1
|
Li M, Yue W. VRK2, a Candidate Gene for Psychiatric and Neurological Disorders. MOLECULAR NEUROPSYCHIATRY 2018; 4:119-133. [PMID: 30643786 PMCID: PMC6323383 DOI: 10.1159/000493941] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/20/2018] [Indexed: 12/20/2022]
Abstract
Recent large-scale genetic approaches, such as genome-wide association studies, have identified multiple genetic variations that contribute to the risk of mental illnesses, among which single nucleotide polymorphisms (SNPs) within or near the vaccinia related kinase 2 (VRK2) gene have gained consistent support for their correlations with multiple psychiatric and neurological disorders including schizophrenia (SCZ), major depressive disorder (MDD), and genetic generalized epilepsy. For instance, the genetic variant rs1518395 in VRK2 showed genome-wide significant associations with SCZ (35,476 cases and 46,839 controls, p = 3.43 × 10-8) and MDD (130,620 cases and 347,620 controls, p = 4.32 × 10-12) in European populations. This SNP was also genome-wide significantly associated with SCZ in Han Chinese population (12,083 cases and 24,097 controls, p = 3.78 × 10-13), and all associations were in the same direction of allelic effects. These studies highlight the potential roles of VRK2 in the central nervous system, and this gene therefore might be a good candidate to investigate the shared genetic and molecular basis between SCZ and MDD, as it is one of the few genes known to show genome-wide significant associations with both illnesses. Furthermore, the VRK2 gene was found to be involved in multiple other congenital deficits related to the malfunction of neurodevelopment, adding further support for the involvement of this gene in the pathogenesis of these neurological and psychiatric illnesses. While the precise function of VRK2 in these conditions remains unclear, preliminary evidence suggests that it may affect neuronal proliferation and migration via interacting with multiple essential signaling pathways involving other susceptibility genes/proteins for psychiatric disorders. Here, we have reviewed the recent progress of genetic and molecular studies of VRK2, with an emphasis on its role in psychiatric illnesses and neurological functions. We believe that attention to this important gene is necessary, and further investigations of VRK2 may provide hints into the underlying mechanisms of SCZ and MDD.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Weihua Yue
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| |
Collapse
|
2
|
CREB1 functional polymorphisms modulating promoter transcriptional activity are associated with type 2 diabetes mellitus risk in Chinese population. Gene 2018; 665:133-140. [PMID: 29729382 DOI: 10.1016/j.gene.2018.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/14/2018] [Accepted: 05/02/2018] [Indexed: 12/16/2022]
Abstract
The cAMP responsive element binding protein 1 (CREB1) is a ubiquitous transcription factor that contributes to the regulation of gluconeogenesis. The mechanisms of the CREB1 function remain largely unknown. In this study, we aimed to explore genetic variations in CREB1 promoter region and determine whether these loci affect transcriptional activity and risk on type 2 diabetes (T2D). Three polymorphisms were identified and designated as MU1, MU2 and MU3, respectively. Genotypic distribution analysis revealed that MU1 genotypes presented similar distribution between T2D and healthy controls (P > 0.05), while the MU2 and MU3 showed significant differences (P < 0.05). Haplotypic blocks of the three loci were constructed, and H1-TGA, H2-TTT and H3-ATT had higher frequencies in T2D patients than those in controls. Association studies revealed that the three loci significantly affected plasma glucose, glycated hemoglobin and insulin secretion. Disequilibrium analysis identified that the MU2 and MU3 variants were strongly linked in T2D (r2 = 0.348, D' = 1.0). Further analysis indicated that MU2 (TT vs GG, OR = 2.38, 95%CI = 1.19-4.77, P = 0.01) and MU3 (AA vs TT, OR = 1.16, 95%CI = 1.19-4.77, P = 0.04) were significantly associated with T2D in dominant genotypes. Luciferase assay showed that T-A haplotype from the highly linked MU2 and MU3 exhibited maximal promoter activity, which was consistent with the correlation results. We concluded that the TT genotype of MU2 and the AA genotype of MU3 could be used as molecular markers for evaluating the risk on T2D.
