1
|
Zhong J, Wu F, Wu H, He H, Zhang Z, Fan N. Abnormal resting-state functional connectivity of the right anterior cingulate cortex in chronic ketamine users and its correlation with cognitive impairments. Asian J Psychiatr 2024; 102:104199. [PMID: 39298913 DOI: 10.1016/j.ajp.2024.104199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Chronic ketamine use leads to cognitive impairments, however, the neural mechanisms underpinning these impairments are still unclear. AIMS Many studies showed Anterior cingulate cortex (ACC)is strongly involved in cognition and drug addiction, as supported by our previous studies. The objective of this study was to assess the variations in resting-state functional connectivity (FC) changes in the right anterior cingulate cortex (ACC) of chronic ketamine users (CKUs) and their relationship with cognitive performance. METHODS The study enrolled 28 chronic ketamine users (CKUs) and 30 healthy controls (HCs). Resting-state functional magnetic resonance imaging (fMRI) data were gathered from both groups. Cognitive functions were evaluated using the MATRICS Consensus Cognitive Battery (MCCB). RESULTS CKUs demonstrated significantly poorer cognitive performance than HCs in various cognitive domains, including Visual Learning, Speed of Processing, Working Memory, and the composite score of MCCB. Group-level comparisons revealed that CKUs exhibited enhanced functional connectivity between the right ACC and the right postcentral gyrus (PCG) compared to HCs. There was a positive relationship between the connectivity of right ACC-PCG and reasoning and problem-solving score, but there was no significant association with the characteristics of ketamine use. CONCLUSION CKUs showed enhanced connectivity between the right ACC and the right PCG. This enhanced functional connectivity may indicate functional compensation for cognitive deficits in CKUs, especially for reasoning and problem-solving impairments in CKUs.
Collapse
Affiliation(s)
- Jun Zhong
- The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, China
| | - Fengchun Wu
- The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, China
| | - Huawang Wu
- The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, China
| | - Hongbo He
- The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, China
| | - Zhaohua Zhang
- The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, China
| | - Ni Fan
- The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, China.
| |
Collapse
|
2
|
Fascher M, Nowaczynski S, Muehlhan M. Substance use disorders are characterised by increased voxel-wise intrinsic measures in sensorimotor cortices: An ALE meta-analysis. Neurosci Biobehav Rev 2024; 162:105712. [PMID: 38733896 DOI: 10.1016/j.neubiorev.2024.105712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Substance use disorders (SUDs) are severe psychiatric illnesses. Seed region and independent component analyses are currently the dominant connectivity measures but carry the risk of false negatives due to selection. They can be complemented by a data-driven and whole-brain usage of voxel-wise intrinsic measures (VIMs). We meta-analytically integrated VIMs, namely regional homogeneity (ReHo), amplitude of low-frequency fluctuations (ALFF), voxel-mirrored homotopy connectivity (VMHC) and degree centrality (DC) across different SUDs using the Activation Likelihood Estimation (ALE) algorithm, functionally decoded emerging clusters, and analysed their connectivity profiles. Our systematic search identified 51 studies including 1439 SUD participants. Although no overall convergent pattern of alterations across VIMs in SUDs was found, sensitivity analyses demonstrated two ALE-derived clusters of increased ReHo and ALFF in SUDs, which peaked in the left pre- and postcentral cortices. Subsequent analyses showed their involvement in action execution, somesthesis, finger tapping and vibrotactile monitoring/discrimination. Their numerous clinical correlates across included studies highlight the under-discussed role of sensorimotor cortices in SUD, urging a more attentive exploration of their clinical significance.
