1
|
Abstract
Many epidemiological studies have highlighted the link between vitamin D deficiency and schizophrenia. In particular, two prominent studies report an association between neonatal vitamin D deficiency and an increased risk of schizophrenia. In parallel, much has been learnt about the role of vitamin D in the developing central nervous system over the last two decades. Studies in rodent models of developmental vitamin D (DVD)-deficiency describe how brain development is altered leading to a range of neurobiological and behavioral phenotypes of interest to schizophrenia. While glutamate and gamma aminobutyric acid (GABA) systems have been little investigated in these models, alterations in developing dopamine systems are frequently reported. There have been far more studies reporting patients with schizophrenia have an increased risk of vitamin D deficiency compared to well controls. Here we have conducted a systematic review and meta-analysis that basically confirms this association and extends this to first-episode psychosis. However, patients with schizophrenia also have poorer general health, poorer diets, are frequently less active and also have an increased risk of other medical conditions, all factors which reduce circulating vitamin D levels. Therefore, we would urge caution in any causal interpretation of this association. We also summarize the inconsistent results from existing vitamin D supplementation trials in patients with schizophrenia. In respect to animal models of adult vitamin D deficiency, such exposures produce subtle neurochemical alterations and effects on cognition but do not appear to produce behavioral phenotypes of relevance to schizophrenia. We conclude, the hypothesis that vitamin D deficiency during early life may increase the risk of schizophrenia remains plausible and warrants ongoing research.
Collapse
|
2
|
Effects of a methanol extract of Ficus platyphylla stem bark on a two-way active avoidance task and on body core temperature. Behav Brain Res 2019; 367:215-220. [DOI: 10.1016/j.bbr.2019.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/04/2019] [Accepted: 04/06/2019] [Indexed: 12/16/2022]
|
3
|
Ermine CM, Wright JL, Frausin S, Kauhausen JA, Parish CL, Stanic D, Thompson LH. Modelling the dopamine and noradrenergic cell loss that occurs in Parkinson's disease and the impact on hippocampal neurogenesis. Hippocampus 2018; 28:327-337. [PMID: 29431270 PMCID: PMC5969306 DOI: 10.1002/hipo.22835] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 01/07/2018] [Accepted: 02/08/2018] [Indexed: 01/03/2023]
Abstract
Key pathological features of Parkinson's Disease (PD) include the progressive degeneration of midbrain dopaminergic (DA) neurons and hindbrain noradrenergic (NA) neurons. The loss of DA neurons has been extensively studied and is the main cause of motor dysfunction. Importantly, however, there are a range of ‘non‐movement’ related features of PD including cognitive dysfunction, sleep disturbances and mood disorders. The origins for these non‐motor symptoms are less clear, but a possible substrate for cognitive decline may be reduced adult‐hippocampal neurogenesis, which is reported to be impaired in PD. The mechanisms underlying reduced neurogenesis in PD are not well established. Here we tested the hypothesis that NA and DA depletion, as occurs in PD, impairs hippocampal neurogenesis. We used 6‐hydroxydopamine or the immunotoxin dopamine‐β‐hydroxylase‐saporin to selectively lesion DA or NA neurons, respectively, in adult Sprague Dawley rats and assessed hippocampal neurogenesis through phenotyping of cells birth‐dated using 5‐bromo‐2′‐deoxyuridine. The results showed no difference in proliferation or differentiation of newborn cells in the subgranular zone of the dentate gyrus after NA or DA lesions. This suggests that impairment of hippocampal neurogenesis in PD likely results from mechanisms independent of, or in addition to degeneration of DA and NA neurons.
