1
|
Wang X, Cheng Z, Tai W, Shi M, Ayazi M, Liu Y, Sun L, Yu C, Fan Z, Guo B, He X, Sun D, Young W, Ren Y. Targeting foamy macrophages by manipulating ABCA1 expression to facilitate lesion healing in the injured spinal cord. Brain Behav Immun 2024; 119:431-453. [PMID: 38636566 DOI: 10.1016/j.bbi.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 04/20/2024] Open
Abstract
Spinal cord injury (SCI) triggers a complex cascade of events, including myelin loss, neuronal damage, neuroinflammation, and the accumulation of damaged cells and debris at the injury site. Infiltrating bone marrow derived macrophages (BMDMϕ) migrate to the epicenter of the SCI lesion, where they engulf cell debris including abundant myelin debris to become pro-inflammatory foamy macrophages (foamy Mϕ), participate neuroinflammation, and facilitate the progression of SCI. This study aimed to elucidate the cellular and molecular mechanisms underlying the functional changes in foamy Mϕ and their potential implications for SCI. Contusion at T10 level of the spinal cord was induced using a New York University (NYU) impactor (5 g rod from a height of 6.25 mm) in male mice. ABCA1, an ATP-binding cassette transporter expressed by Mϕ, plays a crucial role in lipid efflux from foamy cells. We observed that foamy Mϕ lacking ABCA1 exhibited increased lipid accumulation and a higher presence of lipid-accumulated foamy Mϕ as well as elevated pro-inflammatory response in vitro and in injured spinal cord. We also found that both genetic and pharmacological enhancement of ABCA1 expression accelerated lipid efflux from foamy Mϕ, reduced lipid accumulation and inhibited the pro-inflammatory response of foamy Mϕ, and accelerated clearance of cell debris and necrotic cells, which resulted in functional recovery. Our study highlights the importance of understanding the pathologic role of foamy Mϕ in SCI progression and the potential of ABCA1 as a therapeutic target for modulating the inflammatory response, promoting lipid metabolism, and facilitating functional recovery in SCI.
Collapse
Affiliation(s)
- Xi Wang
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, New Brunswick, NJ 08854, USA; Institute of Neurosciences, Fourth Military Medical University, Xi'an 710032, China; College of Life Sciences and Medicine, Northwest University, Xi'an 710069, China.
| | - Zhijian Cheng
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Wenjiao Tai
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Mingjun Shi
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Maryam Ayazi
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Yang Liu
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Li Sun
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Caiyong Yu
- Institute of Neurosciences, Fourth Military Medical University, Xi'an 710032, China
| | - Zhongmin Fan
- Department of Critical Care Medicine and Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Xi'an 710032, China
| | - Bin Guo
- Department of Pathology, Guizhou Medical University, Guiyang 550025, China
| | - Xijing He
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Dongming Sun
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, New Brunswick, NJ 08854, USA
| | - Wise Young
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, New Brunswick, NJ 08854, USA
| | - Yi Ren
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, New Brunswick, NJ 08854, USA; Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306, USA.
| |
Collapse
|
2
|
Grijalva-Otero I, Doncel-Pérez E. Traumatic Human Spinal Cord Injury: Are Single Treatments Enough to Solve the Problem? Arch Med Res 2024; 55:102935. [PMID: 38157747 DOI: 10.1016/j.arcmed.2023.102935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/17/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Traumatic spinal cord injury (SCI) results in partial or complete motor deficits, such as paraplegia, tetraplegia, and sphincter control, as well as sensory disturbances and autonomic dysregulation such as arterial hypotension, lack of sweating, and alterations in skin lability. All this has a strong psychological impact on the affected person and his/her family, as well as costs to healthcare institutions with an economic burden in the short, medium, and long terms. Despite at least forty years of experimental animal studies and several clinical trials with different therapeutic strategies, effective therapy is not universally accepted. Most of the published works on acute and chronic injury use a single treatment, such as medication, trophic factor, transplant of a cell type, and so on, to block some secondary injury mechanisms or promote some mechanisms of structural/functional restoration. However, despite significant results in experimental models, the outcome is a moderate improvement in muscle strength, sensation, or eventually in sphincter control, which has been considered non-significant in human clinical trials. Here we present a brief compilation of successful individual treatments that have been applied to secondary mechanisms of action. These studies show limited neuroprotective or neurorestorative approaches in animal models and clinical trials. Thus, the few benefits achieved so far represent a rationale to further explore other strategies that seek better structural and functional restoration of the injured spinal cord.
Collapse
Affiliation(s)
- Israel Grijalva-Otero
- Medical Research Unit for Neurological Diseases, Unidad Médica de Alta Especialidad, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.
| | - Ernesto Doncel-Pérez
- Neural Regeneration Group, Hospital Nacional de Parapléjicos de Toledo, Servicios de Salud de Castilla-La Mancha, Toledo, Spain
| |
Collapse
|
3
|
Lima R, Monteiro A, Salgado AJ, Monteiro S, Silva NA. Pathophysiology and Therapeutic Approaches for Spinal Cord Injury. Int J Mol Sci 2022; 23:ijms232213833. [PMID: 36430308 PMCID: PMC9698625 DOI: 10.3390/ijms232213833] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Spinal cord injury (SCI) is a disabling condition that disrupts motor, sensory, and autonomic functions. Despite extensive research in the last decades, SCI continues to be a global health priority affecting thousands of individuals every year. The lack of effective therapeutic strategies for patients with SCI reflects its complex pathophysiology that leads to the point of no return in its function repair and regeneration capacity. Recently, however, several studies started to uncover the intricate network of mechanisms involved in SCI leading to the development of new therapeutic approaches. In this work, we present a detailed description of the physiology and anatomy of the spinal cord and the pathophysiology of SCI. Additionally, we provide an overview of different molecular strategies that demonstrate promising potential in the modulation of the secondary injury events that promote neuroprotection or neuroregeneration. We also briefly discuss other emerging therapies, including cell-based therapies, biomaterials, and epidural electric stimulation. A successful therapy might target different pathologic events to control the progression of secondary damage of SCI and promote regeneration leading to functional recovery.
Collapse
Affiliation(s)
- Rui Lima
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Andreia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Nuno A. Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
- Correspondence:
| |
Collapse
|
4
|
Smirnov VA, Radaev SM, Morozova YV, Ryabov SI, Yadgarov MY, Bazanovich SA, Lvov IS, Talypov AE, Grin' AA. Systemic Administration of Allogeneic Cord Blood Mononuclear Cells in Adults with Severe Acute Contusion Spinal Cord Injury: Phase I/IIa Pilot Clinical Study - Safety and Primary Efficacy Evaluation. World Neurosurg 2022; 161:e319-e338. [PMID: 35134580 DOI: 10.1016/j.wneu.2022.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Current Phase I part of SUBSCI I/IIa study was focused on safety and primary efficacy of multiple systemic infusions of allogeneic unrelated human umbilical cord blood mononuclear cells in patients with severe acute spinal cord contusion having severe neurological deficit. The primary endpoint was safety. The secondary endpoint was the fact of restoration of motor and sensory function in lower limbs within 1-year period. METHODS Ten subjects with acute contusion SCI and ASIA A/B deficit were enrolled into Phase I part. Subjects were treated with 4 infusions of group- and rhesus-matched cord blood samples following primary surgery within 3 days post-SCI. All patients were followed-up for 12 months post-SCI. Safety was assessed using adverse events classification depending on severity and relation to cell therapy. Primary efficacy was assessed using dynamics of deficit (ASIA scale). RESULTS The overall number of AEs reached 419 in 10 subjects. Only 2 of them were estimated as possibly related to cell therapy, other 417 were definitely unrelated. Both AEs were mild and clinically insignificant. No signs of immunization were found in participants. Analysis of clinical outcomes also demonstrated that cell therapy promotes significant functional restoration of motor function. CONCLUSIONS Obtained data suggest that systemic administration of allogenic, non-HLA matched HUCB cells is safe and demonstrates primary efficacy in adults with severe acute contusion SCI and ASIA A/B deficit.