Collapse
Affiliation(s)
- Maximilian Fascher
- Department of Psychology, Faculty of Human Sciences, Medical School Hamburg, Am Kaiserkai 1, Hamburg 20457, Germany; ICAN Institute for Cognitive and Affective Neuroscience, Medical School Hamburg, Am Kaiserkai 1, Hamburg 20457, Germany.
| | - Sandra Nowaczynski
- Department of Psychology, Faculty of Human Sciences, Medical School Hamburg, Am Kaiserkai 1, Hamburg 20457, Germany; ICAN Institute for Cognitive and Affective Neuroscience, Medical School Hamburg, Am Kaiserkai 1, Hamburg 20457, Germany; Department of Addiction Medicine, Carl-Friedrich-Flemming-Clinic, Helios Medical Center Schwerin, Wismarsche Str. 393, Schwerin 19055, Germany
| | - Markus Muehlhan
- Department of Psychology, Faculty of Human Sciences, Medical School Hamburg, Am Kaiserkai 1, Hamburg 20457, Germany; ICAN Institute for Cognitive and Affective Neuroscience, Medical School Hamburg, Am Kaiserkai 1, Hamburg 20457, Germany
| |
Collapse
|
3
|
Zheng H, Zhai T, Lin X, Dong G, Yang Y, Yuan TF. The resting-state brain activity signatures for addictive disorders. MED 2024; 5:201-223.e6. [PMID: 38359839 PMCID: PMC10939772 DOI: 10.1016/j.medj.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/20/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Addiction is a chronic and relapsing brain disorder. Despite numerous neuroimaging and neurophysiological studies on individuals with substance use disorder (SUD) or behavioral addiction (BEA), currently a clear neural activity signature for the addicted brain is lacking. METHODS We first performed systemic coordinate-based meta-analysis and partial least-squares regression to identify shared or distinct brain regions across multiple addictive disorders, with abnormal resting-state activity in SUD and BEA based on 46 studies (55 contrasts), including regional homogeneity (ReHo) and low-frequency fluctuation amplitude (ALFF) or fractional ALFF. We then combined Neurosynth, postmortem gene expression, and receptor/transporter distribution data to uncover the potential molecular mechanisms underlying these neural activity signatures. FINDINGS The overall comparison between addiction cohorts and healthy subjects indicated significantly increased ReHo and ALFF in the right striatum (putamen) and bilateral supplementary motor area, as well as decreased ReHo and ALFF in the bilateral anterior cingulate cortex and ventral medial prefrontal cortex, in the addiction group. On the other hand, neural activity in cingulate cortex, ventral medial prefrontal cortex, and orbitofrontal cortex differed between SUD and BEA subjects. Using molecular analyses, the altered resting activity recapitulated the spatial distribution of dopaminergic, GABAergic, and acetylcholine system in SUD, while this also includes the serotonergic system in BEA. CONCLUSIONS These results indicate both common and distinctive neural substrates underlying SUD and BEA, which validates and supports targeted neuromodulation against addiction. FUNDING This work was supported by the National Natural Science Foundation of China and Intramural Research Program of the National Institute on Drug Abuse, National Institutes of Health.
Collapse
Affiliation(s)
- Hui Zheng
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Tianye Zhai
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Xiao Lin
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Guangheng Dong
- Department of Psychology, Yunnan Normal University, Kunming 650092, China
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China; Institute of Mental Health and Drug Discovery, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
4
|
Deng L, Wu L, Gao R, Xu X, Chen C, Liu J. Non-Opioid Anesthetics Addiction: A Review of Current Situation and Mechanism. Brain Sci 2023; 13:1259. [PMID: 37759860 PMCID: PMC10526861 DOI: 10.3390/brainsci13091259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/15/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Drug addiction is one of the major worldwide health problems, which will have serious adverse consequences on human health and significantly burden the social economy and public health. Drug abuse is more common in anesthesiologists than in the general population because of their easier access to controlled substances. Although opioids have been generally considered the most commonly abused drugs among anesthesiologists and nurse anesthetists, the abuse of non-opioid anesthetics has been increasingly severe in recent years. The purpose of this review is to provide an overview of the clinical situation and potential molecular mechanisms of non-opioid anesthetics addiction. This review incorporates the clinical and biomolecular evidence supporting the abuse potential of non-opioid anesthetics and the foreseeable mechanism causing the non-opioid anesthetics addiction phenotypes, promoting a better understanding of its pathogenesis and helping to find effective preventive and curative strategies.
Collapse
Affiliation(s)
- Liyun Deng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.D.); (L.W.); (R.G.); (X.X.); (J.L.)