Collapse
Affiliation(s)
- Charlotte M Ermine
- Neurodegeneration division, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Jordan L Wright
- Neurodegeneration division, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Stefano Frausin
- Neurodegeneration division, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Jessica A Kauhausen
- Neurodegeneration division, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Clare L Parish
- Neurodegeneration division, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Davor Stanic
- Neurodegeneration division, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Lachlan H Thompson
- Neurodegeneration division, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Chikama K, Yamada H, Tsukamoto T, Kajitani K, Nakabeppu Y, Uchimura N. Chronic atypical antipsychotics, but not haloperidol, increase neurogenesis in the hippocampus of adult mouse. Brain Res 2017; 1676:77-82. [DOI: 10.1016/j.brainres.2017.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/31/2017] [Accepted: 09/04/2017] [Indexed: 11/28/2022]
|
5
|
Gkikas D, Tsampoula M, Politis PK. Nuclear receptors in neural stem/progenitor cell homeostasis. Cell Mol Life Sci 2017; 74:4097-4120. [PMID: 28638936 PMCID: PMC11107725 DOI: 10.1007/s00018-017-2571-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/06/2017] [Accepted: 06/13/2017] [Indexed: 12/13/2022]
Abstract
In the central nervous system, embryonic and adult neural stem/progenitor cells (NSCs) generate the enormous variety and huge numbers of neuronal and glial cells that provide structural and functional support in the brain and spinal cord. Over the last decades, nuclear receptors and their natural ligands have emerged as critical regulators of NSC homeostasis during embryonic development and adult life. Furthermore, substantial progress has been achieved towards elucidating the molecular mechanisms of nuclear receptors action in proliferative and differentiation capacities of NSCs. Aberrant expression or function of nuclear receptors in NSCs also contributes to the pathogenesis of various nervous system diseases. Here, we review recent advances in our understanding of the regulatory roles of steroid, non-steroid, and orphan nuclear receptors in NSC fate decisions. These studies establish nuclear receptors as key therapeutic targets in brain diseases.
Collapse
Affiliation(s)
- Dimitrios Gkikas
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str, 115 27, Athens, Greece
| | - Matina Tsampoula
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str, 115 27, Athens, Greece
| | - Panagiotis K Politis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str, 115 27, Athens, Greece.
| |
Collapse
|
6
|
Cui X, Gooch H, Petty A, McGrath JJ, Eyles D. Vitamin D and the brain: Genomic and non-genomic actions. Mol Cell Endocrinol 2017; 453:131-143. [PMID: 28579120 DOI: 10.1016/j.mce.2017.05.035] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/30/2017] [Accepted: 05/30/2017] [Indexed: 12/22/2022]
Abstract
1,25(OH)2D3 (vitamin D) is well-recognized as a neurosteroid that modulates multiple brain functions. A growing body of evidence indicates that vitamin D plays a pivotal role in brain development, neurotransmission, neuroprotection and immunomodulation. However, the precise molecular mechanisms by which vitamin D exerts these functions in the brain are still unclear. Vitamin D signalling occurs via the vitamin D receptor (VDR), a zinc-finger protein in the nuclear receptor superfamily. Like other nuclear steroids, vitamin D has both genomic and non-genomic actions. The transcriptional activity of vitamin D occurs via the nuclear VDR. Its faster, non-genomic actions can occur when the VDR is distributed outside the nucleus. The VDR is present in the developing and adult brain where it mediates the effects of vitamin D on brain development and function. The purpose of this review is to summarise the in vitro and in vivo work that has been conducted to characterise the genomic and non-genomic actions of vitamin D in the brain. Additionally we link these processes to functional neurochemical and behavioural outcomes. Elucidation of the precise molecular mechanisms underpinning vitamin D signalling in the brain may prove useful in understanding the role this steroid plays in brain ontogeny and function.
Collapse
Affiliation(s)
- Xiaoying Cui
- Queensland Brain Institute, University of Queensland, Qld 4072, Australia
| | - Helen Gooch
- Queensland Brain Institute, University of Queensland, Qld 4072, Australia
| | - Alice Petty
- Queensland Brain Institute, University of Queensland, Qld 4072, Australia
| | - John J McGrath
- Queensland Brain Institute, University of Queensland, Qld 4072, Australia; Queensland Centre for Mental Health Research, Wacol, Qld 4076, Australia; National Centre for Register-based Research, Aarhus BSS, Aarhus University, 8000 Aarhus C, Denmark
| | - Darryl Eyles
- Queensland Brain Institute, University of Queensland, Qld 4072, Australia; Queensland Centre for Mental Health Research, Wacol, Qld 4076, Australia.
