1
|
Pharmacokinetics and Pharmacodynamics of Salvinorin A and Salvia divinorum: Clinical and Forensic Aspects. Pharmaceuticals (Basel) 2021; 14:ph14020116. [PMID: 33546518 PMCID: PMC7913753 DOI: 10.3390/ph14020116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 01/13/2023] Open
Abstract
Salvia divinorum Epling and Játiva is a perennial mint from the Lamiaceae family, endemic to Mexico, predominantly from the state of Oaxaca. Due to its psychoactive properties, S. divinorum had been used for centuries by Mazatecans for divinatory, religious, and medicinal purposes. In recent years, its use for recreational purposes, especially among adolescents and young adults, has progressively increased. The main bioactive compound underlying the hallucinogenic effects, salvinorin A, is a non-nitrogenous diterpenoid with high affinity and selectivity for the κ-opioid receptor. The aim of this work is to comprehensively review and discuss the toxicokinetics and toxicodynamics of S. divinorum and salvinorin A, highlighting their psychological, physiological, and toxic effects. Potential therapeutic applications and forensic aspects are also covered in this review. The leaves of S. divinorum can be chewed, drunk as an infusion, smoked, or vaporised. Absorption of salvinorin A occurs through the oral mucosa or the respiratory tract, being rapidly broken down in the gastrointestinal system to its major inactive metabolite, salvinorin B, when swallowed. Salvinorin A is rapidly distributed, with accumulation in the brain, and quickly eliminated. Its pharmacokinetic parameters parallel well with the short-lived psychoactive and physiological effects. No reports on toxicity or serious adverse outcomes were found. A variety of therapeutic applications have been proposed for S. divinorum which includes the treatment of chronic pain, gastrointestinal and mood disorders, neurological diseases, and treatment of drug dependence. Notwithstanding, there is still limited knowledge regarding the pharmacology and toxicology features of S. divinorum and salvinorin A, and this is needed due to its widespread use. Additionally, the clinical acceptance of salvinorin A has been hampered, especially due to the psychotropic side effects and misuse, turning the scientific community to the development of analogues with better pharmacological profiles.
Collapse
|
2
|
Clark SD, Abi-Dargham A. The Role of Dynorphin and the Kappa Opioid Receptor in the Symptomatology of Schizophrenia: A Review of the Evidence. Biol Psychiatry 2019; 86:502-511. [PMID: 31376930 DOI: 10.1016/j.biopsych.2019.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/25/2019] [Accepted: 05/05/2019] [Indexed: 01/17/2023]
Abstract
Schizophrenia is a debilitating mental illness that affects approximately 1% of the world's population. Despite much research in its neurobiology to aid in developing new treatments, little progress has been made. One system that has not received adequate attention is the kappa opioid system and its potential role in the emergence of symptoms, as well as its therapeutic potential. Here we present an overview of the kappa system and review various lines of evidence derived from clinical studies for dynorphin and kappa opioid receptor involvement in the pathology of both the positive and negative symptoms of schizophrenia. This overview includes evidence for the psychotomimetic effects of kappa opioid receptor agonists in healthy volunteers and their reversal by the pan-opioid antagonists naloxone and naltrexone and evidence for a therapeutic benefit in schizophrenia for 4 pan-opioid antagonists. We describe the interactions between kappa opioid receptors and the dopaminergic pathways that are disrupted in schizophrenia and the histologic evidence suggesting abnormal kappa opioid receptor signaling in schizophrenia. We conclude by discussing future directions.
Collapse
Affiliation(s)
- Samuel David Clark
- Columbia University Medical Center, New York; Terran Biosciences Inc., New York.
