lactation.
Collapse
Affiliation(s)
- Kerem Catalbas
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology, USA; University of Illinois Urbana-Champaign Neuroscience Program, USA
| | - Tanya Pattnaik
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology, USA
| | - Samuel Congdon
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology, USA
| | - Christina Nelson
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology, USA
| | - Lara C Villano
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology, USA
| | - Patrick Sweeney
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology, USA; University of Illinois Urbana-Champaign Neuroscience Program, USA.
| |
Collapse
|
2
|
Jeong H, Chong HJ, So J, Jo Y, Yune TY, Ju BG. Ghrelin Represses Thymic Stromal Lymphopoietin Gene Expression through Activation of Glucocorticoid Receptor and Protein Kinase C Delta in Inflamed Skin Keratinocytes. Int J Mol Sci 2022; 23:ijms23073977. [PMID: 35409338 PMCID: PMC8999772 DOI: 10.3390/ijms23073977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 12/04/2022] Open
Abstract
Ghrelin, a peptide hormone secreted from enteroendocrine cells of the gastrointestinal tract, has anti-inflammatory activity in skin diseases, including dermatitis and psoriasis. However, the molecular mechanism underlying the beneficial effect of ghrelin on skin inflammation is not clear. In this study, we found that ghrelin alleviates atopic dermatitis (AD)-phenotypes through suppression of thymic stromal lymphopoietin (TSLP) gene activation. Knockdown or antagonist treatment of growth hormone secretagogue receptor 1a (GHSR1a), the receptor for ghrelin, suppressed ghrelin-induced alleviation of AD-like phenotypes and suppression of TSLP gene activation. We further found that ghrelin induces activation of the glucocorticoid receptor (GR), leading to the binding of GR with histone deacetylase 3 (HDAC3) and nuclear receptor corepressor (NCoR) NCoR corepressor to negative glucocorticoid response element (nGRE) on the TSLP gene promoter. In addition, ghrelin-induced protein kinase C δ (PKCδ)-mediated phosphorylation of p300 at serine 89 (S89), which decreased the acetylation and DNA binding activity of nuclear factor- κB (NF-κB) p65 to the TSLP gene promoter. Knockdown of PKCδ abolished ghrelin-induced suppression of TSLP gene activation. Our study suggests that ghrelin may help to reduce skin inflammation through GR and PKCδ-p300-NF-κB-mediated suppression of TSLP gene activation.
Collapse
Affiliation(s)
- Hayan Jeong
- Department of Life Science, Sogang University, Seoul 04107, Korea; (H.J.); (H.-J.C.); (J.S.); (Y.J.)
| | - Hyo-Jin Chong
- Department of Life Science, Sogang University, Seoul 04107, Korea; (H.J.); (H.-J.C.); (J.S.); (Y.J.)
| | - Jangho So
- Department of Life Science, Sogang University, Seoul 04107, Korea; (H.J.); (H.-J.C.); (J.S.); (Y.J.)
| | - Yejin Jo
- Department of Life Science, Sogang University, Seoul 04107, Korea; (H.J.); (H.-J.C.); (J.S.); (Y.J.)
| | - Tae-Young Yune
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul 02447, Korea;
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Bong-Gun Ju
- Department of Life Science, Sogang University, Seoul 04107, Korea; (H.J.); (H.-J.C.); (J.S.); (Y.J.)