| |
Collapse
|
7
|
Garcia‐Gil M, Pierucci F, Vestri A, Meacci E. Crosstalk between sphingolipids and vitamin D3: potential role in the nervous system. Br J Pharmacol 2017; 174:605-627. [PMID: 28127747 PMCID: PMC6398521 DOI: 10.1111/bph.13726] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/16/2016] [Accepted: 01/18/2017] [Indexed: 12/14/2022] Open
Abstract
Sphingolipids are both structural and bioactive compounds. In particular, ceramide and sphingosine 1-phosphate regulate cell fate, inflammation and excitability. 1-α,25-dihydroxyvitamin D3 (1,25(OH)2 D3 ) is known to play an important physiological role in growth and differentiation in a variety of cell types, including neural cells, through genomic actions mediated by its specific receptor, and non-genomic effects that result in the activation of specific signalling pathways. 1,25(OH)2 D3 and sphingolipids, in particular sphingosine 1-phosphate, share many common effectors, including calcium regulation, growth factors and inflammatory cytokines, but it is still not known whether they can act synergistically. Alterations in the signalling and concentrations of sphingolipids and 1,25(OH)2 D3 have been found in neurodegenerative diseases and fingolimod, a structural analogue of sphingosine, has been approved for the treatment of multiple sclerosis. This review, after a brief description of the role of sphingolipids and 1,25(OH)2 D3 , will focus on the potential crosstalk between sphingolipids and 1,25(OH)2 D3 in neural cells.
Collapse
Affiliation(s)
- Mercedes Garcia‐Gil
- Department of BiologyUniversity of PisaPisaItaly
- Interdepartmental Research Center Nutrafood ‘Nutraceuticals and Food for Health’University of PisaPisaItaly
| | - Federica Pierucci
- Department of Experimental and Clinical Biomedical Sciences ‘Mario Serio’, Molecular and Applied Biology Research UnitUniversity of FlorenceFlorenceItaly
- Interuniversitary Miology InstitutesItaly
| | - Ambra Vestri
- Department of Experimental and Clinical Biomedical Sciences ‘Mario Serio’, Molecular and Applied Biology Research UnitUniversity of FlorenceFlorenceItaly
- Interuniversitary Miology InstitutesItaly
| | - Elisabetta Meacci
- Department of Experimental and Clinical Biomedical Sciences ‘Mario Serio’, Molecular and Applied Biology Research UnitUniversity of FlorenceFlorenceItaly
- Interuniversitary Miology InstitutesItaly
| |
Collapse
|
8
|
|
9
|
Pet MA, Brouwer-Brolsma EM. The Impact of Maternal Vitamin D Status on Offspring Brain Development and Function: a Systematic Review. Adv Nutr 2016; 7:665-78. [PMID: 27422502 PMCID: PMC4942857 DOI: 10.3945/an.115.010330] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Various studies have examined associations between maternal vitamin D (VD) deficiency and offspring health, including offspring brain health. The purpose of this review was to summarize current evidence concerning the impact of maternal VD deficiency on brain development and function in offspring. A systematic search was conducted within Medline (on Ovid) for studies published through 7 May 2015. Animal and human studies that examined associations between maternal VD status or developmental VD deficiency and offspring brain development and function were included. A total of 26 animal studies and 10 human studies met the inclusion criteria. Several animal studies confirmed the hypothesis that low prenatal VD status may affect brain morphology and physiology as well as behavioral outcomes. In humans, subtle cognitive and psychological impairments in offspring of VD-deficient mothers were observed. However, data obtained from animal and human studies provide inconclusive evidence, and results seem to depend on strain or race and age of offspring. To conclude, prenatal VD status is thought to play an important role in brain development, cognitive function, and psychological function. However, results are inconclusive; validation of these findings and investigation of underlying mechanisms are required. Thus, more investigation is needed before recommending supplementation of VD during pregnancy to promote brain health of offspring.