| | - Anissa Abi-Dargham
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| |
Collapse
|
3
|
A dose-response study of separate and combined effects of the serotonin agonist 8-OH-DPAT and the dopamine agonist quinpirole on locomotor sensitization, cross-sensitization, and conditioned activity. Behav Pharmacol 2017; 27:439-50. [PMID: 26871406 DOI: 10.1097/fbp.0000000000000219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Chronic treatment with the dopamine D2/D3 agonist, quinpirole, or the serotonin 1A agonist, 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT), induces behavioral sensitization. It is not known whether both drugs produce sensitization through a shared mechanism. Here, we examine whether quinpirole and 8-OH-DPAT show cross-sensitization and impact sensitization, as would be expected from shared mechanisms. Male rats (N=208) were assigned randomly to 16 groups formed by crossing four doses of quinpirole (0, 0.03125, 0.0625, or 0.125 mg/kg) with four doses of 8-OH-DPAT (0, 0.03125, 0.625, or 0.125 mg/kg). After a course of 10 drug treatments administered twice per week in locomotor activity chambers, all groups were challenged on separate tests with quinpirole (0.1 mg/kg), 8-OH-DPAT (0.1 mg/kg), or saline, and locomotor activity was evaluated. Challenge tests with quinpirole and 8-OHDPAT showed no cross-sensitization between the drugs. Chronic quinpirole (0.125 mg/kg) administration induced a sensitized quinpirole response that was attenuated dose-dependently by chronic 8-OH-DPAT cotreatment. Cotreatment with quinpirole (0.0625 mg/kg) and 8-OH-DPAT (all doses) induced quinpirole sensitization. Chronic 8-OH-DPAT (0.125 mg/kg) induced a sensitized 8-OHDPAT response that was prevented by chronic cotreatment with the lowest but not the highest dose of quinpirole. Cotreatment with 8-OHDPAT (0.0625) and quinpirole (0.125 mg/kg) induced sensitization to 8-OH-DPAT. The saline challenge test showed elevated locomotor activity in chronic quinpirole (0.125 mg/kg) and 8-OHDPAT (0.0625, 0.125 mg/kg) alone groups, and in seven of nine cotreated groups. The absence of cross-sensitization suggests separate mechanisms of sensitization to quinpirole and 8-OH-DPAT. Cotreatment effects suggest that induction of sensitization can be modulated by serotonin 1A and D2/D3 activity.
Collapse
|
4
|
Akaberi M, Iranshahi M, Mehri S. Molecular Signaling Pathways Behind the Biological Effects of Salvia Species Diterpenes in Neuropharmacology and Cardiology. Phytother Res 2016; 30:878-93. [PMID: 26988179 DOI: 10.1002/ptr.5599] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/29/2016] [Accepted: 02/02/2016] [Indexed: 12/14/2022]
Abstract
The genus Salvia, from the Lamiaceae family, has diverse biological properties that are primarily attributable to their diterpene contents. There is no comprehensive review on the molecular signaling pathways of these active components. In this review, we investigated the molecular targets of bioactive Salvia diterpenes responsible for the treatment of nervous and cardiovascular diseases. The effects on different pathways, including apoptosis signaling, oxidative stress phenomena, the accumulation of amyloid beta plaques, and tau phosphorylation, have all been considered to be mechanisms of the anti-Alzheimer properties of Salvia diterpenes. Additionally, effects on the benzodiazepine and kappa opioid receptors and neuroprotective effects are noted as neuropharmacological properties of Salvia diterpenes, including tanshinone IIA, salvinorin A, cryptotanshinone, and miltirone. Tanshinone IIA, as the primary diterpene of Salvia miltiorrhiza, has beneficial activities in heart diseases because of its ability to scavenge free radicals and its effects on transcription factors, such as nuclear transcription factor-kappa B (NF-κB) and the mitogen-activated protein kinases (MAPKs). Additionally, tanshinone IIA has also been proposed to have cardioprotective properties including antiarrhythmic activities and effects on myocardial infarction. With respect to the potential therapeutic effects of Salvia diterpenes, comprehensive clinical trials are warranted to evaluate these valuable molecules as lead compounds. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- M Akaberi
- Student Research Committee, Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - M Iranshahi
- Biotechnology Research Center and School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - S Mehri