- Correspondence: ; Tel.: +82-2-705-8455
| |
Collapse
|
3
|
Wellman M, Budin R, Woodside B, Abizaid A. Energetic demands of lactation produce an increase in the expression of growth hormone secretagogue receptor in the hypothalamus and ventral tegmental area of the rat despite a reduction in circulating ghrelin. J Neuroendocrinol 2022; 34:e13126. [PMID: 35365872 DOI: 10.1111/jne.13126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/07/2022] [Accepted: 02/08/2022] [Indexed: 12/26/2022]
Abstract
Lactating rats show changes in the secretion of hormones and brain signals that promote hyperphagia and facilitate the production of milk. Little is known, however, about the role of ghrelin in the mechanisms sustaining lactational hyperphagia. Here, we used Wistar female rats that underwent surgery to sever the galactophores to prevent milk delivery (GC rats) and decrease the energetic drain of milk delivery. We compared plasma acyl-ghrelin concentrations and growth hormone secretagogue receptor (GHSR) mRNA expression in different brain regions of GC rats with those of sham operated lactating and nonlactating rats. Additional lactating and nonlactating rats were implanted with cannulae aimed at the lateral ventricles and were used to compare feeding responses to central ghrelin or GHSR antagonist infusions to those of nonlactating rats receiving similar infusions on day 14-16 postpartum (pp). Results show lower plasma acyl-ghrelin concentrations on day 15 pp sham operated lactating rats compared to GC or nonlactating rats. These changes occur in association with increased GHSR mRNA expression in the hypothalamic arcuate nucleus (ARC) and ventral tegmental area (VTA) of sham operated lactating rats. Despite lactational hyperphagia, infusions of ghrelin (0.25 or 1 μg) resulted in similar increases in food intake in lactating and nonlactating rats. In addition, infusions of the GHSR antagonist JMV3002 (4 μg in 1 μl of vehicle) produced greater suppression of food intake in lactating rats than in nonlactating rats. These data suggest that, despite lower plasma ghrelin, the energetic drain of lactation increases sensitivity to the orexigenic effects of ghrelin in brain regions important for food intake and energy balance, and these events are associated with lactational hyperphagia.
Collapse
Affiliation(s)
- Martin Wellman
- Neuroscience Department, Carleton University, Ottawa, Ontario, Canada
| | - Radek Budin
- Centre for Studies in Behavioural Neurobiology, Psychology Department, Concordia University, Montreal, Quebec, Canada
| | - Barbara Woodside
- Centre for Studies in Behavioural Neurobiology, Psychology Department, Concordia University, Montreal, Quebec, Canada
| | - Alfonso Abizaid
- Neuroscience Department, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
The Role of the Gastric Hormones Ghrelin and Nesfatin-1 in Reproduction. Int J Mol Sci 2021. [DOI: 10.3390/ijms222011059
expr 982648605 + 846360072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Ghrelin and nesfatin-1 are enteroendocrine peptide hormones expressed in rat X/A-like and human P/D1cells of the gastric mucosa. Besides their effect on food intake, both peptides are also implicated in various other physiological systems. One of these is the reproductive system. This present review illustrates the distribution of ghrelin and nesfatin-1 along the hypothalamus–pituitary–gonadal (HPG) axis, their modulation by reproductive hormones, and effects on reproductive functions as well as highlighting gaps in current knowledge to foster further research.
Collapse
|
5
|
The Role of the Gastric Hormones Ghrelin and Nesfatin-1 in Reproduction. Int J Mol Sci 2021; 22:11059. [PMID: 34681721 PMCID: PMC8539660 DOI: 10.3390/ijms222011059&set/a 934136356+984013925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Ghrelin and nesfatin-1 are enteroendocrine peptide hormones expressed in rat X/A-like and human P/D1cells of the gastric mucosa. Besides their effect on food intake, both peptides are also implicated in various other physiological systems. One of these is the reproductive system. This present review illustrates the distribution of ghrelin and nesfatin-1 along the hypothalamus-pituitary-gonadal (HPG) axis, their modulation by reproductive hormones, and effects on reproductive functions as well as highlighting gaps in current knowledge to foster further research.
Collapse
|
6
|
Schalla MA, Stengel A. The Role of the Gastric Hormones Ghrelin and Nesfatin-1 in Reproduction. Int J Mol Sci 2021; 22:ijms222011059. [PMID: 34681721 PMCID: PMC8539660 DOI: 10.3390/ijms222011059] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/11/2022] Open
Abstract
Ghrelin and nesfatin-1 are enteroendocrine peptide hormones expressed in rat X/A-like and human P/D1cells of the gastric mucosa. Besides their effect on food intake, both peptides are also implicated in various other physiological systems. One of these is the reproductive system. This present review illustrates the distribution of ghrelin and nesfatin-1 along the hypothalamus–pituitary–gonadal (HPG) axis, their modulation by reproductive hormones, and effects on reproductive functions as well as highlighting gaps in current knowledge to foster further research.