Collapse
Affiliation(s)
- Milou A Pet
- Division of Human Nutrition, Wageningen University, Wageningen, Netherlands; and,Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Netherlands
| | | |
Collapse
|
10
|
Keeney JT, Butterfield DA. Vitamin D deficiency and Alzheimer disease: Common links. Neurobiol Dis 2015; 84:84-98. [DOI: 10.1016/j.nbd.2015.06.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/26/2015] [Accepted: 06/30/2015] [Indexed: 12/31/2022] Open
|
11
|
Lardner AL. Vitamin D and hippocampal development-the story so far. Front Mol Neurosci 2015; 8:58. [PMID: 26468295 PMCID: PMC4595656 DOI: 10.3389/fnmol.2015.00058] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 09/17/2015] [Indexed: 01/08/2023] Open
Abstract
Epidemiological studies suggest that vitamin D insufficiency may be prevalent in young as well as older populations. The pleiotropic effects of vitamin D are now beyond dispute and a growing number of studies provide accumulating evidence of a role for vitamin D in brain development and function. A number of studies to date have investigated the effects of early-life vitamin D deprivation on adult hippocampus in animals and humans, and there is a growing body of evidence to suggest a role for this hormone in the development of selected hippocampal functions such as latent inhibition and hole board habituation in rats. There are few studies to date of vitamin D deprivation or supplementation on early hippocampal development in vivo. However, a small number of studies, mostly in vitro, point to a role for vitamin D in differentiation and development of hippocampal neurons. There is also limited evidence that supplementation with vitamin D following a period of deprivation is capable of restoring cellular activity and later function. Further avenues of future research are outlined including animal studies on the effects of vitamin D deprivation and inadequacy on early hippocampal biochemistry and function, e.g., measurement of BDNF levels, GABAergic activity, long-term potentiation (LTP) and spatial navigation. It also remains to be established if there are critical developmental windows during which vitamin D is required. In light of the importance of the hippocampus in LTP and spatial learning, further investigations on the early effects of vitamin D deprivation on hippocampal development are warranted.
Collapse
Affiliation(s)
- Anne L Lardner
- Department of Biochemistry, St Vincent's University Hospital Dublin, Ireland
| |
Collapse
|
12
|
Rojczyk E, Pałasz A, Wiaderkiewicz R. Effects of neuroleptics administration on adult neurogenesis in the rat hypothalamus. Pharmacol Rep 2015; 67:1208-14. [PMID: 26481544 DOI: 10.1016/j.pharep.2015.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/18/2015] [Accepted: 04/22/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Among many factors influencing adult neurogenesis, pharmacological modulation has been broadly studied. It is proven that neuroleptics positively affect new neuron formation in canonical neurogenic sites - subgranular zone of the hippocampal dentate gyrus and subventricular zone of the lateral ventricles. Latest findings suggest that adult neurogenesis also occurs in several additional regions like the hypothalamus, amygdala, neocortex and striatum. As the hypothalamus is considered an important target of neuroleptics, a hypothesis can be made that these substances are able to modulate local neural proliferation. METHODS Experiments were performed on adult male rats injected for 28 days or 1 day by three neuroleptics: olanzapine, chlorpromazine and haloperidol. Immunohistochemistry was used to determine expression of proliferation marker (Ki-67) and the marker of neuroblasts - doublecortin (DCX) - which may inform about drug influence on adult neurogenesis at the level of the hypothalamus. RESULTS It was shown that a single injection of antipsychotics causes significant decrease in hypothalamic DCX expression, but after chronic treatment with chlorpromazine, but not olanzapine, there is an increase in the number of newly formed neuroblasts. Haloperidol has the opposite effect - its long-term administration decreases the number of DCX-positive cells. Cell proliferation levels (Ki-67 expression) increase after long-term drug administration, whereas their single doses do not have any modulatory effect on proliferation potential. CONCLUSIONS Our results throw a new light on the neuroleptics mechanism of action. They also support the potential role of antipsychotics as a factor that can modulate hypothalamic neurogenesis with putative clinical applications.
Collapse
Affiliation(s)
- Ewa Rojczyk
- Department of Histology, Faculty of Medicine in Katowice, Medical University of Silesia, Katowice, Poland.
| | - Artur Pałasz
- Department of Histology, Faculty of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Ryszard Wiaderkiewicz
- Department of Histology, Faculty of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
13
|
Groves NJ, McGrath JJ, Burne THJ. Vitamin D as a neurosteroid affecting the developing and adult brain. Annu Rev Nutr 2015; 34:117-41. [PMID: 25033060 DOI: 10.1146/annurev-nutr-071813-105557] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vitamin D deficiency is prevalent throughout the world, and growing evidence supports a requirement for optimal vitamin D levels for the healthy developing and adult brain. Vitamin D has important roles in proliferation and differentiation, calcium signaling within the brain, and neurotrophic and neuroprotective actions; it may also alter neurotransmission and synaptic plasticity. Recent experimental studies highlight the impact that vitamin D deficiency has on brain function in health and disease. In addition, results from recent animal studies suggest that vitamin D deficiency during adulthood may exacerbate underlying brain disorders and/or worsen recovery from brain stressors. An increasing number of epidemiological studies indicate that vitamin D deficiency is associated with a wide range of neuropsychiatric disorders and neurodegenerative diseases. Vitamin D supplementation is readily available and affordable, and this review highlights the need for further research.
