1
|
Ju J, Li X, Pan Y, Du J, Yang X, Men S, Liu B, Zhang Z, Zhong H, Mai J, Wang Y, Hou ST. Adenosine mediates the amelioration of social novelty deficits during rhythmic light treatment of 16p11.2 deletion female mice. Mol Psychiatry 2024; 29:3381-3394. [PMID: 38740879 PMCID: PMC11541200 DOI: 10.1038/s41380-024-02596-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
Non-invasive brain stimulation therapy for autism spectrum disorder (ASD) has shown beneficial effects. Recently, we and others demonstrated that visual sensory stimulation using rhythmic 40 Hz light flicker effectively improved cognitive deficits in mouse models of Alzheimer's disease and stroke. However, whether rhythmic visual 40 Hz light flicker stimulation can ameliorate behavioral deficits in ASD remains unknown. Here, we show that 16p11.2 deletion female mice exhibit a strong social novelty deficit, which was ameliorated by treatment with a long-term 40 Hz light stimulation. The elevated power of local-field potential (LFP) in the prefrontal cortex (PFC) of 16p11.2 deletion female mice was also effectively reduced by 40 Hz light treatment. Importantly, the 40 Hz light flicker reversed the excessive excitatory neurotransmission of PFC pyramidal neurons without altering the firing rate and the number of resident PFC neurons. Mechanistically, 40 Hz light flicker evoked adenosine release in the PFC to modulate excessive excitatory neurotransmission of 16p11.2 deletion female mice. Elevated adenosine functioned through its cognate A1 receptor (A1R) to suppress excessive excitatory neurotransmission and to alleviate social novelty deficits. Indeed, either blocking the A1R using a specific antagonist DPCPX or knocking down the A1R in the PFC using a shRNA completely ablated the beneficial effects of 40 Hz light flicker. Thus, this study identified adenosine as a novel neurochemical mediator for ameliorating social novelty deficit by reducing excitatory neurotransmission during 40 Hz light flicker treatment. The 40 Hz light stimulation warrants further development as a non-invasive ASD therapeutics.
Collapse
Affiliation(s)
- Jun Ju
- Brain Research Centre, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, PR China
| | - Xuanyi Li
- Brain Research Centre, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, PR China
| | - Yifan Pan
- Brain Research Centre, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, PR China
| | - Jun Du
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, 100850, Beijing, China
| | - Xinyi Yang
- Brain Research Centre, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, PR China
| | - Siqi Men
- Brain Research Centre, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, PR China
| | - Bo Liu
- Brain Research Centre, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, PR China
| | - Zhenyu Zhang
- Brain Research Centre, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, PR China
| | - Haolin Zhong
- Brain Research Centre, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, PR China
| | - Jinyuan Mai
- Brain Research Centre, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, PR China
| | - Yizheng Wang
- Huashan Hospital, Fudan University, Shanghai, PR China
| | - Sheng-Tao Hou
- Brain Research Centre, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, PR China.
| |
Collapse
|
2
|
Babiec L, Wilkaniec A, Matuszewska M, Pałasz E, Cieślik M, Adamczyk A. Alterations of Purinergic Receptors Levels and Their Involvement in the Glial Cell Morphology in a Pre-Clinical Model of Autism Spectrum Disorders. Brain Sci 2023; 13:1088. [PMID: 37509018 PMCID: PMC10377192 DOI: 10.3390/brainsci13071088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Recent data suggest that defects in purinergic signalling are a common denominator of autism spectrum disorders (ASDs), though nothing is known about whether the disorder-related imbalance occurs at the receptor level. In this study, we investigated whether prenatal exposure to valproic acid (VPA) induces changes in purinergic receptor expression in adolescence and whether it corresponds to glial cell activation. Pregnant dams were subjected to an intraperitoneal injection of VPA at embryonic day 12.5. In the hippocampi of adolescent male VPA offspring, we observed an increase in the level of P2X1, with concomitant decreases in P2X7 and P2Y1 receptors. In contrast, in the cortex, the level of P2X1 was significantly reduced. Also, significant increases in cortical P2Y1 and P2Y12 receptors were detected. Additionally, we observed profound alterations in microglial cell numbers and morphology in the cortex of VPA animals, leading to the elevation of pro-inflammatory cytokine expression. The changes in glial cells were partially reduced via a single administration of a non-selective P2 receptor antagonist. These studies show the involvement of purinergic signalling imbalance in the modulation of brain inflammatory response induced via prenatal VPA exposure and may indicate that purinergic receptors are a novel target for pharmacological intervention in ASDs.
Collapse
Affiliation(s)
- Lidia Babiec
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Anna Wilkaniec
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Marta Matuszewska
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Ewelina Pałasz
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Magdalena Cieślik
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| |
Collapse
|
3
|
Guo M, Xie P, Liu S, Luan G, Li T. Epilepsy and Autism Spectrum Disorder (ASD): The Underlying Mechanisms and Therapy Targets Related to Adenosine. Curr Neuropharmacol 2023; 21:54-66. [PMID: 35794774 PMCID: PMC10193761 DOI: 10.2174/1570159x20666220706100136] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/23/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Epilepsy and autism spectrum disorder (ASD) are highly mutually comorbid, suggesting potential overlaps in genetic etiology, pathophysiology, and neurodevelopmental abnormalities. Adenosine, an endogenous anticonvulsant and neuroprotective neuromodulator of the brain, has been proved to affect the process of epilepsy and ASD. On the one hand, adenosine plays a crucial role in preventing the progression and development of epilepsy through adenosine receptordependent and -independent ways. On the other hand, adenosine signaling can not only regulate core symptoms but also improve comorbid disorders in ASD. Given the important role of adenosine in epilepsy and ASD, therapeutic strategies related to adenosine, including the ketogenic diet, neuromodulation therapy, and adenosine augmentation therapy, have been suggested for the arrangement of epilepsy and ASD. There are several proposals in this review. Firstly, it is necessary to further discuss the relationship between both diseases based on the comorbid symptoms and mechanisms of epilepsy and ASD. Secondly, it is important to explore the role of adenosine involved in epilepsy and ASD. Lastly, potential therapeutic value and clinical approaches of adenosine-related therapies in treating epilepsy and ASD need to be emphasized.