Collapse
Affiliation(s)
- Vladimir A Smirnov
- Department of Neurosurgery, N.V. Sklifosovsky Research Institute of Emergency Care, Moscow, Russian Federation.
| | - Sergey M Radaev
- Department of Neurosurgery, N.V. Sklifosovsky Research Institute of Emergency Care, Moscow, Russian Federation
| | - Yana V Morozova
- Department of Neurosurgery, N.V. Sklifosovsky Research Institute of Emergency Care, Moscow, Russian Federation; Laboratory of Stem Cells, National Medical Institute of Cardiology, Moscow, Russian Federation
| | - Sergey I Ryabov
- Laboratory of Stem Cells, National Medical Institute of Cardiology, Moscow, Russian Federation
| | - Mikhail Ya Yadgarov
- Laboratory of Stem Cells, National Medical Institute of Cardiology, Moscow, Russian Federation
| | - Sergey A Bazanovich
- Laboratory of Stem Cells, National Medical Institute of Cardiology, Moscow, Russian Federation
| | - Ivan S Lvov
- Department of Neurosurgery, N.V. Sklifosovsky Research Institute of Emergency Care, Moscow, Russian Federation
| | - Alexander E Talypov
- Department of Neurosurgery, N.V. Sklifosovsky Research Institute of Emergency Care, Moscow, Russian Federation
| | - Andrew A Grin'
- Department of Neurosurgery, N.V. Sklifosovsky Research Institute of Emergency Care, Moscow, Russian Federation
| |
Collapse
|
5
|
Lukacova N, Kisucka A, Kiss Bimbova K, Bacova M, Ileninova M, Kuruc T, Galik J. Glial-Neuronal Interactions in Pathogenesis and Treatment of Spinal Cord Injury. Int J Mol Sci 2021; 22:13577. [PMID: 34948371 PMCID: PMC8708227 DOI: 10.3390/ijms222413577] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022] Open
Abstract
Traumatic spinal cord injury (SCI) elicits an acute inflammatory response which comprises numerous cell populations. It is driven by the immediate response of macrophages and microglia, which triggers activation of genes responsible for the dysregulated microenvironment within the lesion site and in the spinal cord parenchyma immediately adjacent to the lesion. Recently published data indicate that microglia induces astrocyte activation and determines the fate of astrocytes. Conversely, astrocytes have the potency to trigger microglial activation and control their cellular functions. Here we review current information about the release of diverse signaling molecules (pro-inflammatory vs. anti-inflammatory) in individual cell phenotypes (microglia, astrocytes, blood inflammatory cells) in acute and subacute SCI stages, and how they contribute to delayed neuronal death in the surrounding spinal cord tissue which is spared and functional but reactive. In addition, temporal correlation in progressive degeneration of neurons and astrocytes and their functional interactions after SCI are discussed. Finally, the review highlights the time-dependent transformation of reactive microglia and astrocytes into their neuroprotective phenotypes (M2a, M2c and A2) which are crucial for spontaneous post-SCI locomotor recovery. We also provide suggestions on how to modulate the inflammation and discuss key therapeutic approaches leading to better functional outcome after SCI.
Collapse
Affiliation(s)
- Nadezda Lukacova
- Institute of Neurobiology, Biomedical Research Centre, Slovak Academy of Sciences, Soltesovej 4–6, 040 01 Kosice, Slovakia; (A.K.); (K.K.B.); (M.B.); (M.I.); (T.K.); (J.G.)
| | | | | | | | | | | | | |
Collapse
|
6
|
Khodabandeh Z, Mehrabani D, Dehghani F, Gashmardi N, Erfanizadeh M, Zare S, Bozorg-Ghalati F. Spinal cord injury repair using mesenchymal stem cells derived from bone marrow in mice: A stereological study. Acta Histochem 2021; 123:151720. [PMID: 34083065 DOI: 10.1016/j.acthis.2021.151720] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022]
Abstract
Transplantation of bone marrow stem cells (BMSCs) has shown to have a vital role in promoting nerve regeneration after SCI. The aim of this study was to investigate the effect of BMSCs transplantation in healing of spinal cord injury (SCI) in mice based on morphologic parameters. Forty two male mice were randomly divided into 3 groups of control with no intervention, experimental SCI without treatment, and experimental SCI transplanted with 2 × 105 BMSCs intravenously. To induce SCI bilaterally, T10 was compressed for 2 min. The animals were sacrificed 3 and 5 weeks after SCI and T7-T11 segments of spinal cord were removed and stained by Giemsa and H&E methods. Stereological assessment estimated the gray and white matter volume, the number of neurons and neuroglia and diameter of central canal. The average amount of gray matter in SCI injury group was significantly lower than control group. An increase in the number of neurons was noted after cell transplantation. The number of neurons in SCI injury group significantly decreased in comparison to the control group. In cell transplantation group, a significant increase in the number of neurons was visible when compared to SCI injury group. The increase in the number of neurons after cell transplantation denotes to the regenerative potential of BMSCs in SCI. These findings can be added to the literature and open a new window when targeting treatment of SCI.
Collapse
Affiliation(s)
- Zahra Khodabandeh
- Stem cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Davood Mehrabani
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Comparative and Experimental Medicine Center, Shiraz University of Medical Sciences, Shiraz, Iran; Li Ka Shing Center for Health Research and Innovation, University of Alberta, Edmonton, AB, Canada.
| | - Farzaneh Dehghani
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | - Mahboobeh Erfanizadeh
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrokh Zare
- Stem cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Bozorg-Ghalati
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Al Mamun A, Monalisa I, Tul Kubra K, Akter A, Akter J, Sarker T, Munir F, Wu Y, Jia C, Afrin Taniya M, Xiao J. Advances in immunotherapy for the treatment of spinal cord injury. Immunobiology 2020; 226:152033. [PMID: 33321368 DOI: 10.1016/j.imbio.2020.152033] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/19/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is a leading cause of morbidity and disability in the world. Over the past few decades, the exact molecular mechanisms describing secondary, persistent injuries, as well as primary and transient injuries, have attracted massive attention to the clinicians and researchers. Recent investigations have distinctly shown the critical roles of innate and adaptive immune responses in regulating sterile neuroinflammation and functional outcomes after SCI. In past years, some promising advances in immunotherapeutic options have efficaciously been identified for the treatment of SCI. In our narrative review, we have mainly focused on the new therapeutic strategies such as the maturation and apoptosis of immune cells by several agents, mesenchymal stem cells (MSCs) as well as multi-factor combination therapy, which have recently provided novel ideas and prospects for the future treatment of SCI. This article also illustrates the latest progress in clarifying the potential roles of innate and adaptive immune responses in SCI, the progression and specification of prospective immunotherapy and outstanding issues in the area.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China
| | - Ilma Monalisa
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Khadija Tul Kubra
- Department of Pharmacy, University of Development Alternative, Dhaka 1209, Bangladesh
| | - Afroza Akter
- Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Jaheda Akter
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chattogram-4318, Chittagong, Bangladesh
| | - Tamanna Sarker
- Department of Pharmacy, University of Asia Pacific, Dhaka 1205, Bangladesh
| | - Fahad Munir
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Yanqing Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325035 Zhejiang Province, China
| | - Chang Jia
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang Province, China
| | - Masuma Afrin Taniya
- Department of Life Sciences, School of Environment and Life Sciences, Independent University, Bangladesh, Dhaka 1229, Bangladesh
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China.
| |
Collapse
|
8
|
Current Agents and Related Therapeutic Targets for Inflammation After Acute Traumatic Spinal Cord Injury. World Neurosurg 2019; 132:138-147. [DOI: 10.1016/j.wneu.2019.08.108] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 11/22/2022]
|
9
|
Song YH, Agrawal NK, Griffin JM, Schmidt CE. Recent advances in nanotherapeutic strategies for spinal cord injury repair. Adv Drug Deliv Rev 2019; 148:38-59. [PMID: 30582938 PMCID: PMC6959132 DOI: 10.1016/j.addr.2018.12.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/12/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is a devastating and complicated condition with no cure available. The initial mechanical trauma is followed by a secondary injury characterized by inflammatory cell infiltration and inhibitory glial scar formation. Due to the limitations posed by the blood-spinal cord barrier, systemic delivery of therapeutics is challenging. Recent development of various nanoscale strategies provides exciting and promising new means of treating SCI by crossing the blood-spinal cord barrier and delivering therapeutics. As such, we discuss different nanomaterial fabrication methods and provide an overview of recent studies where nanomaterials were developed to modulate inflammatory signals, target inhibitory factors in the lesion, and promote axonal regeneration after SCI. We also review emerging areas of research such as optogenetics, immunotherapy and CRISPR-mediated genome editing where nanomaterials can provide synergistic effects in developing novel SCI therapy regimens, as well as current efforts and barriers to clinical translation of nanomaterials.
