1
|
Farinha-Ferreira M, Rei N, Fonseca-Gomes J, Miranda-Lourenço C, Serrão P, Vaz SH, Gomes JI, Martins V, de Alves Pereira B, Sebastião AM. Unexpected short- and long-term effects of chronic adolescent HU-210 exposure on emotional behavior. Neuropharmacology 2022; 214:109155. [PMID: 35660545 DOI: 10.1016/j.neuropharm.2022.109155] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/25/2022] [Accepted: 05/30/2022] [Indexed: 12/14/2022]
Abstract
Chronic adolescent cannabinoid receptor agonist exposure has been shown to lead to persistent increases in depressive-like behaviors. This has been a key obstacle to the development of cannabinoid-based therapeutics. However, most of the published work has been performed with only three compounds, namely Δ9-tetrahydrocannabinol, CP55,940 and WIN55,212-2. Hypothesizing that different compounds may lead to distinct outcomes, we herein used the highly potent CB1R/CB2R full agonist HU-210, and first aimed at replicating cannabinoid-induced long-lasting effects, by exposing adolescent female Sprague-Dawley rats to increasing doses of HU-210, for 11 days and testing them at adulthood, after a 30-day drug washout. Surprisingly, HU-210 did not significantly impact adult anxious- or depressive-like behaviors. We then tested whether chronic adolescent HU-210 treatment resulted in short-term (24h) alterations in depressive-like behavior. Remarkably, HU-210 treatment simultaneously induced marked antidepressant- and prodepressant-like responses, in the modified forced swim (mFST) and sucrose preference tests (SPT), respectively. Hypothesizing that mFST results were a misleading artifact of HU-210-induced behavioral hyperreactivity to stress, we assessed plasmatic noradrenaline and corticosterone levels, under basal conditions and following an acute swim-stress episode. Notably, we found that while HU-210 did not alter basal noradrenaline or corticosterone levels, it greatly augmented the stress-induced increase in both. Our results show that, contrary to previously studied cannabinoid receptor agonists, HU-210 does not induce persisting depressive-like alterations, despite inducing marked short-term increases in stress-induced reactivity. By showing that not all cannabinoid receptor agonists may induce long-term negative effects, these results hold significant relevance for the development of cannabinoid-based therapeutics.
Collapse
Affiliation(s)
- Miguel Farinha-Ferreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Nádia Rei
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - João Fonseca-Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Catarina Miranda-Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Paula Serrão
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto. Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal; MedInUP - Center for Drug Discovery and Innovative Medicines, University of Porto. Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Sandra H Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Joana I Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Valéria Martins
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Beatriz de Alves Pereira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal.
| |
Collapse
|
2
|
Nasehi M, Shahbazzadeh S, Ebrahimi-Ghiri M, Zarrindast MR. Bidirectional influence of amygdala β 1-adrenoceptors blockade on cannabinoid signaling in contextual and auditory fear memory. J Psychopharmacol 2018; 32:932-942. [PMID: 29580129 DOI: 10.1177/0269881118760654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The basolateral amygdala (BLA) is a major target and modulator of stress and has a critical role in the neural circuitry presenting learned fear behaviors. On the other hand, both the endocannabinoid and noradrenergic systems may be involved in regulating the stress responses, fear, and anxiety. Considering the aforementioned, we have investigated the involvement of the BLA β1-adrenoceptors in conditioned fear responses induced by ACPA, a CB1 receptor (CB1R) agonist. In adult male NMRI mice, freezing responses to context and cue were measured using a Pavlovian fear conditioning apparatus. Pre-training intra-BLA microinjection of xamoterol (0.01 and 0.02 µg/mouse), a partial β1-adrenoceptor agonist, or atenolol (0.5 µg/mouse), a β1-adrenoceptor antagonist, decreased freezing behavior, which suggests an impairment of contextual and auditory fear retrieval. Similar results were found with pre-training intraperitoneal administration of ACPA (0.5 mg/kg). A sub-threshold dose of xamoterol, infused into the BLA, decreased ACPA (0.005 and 0.05 mg/kg) effect on both memories, while atenolol increased ACPA response to the context at the middle dose and decreased ACPA response to the tone at the lower dose. It can be concluded that the blockade of BLA β1-adrenoceptors differentially affects ACPA response on the contextual and auditory conditioned fear memories.