Collapse
Affiliation(s)
- Martha A. Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 12203 Berlin, Germany;
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 12203 Berlin, Germany;
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, 72076 Tübingen, Germany
- Correspondence:
| |
Collapse
|
7
|
Xavier JLP, Scomparin DX, Pontes CC, Ribeiro PR, Cordeiro MM, Marcondes JA, Mendonça FO, Silva MTD, Oliveira FBD, Franco GCN, Grassiolli S. Litter Size Reduction Induces Metabolic and Histological Adjustments in Dams throughout Lactation with Early Effects on Offspring. AN ACAD BRAS CIENC 2019; 91:e20170971. [PMID: 30916150 DOI: 10.1590/0001-3765201920170971] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/07/2018] [Indexed: 01/08/2023] Open
Abstract
In the present study we analyzed morphological and metabolic alterations in dams nursing small litters and their consequences to offspring throughout lactation. Offspring sizes were adjusted to Small Litter (SL, 3 pups/ dam) and Normal Litter (NL, 9 pups/ dam). Body weight, food intake, white adipose tissue (WAT) content, histological analysis of the pancreas, mammary gland (MG) and brown adipose tissue (BAT) as well as, plasma parameters and milk composition were measured in dams and pups on the 7th, 14th and 21st days of lactation. In general, SL-dams presented higher body weight and retroperitoneal fat content, elevated fat infiltration in BAT, reduced islets size and hyperglycemia throughout lactation in relation to NL-dams (p<0.05). Moreover, MG from SL-dams had reduced alveoli development and high adipocytes content, resulting in milk with elevated energetic value and fat content in relation to NL-dams (p<0.05). Maternal states influenced offspring anthropometric conditions during lactation, offspring-SL displayed higher body weight and growth, hyperglycemia, augmented lipid deposition in BAT and elevated islet. Thus, maternal histological and metabolic changes are due to modifications to nursing small litters and reinforce the importance of preserving maternal health during lactation avoiding early programming effects on offspring preventing metabolic consequences later in life.
Collapse
Affiliation(s)
- João Lucas P Xavier
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Uvaranas, 84030-900 Ponta Grossa, PR, Brazil
| | - Dionizia X Scomparin
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Uvaranas, 84030-900 Ponta Grossa, PR, Brazil
| | - Catherine C Pontes
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Uvaranas, 84030-900 Ponta Grossa, PR, Brazil
| | - Paulo Roberto Ribeiro
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Uvaranas, 84030-900 Ponta Grossa, PR, Brazil
| | - Maiara M Cordeiro
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Uvaranas, 84030-900 Ponta Grossa, PR, Brazil
| | - Jessica A Marcondes
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Uvaranas, 84030-900 Ponta Grossa, PR, Brazil
| | - Felipe O Mendonça
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Uvaranas, 84030-900 Ponta Grossa, PR, Brazil
| | - Makcine T da Silva
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Uvaranas, 84030-900 Ponta Grossa, PR, Brazil
| | - Fabio B de Oliveira
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Uvaranas, 84030-900 Ponta Grossa, PR, Brazil
| | - Gilson C N Franco
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Uvaranas, 84030-900 Ponta Grossa, PR, Brazil
| | - Sabrina Grassiolli
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Rua Universitária, 2069, Jardim Universitário, 85819-110 Cascavel, PR, Brazil
| |
Collapse
|
8
|
Zhang W, Zhang Z, Chen J, Tong D. Ghrelin is expressed in the pregnant mammary glands of dairy goats and promotes the cell proliferation of mammary epithelial cells. Gen Comp Endocrinol 2018; 260:115-124. [PMID: 29366624 DOI: 10.1016/j.ygcen.2018.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/07/2017] [Accepted: 01/11/2018] [Indexed: 11/29/2022]
Abstract
Little is known about ghrelin's effects on cell proliferation in pregnant mammary epithelial cells (MECs) even though it is known to be a mitogen for a variety of other cell types. The objectives of this study were to evaluate the expression and localization of ghrelin and its functional receptor, GHSR-1a, in the mammary glands of dairy goats during pregnancy and to investigate the direct role of ghrelin in cell proliferation of primary cultured MECs. Compared to the early stage (days 30) of pregnancy, the abundance of transcripts and protein of ghrelin and GHSR-1a were significantly greater in mid- and late-phases (between days 90 and days 120) of pregnancy (p < .05). Immunohistochemistry analysis showed that ghrelin and GHSR-1a were predominantly localized in the alveolar and ductal mammary epithelial cells at various stages of pregnancy. In our in vitro experiments, ghrelin induced a dose- and time-dependent promotory effect on cell proliferation of MECs. At the dose of 103 pg/mL treatment 24 h, ghrelin augmented the expression of proliferation-related peptides (PCNA and cyclin B1). Furthermore, ghrelin promoted the expression of prolactin (PRL) and GHSR-1a in cultured MECs. Additionally, the stimulatory effects of ghrelin were blocked by d-Lys3-GHRP6, a selective antagonist of GHSR-1a. As the temporal changes in ghrelin and GHSR-1a expression in pregnant goat mammary glands coincided with the mammary growth and development during the pregnancy, activation of GHSR-1a signal transduction pathways by ghrelin may play a direct role in the regulation of mammary growth in dairy goats.