Collapse
Affiliation(s)
- Young Hye Song
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Nikunj K Agrawal
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Jonathan M Griffin
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
10
|
A Single Dose of Atorvastatin Applied Acutely after Spinal Cord Injury Suppresses Inflammation, Apoptosis, and Promotes Axon Outgrowth, Which Might Be Essential for Favorable Functional Outcome. Int J Mol Sci 2018; 19:ijms19041106. [PMID: 29642434 PMCID: PMC5979414 DOI: 10.3390/ijms19041106] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/12/2018] [Accepted: 04/05/2018] [Indexed: 02/06/2023] Open
Abstract
The aim of our study was to limit the inflammatory response after a spinal cord injury (SCI) using Atorvastatin (ATR), a potent inhibitor of cholesterol biosynthesis. Adult Wistar rats were divided into five experimental groups: one control group, two Th9 compression (40 g/15 min) groups, and two Th9 compression + ATR (5 mg/kg, i.p.) groups. The animals survived one day and six weeks. ATR applied in a single dose immediately post-SCI strongly reduced IL-1β release at 4 and 24 h and considerably reduced the activation of resident cells at one day post-injury. Acute ATR treatment effectively prevented the excessive infiltration of destructive M1 macrophages cranially, at the lesion site, and caudally (by 66%, 62%, and 52%, respectively) one day post-injury, whereas the infiltration of beneficial M2 macrophages was less affected (by 27%, 41%, and 16%). In addition, at the same time point, ATR visibly decreased caspase-3 cleavage in neurons, astrocytes, and oligodendrocytes. Six weeks post-SCI, ATR increased the expression of neurofilaments in the dorsolateral columns and Gap43-positive fibers in the lateral columns around the epicenter, and from day 30 to 42, significantly improved the motor activity of the hindlimbs. We suggest that early modulation of the inflammatory response via effects on the M1/M2 macrophages and the inhibition of caspase-3 expression could be crucial for the functional outcome.
Collapse
|
11
|
Truflandier K, Beaumont E, Charbonney E, Maghni K, de Marchie M, Spahija J. Mechanical ventilation modulates pro-inflammatory cytokine expression in spinal cord tissue after injury in rats. Neurosci Lett 2018; 671:13-18. [PMID: 29355694 DOI: 10.1016/j.neulet.2018.01.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 11/24/2022]
Abstract
RATIONALE Spinal cord injury (SCI) may induce significant respiratory muscle weakness and paralysis, which in turn may cause a patient to require ventilator support. Central nervous system alterations can also exacerbate local inflammatory responses with immune cell infiltration leading to additional risk of inflammation at the injury site. Although mechanical ventilation is the traditional treatment for respiratory insufficiency, evidence has shown that it may directly affect distant organs through systemic inflammation. OBJECTIVES This study aimed to better understand the impact of invasive mechanical ventilation on local spinal cord inflammatory responses following cervical or thoracic SCI. METHODS Five groups of female Sprague-Dawley rats were anesthetised for 24 h. Three groups received mechanical ventilation: seven rats without SCI, seven rats with cervical injury (C4-C5), and seven rats with thoracic injury (T10); whereas, two groups were non-ventilated: six rats without SCI; and six rats with thoracic injury (T10). Changes in inflammatory responses were determined in the spinal cord tissues collected at the local site of injury. Cytokines were measured using ELISA. MAIN RESULTS SCI induced local pro-inflammatory cytokine IL-6 expression for all groups. Mechanical ventilation also had effects on pro-inflammatory cytokines and independently increased TNF-α and decreased IL-1β levels in the spinal cords of anesthetized rats. CONCLUSION These data provide the first evidence that mechanical ventilation contributes to local inflammation after SCI and in the absence of direct tissue injury.
Collapse
Affiliation(s)
- Karine Truflandier
- Research Center, CIUSSS du Nord-de-l'Ile-de-Montréal, Sacré-Coeur Hospital, Department of Medicine, Université de Montréal, 5400 boul. Gouin Ouest, Montréal, Quebec, H4J 1C5, Canada
| | - Eric Beaumont
- Research Center, CIUSSS du Nord-de-l'Ile-de-Montréal, Sacré-Coeur Hospital, Department of Medicine, Université de Montréal, 5400 boul. Gouin Ouest, Montréal, Quebec, H4J 1C5, Canada; Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Emmanuel Charbonney
- Research Center, CIUSSS du Nord-de-l'Ile-de-Montréal, Sacré-Coeur Hospital, Department of Medicine, Université de Montréal, 5400 boul. Gouin Ouest, Montréal, Quebec, H4J 1C5, Canada
| | - Karim Maghni
- Research Center, CIUSSS du Nord-de-l'Ile-de-Montréal, Sacré-Coeur Hospital, Department of Medicine, Université de Montréal, 5400 boul. Gouin Ouest, Montréal, Quebec, H4J 1C5, Canada
| | - Michel de Marchie
- Department of Adult Critical Care, Jewish General Hospital, McGill University, Montreal, Quebec, H3T 1E2, Canada
| | - Jadranka Spahija
- Research Center, CIUSSS du Nord-de-l'Ile-de-Montréal, Sacré-Coeur Hospital, Department of Medicine, Université de Montréal, 5400 boul. Gouin Ouest, Montréal, Quebec, H4J 1C5, Canada; School of Physical and Occupational Therapy, McGill University, 3654 Promenade Sir William Osler, Montreal, Quebec, H3G 1Y5, Canada; Center for Interdisciplinary Research in Rehabilitation in Montreal, CISSS de Laval, Jewish Rehabilitation Hospital, 3205, Place Alton-Goldbloom, Laval, Quebec, H7V 1J1, Canada.
| |
Collapse
|
12
|
Wang P, Jiang L, Zhou N, Zhou H, Liu H, Zhao W, Zhang H, Zhang X, Hu Z. Resveratrol ameliorates autophagic flux to promote functional recovery in rats after spinal cord injury. Oncotarget 2018; 9:8427-8440. [PMID: 29492205 PMCID: PMC5823559 DOI: 10.18632/oncotarget.23877] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/08/2017] [Indexed: 12/15/2022] Open
Abstract
Resveratrol is known to improve functional recovery after spinal cord injury, but the exact mechanism involved is yet unclear. The aim of this study was to clarify whether resveratrol can exert neuroprotective effects via activating neuronal autophagic flux, in view of the underlying role of the autophagic flux mediated by resveratrol on neuronal apoptosis after spinal cord injury, and identify the role of the liver kinase B1(LKB1)/adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)/ p70 ribosomal protein S6 kinase (p70s6k) signal pathway in the autophagic flux mediated by resveratrol. The results obtained strongly indicate that resveratrol improved functional recovery in Sprague–Dawley rats after acute spinal cord injury, preserved their motor neurons, alleviated the neuronal apoptosis, and ameliorated neuronal autophagic flux. After blocking the autophagic flux, the neuroprotective effects of resveratrol were eliminated. Furthermore, it was proved that resveratrol can activate the LKB1/AMPK/mTOR/p70s6k pathway in vivo and in vitro, and the LKB1/AMPK/mTOR/p70s6k pathway plays a vital role in activating the autophagic flux mediated by resveratrol in PC12 cells. Thus, resveratrol enables to ameliorate neuronal autophagic flux via the LKB1/AMPK/mTOR/p70s6k pathway to alleviate apoptosis, and finally ameliorating functional recovery after acute SCI in SD rats.
Collapse
Affiliation(s)
- Peng Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lizhu Jiang
- Department of Otorhinolaryngology Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Nian Zhou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hao Zhou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Huzhe Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wenrui Zhao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hanxiang Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiang Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhenming Hu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
13
|
Truflandier K, Beaumont E, Maghni K, De Marchie M, Charbonney E, Spahija J. Spinal cord injury modulates the lung inflammatory response in mechanically ventilated rats: a comparative animal study. Physiol Rep 2017; 4:4/24/e13009. [PMID: 28039398 PMCID: PMC5210386 DOI: 10.14814/phy2.13009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 09/25/2016] [Indexed: 12/26/2022] Open
Abstract
Mechanical ventilation (MV) is widely used in spinal injury patients to compensate for respiratory muscle failure. MV is known to induce lung inflammation, while spinal cord injury (SCI) is known to contribute to local inflammatory response. Interaction between MV and SCI was evaluated in order to assess the impact it may have on the pulmonary inflammatory profile. Sprague Dawley rats were anesthetized for 24 h and randomized to receive either MV or not. The MV group included C4-C5 SCI, T10 SCI and uninjured animals. The nonventilated (NV) group included T10 SCI and uninjured animals. Inflammatory cytokine profile, inflammation related to the SCI level, and oxidative stress mediators were measured in the bronchoalveolar lavage (BAL). The cytokine profile in BAL of MV animals showed increased levels of TNF-α, IL-1β, IL-6 and a decrease in IL-10 (P = 0.007) compared to the NV group. SCI did not modify IL-6 and IL-10 levels either in the MV or the NV groups, but cervical injury induced a decrease in IL-1β levels in MV animals. Cervical injury also reduced MV-induced pulmonary oxidative stress responses by decreasing isoprostane levels while increasing heme oxygenase-1 level. The thoracic SCI in NV animals increased M-CSF expression and promoted antioxidant pulmonary responses with low isoprostane and high heme oxygenase-1 levels. SCI shows a positive impact on MV-induced pulmonary inflammation, modulating specific lung immune and oxidative stress responses. Inflammation induced by MV and SCI interact closely and may have strong clinical implications since effective treatment of ventilated SCI patients may amplify pulmonary biotrauma.