Collapse
Affiliation(s)
- Mohammad Nasehi
- 1 Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Iran
| | - Saman Shahbazzadeh
- 2 Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Mohammad-Reza Zarrindast
- 4 Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Iran.,5 Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Iran.,6 Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| |
Collapse
|
3
|
Kleczkowska P, Smaga I, Filip M, Bujalska-Zadrozny M. Are Alcohol Anti-relapsing and Alcohol Withdrawal Drugs Useful in Cannabinoid Users? Neurotox Res 2016; 30:698-714. [PMID: 27484692 DOI: 10.1007/s12640-016-9655-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 07/22/2016] [Accepted: 07/22/2016] [Indexed: 11/27/2022]
Abstract
Cannabinoids are still classified as illegal psychoactive drugs despite their broad and increasingly acknowledged therapeutic potential. These substances are most famous for their wide recreational use, particularly among young adults to either alter the state of consciousness, intensify pleasure induced by other psychoactive substances or as an alternative to the previously abused drugs. It is important to emphasize that cannabinoids are often taken together with a variety of medications intended for the treatment of alcohol use disorder (AUD) or alcohol withdrawal syndrome (AWS). These medications include disulfiram, acamprosate, and naltrexone. In this paper, we summarize recent advances in the knowledge of possible beneficial effects and interactions between cannabinoids and drugs commonly used for treatment of AUD and AWS either comorbid or existing as a separate disorder.
Collapse
Affiliation(s)
- Patrycja Kleczkowska
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, 1B Banacha Str, 02-097, Warsaw, Poland.
| | - Irena Smaga
- Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688, Kraków, Poland
| | - Małgorzata Filip
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Magdalena Bujalska-Zadrozny
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, 1B Banacha Str, 02-097, Warsaw, Poland
| |
Collapse
|
4
|
Buffalari DM, Mollica JK, Smith TT, Schassburger RL, Rinaman L, Thiels E, Donny EC, Sved AF. Nicotine Enhances Footshock- and Lithium Chloride-Conditioned Place Avoidance in Male Rats. Nicotine Tob Res 2016; 18:1920-3. [PMID: 27178831 DOI: 10.1093/ntr/ntw098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 03/23/2016] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Numerous studies have shown that nicotine (NIC) can enhance the reinforcing effects of non-NIC stimuli through a nonassociative mechanism. To date, it is unclear whether NIC reinforcement enhancement serves to increase behaviors motivated by rewarding stimuli only, or whether NIC potentiates behavior motivated by all stimuli, regardless of valence. METHODS The current study used a place conditioning procedure to examine whether acute NIC injection modulates avoidance of an environment previously associated with an aversive stimulus. Separate groups of rats underwent place conditioning using either lithium chloride (125mg/kg/ml, i.p.) or footshock (0.75 mA) as the aversive stimulus. Other rats served as nonconditioned controls. The magnitude of place avoidance was assessed after acute NIC (0.1 or 0.4mg/kg/ml, s.c.) or saline. RESULTS Rats avoided chambers previously paired with either lithium chloride or footshock, and conditioned place avoidance was significantly enhanced by NIC pre-treatment. CONCLUSIONS These results demonstrate that the ability of NIC to enhance motivated behavior extends to behaviors elicited by aversive stimuli, evidence that NIC affects behavior motivated by a broader range of stimuli than previously appreciated. IMPLICATIONS The current study examined whether the reinforcement enhancement properties of NIC apply to aversive stimuli by testing NIC enhancement of conditioned place avoidance in rats. The results demonstrate that NIC enhances the motivational impact of these distinct aversive stimuli, providing novel evidence that NIC affects behavior motivated by a broader range of stimuli than has previously been demonstrated.