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Kivell B, Uzelac Z, Sundaramurthy S, Rajamanickam J, Ewald A, Chefer V, Jaligam V, Bolan E, Simonson B, Annamalai B, Mannangatti P, Prisinzano TE, Gomes I, Devi LA, Jayanthi LD, Sitte HH, Ramamoorthy S, Shippenberg TS. Salvinorin A regulates dopamine transporter function via a kappa opioid receptor and ERK1/2-dependent mechanism. Neuropharmacology 2014; 86:228-40. [PMID: 25107591 PMCID: PMC4188751 DOI: 10.1016/j.neuropharm.2014.07.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/21/2014] [Accepted: 07/25/2014] [Indexed: 12/11/2022]
Abstract
Salvinorin A (SalA), a selective κ-opioid receptor (KOR) agonist, produces dysphoria and pro-depressant like effects. These actions have been attributed to inhibition of striatal dopamine release. The dopamine transporter (DAT) regulates dopamine transmission via uptake of released neurotransmitter. KORs are apposed to DAT in dopamine nerve terminals suggesting an additional target by which SalA modulates dopamine transmission. SalA produced a concentration-dependent, nor-binaltorphimine (BNI)- and pertussis toxin-sensitive increase of ASP(+) accumulation in EM4 cells coexpressing myc-KOR and YFP-DAT, using live cell imaging and the fluorescent monoamine transporter substrate, trans 4-(4-(dimethylamino)-styryl)-N-methylpyridinium) (ASP(+)). Other KOR agonists also increased DAT activity that was abolished by BNI pretreatment. While SalA increased DAT activity, SalA treatment decreased serotonin transporter (SERT) activity and had no effect on norepinephrine transporter (NET) activity. In striatum, SalA increased the Vmax for DAT mediated DA transport and DAT surface expression. SalA up-regulation of DAT function is mediated by KOR activation and the KOR-linked extracellular signal regulated kinase-½ (ERK1/2) pathway. Co-immunoprecipitation and BRET studies revealed that DAT and KOR exist in a complex. In live cells, DAT and KOR exhibited robust FRET signals under basal conditions. SalA exposure caused a rapid and significant increase of the FRET signal. This suggests that the formation of KOR and DAT complexes is promoted in response to KOR activation. Together, these data suggest that enhanced DA transport and decreased DA release resulting in decreased dopamine signalling may contribute to the dysphoric and pro-depressant like effects of SalA and other KOR agonists.
Collapse
Affiliation(s)
- Bronwyn Kivell
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand; Integrative Neuroscience Section, National Institutes of Health, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Zeljko Uzelac
- Medical University Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Waehringerstrasse 13a, A-1090 Vienna, Austria
| | | | - Jeyaganesh Rajamanickam
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Amy Ewald
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Vladimir Chefer
- Integrative Neuroscience Section, National Institutes of Health, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Vanaja Jaligam
- Integrative Neuroscience Section, National Institutes of Health, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Elizabeth Bolan
- Integrative Neuroscience Section, National Institutes of Health, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Bridget Simonson
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | | - Padmanabhan Mannangatti
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Thomas E Prisinzano
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Ivone Gomes
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Lakshmi A Devi
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Lankupalle D Jayanthi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Harald H Sitte
- Medical University Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Waehringerstrasse 13a, A-1090 Vienna, Austria
| | - Sammanda Ramamoorthy
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | - Toni S Shippenberg
- Integrative Neuroscience Section, National Institutes of Health, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| |
Collapse
|
6
|
Casselman I, Nock CJ, Wohlmuth H, Weatherby RP, Heinrich M. From local to global-fifty years of research on Salvia divinorum. JOURNAL OF ETHNOPHARMACOLOGY 2014; 151:768-783. [PMID: 24315983 DOI: 10.1016/j.jep.2013.11.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/14/2013] [Accepted: 11/16/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In 1962 ethnopharmacologists, Hofmann and Wasson, undertook an expedition to Oaxaca, Mexico. These two researchers were the first scientists to collect a flowering specimen of Salvia divinorum allowing the identification of this species. While the species' traditional use is confined to a very small region of Mexico, since Hofmann and Wasson's expedition 50 years ago, Salvia divinorum has become globally recognized for its main active constituent, the diterpene salvinorin A, which has a unique effect on human physiology. Salvinorin A is a kappa-opioid agonist and the first reported