Collapse
Affiliation(s)
- Natalie J Groves
- Queensland Brain Institute, The University of Queensland, St. Lucia, Queensland 4072, Australia;
| | | | | |
Collapse
|
14
|
Schoenfeld TJ, Cameron HA. Adult neurogenesis and mental illness. Neuropsychopharmacology 2015; 40:113-28. [PMID: 25178407 PMCID: PMC4262910 DOI: 10.1038/npp.2014.230] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 02/07/2023]
Abstract
Several lines of evidence suggest that adult neurogenesis, the production of new neurons in adulthood, may play a role in psychiatric disorders, including depression, anxiety, and schizophrenia. Medications and other treatments for mental disorders often promote the proliferation of new neurons; the time course for maturation and integration of new neurons in circuitry parallels the delayed efficacy of psychiatric therapies; adverse and beneficial experiences similarly affect development of mental illness and neurogenesis; and ablation of new neurons in adulthood alters the behavioral impact of drugs in animal models. At present, the links between adult neurogenesis and depression seem stronger than those suggesting a relationship between new neurons and anxiety or schizophrenia. Yet, even in the case of depression there is currently no direct evidence for a causative role. This article reviews the data relating adult neurogenesis to mental illness and discusses where research needs to head in the future.
Collapse
Affiliation(s)
- Timothy J Schoenfeld
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Heather A Cameron
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA,Section on Neuroplasticity, NIMH, 35 Convent Drive, Building 35/3C915, Bethesda, MD 20892-3718, USA, Tel: +1 301 496 3814, Fax: +1 301 480 4564, E-mail:
| |
Collapse
|
15
|
Hypothalamic subependymal niche: a novel site of the adult neurogenesis. Cell Mol Neurobiol 2014; 34:631-42. [PMID: 24744125 PMCID: PMC4047487 DOI: 10.1007/s10571-014-0058-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 04/02/2014] [Indexed: 12/15/2022]
Abstract
The discovery of undifferentiated, actively proliferating neural stem cells (NSCs) in the mature brain opened a brand new chapter in the contemporary neuroscience. Adult neurogenesis appears to occur in specific brain regions (including hypothalamus) throughout vertebrates’ life, being considered an important player in the processes of memory, learning, and neural plasticity. In the adult mammalian brain, NSCs are located mainly in the subgranular zone (SGZ) of the hippocampal dentate gyrus and in the subventricular zone (SVZ) of the lateral ventricle ependymal wall. Besides these classical regions, hypothalamic neurogenesis occurring mainly along and beneath the third ventricle wall seems to be especially well documented. Neurogenic zones in SGZ, SVZ, and in the hypothalamus share some particular common features like similar cellular cytoarchitecture, vascularization pattern, and extracellular matrix properties. Hypothalamic neurogenic niche is formed mainly by four special types of radial glia-like tanycytes. They are characterized by distinct expression of some neural progenitor and stem cell markers. Moreover, there are numerous suggestions that newborn hypothalamic neurons have a significant ability to integrate into the local neural pathways and to play important physiological roles, especially in the energy balance regulation. Newly formed neurons in the hypothalamus can synthesize and release food intake regulating neuropeptides and they are sensitive to the leptin. On the other hand, high-fat diet positively influences hypothalamic neurogenesis in rodents. The nature of this intriguing new site of adult neurogenesis is still so far poorly studied and requires further investigations.
Collapse
|
16
|
Yoneyama M, Hasebe S, Kawamoto N, Shiba T, Yamaguchi T, Kikuta M, Shuto M, Ogita K. Beneficial in vivo effect of aripiprazole on neuronal regeneration following neuronal loss in the dentate gyrus: evaluation using a mouse model of trimethyltin-induced neuronal loss/self-repair in the dentate gyrus. J Pharmacol Sci 2013; 124:99-111. [PMID: 24389877 DOI: 10.1254/jphs.13201fp] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Aripiprazole is used clinically as an atypical antipsychotic. We evaluated the effect of in vivo treatment with aripiprazole on the proliferation and differentiation of neural stem/progenitor cells in a mouse model, trimethyltin-induced neuronal loss/self-repair in the hippocampal dentate gyrus (referred as "impaired animals") [Ogita et al., J Neurosci Res. 82, 609 - 621 (2005)]. In the impaired animals, an increased number of 5-bromo-2'-deoxyuridine (BrdU)-positive cells was seen in the dentate gyrus at the initial time window of the self-repair stage. At the same time window, a single treatment with aripiprazole significantly increased the number of cells positive for both BrdU and nestin in the dentate gyrus of the impaired animals. Chronic treatment with aripiprazole promoted the proliferation/survival and neuronal differentiation of the cells newly-generated following the neuronal loss in the dentate gyrus of the impaired animals. The chronic treatment with aripiprazole improved depression-like behavior seen in the impaired animals. Taken together, our data suggest that aripiprazole had a beneficial effect on neuronal regeneration following neuronal loss in the dentate gyrus through indirectly promoted proliferation/survival and neuronal differentiation of neural stem/progenitor cells in the subgranular zone of the dentate gyrus.