Collapse
Affiliation(s)
- Karine Truflandier
- Research Center, Sacré-Cœur Hospital of Montreal, Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Eric Beaumont
- Research Center, Sacré-Cœur Hospital of Montreal, Department of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Karim Maghni
- Research Center, Sacré-Cœur Hospital of Montreal, Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Michel De Marchie
- Department of Adult Critical Care, Jewish General Hospital McGill University, Montréal, Quebec, Canada
| | - Emmanuel Charbonney
- Research Center, Sacré-Cœur Hospital of Montreal, Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Jadranka Spahija
- Research Center, Sacré-Cœur Hospital of Montreal, Department of Medicine, Université de Montréal, Montreal, Quebec, Canada .,School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada.,Center for Interdisciplinary Research in Rehabilitation in Montreal, Jewish Rehabilitation Hospital, Laval, Quebec, Canada
| |
Collapse
|
14
|
Biscola NP, Cartarozzi LP, Ulian-Benitez S, Barbizan R, Castro MV, Spejo AB, Ferreira RS, Barraviera B, Oliveira ALR. Multiple uses of fibrin sealant for nervous system treatment following injury and disease. J Venom Anim Toxins Incl Trop Dis 2017; 23:13. [PMID: 28293254 PMCID: PMC5348778 DOI: 10.1186/s40409-017-0103-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/23/2017] [Indexed: 12/14/2022] Open
Abstract
Lesions to the nervous system often produce hemorrhage and tissue loss that are difficult, if not impossible, to repair. Therefore, scar formation, inflammation and cavitation take place, expanding the lesion epicenter. This significantly worsens the patient conditions and impairment, increasing neuronal loss and glial reaction, which in turn further decreases the chances of a positive outcome. The possibility of using hemostatic substances that also function as a scaffold, such as the fibrin sealant, reduces surgical time and improve postoperative recovery. To date, several studies have demonstrated that human blood derived fibrin sealant produces positive effects in different interventions, becoming an efficient alternative to suturing. To provide an alternative to homologous fibrin sealants, the Center for the Study of Venoms and Venomous Animals (CEVAP, Brazil) has proposed a new bioproduct composed of certified animal components, including a thrombin-like enzyme obtained from snake venom and bubaline fibrinogen. Thus, the present review brings up to date literature assessment on the use of fibrin sealant for nervous system repair and positions the new heterologous bioproduct from CEVAP as an alternative to the commercial counterparts. In this way, clinical and pre-clinical data are discussed in different topics, ranging from central nervous system to peripheral nervous system applications, specifying positive results as well as future enhancements that are necessary for improving the use of fibrin sealant therapy.
Collapse
Affiliation(s)
- Natalia Perussi Biscola
- Graduate Program in Tropical Diseases, Botucatu Medical School, Univ Estadual Paulista (UNESP), Botucatu, SP Brazil.,Center for the Study of Venoms and Venomous Animals (CEVAP), Univ Estadual Paulista (UNESP), Botucatu, SP Brazil.,Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Laboratory of Nerve Regeneration, CEP 13083-970 Campinas, SP Brazil
| | - Luciana Politti Cartarozzi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Laboratory of Nerve Regeneration, CEP 13083-970 Campinas, SP Brazil
| | - Suzana Ulian-Benitez
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Laboratory of Nerve Regeneration, CEP 13083-970 Campinas, SP Brazil.,Neuro Development Lab, School of Biosciences, University of Birmingham, Birmingham, England UK
| | - Roberta Barbizan
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Laboratory of Nerve Regeneration, CEP 13083-970 Campinas, SP Brazil.,The School of Medicine at Mucuri (FAMMUC), Federal University of Jequitinhonha and Mucuri Valleys (UFVJM), 39803-371 Teófilo Otoni, MG Brazil
| | - Mateus Vidigal Castro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Laboratory of Nerve Regeneration, CEP 13083-970 Campinas, SP Brazil
| | - Aline Barroso Spejo
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Laboratory of Nerve Regeneration, CEP 13083-970 Campinas, SP Brazil
| | - Rui Seabra Ferreira
- Graduate Program in Tropical Diseases, Botucatu Medical School, Univ Estadual Paulista (UNESP), Botucatu, SP Brazil.,Center for the Study of Venoms and Venomous Animals (CEVAP), Univ Estadual Paulista (UNESP), Botucatu, SP Brazil
| | - Benedito Barraviera
- Graduate Program in Tropical Diseases, Botucatu Medical School, Univ Estadual Paulista (UNESP), Botucatu, SP Brazil.,Center for the Study of Venoms and Venomous Animals (CEVAP), Univ Estadual Paulista (UNESP), Botucatu, SP Brazil
| | - Alexandre Leite Rodrigues Oliveira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Laboratory of Nerve Regeneration, CEP 13083-970 Campinas, SP Brazil
| |
Collapse
|
15
|
Rayegan S, Dehpour AR, Sharifi AM. Studying neuroprotective effect of Atorvastatin as a small molecule drug on high glucose-induced neurotoxicity in undifferentiated PC12 cells: role of NADPH oxidase. Metab Brain Dis 2017; 32:41-49. [PMID: 27476541 PMCID: PMC7102122 DOI: 10.1007/s11011-016-9883-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 07/25/2016] [Indexed: 01/01/2023]
Abstract
Overproduction of reactive oxygen species (ROS) by NADPH oxidase (NOX) activation has been considered the essential mechanism induced by hyperglycemia in various tissues. However, there is no comprehensive study on the role of NOXs in high glucose (HG)-induced toxic effect in neural tissues. Recently, a therapeutic strategy in oxidative related pathologies has been introduced by blocking the undesirable actions of NOX enzymes by small molecules. The protective roles of Statins in ameliorating oxidative stress by NOX inhibition have been shown in some tissues except neural. We hypothesized then, that different NOXs may have role in HG-induced neural cell injury. Furthermore, we postulate that Atorvastatin as a small molecule may modulate this NOXs activity to protect neural cells. Undifferentiated PC12 cells were treated with HG (140 mM/24 h) in the presence and absence of Atorvastatin (1 μM/96 h). The cell viability was measured by MTT assay and the gene and protein expressions profile of NOX (1-4) were determined by RT-PCR and western blotting, respectively. Levels of ROS and malondialdehyde (MDA) were also evaluated. Gene and protein expression levels of NOX (1-4) and consequently ROS and MDA levels were elevated in HG-treated PC12 cells. Atorvastatin could significantly decrease HG-induced NOXs, ROS and MDA elevation and improve impaired cell viability. It can be concluded that HG could elevate NOXs activity, ROS and MDA levels in neural tissues and Atorvastatin as a small molecule NOX inhibitor drug may prevent and delay diabetic complications, particularly neuropathy.
Collapse
Affiliation(s)
- Samira Rayegan
- Razi Drug Research Center and Dept. of Pharmacology, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Mohammad Sharifi
- Razi Drug Research Center and Dept. of Pharmacology, Iran University of Medical Sciences, Tehran, Iran.
- Department of Tissue engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Tissue engineering group, Department of Orthopedics surgery, Faculty of Medicine, University of Malaya, Kuala lumpur, Malaysia.
| |
Collapse
|
16
|
Gu C, Li H, Wang C, Song X, Ding Y, Zheng M, Liu W, Chen Y, Zhang X, Wang L. Bone marrow mesenchymal stem cells decrease CHOP expression and neuronal apoptosis after spinal cord injury. Neurosci Lett 2017; 636:282-289. [DOI: 10.1016/j.neulet.2016.11.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 11/13/2016] [Accepted: 11/15/2016] [Indexed: 12/15/2022]
|
17
|
Gao S, Zhang ZM, Shen ZL, Gao K, Chang L, Guo Y, Li Z, Wang W, Wang AM. Atorvastatin activates autophagy and promotes neurological function recovery after spinal cord injury. Neural Regen Res 2016; 11:977-82. [PMID: 27482228 PMCID: PMC4962597 DOI: 10.4103/1673-5374.184498] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Atorvastatin, a lipid-lowering medication, provides neuroprotective effects, although the precise mechanisms of action remain unclear. Our previous studies confirmed activated autophagy following spinal cord injury, which was conducive to recovery of neurological functions. We hypothesized that atorvastatin could also activate autophagy after spinal cord injury, and subsequently improve recovery of neurological functions. A rat model of spinal cord injury was established based on the Allen method. Atorvastatin (5 mg/kg) was intraperitoneally injected at 1 and 2 days after spinal cord injury. At 7 days post-injury, western blot assay, reverse transcription-polymerase chain reaction, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining results showed increased Beclin-1 and light chain 3B gene and protein expressions in the spinal cord injury + atorvastatin group. Additionally, caspase-9 and caspase-3 expression was decreased, and the number of TUNEL-positive cells was reduced. Compared with the spinal cord injury + saline group, Basso, Beattie, and Bresnahan locomotor rating scale scores significantly increased in the spinal cord injury + atorvastatin group at 14-42 days post-injury. These findings suggest that atorvastatin activated autophagy after spinal cord injury, inhibited apoptosis, and promoted recovery of neurological function.