psychoactive diterpene. METHODS This review concentrates on the investigation of Salvia divinorum over the last 50 years including ethnobotany, ethnopharmacology, taxonomy, systematics, genetics, chemistry and pharmacodynamic and pharmacokinetic research. For the purpose of this review, online search engines were used to find relevant research. Searches were conducted between October 2011 and September 2013 using the search term "Salvia divinorum". Papers were excluded if they described synthetic chemical synthesis of salvinorin A or analogues. RESULTS Ethnobotanically there is a comprehensive body of research describing the traditional Mazatec use of the plant, however, the modern ethnobotanical use of this plant is not well documented. There are a limited number of botanical investigations into this plant and there are still several aspects of the botany of Salvia divinorum which need further investigation. One study has investigated the phylogenetic relationship of Salvia divinorum to other species in the genus. To date the main focus of chemistry research on Salvia divinorum has been salvinorin A, the main active compound in Salvia divinorum, and other related diterpenoids. Finally, the effects of salvinorin A, a KOR agonist, have primarily been investigated using animal models. CONCLUSIONS As Salvia divinorum use increases worldwide, the emerging cultural use patterns will warrant more research. More botanical information is also needed to better understand this species, including germination, pollination vector and a better understanding of the endemic environment of Salvia divinorum. As well there is a gap in the genetic knowledge of this species and very little is known about its intra-species genetics. The terpenes in Salvia divinorum are very well documented, however, other classes of constituents in this species warrant further investigation and identification. To date, the majority of the pharmacology research on Salvia divinorum has focused on the effects of salvinorin A using animal models. Published human studies have not reported any harmful effects when salvinorin A is administered within the dose range of 0.375-21µg/kg but what are the implications when applied to a larger population? More data on the toxicology and safety of Salvia divinorum are needed before larger scale clinical trials of the potential therapeutic effects of Salvia divinorum and salvinorin A are undertaken.
Collapse
Affiliation(s)
- Ivan Casselman
- Southern Cross Plant Science, Southern Cross University, Lismore NSW 2480, Australia.
| | - Catherine J Nock
- Southern Cross Plant Science, Southern Cross University, Lismore NSW 2480, Australia
| | - Hans Wohlmuth
- Southern Cross Plant Science, Southern Cross University, Lismore NSW 2480, Australia
| | - Robert P Weatherby
- Division of Research, Southern Cross University, Lismore NSW 2480, Australia
| | - Michael Heinrich
- Southern Cross Plant Science, Southern Cross University, Lismore NSW 2480, Australia; Centre for Pharmacognosy and Phytotherapy, UCL School of Pharmacy, 29-39 Brunswick Sq. London WC1N 1AX, UK; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
RETRACTED ARTICLE: Experimental and theoretical study of functionalized diterpenoids of salvinorin A type and molecular factors contributing to their selectivity to κ-opioid receptors. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0866-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Braida D, Donzelli A, Martucci R, Capurro V, Sala M. Learning and Memory Impairment Induced by Salvinorin A, the Principal Ingredient of Salvia divinorum, in Wistar Rats. Int J Toxicol 2011; 30:650-61. [DOI: 10.1177/1091581811418538] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effects of salvinorin A ( Salvia divinorum principal ingredient), a potent κ-opioid natural hallucinogen, on learning and memory were investigated. Wistar rats were tested in the 8-arm radial maze, for object recognition and passive avoidance tasks for spatial, episodic, and aversive memory. Attention was assessed using a latent inhibition task. Salvinorin A (80-640 μg/kg subcutaneous [sc]) did not affect short-term memory, but it impaired spatial long-term memory. Episodic and aversive memories were impaired by salvinorin A (160-640 μg/kg). Memory impairment was blocked by the selective κ-opioid receptor antagonist, nor-binaltorphimine ([nor-B]; 0.5-1 mg/kg, intraperitoneal [ip]). Salvinorin A (160 μg/kg) disrupted latent inhibition, after LiCl treatment, such as reduced sucrose intake, suggesting an attention would result in an impairment of cognitive behavior. These findings demonstrate for the first time that salvinorin A has deleterious effects on learning and memory, through a κ-opioid receptor mechanism.