Collapse
Affiliation(s)
- Masanori Yoneyama
- Department of Pharmacology, Setsunan University Faculty of Pharmaceutical Sciences, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Eyles DW, Burne THJ, McGrath JJ. Vitamin D, effects on brain development, adult brain function and the links between low levels of vitamin D and neuropsychiatric disease. Front Neuroendocrinol 2013; 34:47-64. [PMID: 22796576 DOI: 10.1016/j.yfrne.2012.07.001] [Citation(s) in RCA: 452] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 06/19/2012] [Accepted: 07/02/2012] [Indexed: 01/27/2023]
Abstract
Increasingly vitamin D deficiency is being associated with a number of psychiatric conditions. In particular for disorders with a developmental basis, such as autistic spectrum disorder and schizophrenia the neurobiological plausibility of this association is strengthened by the preclinical data indicating vitamin D deficiency in early life affects neuronal differentiation, axonal connectivity, dopamine ontogeny and brain structure and function. More recently epidemiological associations have been made between low vitamin D and psychiatric disorders not typically associated with abnormalities in brain development such as depression and Alzheimer's disease. Once again the preclinical findings revealing that vitamin D can regulate catecholamine levels and protect against specific Alzheimer-like pathology increase the plausibility of this link. In this review we have attempted to integrate this clinical epidemiology with potential vitamin D-mediated basic mechanisms. Throughout the review we have highlighted areas where we think future research should focus.
Collapse
Affiliation(s)
- Darryl W Eyles
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD 4076, Australia.
| | | | | |
Collapse
|
18
|
Effects of antipsychotics on dentate gyrus stem cell proliferation and survival in animal models: a critical update. Neural Plast 2012; 2012:832757. [PMID: 23150836 PMCID: PMC3488410 DOI: 10.1155/2012/832757] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/19/2012] [Accepted: 09/20/2012] [Indexed: 12/15/2022] Open
Abstract
Schizophrenia is a complex psychiatric disorder. Although a number of different hypotheses have been developed to explain its aetiopathogenesis, we are far from understanding it. There is clinical and experimental evidence indicating that neurodevelopmental factors play a major role. Disturbances in neurodevelopment might result in alterations of neuroanatomy and neurochemistry, leading to the typical symptoms observed in schizophrenia. The present paper will critically address the neurodevelopmental models underlying schizophrenia by discussing the effects of typical and atypical antipsychotics in animal models. We will specifically discuss the vitamin D deficiency model, the poly I:C model, the ketamine model, and the postnatal ventral hippocampal lesion model, all of which reflect core neurodevelopmental issues underlying schizophrenia onset.
Collapse
|
19
|
Veena J, Rao BSS, Srikumar BN. Regulation of adult neurogenesis in the hippocampus by stress, acetylcholine and dopamine. J Nat Sci Biol Med 2012; 2:26-37. [PMID: 22470231 PMCID: PMC3312696 DOI: 10.4103/0976-9668.82312] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Neurogenesis is well-established to occur during adulthood in two regions of the brain, the subventricular zone (SVZ) and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus. Research for more than two decades has implicated a role for adult neurogenesis in several brain functions including learning and effects of antidepressants and antipsychotics. Clear understanding of the players involved in the regulation of adult neurogenesis is emerging. We review evidence for the role of stress, dopamine (DA) and acetylcholine (ACh) as regulators of neurogenesis in the SGZ. Largely, stress decreases neurogenesis, while the effects of ACh and DA depend on the type of receptors mediating their action. Increasingly, the new neurons formed in adulthood are potentially linked to crucial brain processes such as learning and memory. In brain disorders like Alzheimer and Parkinson disease, stress-induced cognitive dysfunction, depression and age-associated dementia, the necessity to restore brain functions is enormous. Activation of the resident stem cells in the adult brain to treat neuropsychiatric disorders has immense potential and understanding the mechanisms of regulation of adult neurogenesis by endogenous and exogenous factors holds the key to develop therapeutic strategies for the debilitating neurological and psychiatric disorders.