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lining Wu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.D.); (L.W.); (R.G.); (X.X.); (J.L.)
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rui Gao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.D.); (L.W.); (R.G.); (X.X.); (J.L.)
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaolin Xu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.D.); (L.W.); (R.G.); (X.X.); (J.L.)
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chan Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.D.); (L.W.); (R.G.); (X.X.); (J.L.)
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.D.); (L.W.); (R.G.); (X.X.); (J.L.)
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Yan H, Xiao S, Fu S, Gong J, Qi Z, Chen G, Chen P, Tang G, Su T, Yang Z, Wang Y. Functional and structural brain abnormalities in substance use disorder: A multimodal meta-analysis of neuroimaging studies. Acta Psychiatr Scand 2023; 147:345-359. [PMID: 36807120 DOI: 10.1111/acps.13539] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/19/2023] [Accepted: 02/12/2023] [Indexed: 02/23/2023]
Abstract
INTRODUCTION Numerous neuroimaging studies of resting-state functional imaging and voxel-based morphometry (VBM) have revealed that patients with substance use disorder (SUD) may present brain abnormalities, but their results were inconsistent. This multimodal neuroimaging meta-analysis aimed to estimate common and specific alterations in SUD patients by combining information from all available studies of spontaneous functional activity and gray matter volume (GMV). METHODS A whole-brain meta-analysis on resting-state functional imaging and VBM studies was conducted using the Seed-based d Mapping with Permutation of Subject Images (SDM-PSI) software, followed by multimodal overlapping to comprehensively investigate function and structure of the brain in SUD. RESULTS In this meta-analysis, 39 independent studies with 47 datasets related to resting-state functional brain activity (1444 SUD patients; 1446 healthy controls [HCs]) were included, as well as 77 studies with 89 datasets for GMV (3457 SUD patients; 3774 HCs). Patients with SUD showed the decreased resting-state functional brain activity in the bilateral anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC). For the VBM meta-analysis, patients with SUD showed the reduced GMV in the bilateral ACC/mPFC, insula, thalamus extending to striatum, and left sensorimotor cortex. CONCLUSIONS This multimodal meta-analysis exhibited that SUD shows common impairment in both function and structure in the ACC/mPFC, suggesting that the deficits in functional and structural domains could be correlated together. In addition, a few regions exhibited only structural impairment in SUD, including the insula, thalamus, striatum, and sensorimotor areas.
Collapse
Affiliation(s)
- Hong Yan
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Shu Xiao
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Siying Fu
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Jiaying Gong
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
- Department of Radiology, Six Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Guixian Tang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Ting Su
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Zibin Yang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| |
Collapse
|
6
|
Fang Y, Sun Y, Liu Y, Liu T, Hao W, Liao Y. Neurobiological mechanisms and related clinical treatment of addiction: a review. PSYCHORADIOLOGY 2022; 2:180-189. [PMID: 38665277 PMCID: PMC10917179 DOI: 10.1093/psyrad/kkac021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 04/28/2024]
Abstract
Drug addiction or substance use disorder (SUD), has been conceptualized as a three-stage (i.e. binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation/craving) recurring cycle that involves complex changes in neuroplasticity, reward, motivation, desire, stress, memory, and cognitive control, and other related brain regions and brain circuits. Neuroimaging approaches, including magnetic resonance imaging, have been key to mapping neurobiological changes correlated to complex brain regions of SUD. In this review, we highlight the neurobiological mechanisms of these three stages of addiction. The abnormal activity of the ventral tegmental, nucleus accumbens, and caudate nucleus in the binge/intoxication stage involve the reward circuit of the midbrain limbic system. The changes in the orbitofrontal cortex, dorsolateral prefrontal cortex, amygdala, and hypothalamus emotional system in the withdrawal/negative affect stage involve increases in negative emotional states, dysphoric-like effects, and stress-like responses. The dysregulation of the insula and prefrontal lobes is associated with craving in the anticipation stage. Then, we review the present treatments of SUD based on these neuroimaging findings. Finally, we conclude that SUD is a chronically relapsing disorder with complex neurobiological mechanisms and multimodal stages, of which the craving stage with high relapse rate may be the key element in treatment efficacy of SUD. Precise interventions targeting different stages of SUD and characteristics of individuals might serve as a potential therapeutic strategy for SUD.