Collapse
Affiliation(s)
- Mengyi Guo
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Pandeng Xie
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Siqi Liu
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Guoming Luan
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Tianfu Li
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| |
Collapse
|
4
|
Nabi SU, Rehman MU, Arafah A, Taifa S, Khan IS, Khan A, Rashid S, Jan F, Wani HA, Ahmad SF. Treatment of Autism Spectrum Disorders by Mitochondrial-targeted Drug: Future of Neurological Diseases Therapeutics. Curr Neuropharmacol 2023; 21:1042-1064. [PMID: 36411568 PMCID: PMC10286588 DOI: 10.2174/1570159x21666221121095618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
Abstract
Autism is a neurodevelopmental disorder with a complex etiology that might involve environmental and genetic variables. Recently, some epidemiological studies conducted in various parts of the world have estimated a significant increase in the prevalence of autism, with 1 in every 59 children having some degree of autism. Since autism has been associated with other clinical abnormalities, there is every possibility that a sub-cellular component may be involved in the progression of autism. The organelle remains a focus based on mitochondria's functionality and metabolic role in cells. Furthermore, the mitochondrial genome is inherited maternally and has its DNA and organelle that remain actively involved during embryonic development; these characteristics have linked mitochondrial dysfunction to autism. Although rapid stride has been made in autism research, there are limited studies that have made particular emphasis on mitochondrial dysfunction and autism. Accumulating evidence from studies conducted at cellular and sub-cellular levels has indicated that mitochondrial dysfunction's role in autism is more than expected. The present review has attempted to describe the risk factors of autism, the role of mitochondria in the progression of the disease, oxidative damage as a trigger point to initiate mitochondrial damage, genetic determinants of the disease, possible pathogenic pathways and therapeutic regimen in vogue and the developmental stage. Furthermore, in the present review, an attempt has been made to include the novel therapeutic regimens under investigation at different clinical trial stages and their potential possibility to emerge as promising drugs against ASD.
Collapse
Affiliation(s)
- Showkat Ul Nabi
- Large Animal Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-K), Srinagar J&K, 190006, India
| | - Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Syed Taifa
- Large Animal Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-K), Srinagar J&K, 190006, India
| | - Iqra Shafi Khan
- Large Animal Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-K), Srinagar J&K, 190006, India
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Fatimah Jan
- Department of Pharmaceutical Sciences, CT University, Ludhiana, Ferozepur Road, Punjab, 142024, India
| | - Hilal Ahmad Wani
- Department of Biochemistry, Government Degree College Sumbal, Bandipora, J&K, India
| | - Sheikh Fayaz Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
5
|
Ródenas-González F, Blanco-Gandía MC, Miñarro J, Rodríguez-Arias M. Cognitive profile of male mice exposed to a Ketogenic Diet. Physiol Behav 2022; 254:113883. [PMID: 35716801 DOI: 10.1016/j.physbeh.2022.113883] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 10/18/2022]
Abstract
In recent years, nutritional interventions for different psychiatric diseases have gained increasing attention, such as the ketogenic diet (KD). This has led to positive effects in neurological disorders such as Parkinson's disease, addiction, autism or epilepsy. The neurobiological mechanisms through which these effects are induced and the effects in cognition still warrant investigation, and considering that other high-fat diets (HFD) can lead to cognitive disturbances that may affect the results achieved, the main aim of the present work was to evaluate the effects of a KD to determine whether it can induce such cognitive effects. A total of 30 OF1 male mice were employed to establish the behavioral profile of mice fed a KD by testing anxiety behavior (Elevated Plus Maze), locomotor activity (Open Field), learning (Hebb Williams Maze), and memory (Passive Avoidance Test). The results revealed that the KD did not affect locomotor activity, memory or hippocampal-dependent learning, as similar results were obtained with mice on a standard diet, albeit with increased anxiety behavior. We conclude that a KD is a promising nutritional approach to apply in research studies, given that it does not cause cognitive alterations.
Collapse
Affiliation(s)
- Francisco Ródenas-González
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, Valencia, 46010 Spain
| | - M Carmen Blanco-Gandía
- Departamento de Psicología y Sociología, Facultad de Ciencias Sociales y Humanas, Universidad de Zaragoza, Teruel, Spain
| | - José Miñarro
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, Valencia, 46010 Spain
| | - Marta Rodríguez-Arias
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, Valencia, 46010 Spain.
| |
Collapse
|
6
|
Adenosine Receptors in Neuropsychiatric Disorders: Fine Regulators of Neurotransmission and Potential Therapeutic Targets. Int J Mol Sci 2022; 23:ijms23031219. [PMID: 35163142 PMCID: PMC8835915 DOI: 10.3390/ijms23031219] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/16/2022] Open
Abstract
Adenosine exerts an important role in the modulation of central nervous system (CNS) activity. Through the interaction with four G-protein coupled receptor (GPCR) subtypes, adenosine subtly regulates neurotransmission, interfering with the dopaminergic, glutamatergic, noradrenergic, serotoninergic, and endocannabinoid systems. The inhibitory and facilitating actions of adenosine on neurotransmission are mainly mediated by A1 and A2A adenosine receptors (ARs), respectively. Given their role in the CNS, ARs are promising therapeutic targets for neuropsychiatric disorders where altered neurotransmission represents the most likely etiological hypothesis. Activating or blocking ARs with specific pharmacological agents could therefore restore the balance of altered neurotransmitter systems, providing the rationale for the potential treatment of these highly debilitating conditions. In this review, we summarize and discuss the most relevant studies concerning AR modulation in psychotic and mood disorders such as schizophrenia, bipolar disorders, depression, and anxiety, as well as neurodevelopment disorders such as autism spectrum disorder (ASD), fragile X syndrome (FXS), attention-deficit hyperactivity disorder (ADHD), and neuropsychiatric aspects of neurodegenerative disorders.
Collapse
|
7
|
Blanco-Gandía MDC, Ródenas-González F, Pascual M, Reguilón MD, Guerri C, Miñarro J, Rodríguez-Arias M. Ketogenic Diet Decreases Alcohol Intake in Adult Male Mice. Nutrients 2021; 13:nu13072167. [PMID: 34202492 PMCID: PMC8308435 DOI: 10.3390/nu13072167] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 01/26/2023] Open
Abstract
The classic ketogenic diet is a diet high in fat, low in carbohydrates, and well-adjusted proteins. The reduction in glucose levels induces changes in the body’s metabolism, since the main energy source happens to be ketone bodies. Recent studies have suggested that nutritional interventions may modulate drug addiction. The present work aimed to study the potential effects of a classic ketogenic diet in modulating alcohol consumption and its rewarding effects. Two groups of adult male mice were employed in this study, one exposed to a standard diet (SD, n = 15) and the other to a ketogenic diet (KD, n = 16). When a ketotic state was stable for 7 days, animals were exposed to the oral self-administration paradigm to evaluate the reinforcing and motivating effects of ethanol. Rt-PCR analyses were performed evaluating dopamine, adenosine, CB1, and Oprm gene expression. Our results showed that animals in a ketotic state displayed an overall decrease in ethanol consumption without changes in their motivation to drink. Gene expression analyses point to several alterations in the dopamine, adenosine, and cannabinoid systems. Our results suggest that nutritional interventions may be a useful complementary tool in treating alcohol-use disorders.