Collapse
|
3
|
Fachim HA, Srisawat U, Dalton CF, Reynolds GP. Parvalbumin promoter hypermethylation in postmortem brain in schizophrenia. Epigenomics 2018; 10:519-524. [DOI: 10.2217/epi-2017-0159] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Deficits of brain parvalbumin (PV) are a consistent finding in schizophrenia and models of psychosis. We investigated whether this is associated with abnormal PV gene (PVALB) methylation in the brain in schizophrenia. Bisulfite pyrosequencing was used to determine cytosine (CpG) methylation in a PVALB promoter sequence. Greater PVALB methylation was found in schizophrenia hippocampus, while no differences were observed in prefrontal cortex. LINE-1 methylation, a measure of global methylation, was also elevated in both regions in schizophrenia, although the PVALB change was independent of this effect. These results provide the first evidence that PVALB promoter methylation is abnormal in schizophrenia and suggest that this epigenetic finding may relate to the reduction of PV expression seen in the disease.
Collapse
Affiliation(s)
- Helene A Fachim
- Biomolecular Sciences Research Center, Sheffield Hallam University, Sheffield, UK
| | - Umarat Srisawat
- Biomolecular Sciences Research Center, Sheffield Hallam University, Sheffield, UK
| | - Caroline F Dalton
- Biomolecular Sciences Research Center, Sheffield Hallam University, Sheffield, UK
| | - Gavin P Reynolds
- Biomolecular Sciences Research Center, Sheffield Hallam University, Sheffield, UK
| |
Collapse
|
4
|
Hoseth EZ, Krull F, Dieset I, Mørch RH, Hope S, Gardsjord ES, Steen NE, Melle I, Brattbakk HR, Steen VM, Aukrust P, Djurovic S, Andreassen OA, Ueland T. Exploring the Wnt signaling pathway in schizophrenia and bipolar disorder. Transl Psychiatry 2018; 8:55. [PMID: 29507296 PMCID: PMC5838215 DOI: 10.1038/s41398-018-0102-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/28/2017] [Accepted: 12/05/2017] [Indexed: 01/05/2023] Open
Abstract
The Wnt signaling pathway plays a crucial role in neurodevelopment and in regulating the function and structure of the adult nervous system. Schizophrenia (SCZ) and bipolar disorder (BD) are severe mental disorders with evidence of subtle neurodevelopmental, structural and functional neuronal abnormalities. We aimed to elucidate the role of aberrant regulation of the Wnt system in these disorders by evaluating plasma levels of secreted Wnt modulators in patients (SCZ = 551 and BD = 246) and healthy controls (HCs = 639) using enzyme immune-assay. We also investigated the expression of 141 Wnt-related genes in whole blood in a subsample (SCZ = 338, BD = 241, and HCs = 263) using microarray analysis. Both SCZ and BD had dysregulated mRNA expression of Wnt-related genes favoring attenuated canonical (beta-catenin-dependent) signaling, and there were also indices of enhanced non-canonical Wnt signaling. In particular, FZD7, which may activate all Wnt pathways, but favors non-canonical signaling, and NFATc3, a downstream transcription factor and readout of the non-canonical Wnt/Ca2+ pathway, were significantly increased in SCZ and BD (p < 3 × 10-4). Furthermore, patients had lower plasma levels of soluble dickkopf 1 and sclerostin (p < 0.01) compared with HC. Our findings suggest that SCZ and BD are characterized by abnormal Wnt gene expression and plasma protein levels, and we propose that drugs targeting the Wnt pathway may have a role in the treatment of severe mental disorders.