Collapse
Affiliation(s)
- Wenlong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zelin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jinxuan Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
9
|
Abstract
Successfully rearing young places multiple demands on the mammalian female. These are met by a wide array of alterations in maternal physiology and behavior that are coordinated with the needs of the developing young, and include adaptations in neuroendocrine systems not directly involved in maternal behavior or lactation. In this article, attenuations in the behavioral and neuroendocrine responses to stressors, the alterations in metabolic pathways facilitating both increased food intake and conservation of energy, and the changes in fertility that occur postpartum are described. The mechanisms underlying these processes as well as the factors that contribute to them and the relative contributions of these stimuli at different times postpartum are also reviewed. The induction and maintenance of the adaptations observed in the postpartum maternal brain are dependent on mother-young interaction and, in most cases, on suckling stimulation and its consequences for the hormonal profile of the mother. The peptide hormone prolactin acting on receptors within the brain makes a major contribution to changes in metabolic pathways, suppression of fertility and the attenuation of the neuroendocrine response to stress during lactation. Oxytocin is also released, both into the circulation and in some hypothalamic nuclei, in response to suckling stimulation and this hormone has been implicated in the decrease in anxiety behavior seen in the early postpartum period. The relative importance of these hormones changes across lactation and it is becoming increasingly clear that many of the adaptations to motherhood reviewed here reflect the outcome of multiple influences. © 2016 American Physiological Society. Compr Physiol 6:1493-1518, 2016.
Collapse
Affiliation(s)
- Barbara Woodside
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
10
|
|
11
|
Abstract
Prolactin (PRL) released from lactotrophs of the anterior pituitary gland in response to the suckling by the offspring is the major hormonal signal responsible for stimulation of milk synthesis in the mammary glands. PRL secretion is under chronic inhibition exerted by dopamine (DA), which is released from neurons of the arcuate nucleus of the hypothalamus into the hypophyseal portal vasculature. Suckling by the young activates ascending systems that decrease the release of DA from this system, resulting in enhanced responsiveness to one or more PRL-releasing hormones, such as thyrotropin-releasing hormone. The neuropeptide oxytocin (OT), synthesized in magnocellular neurons of the hypothalamic supraoptic, paraventricular, and several accessory nuclei, is responsible for contracting the myoepithelial cells of the mammary gland to produce milk ejection. Electrophysiological recordings demonstrate that shortly before each milk ejection, the entire neurosecretory OT population fires a synchronized burst of action potentials (the milk ejection burst), resulting in release of OT from nerve terminals in the neurohypophysis. Both of these neuroendocrine systems undergo alterations in late gestation that prepare them for the secretory demands of lactation, and that reduce their responsiveness to stimuli other than suckling, especially physical stressors. The demands of milk synthesis and release produce a condition of negative energy balance in the suckled mother, and, in laboratory rodents, are accompanied by a dramatic hyperphagia. The reduction in secretion of the adipocyte hormone, leptin, a hallmark of negative energy balance, may be an important endocrine signal to hypothalamic systems that integrate lactation-associated food intake with neuroendocrine systems.