Collapse
Affiliation(s)
| | - Francisco Ródenas-González
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain; (F.R.-G.); (M.P.); (M.D.R.); (J.M.)
| | - María Pascual
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain; (F.R.-G.); (M.P.); (M.D.R.); (J.M.)
- Department of Molecular and Cellular Pathology of Alcohol, Principe Felipe Research Center, C/Eduardo Primo Yúfera 3, 46012 Valencia, Spain;
- Department of Physiology, School of Medicine, Universitat de Valencia, Avda. Blasco Ibáñez, 15, 46010 Valencia, Spain
| | - Marina Daiana Reguilón
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain; (F.R.-G.); (M.P.); (M.D.R.); (J.M.)
| | - Consuelo Guerri
- Department of Molecular and Cellular Pathology of Alcohol, Principe Felipe Research Center, C/Eduardo Primo Yúfera 3, 46012 Valencia, Spain;
| | - José Miñarro
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain; (F.R.-G.); (M.P.); (M.D.R.); (J.M.)
| | - Marta Rodríguez-Arias
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain; (F.R.-G.); (M.P.); (M.D.R.); (J.M.)
- Correspondence: ; Tel.: +34-963864637
| |
Collapse
|
8
|
Zhao S, Chen WJ, Kwok OM, Dhar SU, Eble TN, Tseng TS, Chen LS. Psychometric Properties of the POAGTS: A Tool for Understanding Parents' Perceptions Regarding Autism Spectrum Disorder Genetic Testing. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3323. [PMID: 33807035 PMCID: PMC8004979 DOI: 10.3390/ijerph18063323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/03/2022]
Abstract
Due to the increased prevalence of Autism Spectrum Disorder (ASD), more children with ASD may be referred for genetic testing. It is important to develop a tool to help parents consider the benefits and drawbacks of genetic testing for ASD before pursuing genetic testing for children with ASD. We developed the first theory-based survey-Perceptions of ASD Genetic Testing Survey (POAGTS), as a tool to assist healthcare providers to better understand parents' perceptions and concerns regarding ASD genetic testing. The psychometric properties of POAGTS were first pre-tested and then formally tested with 308 parents of children with ASD who had not decided whether to pursue genetic testing for their children diagnosed with ASD. Findings suggest that the eight scales of the POAGTS were psychometrically sound, and had acceptable data reliability and validity. Additional research with various samples, such as parents of children with ASD who belong to diverse racial/ethnic and socioeconomic groups, is warranted in the future to determine whether the POAGTS is applicable to these particular groups. Condensing and refining this tool to a shorter, more user-friendly version is also recommended for future research.
Collapse
Affiliation(s)
- Shixi Zhao
- Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Wei-Ju Chen
- Department of Psychology, the University of Texas of the Permian Basin, Odessa, TX 79762, USA;
| | - Oi-Man Kwok
- Department of Educational Psychology, Texas A&M University, College Station, TX 77843, USA;
| | - Shweta U. Dhar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; (S.U.D.); (T.N.E.)
| | - Tanya N. Eble
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; (S.U.D.); (T.N.E.)
| | - Tung-Sung Tseng
- Behavioral and Community Health Sciences Program, Louisiana State University Health Sciences Center School of Public Health, New Orleans, LA 70112, USA;
| | - Lei-Shih Chen
- Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
9
|
Zhao S, Chen WJ, Dhar SU, Eble TN, Kwok OM, Chen LS. Pursuing genetic testing for children with autism spectrum disorders: What do parents think? J Genet Couns 2020; 30:370-382. [PMID: 32985757 DOI: 10.1002/jgc4.1320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 11/11/2022]
Abstract
The American Academy of Pediatrics, the American College of Medical Genetics and Genomics, and the American Academy of Neurology recommend genetic testing, as a genetic evaluation tool, for children diagnosed with autism spectrum disorders (ASD). Despite the potential benefits, the utilization of genetic testing is low. We proposed an integrated theoretical framework to examine parents' intention and associated psychosocial factors in pursuing genetic testing for their children with ASD. Recruiting primarily from the Interactive Autism Network, a nationwide sample of 411 parents of children with ASD who had never pursued genetic testing for their children completed our theory-based online survey. Data were analyzed using structural equation modeling. About half of the parents were willing to pursue genetic testing for their children with ASD. Findings of the structural equation modeling suggested a good model fit between our integrated theoretical framework and survey data. Parents' intention was significantly and positively associated with their attitudes toward genetic testing, subjective norm, and self-efficacy in having their children tested. This study serves as an initial window to understand parental intention to pursue genetic testing for their children with ASD. Our findings can help physicians and genetic counselors understand, educate, counsel, and support parents' decision-making about having their children with ASD genetically tested. Furthermore, our study can also assist physicians and genetic counselors in developing theory- and evidence-based patient education materials to enhance genetic testing knowledge among parents of children with ASD.
Collapse
Affiliation(s)
- Shixi Zhao
- Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, New Mexico, USA
| | - Wei-Ju Chen
- Department of Psychology, The University of Texas of the Permian Basin, Odessa, Texas, USA
| | - Shweta U Dhar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Tanya N Eble
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Oi-Man Kwok
- Department of Educational Psychology, Texas A&M University, College Station, Texas, USA
| | - Lei-Shih Chen
- Department of Health and Kinesiology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
10
|
Abstract
While there are numerous medical comorbidities associated with ASD, gastrointestinal (GI) issues have a significant impact on quality of life for these individuals. Recent findings continue to support the relationship between the gut microbiome and both GI symptoms and behavior, but the heterogeneity within the autism spectrum requires in-depth clinical characterization of these clinical cohorts. Large, diverse, well-controlled studies in this area of research are still needed. Although there is still much to discover about the brain-gut-microbiome axis in ASD, microbially mediated therapies, specifically probiotics and fecal microbiota transplantation have shown promise in the treatment of GI symptoms in ASD, with potential benefit to the core behavioral symptoms of ASD as well. Future research and clinical trials must increasingly consider complex phenotypes in ASD in stratification of large datasets as well as in design of inclusion criteria for individual therapeutic interventions.