Collapse
Affiliation(s)
- Eva Z. Hoseth
- 0000 0004 0389 8485grid.55325.34NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway ,Division of Mental Health and Addiction, Møre and Romsdal Hospital Trust, Kristiansund, Norway
| | - Florian Krull
- 0000 0004 0389 8485grid.55325.34NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingrid Dieset
- 0000 0004 0389 8485grid.55325.34NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ragni H. Mørch
- 0000 0004 0389 8485grid.55325.34NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Sigrun Hope
- 0000 0004 0389 8485grid.55325.34NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway ,0000 0004 0389 8485grid.55325.34Departent of Neurohabilitation, Division of Neurology, Oslo University Hospital, Oslo, Norway
| | - Erlend S. Gardsjord
- 0000 0004 0389 8485grid.55325.34NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Nils Eiel Steen
- 0000 0004 0389 8485grid.55325.34NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingrid Melle
- 0000 0004 0389 8485grid.55325.34NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Hans-Richard Brattbakk
- 0000 0004 1936 7443grid.7914.bNORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Oslo, Norway ,0000 0000 9753 1393grid.412008.fDr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Oslo, Norway
| | - Vidar M. Steen
- 0000 0004 1936 7443grid.7914.bNORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Oslo, Norway ,0000 0000 9753 1393grid.412008.fDr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Oslo, Norway
| | - Pål Aukrust
- 0000 0004 0389 8485grid.55325.34Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway ,0000 0004 0389 8485grid.55325.34Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway ,0000 0004 0389 8485grid.55325.34Instiute of Clinical Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway ,0000 0004 1936 8921grid.5510.1K.G. Jensen Inflammatory Research Center, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- 0000 0004 0389 8485grid.55325.34Department of Medical Genetics, Oslo University Hospital, Oslo, Norway ,0000 0004 1936 7443grid.7914.bNORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ole A. Andreassen
- 0000 0004 0389 8485grid.55325.34NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Thor Ueland
- Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway. .,Instiute of Clinical Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway. .,K.G. Jensen Inflammatory Research Center, University of Oslo, Oslo, Norway. .,K. G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway.
| |
Collapse
|
5
|
Calabrò M, Porcelli S, Crisafulli C, Wang SM, Lee SJ, Han C, Patkar AA, Masand PS, Albani D, Raimondi I, Forloni G, Bin S, Cristalli C, Mantovani V, Pae CU, Serretti A. Genetic Variants Within Molecular Targets of Antipsychotic Treatment: Effects on Treatment Response, Schizophrenia Risk, and Psychopathological Features. J Mol Neurosci 2018; 64:62-74. [PMID: 29164477 DOI: 10.1007/s12031-017-1002-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/14/2017] [Indexed: 12/14/2022]
Abstract
Schizophrenia (SCZ) is a common and severe mental disorder. Genetic factors likely play a role in its pathophysiology as well as in treatment response. In the present study, we investigated the effects of several single nucleotide polymorphisms (SNPs) within 9 genes involved with antipsychotic (AP) mechanisms of action. Two independent samples were recruited. The Korean sample included 176 subjects diagnosed with SCZ and 326 healthy controls, while the Italian sample included 83 subjects and 194 controls. AP response as measured by the positive and negative syndrome scale (PANSS) was the primary outcome, while the secondary outcome was the SCZ risk. Exploratory analyses were performed on (1) symptom clusters response (as measured by PANSS subscales); (2) age of onset; (3) family history; and (4) suicide history. Associations evidenced in the primary analyses did not survive to the FDR correction. Concerning SCZ risk, we partially confirmed the associations among COMT and MAPK1 genetic variants and SCZ. Finally, our exploratory analysis suggested that CHRNA7 and HTR2A genes may modulate both positive and negative symptoms responses, while PLA2G4A and SIGMAR1 may modulate respectively positive and negative symptoms responses. Moreover, GSK3B, HTR2A, PLA2G4A, and S100B variants may determine an anticipation of SCZ age of onset. Our results did not support a primary role for the genes investigated in AP response as a whole. However, our exploratory findings suggested that these genes may be involved in symptom clusters response.