Collapse
Affiliation(s)
- Shuang Gao
- Department of Physiology, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Zhong-Ming Zhang
- Department of Orthopedics, Jinzhou Municipal Second Hospital, Jinzhou, Liaoning Province, China
| | - Zhao-Liang Shen
- Department of Orthopedics, Jinzhou Municipal Second Hospital, Jinzhou, Liaoning Province, China
| | - Kai Gao
- Department of Orthopedics, Jining No. 1 People's Hospital, Jining, Shandong Province, China
| | - Liang Chang
- Jinzhou Central Hospital, Jinzhou, Liaoning Province, China
| | - Yue Guo
- Department of Orthopedics, Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Zhuo Li
- Department of Orthopedics, Jinzhou Municipal Second Hospital, Jinzhou, Liaoning Province, China
| | - Wei Wang
- Department of Orthopedics, First Hospital of Qinhuangdao City, Qinhuangdao, Hebei Province, China
| | - Ai-Mei Wang
- Department of Physiology, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| |
Collapse
|
18
|
Probucol inhibits neural cell apoptosis via inhibition of mTOR signaling pathway after spinal cord injury. Neuroscience 2016; 329:193-200. [PMID: 27223630 DOI: 10.1016/j.neuroscience.2016.05.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/09/2016] [Accepted: 05/09/2016] [Indexed: 02/07/2023]
Abstract
Autophagy plays an essential role in neurodevelopment, axonal guidance, neuropathic pain remission, and neuronal survival. Inhibiting the mammalian target of rapamycin (mTOR) signaling pathway can induce the occurrence of autophagy. In this study, we initially detected the effect of probucol on autophagy after spinal cord injury (SCI) by intraperitoneally injecting spinal cord-injured rats with probucol for 7days. The levels of Beclin1 and LC3B were evidently enhanced at 7days post-operation. However, the increase in the phosphorylated AMP-activated protein kinase (AMPK) protein and the decrease in ribosomal protein S6 kinase p70 subtype (p70S6K) phosphorylation level simultaneously occurred after SCI. Moreover, the expression levels of apoptosis-related proteins of Caspase-3, Caspase-9, and Bax were significantly reduced. Immunofluorescence results indicated that the expression of Caspase-3 protein was evidently decreased and that of Beclin-1 protein was increased by probucol. Nissl staining and Basso, Beattie, and Bresnahan scores showed that the quantity and function of motor neurons were visibly preserved by probucol after SCI. This study showed that probucol inhibited the mTOR signaling pathway to induce autophagy, reduce neural cell apoptosis and promote recovery of neurological function after SCI.
Collapse
|
19
|
Neuroprotective Effect of Simvastatin via Inducing the Autophagy on Spinal Cord Injury in the Rat Model. BIOMED RESEARCH INTERNATIONAL 2015; 2015:260161. [PMID: 26539474 PMCID: PMC4619759 DOI: 10.1155/2015/260161] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/31/2015] [Indexed: 01/25/2023]
Abstract
Simvastatin, an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, is invariably used to treat cardiovascular diseases. Simvastatin has been recently demonstrated to have a neuroprotective effect in nervous system diseases. The present study aimed to further verify the neuroprotection and molecular mechanism of simvastatin on rats after spinal cord injury (SCI). The expression of Beclin-1 and LC3-B was evidently enhanced at postoperation days 3 and 5, respectively. However, the reduction of the mTOR protein and ribosomal protein S6 kinase p70 subtype (p70S6K) phosphorylation level occurred at the same time after SCI. Simvastatin significantly increased the expression of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF). Meanwhile, immunofluorescence results indicated that the expression of chondroitin sulfate proteoglycan (CSPG) and caspase-3 protein was obviously reduced by simvastatin. Furthermore, Nissl staining and Basso, Beattie, and Bresnahan (BBB) scores showed that the quantity and function of motor neurons were visibly preserved by simvastatin after SCI. The findings of this study showed that simvastatin induced autophagy by inhibiting the mTOR signaling pathway and contributed to neuroprotection after SCI.
Collapse
|
20
|
Schomberg D, Miranpuri G, Duellman T, Crowell A, Vemuganti R, Resnick D. Spinal cord injury induced neuropathic pain: Molecular targets and therapeutic approaches. Metab Brain Dis 2015; 30:645-58. [PMID: 25588751 DOI: 10.1007/s11011-014-9642-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022]
Abstract
Neuropathic pain, especially that resulting from spinal cord injury, is a tremendous clinical challenge. A myriad of biological changes have been implicated in producing these pain states including cellular interactions, extracellular proteins, ion channel expression, and epigenetic influences. Physiological consequences of these changes are varied and include functional deficits and pain responses. Developing therapies that effectively address the cause of these symptoms require a deeper knowledge of alterations in the molecular pathways. Matrix metalloproteinases and tissue inhibitors of metalloproteinases are two promising therapeutic targets. Matrix metalloproteinases interact with and influence many of the studied pain pathways. Gene expression of ion channels and inflammatory mediators clearly contributes to neuropathic pain. Localized and time dependent targeting of these proteins could alleviate and even prevent neuropathic pain from developing. Current therapeutic options for neuropathic pain are limited primarily to analgesics targeting the opioid pathway. Therapies directed at molecular targets are highly desirable and in early stages of development. These include transplantation of exogenously engineered cell populations and targeted gene manipulation. This review describes specific molecular targets amenable to therapeutic intervention using currently available delivery systems.
Collapse
Affiliation(s)
- Dominic Schomberg
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI, 53792, USA
| | | | | | | | | | | |
Collapse
|
21
|
Hyperlipidemia and statins affect neurological outcome in lumbar spine injury. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:402-13. [PMID: 25568970 PMCID: PMC4306869 DOI: 10.3390/ijerph120100402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/30/2014] [Indexed: 11/22/2022]
Abstract
The disabling pathophysiologic effects of lipid and neuroprotective effects of statins have recently been demonstrated for acute spinal cord injuries in animal models. This large scale population-based study aimed to investigate the effect hyperlipidemia and the use of statins in patients with lumbar spine injury. The National Health Insurance Research Database of Taiwan was used to identify patients with lumbar spine injury. A total of 2844 patients were grouped into three: no hyperlipidemia, hyperlipidemia using low-dose of statins (≤90 of the defined daily dosage (DDD)), and severe hyperlipidemia using high-dose of statins (>90 DDD). A Cox multiple regression model was used to compare the incidence rates of disability among the three groups. The results showed that patients with hyperlipidemia appeared a higher risk of permanent disability (adjusted HR = 1.38, p = 0.28). In subgroup analysis, patients with severe hyperlipidemia had a higher risk of disability (adjusted HR = 3.1, p < 0.004), whereas hyperlipidemia using low-dose statins had a similar risk of permanently disability (adjusted HR = 0.83, p = 0.661). Hyperlipidemia adversely affected the neurological outcomes of lumbar spinal injury. Statins may have the potential to reverse this higher risk of disability. However, this beneficiary effect of statins only existed in patients using a lower dose (≤90 DDD).