Collapse
Affiliation(s)
- Virginia Saurman
- Department of Pediatrics, Columbia University Medical Center, 620 West 168th Street, New York, NY 10032, USA
| | - Kara G. Margolis
- Department of Pediatrics, Columbia University Medical Center, 620 West 168th Street, New York, NY 10032, USA
| | - Ruth Ann Luna
- Department of Pathology and Immunology, Texas Children’s Microbiome Center, Baylor College of Medicine, Texas Children’s Hospital, Feigin Tower, 1102 Bates Avenue, Suite 955, Houston, TX 77030, USA
| |
Collapse
|
11
|
Zhao S, Chen WJ, Dhar SU, Eble TN, Kwok OM, Chen LS. Genetic Testing Experiences Among Parents of Children with Autism Spectrum Disorder in the United States. J Autism Dev Disord 2020; 49:4821-4833. [PMID: 31542846 DOI: 10.1007/s10803-019-04200-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study examined the experiences of Autism Spectrum Disorder (ASD) genetic testing among parents of children with ASD. A nationwide sample of 552 parents of children with ASD completed an online survey. Nearly one-quarter (22.5%) of the parents reported that their affected children had undergone ASD genetic testing. The testing utilization was associated with awareness of ASD genetic testing and whether information was received from healthcare providers. Among parents whose children with ASD were tested, 37.6% had negative experiences, which mainly due to lack of perceived testing benefits to their affected children and unpleasant testing experiences with healthcare providers. To provide better healthcare services, it is critical to ensure parents understand the purposes, benefits, and results of ASD genetic testing.
Collapse
Affiliation(s)
- Shixi Zhao
- Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Wei-Ju Chen
- Department of Psychology, The University of Texas of the Permian Basin, Odessa, TX, USA
| | - Shweta U Dhar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Tanya N Eble
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Oi-Man Kwok
- Department of Educational Psychology, Texas A&M University, College Station, TX, USA
| | - Lei-Shih Chen
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
12
|
Mateus JM, Ribeiro FF, Alonso-Gomes M, Rodrigues RS, Marques JM, Sebastião AM, Rodrigues RJ, Xapelli S. Neurogenesis and Gliogenesis: Relevance of Adenosine for Neuroregeneration in Brain Disorders. J Caffeine Adenosine Res 2019. [DOI: 10.1089/caff.2019.0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Joana M. Mateus
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Filipa F. Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Marta Alonso-Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Rui S. Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joana M. Marques
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Ana M. Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ricardo J. Rodrigues
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
13
|
Zhao S, Chen WJ, Dhar SU, Eble TN, Kwok OM, Chen LS. Needs assessment in genetic testing education: A survey of parents of children with autism spectrum disorder in the united states. Autism Res 2019; 12:1162-1170. [PMID: 31165588 DOI: 10.1002/aur.2152] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 05/20/2019] [Indexed: 12/24/2022]
Abstract
Understanding parents' educational needs concerning genetic testing for their children with autism spectrum disorder (ASD) is important in developing tailored, evidence-based health education materials for clinical use. Since research is lacking in this area, to bridge the gap, we examined genetic testing education needs using a nationwide sample of parents of biological children with ASD in the United States. Prospective participants were recruited from the interactive autism network, and 552 parents of biological children with ASD completed the online survey. Most participants (73.7%) were interested in receiving health education about genetic testing. Yet, the majority of them (64.7%) reported that they did not receive the information needed from physicians. Parents who identified as racial/ethnic minorities (P = 0.029), who had an education degree below college (P = 0.002), or displayed low/no awareness of genetic testing (P = 0.003) were more interested in receiving health education regarding genetic testing. Parents' most desired topics for health education include the accuracy of genetic testing (88.4%), cost (85.9%), relevant benefits of such testing (83.8%), testing procedure (77.8%), eligibility to undergo genetic testing for their children with ASD (62.4%), potential harms caused by genetic testing (56.1%), previous use and experience among individuals affected by ASD (50.8%), and confidentiality issues (48.0%). Furthermore, web-based education was the preferable approach (85.4%). Our findings can help develop health education programs and/or materials regarding genetic testing for parents and physicians to facilitate better physician-parent communication and assist parents in making informed medical decisions regarding genetic testing. Autism Res 2019, 12: 1162-1170. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: This study examined educational needs on genetic testing among 552 American parents of children with autism spectrum disorder (ASD). Results showed that most parents expressed interests in receiving health education regarding genetic testing (73.7%) and favored online education resources (85.4%). Preferred topics included accuracy, cost, and testing benefits. Our findings can help develop genetic testing related health education programs and materials for parents of children with ASD.
Collapse
Affiliation(s)
- Shixi Zhao
- Department of Health and Kinesiology, Texas A&M University, College Station, Texas
| | - Wei-Ju Chen
- Department of Health and Kinesiology, Texas A&M University, College Station, Texas
| | - Shweta U Dhar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Tanya N Eble
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Oi-Man Kwok
- Department of Educational Psychology, Texas A&M University, College Station, Texas
| | - Lei-Shih Chen
- Department of Health and Kinesiology, Texas A&M University, College Station, Texas
| |
Collapse
|
14
|
Grković I, Drakulić D, Martinović J, Mitrović N. Role of Ectonucleotidases in Synapse Formation During Brain Development: Physiological and Pathological Implications. Curr Neuropharmacol 2019; 17:84-98. [PMID: 28521702 PMCID: PMC6341498 DOI: 10.2174/1570159x15666170518151541] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/19/2017] [Accepted: 05/16/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Extracellular adenine nucleotides and nucleosides, such as ATP and adenosine, are among the most recently identified and least investigated diffusible signaling factors that contribute to the structural and functional remodeling of the brain, both during embryonic and postnatal development. Their levels in the extracellular milieu are tightly controlled by various ectonucleotidases: ecto-nucleotide pyrophosphatase/phosphodiesterases (E-NPP), alkaline phosphatases (AP), ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) and ecto-5'- nucleotidase (eN). METHODS Studies related to the expression patterns of ectonucleotidases and their known features during brain development are reviewed, highlighting involvement of these enzymes in synapse formation and maturation in physiological as well as in pathological states. RESULTS During brain development and in adulthood all ectonucleotidases have diverse expression pattern, cell specific localization and function. NPPs are expressed at early embryonic days, but the expression of NPP3 is reduced and restricted to ependymal area in adult brain. NTPDase2 is dominant ectonucleotidase existing in the progenitor cells as well as main astrocytic NTPDase in the adult brain, while NTPDase3 is fully expressed after third postnatal week, almost exclusively on varicose fibers. Specific brain AP is functionally associated with synapse formation and this enzyme is sufficient for adenosine production during neurite growth and peak of synaptogenesis. eN is transiently associated with synapses during synaptogenesis, however in adult brain it is more glial than neuronal enzyme. CONCLUSION Control of extracellular adenine nucleotide levels by ectonucleotidases are important for understanding the role of purinergic signaling in developing tissues and potential targets in developmental disorders such as autism.