Collapse
Affiliation(s)
- Marco Calabrò
- Department of Biomedical and Dental Sciences and Morphofunctional Images, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, Italy
| | - Stefano Porcelli
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Concetta Crisafulli
- Department of Biomedical and Dental Sciences and Morphofunctional Images, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, Italy
| | - Sheng-Min Wang
- Department of Psychiatry, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Soo-Jung Lee
- Department of Psychiatry, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Changsu Han
- Department of Psychiatry, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Ashwin A Patkar
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Prakash S Masand
- Global Medical Education, New York, NY, USA
- Academic Medicine Education Institute, Duke-NUS Medical School, Singapore, Singapore
| | - Diego Albani
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Ilaria Raimondi
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Gianluigi Forloni
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Sofia Bin
- Center for Applied Biomedical Research (CRBA, St. Orsola University Hospital, Bologna, Italy
| | - Carlotta Cristalli
- Center for Applied Biomedical Research (CRBA, St. Orsola University Hospital, Bologna, Italy
| | - Vilma Mantovani
- Center for Applied Biomedical Research (CRBA, St. Orsola University Hospital, Bologna, Italy
| | - Chi-Un Pae
- Department of Psychiatry, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea.
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA.
- Department of Psychiatry, Bucheon St. Mary's Hospital, The Catholic University of Korea College of Medicine, 2 Sosa-Dong, Wonmi-Gu, Bucheon, Kyeonggi-Do, 420-717, Republic of Korea.
- Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Alessandro Serretti
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
Effect of Clozapine on DNA Methylation in Peripheral Leukocytes from Patients with Treatment-Resistant Schizophrenia. Int J Mol Sci 2017; 18:ijms18030632. [PMID: 28335437 PMCID: PMC5372645 DOI: 10.3390/ijms18030632] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 02/06/2023] Open
Abstract
Clozapine is an atypical antipsychotic, that is established as the treatment of choice for treatment-resistant schizophrenia (SCZ). To date, no study investigating comprehensive DNA methylation changes in SCZ patients treated with chronic clozapine has been reported. The purpose of the present study is to reveal the effects of clozapine on DNA methylation in treatment-resistant SCZ. We conducted a genome-wide DNA methylation profiling in peripheral leukocytes (485,764 CpG dinucleotides) from treatment-resistant SCZ patients treated with clozapine (n = 21) in a longitudinal study. Significant changes in DNA methylation were observed at 29,134 sites after one year of treatment with clozapine, and these genes were enriched for “cell substrate adhesion” and “cell matrix adhesion” gene ontology (GO) terms. Furthermore, DNA methylation changes in the CREBBP (CREB binding protein) gene were significantly correlated with the clinical improvements. Our findings provide insights into the action of clozapine in treatment-resistant SCZ.
Collapse
|
7
|
Malt EA, Juhasz K, Malt UF, Naumann T. A Role for the Transcription Factor Nk2 Homeobox 1 in Schizophrenia: Convergent Evidence from Animal and Human Studies. Front Behav Neurosci 2016; 10:59. [PMID: 27064909 PMCID: PMC4811959 DOI: 10.3389/fnbeh.2016.00059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/11/2016] [Indexed: 12/22/2022] Open
Abstract
Schizophrenia is a highly heritable disorder with diverse mental and somatic symptoms. The molecular mechanisms leading from genes to disease pathology in schizophrenia remain largely unknown. Genome-wide association studies (GWASs) have shown that common single-nucleotide polymorphisms associated with specific diseases are enriched in the recognition sequences of transcription factors that regulate physiological processes relevant to the disease. We have used a “bottom-up” approach and tracked a developmental trajectory from embryology to physiological processes and behavior and recognized that the transcription factor NK2 homeobox 1 (NKX2-1) possesses properties of particular interest for schizophrenia. NKX2-1 is selectively expressed from prenatal development to adulthood in the brain, thyroid gland, parathyroid gland, lungs, skin, and enteric ganglia, and has key functions at the interface of the brain, the endocrine-, and the immune system. In the developing brain, NKX2-1-expressing progenitor cells differentiate into distinct subclasses of forebrain GABAergic and cholinergic neurons, astrocytes, and oligodendrocytes. The transcription factor is highly expressed in mature limbic circuits related to context-dependent goal-directed patterns of behavior, social interaction and reproduction, fear responses, responses to light, and other homeostatic processes. It is essential for development and mature function of the thyroid gland and the respiratory system, and is involved in calcium metabolism and immune responses. NKX2-1 interacts with a number of genes identified as susceptibility genes for schizophrenia. We suggest that NKX2-1 may lie at the core of several dose dependent pathways that are dysregulated in schizophrenia. We correlate the symptoms seen in schizophrenia with the temporal and spatial activities of NKX2-1 in order to highlight promising future research areas.