Collapse
Affiliation(s)
- William R Crowley
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah Health Sciences Center, Salt Lake City, Utah
| |
Collapse
|
12
|
Saltzman W, Ziegler TE. Functional significance of hormonal changes in mammalian fathers. J Neuroendocrinol 2014; 26:685-96. [PMID: 25039657 PMCID: PMC4995091 DOI: 10.1111/jne.12176] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 12/25/2022]
Abstract
In the 5-10% of mammals in which both parents routinely provide infant care, fathers as well as mothers undergo systematic endocrine changes as they transition into parenthood. Although fatherhood-associated changes in such hormones and neuropeptides as prolactin, testosterone, glucocorticoids, vasopressin and oxytocin have been characterised in only a small number of biparental rodents and primates, they appear to be more variable than corresponding changes in mothers, and experimental studies typically have not provided strong or consistent evidence that these endocrine shifts play causal roles in the activation of paternal care. Consequently, their functional significance remains unclear. We propose that endocrine changes in mammalian fathers may enable males to meet the species-specific demands of fatherhood by influencing diverse aspects of their behaviour and physiology, similar to many effects of hormones and neuropeptides in mothers. We review the evidence for such effects, focusing on recent studies investigating whether mammalian fathers in biparental species undergo systematic changes in (i) energetics and body composition; (ii) neural plasticity, cognition and sensory physiology; and (iii) stress responsiveness and emotionality, all of which may be mediated by endocrine changes. The few published studies, based on a small number of rodent and primate species, suggest that hormonal and neuropeptide alterations in mammalian fathers might mediate shifts in paternal energy balance, body composition and neural plasticity, although they do not appear to have major effects on stress responsiveness or emotionality. Further research is needed on a wider variety of biparental mammals, under more naturalistic conditions, to more fully determine the functional significance of hormone and neuropeptide profiles of mammalian fatherhood and to clarify how fatherhood may trade off with (or perhaps enhance) aspects of organismal function in biparental mammals.
Collapse
Affiliation(s)
- Wendy Saltzman
- Department of Biology, University of California, Riverside
| | - Toni E. Ziegler
- Wisconsin National Primate Research Center, University of Wisconsin – Madison
| |
Collapse
|
13
|
Suzuki Y, Nakahara K, Maruyama K, Okame R, Ensho T, Inoue Y, Murakami N. Changes in mRNA expression of arcuate nucleus appetite-regulating peptides during lactation in rats. J Mol Endocrinol 2014; 52:97-109. [PMID: 24299740 PMCID: PMC3907180 DOI: 10.1530/jme-13-0015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The contribution of hypothalamic appetite-regulating peptides to further hyperphagia accompanying the course of lactation in rats was investigated by using PCR array and real-time PCR. Furthermore, changes in the mRNA expression for appetite-regulating peptides in the hypothalamic arcuate nucleus (ARC) were analyzed at all stages of pregnancy and lactation, and also after weaning. Food intake was significantly higher during pregnancy, lactation, and after weaning than during non-lactation periods. During lactation, ARC expression of mRNAs for agouti-related protein (AgRP) and peptide YY was increased, whereas that of mRNAs for proopiomelanocortin (POMC) and cholecystokinin (CCK) was decreased, in comparison with non-lactation periods. The increase in AgRP mRNA expression during lactation was especially marked. The plasma level of leptin was significantly decreased during the course of lactation, whereas that of acyl-ghrelin was unchanged. In addition, food intake was negatively correlated with the plasma leptin level during lactation. This study has clarified synchronous changes in the expression of many appetite-regulating peptides in ARC of rats during lactation. Our results suggest that hyperphagia during lactation in rats is caused by decreases in POMC and CCK expression and increases in AgRP expression in ARC, the latter being most notable. Together with the decrease in the blood leptin level, such changes in mRNA expression may explain the further hyperphagia accompanying the course of lactation.