Collapse
Affiliation(s)
- Ivana Grković
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - Dunja Drakulić
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - Jelena Martinović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - Nataša Mitrović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| |
Collapse
|
15
|
Kovács Z, D'Agostino DP, Diamond D, Kindy MS, Rogers C, Ari C. Therapeutic Potential of Exogenous Ketone Supplement Induced Ketosis in the Treatment of Psychiatric Disorders: Review of Current Literature. Front Psychiatry 2019; 10:363. [PMID: 31178772 PMCID: PMC6543248 DOI: 10.3389/fpsyt.2019.00363] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 05/10/2019] [Indexed: 12/16/2022] Open
Abstract
Globally, psychiatric disorders, such as anxiety disorder, bipolar disorder, schizophrenia, depression, autism spectrum disorder, and attention-deficit/hyperactivity disorder (ADHD) are becoming more prevalent. Although the exact pathological alterations are not yet clear, recent studies have demonstrated that widespread changes of very complex metabolic pathways may partially underlie the pathophysiology of many psychiatric diseases. Thus, more attention should be directed to metabolic-based therapeutic interventions in the treatment of psychiatric disorders. Emerging evidence from numerous studies suggests that administration of exogenous ketone supplements, such as ketone salts or ketone esters, generates rapid and sustained nutritional ketosis and metabolic changes, which may evoke potential therapeutic effects in cases of central nervous system (CNS) disorders, including psychiatric diseases. Therefore, the aim of this review is to summarize the current information on ketone supplementation as a potential therapeutic tool for psychiatric disorders. Ketone supplementation elevates blood levels of the ketone bodies: D-β-hydroxybutyrate (βHB), acetoacetate (AcAc), and acetone. These compounds, either directly or indirectly, beneficially affect the mitochondria, glycolysis, neurotransmitter levels, activity of free fatty acid receptor 3 (FFAR3), hydroxycarboxylic acid receptor 2 (HCAR2), and histone deacetylase, as well as functioning of NOD-like receptor pyrin domain 3 (NLRP3) inflammasome and mitochondrial uncoupling protein (UCP) expression. The result of downstream cellular and molecular changes is a reduction in the pathophysiology associated with various psychiatric disorders. We conclude that supplement-induced nutritional ketosis leads to metabolic changes and improvements, for example, in mitochondrial function and inflammatory processes, and suggest that development of specific adjunctive ketogenic protocols for psychiatric diseases should be actively pursued.
Collapse
Affiliation(s)
- Zsolt Kovács
- Savaria Department of Biology, ELTE Eötvös Loránd University, Savaria University Centre, Szombathely, Hungary
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Institute for Human and Machine Cognition, Ocala, FL, United States
| | - David Diamond
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Department of Psychology, Hyperbaric Neuroscience Research Laboratory, University of South Florida, Tampa, FL, United States
| | - Mark S Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States.,James A. Haley VA Medical Center, Tampa, FL, United States.,Shriners Hospital for Children, Tampa, FL, United States
| | - Christopher Rogers
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Csilla Ari
- Department of Psychology, Hyperbaric Neuroscience Research Laboratory, University of South Florida, Tampa, FL, United States
| |
Collapse
|
16
|
Shen HY, Huang N, Reemmer J, Xiao L. Adenosine Actions on Oligodendroglia and Myelination in Autism Spectrum Disorder. Front Cell Neurosci 2018; 12:482. [PMID: 30581380 PMCID: PMC6292987 DOI: 10.3389/fncel.2018.00482] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/26/2018] [Indexed: 11/21/2022] Open
Abstract
Autism spectrum disorder (ASD) is the most commonly diagnosed neurodevelopmental disorder. Independent of neuronal dysfunction, ASD and its associated comorbidities have been linked to hypomyelination and oligodendroglial dysfunction. Additionally, the neuromodulator adenosine has been shown to affect certain ASD comorbidities and symptoms, such as epilepsy, impairment of cognitive function, and anxiety. Adenosine is both directly and indirectly responsible for regulating the development of oligodendroglia and myelination through its interaction with, and modulation of, several neurotransmitters, including glutamate, dopamine, and serotonin. In this review, we will focus on the recent discoveries in adenosine interaction with physiological and pathophysiological activities of oligodendroglia and myelination, as well as ASD-related aspects of adenosine actions on neuroprotection and neuroinflammation. Moreover, we will discuss the potential therapeutic value and clinical approaches of adenosine manipulation against hypomyelination in ASD.