Collapse
Affiliation(s)
| | | | - Tracy T Smith
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA
| | | | - Linda Rinaman
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA
| | - Edda Thiels
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA
| | - Eric C Donny
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA
| | - Alan F Sved
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
5
|
Repeated administration of a synthetic cannabinoid receptor agonist differentially affects cortical and accumbal neuronal morphology in adolescent and adult rats. Brain Struct Funct 2014; 221:407-19. [PMID: 25348266 DOI: 10.1007/s00429-014-0914-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 10/10/2014] [Indexed: 12/13/2022]
Abstract
Recent studies demonstrate a differential trajectory for cannabinoid receptor expression in cortical and sub-cortical brain areas across postnatal development. In the present study, we sought to investigate whether chronic systemic exposure to a synthetic cannabinoid receptor agonist causes morphological changes in the structure of dendrites and dendritic spines in adolescent and adult pyramidal neurons in the medial prefrontal cortex (mPFC) and medium spiny neurons (MSN) in the nucleus accumbens (Acb). Following systemic administration of WIN 55,212-2 in adolescent (PN 37-40) and adult (P55-60) male rats, the neuronal architecture of pyramidal neurons and MSN was assessed using Golgi-Cox staining. While no structural changes were observed in WIN 55,212-2-treated adolescent subjects compared to control, exposure to WIN 55,212-2 significantly increased dendritic length, spine density and the number of dendritic branches in pyramidal neurons in the mPFC of adult subjects when compared to control and adolescent subjects. In the Acb, WIN 55,212-2 exposure significantly decreased dendritic length and number of branches in adult rat subjects while no changes were observed in the adolescent groups. In contrast, spine density was significantly decreased in both the adult and adolescent groups in the Acb. To determine whether regional developmental morphological changes translated into behavioral differences, WIN 55,212-2-induced aversion was evaluated in both groups using a conditioned place preference paradigm. In adult rats, WIN 55,212-2 administration readily induced conditioned place aversion as previously described. In contrast, adolescent rats did not exhibit aversion following WIN 55,212-2 exposure in the behavioral paradigm. The present results show that synthetic cannabinoid administration differentially impacts cortical and sub-cortical neuronal morphology in adult compared to adolescent subjects. Such differences may underlie the disparate development effects of cannabinoids on behavior.
Collapse
|
6
|
Hillard CJ, Liu QS. Endocannabinoid signaling in the etiology and treatment of major depressive illness. Curr Pharm Des 2014; 20:3795-811. [PMID: 24180398 PMCID: PMC4002665 DOI: 10.2174/13816128113196660735] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/23/2013] [Indexed: 12/28/2022]
Abstract
The purpose of this review is to examine human and preclinical data that are relevant to the following hypotheses. The first hypothesis is that deficient CB1R-mediated signaling results in symptoms that mimic those seen in depression. The second hypothesis is that activation of CB1R-mediated signaling results in behavioral, endocrine and other effects that are similar to those produced by currently used antidepressants. The third hypothesis is that conventional antidepressant therapies act through enhanced CB1R mediated signaling. Together the available data indicate that activators of CB1R signaling, particularly inhibitors of fatty acid amide hydrolase, should be considered for clinical trials for the treatment of depression.
Collapse
MESH Headings
- Animals
- Antidepressive Agents/pharmacology
- Antidepressive Agents/therapeutic use
- Brain/drug effects
- Brain/enzymology
- Brain/metabolism
- Brain/pathology
- Cannabis
- Depressive Disorder, Major/drug therapy
- Depressive Disorder, Major/etiology
- Depressive Disorder, Major/genetics
- Depressive Disorder, Major/pathology
- Disease Models, Animal
- Endocannabinoids/genetics
- Endocannabinoids/metabolism
- Humans
- Magnetic Resonance Imaging
- Neurogenesis/drug effects
- Polymorphism, Genetic
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
| | - Qing-song Liu
- Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226.