Collapse
Affiliation(s)
- J Veena
- Laboratoire Psynugen, Université Bordeaux 2, Bordeaux, France
| | | | | |
Collapse
|
20
|
Eyles D, Feldon J, Meyer U. Schizophrenia: do all roads lead to dopamine or is this where they start? Evidence from two epidemiologically informed developmental rodent models. Transl Psychiatry 2012; 2:e81. [PMID: 22832818 PMCID: PMC3309552 DOI: 10.1038/tp.2012.6] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/13/2011] [Accepted: 01/08/2012] [Indexed: 12/13/2022] Open
Abstract
The idea that there is some sort of abnormality in dopamine (DA) signalling is one of the more enduring hypotheses in schizophrenia research. Opinion leaders have published recent perspectives on the aetiology of this disorder with provocative titles such as 'Risk factors for schizophrenia--all roads lead to dopamine' or 'The dopamine hypothesis of schizophrenia--the final common pathway'. Perhaps, the other most enduring idea about schizophrenia is that it is a neurodevelopmental disorder. Those of us that model schizophrenia developmental risk-factor epidemiology in animals in an attempt to understand how this may translate to abnormal brain function have consistently shown that as adults these animals display behavioural, cognitive and pharmacological abnormalities consistent with aberrant DA signalling. The burning question remains how can in utero exposure to specific (environmental) insults induce persistent abnormalities in DA signalling in the adult? In this review, we summarize convergent evidence from two well-described developmental animal models, namely maternal immune activation and developmental vitamin D deficiency that begin to address this question. The adult offspring resulting from these two models consistently reveal locomotor abnormalities in response to DA-releasing or -blocking drugs. Additionally, as adults these animals have DA-related attentional and/or sensorimotor gating deficits. These findings are consistent with many other developmental animal models. However, the authors of this perspective have recently refocused their attention on very early aspects of DA ontogeny and describe reductions in genes that induce or specify dopaminergic phenotype in the embryonic brain and early changes in DA turnover suggesting that the origins of these behavioural abnormalities in adults may be traced to early alterations in DA ontogeny. Whether the convergent findings from these two models can be extended to other developmental animal models for this disease is at present unknown as such early brain alterations are rarely examined. Although it is premature to conclude that such mechanisms could be operating in other developmental animal models for schizophrenia, our convergent data have led us to propose that rather than all roads leading to DA, perhaps, this may be where they start.
Collapse
Affiliation(s)
- D Eyles
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, Queensland, Australia
| | - J Feldon
- Laboratory of Behavioural Neurobiology, Swiss Federal Institute of Technology Zurich (ETH), Schwerzenbach, Switzerland
| | - U Meyer
- Laboratory of Behavioural Neurobiology, Swiss Federal Institute of Technology Zurich (ETH), Schwerzenbach, Switzerland
- Physiology and Behaviour Laboratory, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| |
Collapse
|
21
|
Abstract
Vitamin D is a member of the superfamily of nuclear steroid transcription regulators and as such, exerts transcriptional control over a large number of genes. Several other steroids, such as thyroid hormones, vitamin A, androgens and the glucocorticoids, are known as 'neurosteroids' and their role in brain development and function is well defined. It has only been in the last decade or so that vitamin D has been thought to function as a neurosteroid. In this review we have collated a diverse array of data describing the presence of vitamin D metabolites and the receptor in the brain, the evidence that vitamin D may be an important modulator of brain development, and the potential role of vitamin D in neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Lauren R Harms
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD 4072, Australia.
| | | | | | | |
Collapse
|
22
|
Dazzan P. Letter to the Editor: are antipsychotics good or bad for the brain? A comment on Moncrieff & Leo (2010). Psychol Med 2010; 40:2107-2108. [PMID: 20810000 DOI: 10.1017/s0033291710001698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Neurosteroid vitamin D system as a nontraditional drug target in neuropsychopharmacology. Behav Pharmacol 2010; 21:420-6. [DOI: 10.1097/fbp.0b013e32833c850f] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|