Collapse
|
22
|
Nazli Y, Colak N, Alpay MF, Uysal S, Uzunlar AK, Cakir O. Neuroprotective effect of atorvastatin in spinal cord ischemia-reperfusion injury. Clinics (Sao Paulo) 2015; 70:52-60. [PMID: 25672430 PMCID: PMC4311118 DOI: 10.6061/clinics/2015(01)10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/18/2014] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES Prevention of the development of paraplegia during the repair of the damage caused by descending thoracic and thoracoabdominal aneurysms remains an important issue. Therefore, we investigated the protective effect of atorvastatin on ischemia-induced spinal cord injury in a rabbit model. METHOD Thirty-two rabbits were divided into the following four equally sized groups: group I (control), group II (ischemia-reperfusion), group III (atorvastatin treatment) and group IV (atorvastatin withdrawal). Spinal cord ischemia was induced by clamping the aorta both below the left renal artery and above the iliac bifurcation. Seventy-two hours postoperatively, the motor function of the lower limbs of each animal was evaluated according to the Tarlov score. Spinal cord and blood samples were obtained for histopathological and biochemical analyses. RESULTS All of the rabbits in group II exhibited severe neurological deficits. Atorvastatin treatment (groups III and IV) significantly reduced the level of motor dysfunction. No significant differences were observed between the motor function scores of groups III and IV at the evaluated time points. Light microscopic examination of spinal cord tissue samples obtained at the 72nd hour of reperfusion indicated greater tissue preservation in groups III and IV than in group II. CONCLUSION This study demonstrates the considerable neuroprotective effect of atorvastatin on the neurological, biochemical and histopathological status of rabbits with ischemia-induced spinal cord injury. Moreover, the acute withdrawal of atorvastatin therapy following the induction of spinal cord ischemia did not increase the neuronal damage in this rabbit model.
Collapse
Affiliation(s)
- Yunus Nazli
- Department of Cardiovascular Surgery, School of Medicine, University of Turgut Ozal, Ankara, Turkey
| | - Necmettin Colak
- Department of Cardiovascular Surgery, School of Medicine, University of Turgut Ozal, Ankara, Turkey
| | - Mehmet Fatih Alpay
- Department of Cardiovascular Surgery, School of Medicine, University of Turgut Ozal, Ankara, Turkey
| | - Sema Uysal
- Department of Biochemistry, School of Medicine, University of Fatih, Ankara, Turkey
| | - Ali Kemal Uzunlar
- Department of Pathology, School of Medicine, University of Duzce, Duzce, Turkey
| | - Omer Cakir
- Department of Cardiovascular Surgery, School of Medicine, University of Turgut Ozal, Ankara, Turkey
| |
Collapse
|
23
|
Neuropathic pain: role of inflammation, immune response, and ion channel activity in central injury mechanisms. Ann Neurosci 2014; 19:125-32. [PMID: 25205985 PMCID: PMC4117080 DOI: 10.5214/ans.0972.7531.190309] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 06/30/2012] [Accepted: 07/27/2012] [Indexed: 01/11/2023] Open
Abstract
Neuropathic pain (NP) is a significant and disabling clinical problem with very few therapeutic treatment options available. A major priority is to identify the molecular mechanisms responsible for NP. Although many seemingly relevant pathways have been identified, more research is needed before effective clinical interventions can be produced. Initial insults to the nervous system, such as spinal cord injury (SCI), are often compounded by secondary mechanisms such as inflammation, the immune response, and the changing expression of receptors and ion channels. The consequences of these secondary effects myriad and compound those elicited by the primary injury. Chronic NP syndromes following SCI can greatly complicate the clinical treatment of the primary injury and result in high comorbidity. In this review, we will describe physiological outcomes associated with SCI along with some of the mechanisms known to contribute to chronic NP development.
Collapse
|
24
|
McFarland AJ, Anoopkumar-Dukie S, Arora DS, Grant GD, McDermott CM, Perkins AV, Davey AK. Molecular mechanisms underlying the effects of statins in the central nervous system. Int J Mol Sci 2014; 15:20607-37. [PMID: 25391045 PMCID: PMC4264186 DOI: 10.3390/ijms151120607] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/23/2014] [Accepted: 10/30/2014] [Indexed: 02/06/2023] Open
Abstract
3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, commonly referred to as statins, are widely used in the treatment of dyslipidaemia, in addition to providing primary and secondary prevention against cardiovascular disease and stroke. Statins’ effects on the central nervous system (CNS), particularly on cognition and neurological disorders such as stroke and multiple sclerosis, have received increasing attention in recent years, both within the scientific community and in the media. Current understanding of statins’ effects is limited by a lack of mechanism-based studies, as well as the assumption that all statins have the same pharmacological effect in the central nervous system. This review aims to provide an updated discussion on the molecular mechanisms contributing to statins’ possible effects on cognitive function, neurodegenerative disease, and various neurological disorders such as stroke, epilepsy, depression and CNS cancers. Additionally, the pharmacokinetic differences between statins and how these may result in statin-specific neurological effects are also discussed.
Collapse
Affiliation(s)
| | | | - Devinder S Arora
- School of Pharmacy, Griffith University, Queensland 4222, Australia.
| | - Gary D Grant
- School of Pharmacy, Griffith University, Queensland 4222, Australia.
| | | | - Anthony V Perkins
- Griffith Health Institute, Griffith University, Queensland 4222, Australia.
| | - Andrew K Davey
- School of Pharmacy, Griffith University, Queensland 4222, Australia.
| |
Collapse
|
25
|
Kahveci R, Gökçe EC, Gürer B, Gökçe A, Kisa U, Cemil DB, Sargon MF, Kahveci FO, Aksoy N, Erdoğan B. Neuroprotective effects of rosuvastatin against traumatic spinal cord injury in rats. Eur J Pharmacol 2014; 741:45-54. [PMID: 25084223 DOI: 10.1016/j.ejphar.2014.07.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 12/20/2022]
Abstract
Rosuvastatin, which is a potent statin, has never been studied in traumatic spinal cord injury. The aim of this study was to investigate whether rosuvastatin treatment could protect the spinal cord after experimental spinal cord injury. Rats were randomized into the following five groups of eight animals each: control, sham, trauma, rosuvastatin, and methylprednisolone. In the control group, no surgical intervention was performed. In the sham group, only laminectomy was performed. In all the other groups, the spinal cord trauma model was created by the occlusion of the spinal cord with an aneurysm clip. In the spinal cord tissue, caspase-3 activity, tumor necrosis factor-alpha levels, myeloperoxidase activity, malondialdehyde levels, nitric oxide levels, and superoxide dismutase levels were analyzed. Histopathological and ultrastructural evaluations were also performed. Neurological evaluation was performed using the Basso, Beattie, and Bresnahan locomotor scale and the inclined-plane test.After traumatic spinal cord injury, increases in caspase-3 activity, tumor necrosis factor-alpha levels, myeloperoxidase activity, malondialdehyde levels, and nitric oxide levels were detected. In contrast, the superoxide dismutase levels were decreased. After the administration of rosuvastatin, decreases were observed in the tissue caspase-3 activity, tumor necrosis factor-alpha levels, myeloperoxidase activity, malondialdehyde levels, and nitric oxide levels. In contrast, tissue superoxide dismutase levels were increased. Furthermore, rosuvastatin treatment showed improved results concerning the histopathological scores, the ultrastructural score and the functional tests. Biochemical, histopathological, ultrastructural analysis and functional tests revealed that rosuvastatin exhibits meaningful neuroprotective effects against spinal cord injury.
Collapse
Affiliation(s)
- Ramazan Kahveci
- Ministry of Health, Kirikkale Yüksek İhtisas Hospital, Department of Neurosurgery, Kirikkale, Turkey
| | - Emre Cemal Gökçe
- Turgut Ozal University, Faculty of Medicine, Department of Neurosurgery, Ankara, Turkey
| | - Bora Gürer
- Ministry of Health, Fatih Sultan Mehmet Education and Research Hospital, Department of Neurosurgery, Beyin Cerrahi Servisi, 34752 Ataşehir, Istanbul, Turkey.
| | - Aysun Gökçe
- Ministry of Health, Diskapi Yildirim Beyazit Education and Research Hospital, Department of Pathology, Ankara, Turkey
| | - Uçler Kisa
- Kirikkale University, Faculty of Medicine, Department of Biochemistry, Kirikkale, Turkey
| | - Duran Berker Cemil
- Turgut Ozal University, Faculty of Medicine, Department of Neurosurgery, Ankara, Turkey
| | - Mustafa Fevzi Sargon
- Hacettepe University, Faculty of Medicine, Department of Anatomy, Ankara, Turkey
| | - Fatih Ozan Kahveci
- Bülent Ecevit University, Faculty of Medicine, Department of Emergency Medicine, Zonguldak, Turkey
| | - Nurkan Aksoy
- Kirikkale University, Faculty of Medicine, Department of Biochemistry, Kirikkale, Turkey
| | - Bülent Erdoğan
- Turgut Ozal University, Faculty of Medicine, Department of Neurosurgery, Ankara, Turkey
| |
Collapse
|
26
|
Silva NA, Sousa N, Reis RL, Salgado AJ. From basics to clinical: a comprehensive review on spinal cord injury. Prog Neurobiol 2013; 114:25-57. [PMID: 24269804 DOI: 10.1016/j.pneurobio.2013.11.002] [Citation(s) in RCA: 526] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 11/12/2013] [Accepted: 11/12/2013] [Indexed: 12/15/2022]
Abstract
Spinal cord injury (SCI) is a devastating neurological disorder that affects thousands of individuals each year. Over the past decades an enormous progress has been made in our understanding of the molecular and cellular events generated by SCI, providing insights into crucial mechanisms that contribute to tissue damage and regenerative failure of injured neurons. Current treatment options for SCI include the use of high dose methylprednisolone, surgical interventions to stabilize and decompress the spinal cord, and rehabilitative care. Nonetheless, SCI is still a harmful condition for which there is yet no cure. Cellular, molecular, rehabilitative training and combinatorial therapies have shown promising results in animal models. Nevertheless, work remains to be done to ascertain whether any of these therapies can safely improve patient's condition after human SCI. This review provides an extensive overview of SCI research, as well as its clinical component. It starts covering areas from physiology and anatomy of the spinal cord, neuropathology of the SCI, current clinical options, neuronal plasticity after SCI, animal models and techniques to assess recovery, focusing the subsequent discussion on a variety of promising neuroprotective, cell-based and combinatorial therapeutic approaches that have recently moved, or are close, to clinical testing.