| |
Collapse
|
7
|
Cannabinoid and opioid interactions: implications for opiate dependence and withdrawal. Neuroscience 2013; 248:637-54. [PMID: 23624062 DOI: 10.1016/j.neuroscience.2013.04.034] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/12/2013] [Accepted: 04/16/2013] [Indexed: 12/12/2022]
Abstract
Withdrawal from opiates, such as heroin or oral narcotics, is characterized by a host of aversive physical and emotional symptoms. High rates of relapse and limited treatment success rates for opiate addiction have prompted a search for new approaches. For many opiate addicts, achieving abstinence may be further complicated by poly-drug use and co-morbid mental disorders. Research over the past decade has shed light on the influence of endocannabinoids (ECs) on the opioid system. Evidence from both animal and clinical studies point toward an interaction between these two systems, and suggest that targeting the EC system may provide novel interventions for managing opiate dependence and withdrawal. This review will summarize the literature surrounding the molecular effects of cannabinoids and opioids on the locus coeruleus-norepinephrine system, a key circuit implicated in the negative sequelae of opiate addiction. A consideration of the trends and effects of marijuana use in those seeking treatment to abstain from opiates in the clinical setting will also be presented. In summary, the present review details how cannabinoid-opioid interactions may inform novel interventions in the management of opiate dependence and withdrawal.
Collapse
|
8
|
Mori T, Yoshizawa K, Shibasaki M, Suzuki T. Discriminative stimulus effects of hallucinogenic drugs: a possible relation to reinforcing and aversive effects. J Pharmacol Sci 2012; 120:70-6. [PMID: 22986365 DOI: 10.1254/jphs.12r08cp] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The subjective effects of drugs are related to the kinds of feelings they produce, such as euphoria or dysphoria. One of the methods that can be used to study these effects is the drug discrimination procedure. Many researchers are trying to elucidate the mechanisms that underlie the discriminative stimulus effects of abused drugs (e.g., alcohol, psychostimulants, and opioids). Over the past two decades, the patterns of drug abuse have changed, so that club/recreational drugs such as phencyclidine (PCP), 3,4-methylenedioxymethamphetamine (MDMA), lysergic acid diethylamide (LSD), and ketamine, which induce perceptual distortions, like hallucinations, are now more commonly abused, especially in younger generations. However, the mechanisms of the discriminative stimulus effects of hallucinogenic drugs are not yet fully clear. This review will briefly focus on the recent findings regarding hallucinogenic/psychotomimetic drug-induced discriminative stimulus effects in animals. In summary, recent research has demonstrated that there are at least two plausible mechanisms that can explain the cue of the discriminative stimulus effects of hallucinogenic drugs; one is mediated mainly by 5-HT(2) receptors, and the other is mediated through sigma-1 (σ(1))-receptor chaperone regulated by endogenous hallucinogenic ligand.
Collapse
Affiliation(s)
- Tomohisa Mori
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | | | | | | |
Collapse
|
9
|
Carvalho AF, Van Bockstaele EJ. Cannabinoid modulation of noradrenergic circuits: implications for psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2012; 38:59-67. [PMID: 22296986 PMCID: PMC3351574 DOI: 10.1016/j.pnpbp.2012.01.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 01/17/2012] [Accepted: 01/17/2012] [Indexed: 12/17/2022]
Abstract
The interaction between the endocannabinoid system and catecholaminergic circuits has gained increasing attention as it is recognized that the development of synthetic cannabinoid receptor agonists/antagonists or compounds targeting endocannabinoid synthesis/metabolism may hold some therapeutic potential for the treatment of psychiatric disorders. The noradrenergic system plays a critical role in the modulation of emotional state, primarily related to anxiety, arousal, and stress. Recent evidence suggests that the endocannabinoid system mediates stress responses and emotional homeostasis, in part, by targeting noradrenergic circuits. This review summarizes our current knowledge regarding the anatomical substrates underlying regulation of noradrenergic circuitry by the endocannabinoid system. It then presents biochemical evidence showing an important effect of cannabinoid modulation on adrenergic receptor signaling. Finally, new evidence from behavioral pharmacology studies is provided demonstrating that norepinephrine is a critical determinant of cannabinoid-induced aversion, adding another dimension to how central noradrenergic circuitry is regulated by the cannabinoid system.
Collapse
Affiliation(s)
- Ana Franky Carvalho
- Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA,Life and Health Science Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal,ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | |
Collapse
|