Collapse
Affiliation(s)
- Hai-Ying Shen
- Robert Stone Dow Neurobiology Department, Legacy Research Institute, Legacy Health, Portland, OR, United States.,Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, United States
| | - Nanxin Huang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jesica Reemmer
- Robert Stone Dow Neurobiology Department, Legacy Research Institute, Legacy Health, Portland, OR, United States
| | - Lan Xiao
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
17
|
Osborne DM, Sandau US, Jones AT, Vander Velden JW, Weingarten AM, Etesami N, Huo Y, Shen HY, Boison D. Developmental role of adenosine kinase for the expression of sex-dependent neuropsychiatric behavior. Neuropharmacology 2018; 141:89-97. [PMID: 30145320 DOI: 10.1016/j.neuropharm.2018.08.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 12/28/2022]
Abstract
Deficits in social memory, cognition, and aberrant responses to stimulants are common among persons affected by schizophrenia and other conditions with a presumed developmental etiology. We previously found that expression changes in the adenosine metabolizing enzyme adenosine kinase (ADK) in the adult brain are associated with deficits in various cognitive domains. To distinguish between developmental and adult functions of ADK, we used two transgenic mouse lines with widespread disruption of ADK expression in the adult brain, but differences in the onset of ADK deletion. Specifically, we compared Nestin-Cre+/-:ADK-floxfl/fl (ADKΔBrain) mice with global loss of ADK in the whole brain, beginning in mid-gestation and persisting for life, with Gfa2-Cre+/-:ADK-floxfl/fl (ADKΔAstro) mice that have normal ADK expression throughout development, but lose astrocyte-specific ADK-expression in young adulthood. Because ADK-expression in adulthood is generally confined to astrocytes, adult ADKΔAstro mice show a similar expression profile of ADK in key areas of the brain related to neuropsychiatric behavior, compared to adult ADKΔBrain mice. We sought to determine a neurodevelopmental role of ADK on the expression of psychiatric behaviors in adult male and female mice. Adult ADKΔBrain mice showed significant deficits in social memory in males, significant contextual learning impairments in both sexes, and a hyper-responsiveness to amphetamine in males. In contrast, ADKΔAstro mice showed normal social memory and contextual learning but hypo-responsiveness to amphetamine in males. Our results demonstrate a key developmental role of ADK in mediating behaviors in adulthood related to neuropsychiatric disease and support the greater prevalence of these disorders among males.
Collapse
Affiliation(s)
- D M Osborne
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA.
| | - U S Sandau
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| | - A T Jones
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| | - J W Vander Velden
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| | - A M Weingarten
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| | - N Etesami
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| | - Y Huo
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - H Y Shen
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| | - D Boison
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| |
Collapse
|
18
|
Dajani K, Almualim M, Menon A, Volpi-Abadie J, Lund K. Delayed Emergence in Pediatric Patients with Neurologic Disease Presenting for Ambulatory Surgery. South Med J 2018; 111:168-172. [DOI: 10.14423/smj.0000000000000777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Purinergic system in psychiatric diseases. Mol Psychiatry 2018; 23:94-106. [PMID: 28948971 DOI: 10.1038/mp.2017.188] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 07/15/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022]
Abstract
Psychiatric disorders are debilitating diseases, affecting >80 million people worldwide. There are no causal cures for psychiatric disorders and available therapies only treat the symptoms. The etiology of psychiatric disorders is unknown, although it has been speculated to be a combination of environmental, stress and genetic factors. One of the neurotransmitter systems implicated in the biology of psychiatric disorders is the purinergic system. In this review, we performed a comprehensive search of the literature about the role and function of the purinergic system in the development and predisposition to psychiatric disorders, with a focus on depression, schizophrenia, bipolar disorder, autism, anxiety and attention deficit/hyperactivity disorder. We also describe how therapeutics used for psychiatric disorders act on the purinergic system.
Collapse
|
20
|
Fumagalli M, Lecca D, Abbracchio MP, Ceruti S. Pathophysiological Role of Purines and Pyrimidines in Neurodevelopment: Unveiling New Pharmacological Approaches to Congenital Brain Diseases. Front Pharmacol 2017; 8:941. [PMID: 29375373 PMCID: PMC5770749 DOI: 10.3389/fphar.2017.00941] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/11/2017] [Indexed: 12/17/2022] Open
Abstract
In recent years, a substantial body of evidence has emerged demonstrating that purine and pyrimidine synthesis and metabolism play major roles in controlling embryonic and fetal development and organogenesis. Dynamic and time-dependent changes in the expression of purine metabolizing enzymes (such as ectonucleotidases and adenosine deaminase) represent a key checkpoint for the correct sequential generation of the different signaling molecules, that in turn activate their specific membrane receptors. In neurodevelopment, Ca2+ release from radial glia mediated by P2Y1 purinergic receptors is fundamental to allow neuroblast migration along radial glia processes, and their correct positioning in the different layers of the developing neocortex. Moreover, ATP is involved in the development of synaptic transmission and contributes to the establishment of functional neuronal networks in the developing brain. Additionally, several purinergic receptors (spanning from adenosine to P2X and P2Y receptor subtypes) are differentially expressed by neural stem cells, depending on their maturation stage, and their activation tightly regulates cell proliferation and differentiation to either neurons or glial cells, as well as their correct colonization of the developing telencephalon. The purinergic control of neurodevelopment is not limited to prenatal life, but is maintained in postnatal life, when it plays fundamental roles in controlling oligodendrocyte maturation from precursors and their terminal differentiation to fully myelinating cells. Based on the above-mentioned and other literature evidence, it is now increasingly clear that any defect altering the tight regulation of purinergic transmission and of purine and pyrimidine metabolism during pre- and post-natal brain development may translate into functional deficits, which could be at the basis of severe pathologies characterized by mental retardation or other disturbances. This can occur either at the level of the recruitment and/or signaling of specific nucleotide or nucleoside receptors or through genetic alterations in key steps of the purine salvage pathway. In this review, we have provided a critical analysis of what is currently known on the pathophysiological role of purines and pyrimidines during brain development with the aim of unveiling new future strategies for pharmacological intervention in different neurodevelopmental disorders.
Collapse
Affiliation(s)
- Marta Fumagalli
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Davide Lecca
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Maria P Abbracchio
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Stefania Ceruti
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
21
|
Ruskin DN, Murphy MI, Slade SL, Masino SA. Ketogenic diet improves behaviors in a maternal immune activation model of autism spectrum disorder. PLoS One 2017; 12:e0171643. [PMID: 28166277 PMCID: PMC5293204 DOI: 10.1371/journal.pone.0171643] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/24/2017] [Indexed: 01/31/2023] Open
Abstract
Prenatal factors influence autism spectrum disorder (ASD) incidence in children and can increase ASD symptoms in offspring of animal models. These may include maternal immune activation (MIA) due to viral or bacterial infection during the first trimesters. Unfortunately, regardless of ASD etiology, existing drugs are poorly effective against core symptoms. For nearly a century a ketogenic diet (KD) has been used to treat seizures, and recent insights into mechanisms of ASD and a growing recognition that immune/inflammatory conditions exacerbate ASD risk has increased interest in KD as a treatment for ASD. Here we studied the effects of KD on core ASD symptoms in offspring exposed to MIA. To produce MIA, pregnant C57Bl/6 mice were injected with the viral mimic polyinosinic-polycytidylic acid; after weaning offspring were fed KD or control diet for three weeks. Consistent with an ASD phenotype of a higher incidence in males, control diet-fed MIA male offspring were not social and exhibited high levels of repetitive self-directed behaviors; female offspring were unaffected. However, KD feeding partially or completely reversed all MIA-induced behavioral abnormalities in males; it had no effect on behavior in females. KD-induced metabolic changes of reduced blood glucose and elevated blood ketones were quantified in offspring of both sexes. Prior work from our laboratory and others demonstrate KDs improve relevant behaviors in several ASD models, and here we demonstrate clear benefits of KD in the MIA model of ASD. Together these studies suggest a broad utility for metabolic therapy in improving core ASD symptoms, and support further research to develop and apply ketogenic and/or metabolic strategies in patients with ASD.