Collapse
Affiliation(s)
- Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Caldas das Taipas, Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
27
|
Cloutier FC, Rouleau DM, Hébert-Davies J, Beaumont PH, Beaumont E. Atorvastatin is beneficial for muscle reinnervation after complete sciatic nerve section in rats. J Plast Surg Hand Surg 2013; 47:446-50. [PMID: 23848426 DOI: 10.3109/2000656x.2013.778205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nerve regeneration and functional recovery are often incomplete after peripheral neurotmetic lesion. Atorvastatin has been shown to be neuroprotective after transient ischaemia or traumatic injury. The aim of this study was to establish if systemic administration of Atorvastatin could improve functional muscle reinnervation after complete sciatic nerve section. Sixteen female Sprague-Dawley rats were used in this study. After a complete right sciatic nerve section, end-to-end microsuture repair was performed and fibrin glue was added. Three groups were studied: (1) sutures (S) + fibrin glue (F) only + saline administration for 14 days; (2) S+F+Atorvastatin administration for 14 days; and (3) uninjured nerve. Five months later, the sciatic nerve and the gastrocnemius muscle were isolated to perform in vivo electrophysiological measurements. Better kinematics was observed in atorvastatin-treated rats 5 months after its administration. Indeed, a larger excursion of the hip-ankle-toe angle during walking was observed. This effect was associated with the preservation of electromyographic activity (2.91 mV vs 0.77 mV) and maximal muscle force (85.1 g vs 28.6 g) on stimulation of the proximal nerve section. Five months after a neurotmetic lesion, the recovery is incomplete when using suture and fibrin glue only. Furthermore, the systemic administration of Atorvastatin for 14 days after lesion was beneficial in improving locomotion capability associated with the re-establishment of muscle strength and EMG activity.
Collapse
Affiliation(s)
- Frédéric-Charles Cloutier
- Centre de Recherche, Hôpital du Sacré-Coeur de Montréal and Département de Chirurgie, Université de Montréal , Montréal, Québec , Canada
| | | | | | | | | |
Collapse
|
28
|
Totoson P, Fhayli W, Faury G, Korichneva I, Cachot S, Baldazza M, Ribuot C, Pépin JL, Lévy P, Joyeux-Faure M. Atorvastatin protects against deleterious cardiovascular consequences induced by chronic intermittent hypoxia. Exp Biol Med (Maywood) 2013; 238:223-32. [PMID: 23404941 DOI: 10.1177/1535370212473696] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Chronic intermittent hypoxia (IH), a major component of obstructive sleep apnea (OSA), contributes to the high risk of cardiovascular morbidity. We have previously demonstrated that IH-induced oxidative stress is involved in the hypertension and in the hypersensitivity to myocardial infarction. However, the mechanisms underlying these cardiovascular alterations are still unclear, as well as the role of potential protective treatment. Atorvastatin has pleiotropic actions, including increasing nitric oxide (NO) bioavailability and reducing inflammation and oxidative damage. The aim of this study was to evaluate the beneficial effect of a two time course of this treatment against the deleterious cardiovascular consequences of IH. Rats were divided into two groups subjected to chronic IH or normoxic (N) exposure. IH consisted of repetitive one-minute cycles (with only 30 s of a 5% inspired O2 fraction) and was applied for eight hours during daytime, for 14 (simultaneous protocol) or 28 d (delayed protocol). Atorvastatin (10 mg/kg/ d) or its vehicle was administered during the 14 d simultaneous protocol or the last 14 d of the delayed protocol. For both protocols, systolic arterial pressure was significantly increased by 14 d IH exposure. Atorvastatin prevented this deleterious effect in the simultaneous protocol. Carotid artery compliance and endothelial function were significantly altered after 28 d but not after 14 d of IH exposure. Delayed atorvastatin administration preserved these vascular parameters. IH also increased hypersensitivity to myocardial infarction after 14 d exposure, and atorvastatin abolished this deleterious effect. IH also enhanced cardiac NADPH expression and decreased aortic superoxide dismutase activity after 14 d exposure. Atorvastatin significantly restored these activities. In conclusion, whereas IH rapidly increased blood pressure, myocardial infarction hypersensitivity and oxidative stress, compliance, endothelial function and the structural wall of the carotid artery were only altered after a longer IH exposure. Atorvastatin prevented all these deleterious cardiovascular effects, leading to a potentially novel pharmacological therapeutic strategy for OSA syndrome.
Collapse
|
29
|
Mackinnon SE, Yee A, Ray WZ. Nerve transfers for the restoration of hand function after spinal cord injury. J Neurosurg 2012; 117:176-85. [DOI: 10.3171/2012.3.jns12328] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Spinal cord injury (SCI) remains a significant public health problem. Despite advances in understanding of the pathophysiological processes of acute and chronic SCI, corresponding advances in translational applications have lagged behind. Nerve transfers using an expendable nearby motor nerve to reinnervate a denervated nerve have resulted in more rapid and improved functional recovery than traditional nerve graft reconstructions following a peripheral nerve injury. The authors present a single case of restoration of some hand function following a complete cervical SCI utilizing nerve transfers.
Collapse
Affiliation(s)
| | - Andrew Yee
- 1Division of Plastic and Reconstructive Surgery, and
| | - Wilson Z. Ray
- 2Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
30
|
Simvastatin mobilizes bone marrow stromal cells migrating to injured areas and promotes functional recovery after spinal cord injury in the rat. Neurosci Lett 2012; 521:136-41. [DOI: 10.1016/j.neulet.2012.05.071] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 05/16/2012] [Accepted: 05/29/2012] [Indexed: 01/12/2023]
|
31
|
Mekhail M, Almazan G, Tabrizian M. Oligodendrocyte-protection and remyelination post-spinal cord injuries: a review. Prog Neurobiol 2012; 96:322-39. [PMID: 22307058 DOI: 10.1016/j.pneurobio.2012.01.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 01/09/2012] [Accepted: 01/19/2012] [Indexed: 12/28/2022]
Abstract
In the past four decades, the main focus of investigators in the field of spinal cord regeneration has been to devise therapeutic measures that enhance neural regeneration. More recently, emphasis has been placed on enhancing remyelination and providing oligodendrocyte-protection after a spinal cord injury (SCI). Demyelination post-SCI is part of the cascading secondary injury that takes place immediately after the primary insult; therefore, therapeutic measures are needed to reduce oligodendrocyte death and/or enhance remyelination during the acute stage, preserving neurological functions that would be lost otherwise. In this review a thorough investigation of the oligodendrocyte-protective and remyelinative molecular therapies available to date is provided. The advent of new biomaterials shown to promote remyelination post-SCI is discussed mainly in the context of a combinatorial approach where the biomaterial also provides drug delivery capabilities. The aim of these molecular and biomaterial-based therapies is twofold: (1) oligodendrocyte-protective therapy, which involves protecting already existing oligodendrocytes from undergoing apoptosis/necrosis; and (2) inductive remyelination, which involves harnessing the remyelinative capabilities of endogenous oligodendrocyte precursor cells (OPCs) at the lesion site by providing a suitable environment for their migration, survival, proliferation and differentiation. From the evidence reported in the literature, we conclude that the use of a combinatorial approach including biomaterials and molecular therapies would provide advantages such as: (1) sustained release of the therapeutic molecule, (2) local delivery at the lesion site, and (3) an environment at the site of injury that promotes OPC migration, differentiation and remyelination.