Collapse
Affiliation(s)
- Daniela Braida
- Department of Pharmacology, Chemotherapy and Medical Toxicology, Università degli Studi di Milano, Milan, Italy
| | - Andrea Donzelli
- Department of Pharmacology, Chemotherapy and Medical Toxicology, Università degli Studi di Milano, Milan, Italy
| | - Roberta Martucci
- Department of Pharmacology, Chemotherapy and Medical Toxicology, Università degli Studi di Milano, Milan, Italy
| | - Valeria Capurro
- Department of Pharmacology, Chemotherapy and Medical Toxicology, Università degli Studi di Milano, Milan, Italy
| | - Mariaelvina Sala
- Department of Pharmacology, Chemotherapy and Medical Toxicology, Università degli Studi di Milano, Milan, Italy
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Milan, Italy
| |
Collapse
|
9
|
Cunningham CW, Rothman RB, Prisinzano TE. Neuropharmacology of the naturally occurring kappa-opioid hallucinogen salvinorin A. Pharmacol Rev 2011; 63:316-47. [PMID: 21444610 DOI: 10.1124/pr.110.003244] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Salvia divinorum is a perennial sage native to Oaxaca, Mexico, that has been used traditionally in divination rituals and as a treatment for the "semimagical" disease panzón de borrego. Because of the intense "out-of-body" experiences reported after inhalation of the pyrolized smoke, S. divinorum has been gaining popularity as a recreational hallucinogen, and the United States and several other countries have regulated its use. Early studies isolated the neoclerodane diterpene salvinorin A as the principal psychoactive constituent responsible for these hallucinogenic effects. Since the finding that salvinorin A exerts its potent psychotropic actions through the activation of KOP receptors, there has been much interest in elucidating the underlying mechanisms behind its effects. These effects are particularly remarkable, because 1) salvinorin A is the first reported non-nitrogenous opioid receptor agonist, and 2) its effects are not mediated by the 5-HT(2A) receptor, the classic target of hallucinogens such as lysergic acid diethylamide and mescaline. Rigorous investigation into the structural features of salvinorin A responsible for opioid receptor affinity and selectivity has produced numerous receptor probes, affinity labels, and tools for evaluating the biological processes responsible for its observed psychological effects. Salvinorin A has therapeutic potential as a treatment for pain, mood and personality disorders, substance abuse, and gastrointestinal disturbances, and suggests that nonalkaloids are potential scaffolds for drug development for aminergic G-protein coupled receptors.
Collapse
|
10
|
Abstract
This paper is the 31st consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2008 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd, Flushing, NY 11367, United States.
| |
Collapse
|
11
|
Seeman P, Guan HC, Hirbec H. Dopamine D2High receptors stimulated by phencyclidines, lysergic acid diethylamide, salvinorin A, and modafinil. Synapse 2009; 63:698-704. [PMID: 19391150 DOI: 10.1002/syn.20647] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although it is commonly stated that phencyclidine is an antagonist at ionotropic glutamate receptors, there has been little measure of its potency on other receptors in brain tissue. Although we previously reported that phencyclidine stimulated cloned-dopamine D2Long and D2Short receptors, others reported that phencyclidine did not stimulate D2 receptors in homogenates of rat brain striatum. This study, therefore, examined whether phencyclidine and other hallucinogens and psychostimulants could stimulate the incorporation of [(35)S]GTP-gamma-S into D2 receptors in homogenates of rat brain striatum, using the same conditions as previously used to study the cloned D2 receptors. Using 10 microM dopamine to define 100% stimulation, phencyclidine elicited a maximum incorporation of 46% in rat striata, with a half-maximum concentration of 70 nM for phencyclidine, when compared with 80 nM for dopamine, 89 nM for salvinorin A (48 nM for D2Long), 105 nM for lysergic acid diethylamide (LSD), 120 nM for R-modafinil, 710 nM for dizocilpine, 1030 nM for ketamine, and >10,000 nM for S-modafinil. These compounds also inhibited the binding of the D2-selective ligand [(3)H]domperidone. The incorporation was inhibited by the presence of 200 microM guanylylimidodiphosphate and also by D2 blockade, using 10 microM S-sulpiride, but not by D1 blockade with 10 microM SCH23390. Hypertonic buffer containing 150 mM NaCl inhibited the stimulation by phencyclidine, which may explain negative results by others. It is concluded that phencyclidine and other psychostimulants and hallucinogens can stimulate dopamine D2 receptors at concentrations related to their behavioral actions.
Collapse
Affiliation(s)
- Philip Seeman
- Department of Pharmacology, Medical Science Building, University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|