Collapse
Affiliation(s)
- David N. Ruskin
- Department of Psychology, Neuroscience Program, Trinity College, Hartford, CT, United States of America
- * E-mail:
| | - Michelle I. Murphy
- Department of Psychology, Neuroscience Program, Trinity College, Hartford, CT, United States of America
| | - Sierra L. Slade
- Department of Psychology, Neuroscience Program, Trinity College, Hartford, CT, United States of America
| | - Susan A. Masino
- Department of Psychology, Neuroscience Program, Trinity College, Hartford, CT, United States of America
| |
Collapse
|
22
|
Ruskin DN, Fortin JA, Bisnauth SN, Masino SA. Ketogenic diets improve behaviors associated with autism spectrum disorder in a sex-specific manner in the EL mouse. Physiol Behav 2016; 168:138-145. [PMID: 27836684 PMCID: PMC5135580 DOI: 10.1016/j.physbeh.2016.10.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/08/2016] [Accepted: 10/14/2016] [Indexed: 12/17/2022]
Abstract
The core symptoms of autism spectrum disorder are poorly treated with current medications. Symptoms of autism spectrum disorder are frequently comorbid with a diagnosis of epilepsy and vice versa. Medically-supervised ketogenic diets are remarkably effective nonpharmacological treatments for epilepsy, even in drug-refractory cases. There is accumulating evidence that supports the efficacy of ketogenic diets in treating the core symptoms of autism spectrum disorders in animal models as well as limited reports of benefits in patients. This study tests the behavioral effects of ketogenic diet feeding in the EL mouse, a model with behavioral characteristics of autism spectrum disorder and comorbid epilepsy. Male and female EL mice were fed control diet or one of two ketogenic diet formulas ad libitum starting at 5 weeks of age. Beginning at 8 weeks of age, diet protocols continued and performance of each group on tests of sociability and repetitive behavior was assessed. A ketogenic diet improved behavioral characteristics of autism spectrum disorder in a sex- and test-specific manner; ketogenic diet never worsened relevant behaviors. Ketogenic diet feeding improved multiple measures of sociability and reduced repetitive behavior in female mice, with limited effects in males. Additional experiments in female mice showed that a less strict, more clinically-relevant diet formula was equally effective in improving sociability and reducing repetitive behavior. Taken together these results add to the growing number of studies suggesting that ketogenic and related diets may provide significant relief from the core symptoms of autism spectrum disorder, and suggest that in some cases there may be increased efficacy in females.
Collapse
Affiliation(s)
- David N Ruskin
- Department of Psychology, Neuroscience Program, Trinity College, Hartford, CT, United States.
| | - Jessica A Fortin
- Department of Psychology, Neuroscience Program, Trinity College, Hartford, CT, United States.
| | - Subrina N Bisnauth
- Department of Psychology, Neuroscience Program, Trinity College, Hartford, CT, United States.
| | - Susan A Masino
- Department of Psychology, Neuroscience Program, Trinity College, Hartford, CT, United States.
| |
Collapse
|
23
|
Analysis of Extracellular Nucleotide Metabolism in Adult Zebrafish After Embryological Exposure to Valproic Acid. Mol Neurobiol 2016; 54:3542-3553. [PMID: 27189619 DOI: 10.1007/s12035-016-9917-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 05/03/2016] [Indexed: 10/21/2022]
Abstract
Autism is a neurodevelopmental disorder characterized by symptoms related to stereotyped movements, deficits in social interaction, impaired communication, anxiety, hyperactivity, and the presence of restricted interests. Evidence indicates an important role of extracellular ATP and adenosine as signaling molecules in autism. ATP hydrolysis by ectonucleotidases is an important source of adenosine, and adenosine deaminase (ADA) contributes to the control of the nucleoside concentrations. Considering zebrafish is an animal model that may contribute towards to understanding the mechanisms that underlie social behavior, we investigated the purinergic signaling in a model of embryological exposure to valproic acid (VPA) that induces social interaction deficit in adult zebrafish. We demonstrated embryological exposure to VPA did not change ATP and ADP hydrolysis in zebrafish at 120 dpf, and the cytosolic (soluble) ADA activity was not altered. However, we observed an increase of AMP hydrolysis (12.5 %) whereas the ecto-ADA activity was decreased (19.2 %) in adult zebrafish submitted to embryological exposure to VPA. Quantitative reverse transcription PCR (RT-PCR) analysis showed changes on ntpd8, ADA 2.1, and A2a1 mRNA transcript levels. Brain ATP metabolism showed a rapid catabolism of ATP and ADP, whereas the extracellular metabolism of AMP and adenosine (ADO) occurred slowly. We demonstrated that embryological exposure to VPA altered biochemical and molecular parameters related to purinergic system in adult zebrafish. These findings indicate that the enzyme activities involved in the control of ATP and adenosine levels may be involved in the pathophysiological mechanisms of diseases related to the impairment of social interaction, such as autism.
Collapse
|
24
|
Masino SA, Kawamura M, Ruskin DN. Adenosine receptors and epilepsy: current evidence and future potential. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 119:233-55. [PMID: 25175969 PMCID: PMC6026023 DOI: 10.1016/b978-0-12-801022-8.00011-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adenosine receptors are a powerful therapeutic target for regulating epileptic seizures. As a homeostatic bioenergetic network regulator, adenosine is perfectly suited to establish or restore an ongoing balance between excitation and inhibition, and its anticonvulsant efficacy is well established. There is evidence for the involvement of multiple adenosine receptor subtypes in epilepsy, but in particular the adenosine A1 receptor subtype can powerfully and bidirectionally regulate seizure activity. Mechanisms that regulate adenosine itself are increasingly appreciated as targets to thus influence receptor activity and seizure propensity. Taken together, established evidence for the powerful potential of adenosine-based epilepsy therapies and new strategies to influence receptor activity can combine to capitalize on this endogenous homeostatic neuromodulator.