Collapse
Affiliation(s)
- Mina Mekhail
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
32
|
Priestley JV, Michael-Titus AT, Tetzlaff W. Limiting spinal cord injury by pharmacological intervention. HANDBOOK OF CLINICAL NEUROLOGY 2012; 109:463-484. [PMID: 23098731 DOI: 10.1016/b978-0-444-52137-8.00029-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The direct primary mechanical trauma to neurons, glia and blood vessels that occurs with spinal cord injury (SCI) is followed by a complex cascade of biochemical and cellular changes which serve to increase the size of the injury site and the extent of cellular and axonal loss. The aim of neuroprotective strategies in SCI is to limit the extent of this secondary cell loss by inhibiting key components of the evolving injury cascade. In this review we will briefly outline the pathophysiological events that occur in SCI, and then review the wide range of neuroprotective agents that have been evaluated in preclinical SCI models. Agents will be considered under the following categories: antioxidants, erythropoietin and derivatives, lipids, riluzole, opioid antagonists, hormones, anti-inflammatory agents, statins, calpain inhibitors, hypothermia, and emerging strategies. Several clinical trials of neuroprotective agents have already taken place and have generally had disappointing results. In attempting to identify promising new treatments, we will therefore highlight agents with (1) low known risks or established clinical use, (2) behavioral data gained in clinically relevant animal models, (3) efficacy when administered after the injury, and (4) robust effects seen in more than one laboratory and/or more than one model of SCI.
Collapse
|
33
|
Kwon BK, Okon E, Hillyer J, Mann C, Baptiste D, Weaver LC, Fehlings MG, Tetzlaff W. A systematic review of non-invasive pharmacologic neuroprotective treatments for acute spinal cord injury. J Neurotrauma 2011; 28:1545-88. [PMID: 20146558 PMCID: PMC3143410 DOI: 10.1089/neu.2009.1149] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An increasing number of therapies for spinal cord injury (SCI) are emerging from the laboratory and seeking translation into human clinical trials. Many of these are administered as soon as possible after injury with the hope of attenuating secondary damage and maximizing the extent of spared neurologic tissue. In this article, we systematically review the available pre-clinical research on such neuroprotective therapies that are administered in a non-invasive manner for acute SCI. Specifically, we review treatments that have a relatively high potential for translation due to the fact that they are already used in human clinical applications, or are available in a form that could be administered to humans. These include: erythropoietin, NSAIDs, anti-CD11d antibodies, minocycline, progesterone, estrogen, magnesium, riluzole, polyethylene glycol, atorvastatin, inosine, and pioglitazone. The literature was systematically reviewed to examine studies in which an in-vivo animal model was utilized to assess the efficacy of the therapy in a traumatic SCI paradigm. Using these criteria, 122 studies were identified and reviewed in detail. Wide variations exist in the animal species, injury models, and experimental designs reported in the pre-clinical literature on the therapies reviewed. The review highlights the extent of investigation that has occurred in these specific therapies, and points out gaps in our knowledge that would be potentially valuable prior to human translation.
Collapse
Affiliation(s)
- Brian K Kwon
- University of British Columbia, Combined Neurosurgical and Orthopaedic Spine Program, Department of Orthopaedics, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Han X, Yang N, Xu Y, Zhu J, Chen Z, Liu Z, Dang G, Song C. Simvastatin treatment improves functional recovery after experimental spinal cord injury by upregulating the expression of BDNF and GDNF. Neurosci Lett 2010; 487:255-9. [PMID: 20851742 DOI: 10.1016/j.neulet.2010.09.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 08/31/2010] [Accepted: 09/02/2010] [Indexed: 01/26/2023]
Abstract
The aim of this study was to determine the therapeutic efficacy of simvastatin treatment starting 1 day after spinal cord injury (SCI) in rat and to investigate the underlying mechanism. Spinal cord injury was induced in adult female Sprague-Dawley rats after laminectomy at T9-T10. Then additionally with sham group (laminectomy only) the SCI animals were randomly divided into 3 groups: vehicle-treated group; 5-mg/kg simvastatin-treated group; and 10-mg/kg simvastatin-treated group. Simvastatin or vehicle was administered orally at 1 day after SCI and then daily for 5 weeks. Locomotor functional recovery was assessed during 8 weeks postoperation by performing open-field locomotor test and inclined-plane test. At the end of study, motor evoked potentials (MEPs) and somatosensory evoked potentials (SEPs) were assessed to evaluate the integrity of spinal cord pathways. Then, the animals were killed, and 1-cm segments of spinal cord encompassing the injury site were removed for histopathological analysis. Immunohistochemistry was performed to observe the expression of brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF) in the spinal cord. Results show that the simvastatin-treated animals showed significantly better locomotor function recovery, better electrophysiological outcome, less myelin loss, and higher expression of BDNF and GDNF. These findings suggest that simvastatin treatment starting 1 day after SCI can significantly improve locomotor recovery, and this neuroprotective effect may be related to the upregulation of BDNF and GDNF. Therefore, simvastatin may be useful as a promising therapeutic agent for SCI.
Collapse
Affiliation(s)
- Xiaoguang Han
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Lee JH, Tigchelaar S, Liu J, Stammers AM, Streijger F, Tetzlaff W, Kwon BK. Lack of neuroprotective effects of simvastatin and minocycline in a model of cervical spinal cord injury. Exp Neurol 2010; 225:219-30. [DOI: 10.1016/j.expneurol.2010.06.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 06/17/2010] [Accepted: 06/20/2010] [Indexed: 01/02/2023]
|
36
|
Die J, Wang K, Fan L, Jiang Y, Shi Z. Rosuvastatin preconditioning provides neuroprotection against spinal cord ischemia in rats through modulating nitric oxide synthase expressions. Brain Res 2010; 1346:251-61. [DOI: 10.1016/j.brainres.2010.05.068] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 05/20/2010] [Accepted: 05/24/2010] [Indexed: 11/17/2022]
|
37
|
The role of statins in neurosurgery. Neurosurg Rev 2010; 33:259-70; discussion 270. [DOI: 10.1007/s10143-010-0259-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 01/22/2010] [Accepted: 03/06/2010] [Indexed: 12/20/2022]
|
38
|
Shunmugavel A, Khan M, Te Chou PC, Dhindsa RK, Martin MM, Copay AG, Subach BR, Schuler TC, Bilgen M, Orak JK, Singh I. Simvastatin protects bladder and renal functions following spinal cord injury in rats. JOURNAL OF INFLAMMATION-LONDON 2010; 7:17. [PMID: 20403180 PMCID: PMC2873501 DOI: 10.1186/1476-9255-7-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 04/19/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Urinary bladder and renal dysfunction are secondary events associated with spinal cord injury (SCI) in humans. These secondary events not only compromise quality of life but also delay overall recovery from SCI pathophysiology. Furthermore, in experimental models the effects of SCI therapy on bladder and renal functions are generally not evaluated. In this study, we tested whether simvastatin improves bladder and renal functions in a rat model of experimental SCI. METHODS SCI was induced by controlled contusion of T9-T10 in adult female rats. Simvastatin (5 mg/Kg body weight) was administered at two hours after SCI and repeated every 24 hours until the end point. Simvastatin-treated SCI animals (simvastatin group) were compared with vehicle-treated SCI animals (vehicle group) in terms of the Basso Beattie Bresnahan score, tissue morphology, cell death, and bladder/renal functions. RESULTS The urinary bladder of vehicle animals showed a 4.3-fold increase in size and a 9-fold increase in wet weight compared to sham animals. Following SCI, the urine to plasma osmolality ratio increased initially but decreased 1 week after SCI. Hematoxylin and eosin staining of bladder tissue showed transitional epithelial hyperplasia, degeneration of lamina propria, and enlargement of tunica adventia in addition to detrusor muscle hypertrophy. Rats treated with simvastatin for 14 days displayed remarkable recovery by showing decreased bladder size and maintenance of a normal urine/plasma osmolality ratio, in addition to improved locomotion. The muscularis layer of the bladder also regained its compact nature in simvastatin animals. Moreover, SCI-induced renal caspase-3 activity was significantly decreased in the simvastatin group indicating the ability of simvastatin to reduce the renal tubular apoptosis. CONCLUSION Post-injury administration of simvastatin ameliorates bladder and renal dysfunction associated with SCI in rats.
Collapse
|
39
|
Mann CM, Lee JH, Hillyer J, Stammers AM, Tetzlaff W, Kwon BK. Lack of robust neurologic benefits with simvastatin or atorvastatin treatment after acute thoracic spinal cord contusion injury. Exp Neurol 2010; 221:285-95. [DOI: 10.1016/j.expneurol.2009.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Revised: 10/28/2009] [Accepted: 11/06/2009] [Indexed: 10/20/2022]
|