Collapse
Affiliation(s)
- Yoshihiro Suzuki
- Department of Veterinary Physiology, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Bron R, Yin L, Russo D, Furness JB. Expression of the ghrelin receptor gene in neurons of the medulla oblongata of the rat. J Comp Neurol 2013; 521:2680-702. [DOI: 10.1002/cne.23309] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 12/12/2012] [Accepted: 01/17/2013] [Indexed: 01/29/2023]
Affiliation(s)
- Romke Bron
- Department of Anatomy & Neuroscience; University of Melbourne; Parkville; Victoria 3010; Australia
| | - Lei Yin
- Department of Anatomy & Neuroscience; University of Melbourne; Parkville; Victoria 3010; Australia
| | - Domenico Russo
- Department of Veterinary Morphophysiology and Animal Production; University of Bologna; 40064 Ozzano Emilia; Bologna; Italy
| | - John B. Furness
- Department of Anatomy & Neuroscience; University of Melbourne; Parkville; Victoria 3010; Australia
| |
Collapse
|
15
|
Zhang W, Yu G, Huang Y, Xu D, Ren J, Jiang L, Wu C, Tong D. Expression of ghrelin and GHSR-1a in mammary glands of dairy goat during the lactation and the effects of gherlin on regulation of mammary function in vitro. Mol Cell Endocrinol 2013; 370:20-31. [PMID: 23435366 DOI: 10.1016/j.mce.2013.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/06/2013] [Accepted: 02/08/2013] [Indexed: 11/18/2022]
Abstract
Recent studies have implicated the peripheral actions of ghrelin in reproductive tissues. The present study provides novel evidence for the expression of ghrelin and its functional receptor (GHSR-1a) in the mammary glands of dairy goat during lactation and the effects of ghrelin on regulation of mammary function in vitro. Ghrelin and GHSR-1a mRNA and protein were persistently detected in goat mammary glands throughout the lactation, and patterns of expression of ghrelin, GHSR-1a and β-casein were generally similar, with highest levels during peak milk yield (day 60-120 of lactation) and lower levels during late (day 180) of lactation. The distribution of ghrelin and GHSR-1a in the mammary glands were substantiated by immunohistochemical method, alveolar and ductal epithelial cells showed distinct immunoreactivity at the different stages of lactation, strong reactivity was seen in most epithelial cells during peak stage, in some alveoli, the vast majority of the epithelial cells were immunoreactivity. Ghrelin and GHSR-1a mRNA expression were demonstrated in cultured primary mammary epithelial cells (MECs). In addition, the results showed that ghrelin could induce a dose-dependent promotion on β-casein expression in cultured mammary tissues and MECs, and the stimulative effects on β-casein expression were blocked by D-Lys3-GHRP6 (a GHSR-1a antagonist). Additionally, ghrelin induced a dose-dependent promotion on cell proliferation. Our present findings suggest that ghrelin may play an important role in regulation of mammary function in lactating dairy goats via GHSR-1a.
Collapse
Affiliation(s)
- Wenlong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Reichenbach A, Steyn FJ, Sleeman MW, Andrews ZB. Ghrelin receptor expression and colocalization with anterior pituitary hormones using a GHSR-GFP mouse line. Endocrinology 2012; 153:5452-66. [PMID: 22962259 DOI: 10.1210/en.2012-1622] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ghrelin is the endogenous ligand for the GH secretagogue receptor (GHSR) and robustly stimulates GH release from the anterior pituitary gland. Ghrelin also regulates the secretion of anterior pituitary hormones including TSH, LH, prolactin (PRL), and ACTH. However, the relative contribution of a direct action at the GHSR in the anterior pituitary gland vs. an indirect action at the GHSR in the hypothalamus remains undefined. We used a novel GHSR-enhanced green fluorescent protein (eGFP) reporter mouse to quantify GHSR coexpression with GH, TSH, LH, PRL, and ACTH anterior pituitary cells in males vs. females and in chow-fed or calorie-restricted (CR) mice. GHSR-eGFP-expressing cells were only observed in anterior pituitary. The number of GHSR-eGFP-expressing cells was higher in male compared with females, and CR did not affect the GHSR-eGFP cell number. Double staining revealed 77% of somatotrophs expressed GHSR-eGFP in both males and females. Nineteen percent and 12.6% of corticotrophs, 21% and 9% of lactotrophs, 18% and 19% of gonadotrophs, and 3% and 9% of males and females, respectively, expressed GHSR-eGFP. CR increased the number of TSH cells, but suppressed the number of lactotrophs and gonadotrophs, expressing GHSR-eGFP compared with controls. These studies support a robust stimulatory action of ghrelin via the GHSR on GH secretion and identify a previously unknown sexual dimorphism in the GHSR expression in the anterior pituitary. CR affects GHSR-eGFP expression on lactotrophs, gonadotrophs, and thyrotrophs, which may mediate reproductive function and energy metabolism during periods of negative energy balance. The low to moderate expression of GHSR-eGFP suggests that ghrelin plays a minor direct role on remaining anterior pituitary cells.