Collapse
Affiliation(s)
- Susan A Masino
- Department of Psychology and Neuroscience Program, Trinity College, Hartford, Connecticut, USA.
| | - Masahito Kawamura
- Department of Pharmacology, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - David N Ruskin
- Department of Psychology and Neuroscience Program, Trinity College, Hartford, Connecticut, USA
| |
Collapse
|
25
|
Ruskin DN, Svedova J, Cote JL, Sandau U, Rho JM, Kawamura M, Boison D, Masino SA. Ketogenic diet improves core symptoms of autism in BTBR mice. PLoS One 2013; 8:e65021. [PMID: 23755170 PMCID: PMC3673987 DOI: 10.1371/journal.pone.0065021] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/18/2013] [Indexed: 11/19/2022] Open
Abstract
Autism spectrum disorders share three core symptoms: impaired sociability, repetitive behaviors and communication deficits. Incidence is rising, and current treatments are inadequate. Seizures are a common comorbidity, and since the 1920's a high-fat, low-carbohydrate ketogenic diet has been used to treat epilepsy. Evidence suggests the ketogenic diet and analogous metabolic approaches may benefit diverse neurological disorders. Here we show that a ketogenic diet improves autistic behaviors in the BTBR mouse. Juvenile BTBR mice were fed standard or ketogenic diet for three weeks and tested for sociability, self-directed repetitive behavior, and communication. In separate experiments, spontaneous intrahippocampal EEGs and tests of seizure susceptibility (6 Hz corneal stimulation, flurothyl, SKF83822, pentylenetetrazole) were compared between BTBR and control (C57Bl/6) mice. Ketogenic diet-fed BTBR mice showed increased sociability in a three-chamber test, decreased self-directed repetitive behavior, and improved social communication of a food preference. Although seizures are a common comorbidity with autism, BTBR mice fed a standard diet exhibit neither spontaneous seizures nor abnormal EEG, and have increased seizure susceptibility in just one of four tests. Thus, behavioral improvements are dissociable from any antiseizure effect. Our results suggest that a ketogenic diet improves multiple autistic behaviors in the BTBR mouse model. Therefore, ketogenic diets or analogous metabolic strategies may offer novel opportunities to improve core behavioral symptoms of autism spectrum disorders.
Collapse
Affiliation(s)
- David N. Ruskin
- Neuroscience Program, Trinity College, Hartford, Connecticut, United States of America
- Department of Psychology, Trinity College, Hartford, Connecticut, United States of America
| | - Julia Svedova
- Neuroscience Program, Trinity College, Hartford, Connecticut, United States of America
| | - Jessica L. Cote
- Neuroscience Program, Trinity College, Hartford, Connecticut, United States of America
| | - Ursula Sandau
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, Oregon, United States of America
| | - Jong M. Rho
- Alberta Children’s Hospital, Departments of Pediatrics and Clinical Neurosciences, University of Calgary Faculty of Medicine, Calgary, Alberta, Canada
| | - Masahito Kawamura
- Department of Pharmacology, Jikei University School of Medicine, Tokyo, Japan
| | - Detlev Boison
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, Oregon, United States of America
| | - Susan A. Masino
- Neuroscience Program, Trinity College, Hartford, Connecticut, United States of America
- Department of Psychology, Trinity College, Hartford, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
26
|
Masino SA, Kawamura M, Cote JL, Williams RB, Ruskin DN. Adenosine and autism: a spectrum of opportunities. Neuropharmacology 2012; 68:116-21. [PMID: 22940000 DOI: 10.1016/j.neuropharm.2012.08.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 08/02/2012] [Accepted: 08/16/2012] [Indexed: 11/26/2022]
Abstract
In rodents, insufficient adenosine produces behavioral and physiological symptoms consistent with several comorbidities of autism. In rodents and humans, stimuli postulated to increase adenosine can ameliorate these comorbidities. Because adenosine is a broad homeostatic regulator of cell function and nervous system activity, increasing adenosine's influence might be a new therapeutic target for autism with multiple beneficial effects. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'.
Collapse
Affiliation(s)
- Susan A Masino
- Neuroscience Program, Trinity College, 300 Summit St., Life Sciences Center, Hartford, CT 06106, USA.
| | | | | | | | | |
Collapse
|
27
|
Stafstrom CE, Rho JM. The ketogenic diet as a treatment paradigm for diverse neurological disorders. Front Pharmacol 2012; 3:59. [PMID: 22509165 PMCID: PMC3321471 DOI: 10.3389/fphar.2012.00059] [Citation(s) in RCA: 271] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 03/21/2012] [Indexed: 01/01/2023] Open
Abstract
Dietary and metabolic therapies have been attempted in a wide variety of neurological diseases, including epilepsy, headache, neurotrauma, Alzheimer disease, Parkinson disease, sleep disorders, brain cancer, autism, pain, and multiple sclerosis. The impetus for using various diets to treat - or at least ameliorate symptoms of - these disorders stems from both a lack of effectiveness of pharmacological therapies, and also the intrinsic appeal of implementing a more "natural" treatment. The enormous spectrum of pathophysiological mechanisms underlying the aforementioned diseases would suggest a degree of complexity that cannot be impacted universally by any single dietary treatment. Yet, it is conceivable that alterations in certain dietary constituents could affect the course and impact the outcome of these brain disorders. Further, it is possible that a final common neurometabolic pathway might be influenced by a variety of dietary interventions. The most notable example of a dietary treatment with proven efficacy against a neurological condition is the high-fat, low-carbohydrate ketogenic diet (KD) used in patients with medically intractable epilepsy. While the mechanisms through which the KD works remain unclear, there is now compelling evidence that its efficacy is likely related to the normalization of aberrant energy metabolism. The concept that many neurological conditions are linked pathophysiologically to energy dysregulation could well provide a common research and experimental therapeutics platform, from which the course of several neurological diseases could be favorably influenced by dietary means. Here we provide an overview of studies using the KD in a wide panoply of neurologic disorders in which neuroprotection is an essential component.
Collapse
Affiliation(s)
- Carl E Stafstrom
- Department of Neurology, University of Wisconsin Madison, WI, USA
| | | |
Collapse
|