Collapse
Affiliation(s)
- Eva A Malt
- Department of Adult Habilitation, Akershus University HospitalLørenskog, Norway; Institute of Clinical Medicine, Ahus Campus University of OsloOslo, Norway
| | - Katalin Juhasz
- Department of Adult Habilitation, Akershus University Hospital Lørenskog, Norway
| | - Ulrik F Malt
- Institute of Clinical Medicine, University of OsloOslo, Norway; Department of Research and Education, Institution of Oslo University HospitalOslo, Norway
| | - Thomas Naumann
- Centre of Anatomy, Institute of Cell Biology and Neurobiology, Charite Universitätsmedizin Berlin Berlin, Germany
| |
Collapse
|
8
|
Ehrlich DE, Josselyn SA. Plasticity-related genes in brain development and amygdala-dependent learning. GENES BRAIN AND BEHAVIOR 2015; 15:125-43. [PMID: 26419764 DOI: 10.1111/gbb.12255] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/12/2015] [Accepted: 09/14/2015] [Indexed: 12/31/2022]
Abstract
Learning about motivationally important stimuli involves plasticity in the amygdala, a temporal lobe structure. Amygdala-dependent learning involves a growing number of plasticity-related signaling pathways also implicated in brain development, suggesting that learning-related signaling in juveniles may simultaneously influence development. Here, we review the pleiotropic functions in nervous system development and amygdala-dependent learning of a signaling pathway that includes brain-derived neurotrophic factor (BDNF), extracellular signaling-related kinases (ERKs) and cyclic AMP-response element binding protein (CREB). Using these canonical, plasticity-related genes as an example, we discuss the intersection of learning-related and developmental plasticity in the immature amygdala, when aversive and appetitive learning may influence the developmental trajectory of amygdala function. We propose that learning-dependent activation of BDNF, ERK and CREB signaling in the immature amygdala exaggerates and accelerates neural development, promoting amygdala excitability and environmental sensitivity later in life.
Collapse
Affiliation(s)
- D E Ehrlich
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA.,Department of Otolaryngology, NYU Langone School of Medicine, New York, NY, USA
| | - S A Josselyn
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Wide distribution of CREM immunoreactivity in adult and fetal human brain, with an increased expression in dentate gyrus neurons of Alzheimer's as compared to normal aging brains. Amino Acids 2013; 45:1373-83. [PMID: 24100545 DOI: 10.1007/s00726-013-1601-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/23/2013] [Indexed: 12/12/2022]
Abstract
Human cyclic AMP response modulator proteins (CREMs) are encoded by the CREM gene, which generates 30 or more different CREM protein isoforms. They are members of the leucine zipper protein superfamily of nuclear transcription factors. CREM proteins are known to be implicated in a plethora of important cellular processes within the CNS. Amazingly, little is known about their cellular and regional distribution in the brain, however. Therefore, we studied by means of immunohistochemistry and Western blotting the expression patterns of CREM in developing and adult human brain, as well as in brains of Alzheimer's disease patients. CREM immunoreactivity was found to be widely but unevenly distributed in the adult human brain. Its localization was confined to neurons. In immature human brains, CREM multiple neuroblasts and radial glia cells expressed CREM. In Alzheimer's brain, we found an increased cellular expression of CREM in dentate gyrus neurons as compared to controls. We discuss our results with regard to the putative roles of CREM in brain development and in cognition.
Collapse
|