Collapse
Affiliation(s)
- Alex Reichenbach
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
17
|
Woodside B, Budin R, Wellman MK, Abizaid A. Many mouths to feed: the control of food intake during lactation. Front Neuroendocrinol 2012; 33:301-14. [PMID: 23000403 DOI: 10.1016/j.yfrne.2012.09.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 09/04/2012] [Accepted: 09/05/2012] [Indexed: 01/07/2023]
Abstract
Providing nutrients to their developing young is perhaps the most energetically demanding task facing female mammals. In this paper we focus primarily on studies carried out in rats to describe the changes in the maternal brain that enable the dam to meet the energetic demands of her offspring. In rats, providing milk for their litter is associated with a dramatic increase in caloric intake, a reduction in energy expenditure and changes in the pattern of energy utilization as well as storage. These behavioral and physiological adaptations result, in part, from alterations in the central pathways controlling energy balance. Differences in circulating levels of metabolic hormones such as leptin, ghrelin and insulin as well as in responsiveness to these signals between lactating and nonlactating animals, contribute to the modifications in energy balance pathways seen postpartum. Suckling stimulation from the pups both directly, and through the hormonal state that it induces in the mother, plays a key role in facilitating these adaptations.
Collapse
Affiliation(s)
- Barbara Woodside
- Center for Studies in Behavioral Neurobiology/Groupe de recherches en neurobiologie comportementale, Concordia University, Montreal, Canada.
| | | | | | | |
Collapse
|
18
|
Veldhuis JD, Bowers CY. Integrating GHS into the Ghrelin System. INTERNATIONAL JOURNAL OF PEPTIDES 2010; 2010:879503. [PMID: 20798846 PMCID: PMC2925380 DOI: 10.1155/2010/879503] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 12/30/2009] [Indexed: 12/21/2022]
Abstract
Oligopeptide derivatives of metenkephalin were found to stimulate growth-hormone (GH) release directly by pituitary somatotrope cells in vitro in 1977. Members of this class of peptides and nonpeptidyl mimetics are referred to as GH secretagogues (GHSs). A specific guanosine triphosphatate-binding protein-associated heptahelical transmembrane receptor for GHS was cloned in 1996. An endogenous ligand for the GHS receptor, acylghrelin, was identified in 1999. Expression of ghrelin and homonymous receptor occurs in the brain, pituitary gland, stomach, endothelium/vascular smooth muscle, pancreas, placenta, intestine, heart, bone, and other tissues. Principal actions of this peptidergic system include stimulation of GH release via combined hypothalamopituitary mechanisms, orexigenesis (appetitive enhancement), insulinostasis (inhibition of insulin secretion), cardiovascular effects (decreased mean arterial pressure and vasodilation), stimulation of gastric motility and acid secretion, adipogenesis with repression of fat oxidation, and antiapoptosis (antagonism of endothelial, neuronal, and cardiomyocyte death). The array of known and proposed interactions of ghrelin with key metabolic signals makes ghrelin and its receptor prime targets for drug development.
Collapse
Affiliation(s)
- Johannes D. Veldhuis
- Department of Medicine, Endocrine Research Unit, Mayo School of Graduate Medical Education, Clinical Translational Science Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Cyril Y. Bowers
- Division of Endocrinology, Department of Internal Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
19
|
Abstract
A review is provided of current evidence supporting the actions of the stomach-derived peptide ghrelin on ventral tegmental area (VTA) dopamine cells to increase food intake and other appetitive behaviours. Ghrelin is a 28 amino-acid peptide that was first identified as an endogenous ligand to growth hormone secretagogue receptors (GHS-R). In addition to the hypothalamus and brain stem, GHS-R message and protein are distributed throughout the brain, with high expression being detected in regions associated with goal directed behaviour. Of these, the VTA shows relatively high levels of mRNA transcript and protein. Interestingly, ghrelin infusions into the VTA increase food intake dramatically, and stimulate dopamine release from the VTA. Moreover, VTA dopamine neurones increase their activity in response to ghrelin in slice preparations, suggesting that ghrelin increases food intake by modulating the activity of dopaminergic neurones in the VTA. On the basis of these data as well as the fact that VTA dopamine cells respond to other metabolic hormones such as insulin and leptin, it is proposed that VTA dopamine cells, similar to cells in the mediobasal hypothalamus, are first-order sensory neurones that regulate appetitive behaviour in response to metabolic and nutritional signals.
Collapse
Affiliation(s)
- Alfonso Abizaid
- Neuroscience Institute, Carleton University, Ottawa, ON, Canada.
| |
Collapse
|