Collapse
Affiliation(s)
- Yehong Fang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, China
| | - Yunkai Sun
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, China
| | - Yi Liu
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, China
| | - Tieqiao Liu
- Department of Psychiatry & Mental Health Institute of the Second Xiangya Hospital, Central South University. National Clinical Research Center on Mental Disorders & National Technology Institute on Mental Disorders. Hunan Key Laboratory of Psychiatry and Mental Health, 139 Renmin (M) Rd, Changsha, Hunan 410011, P. R. China
| | - Wei Hao
- Department of Psychiatry & Mental Health Institute of the Second Xiangya Hospital, Central South University. National Clinical Research Center on Mental Disorders & National Technology Institute on Mental Disorders. Hunan Key Laboratory of Psychiatry and Mental Health, 139 Renmin (M) Rd, Changsha, Hunan 410011, P. R. China
| | - Yanhui Liao
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, China
| |
Collapse
|
7
|
Zhong J, Wu H, Wu F, He H, Zhang Z, Huang J, Cao P, Fan N. Abnormal fractional Amplitude of Low-Frequency Fluctuation in chronic ketamine users. Psychiatry Res Neuroimaging 2022; 326:111536. [PMID: 36067548 DOI: 10.1016/j.pscychresns.2022.111536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 08/05/2022] [Accepted: 08/25/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Ketamine has become a major substance of abuse worldwide. Nevertheless, The long-term effects of ketamine use on intrinsic spontaneous neural activity remain unknown. OBJECTIVES In the present study, rs-fMRI was used to explore whether chronic ketamine use changes the intrinsic spontaneous neural activity, and whether the intrinsic spontaneous neural activity changes in chronic ketamine users(CKUs) are associated with cognitive impairments observed in chronic ketamine users. METHODS 28 CKUs and 30 healthy controls(HC) were enrolled. The fractional amplitude of low-frequency fluctuations (fALFF) was measured to evaluate the intrinsic spontaneous neural activity in multiple brain regions. Cognitive alterations were assessed using MATRICS Consensus Cognitive Battery (MCCB). RESULTS CKUs showed higher fALFF in the right parahippocampal gyrus(PHG), right anterior cingulate cortex(ACC), left cerebellar vermis, left posterior cingulate cortex(PCC), bilateral caudate, and lower fALFF in the right middle occipital gyrus(MOG), left cuneus, right precuneus. The fALFF in the right PHG, left cerebellar vermis, bilateral caudate, right ACC of CKUs presented a negative correlation with the average quantity of ketamine use/day(g) and estimated total ketamine consumption. The fALFF in left PCC had a negative correlation with the average quantity of ketamine use/day(g). Speed of processing on MCCB presented a negative correlation with the fALFF in the right MOG. CONCLUSION Our study found abnormal fALFF in multiple brain areas in CKUs, which indicated the changes of intrinsic spontaneous neural activity in multiple brain areas. The changes of fALFF were associated with the severity of ketamine use and cognitive impairment in CKUs.
Collapse
Affiliation(s)
- Jun Zhong
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province, 510370, China
| | - Huawang Wu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province, 510370, China
| | - Fengchun Wu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province, 510370, China
| | - Hongbo He
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province, 510370, China
| | - Zhaohua Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province, 510370, China
| | - Jiaxin Huang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province, 510370, China
| | - Penghui Cao
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province, 510370, China
| | - Ni Fan
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province, 510370, China.
| |
Collapse
|
8
|
Strous JFM, Weeland CJ, van der Draai FA, Daams JG, Denys D, Lok A, Schoevers RA, Figee M. Brain Changes Associated With Long-Term Ketamine Abuse, A Systematic Review. Front Neuroanat 2022; 16:795231. [PMID: 35370568 PMCID: PMC8972190 DOI: 10.3389/fnana.2022.795231] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/10/2022] [Indexed: 12/28/2022] Open
Abstract
Recently, the abuse of ketamine has soared. Therefore, it is of great importance to study its potential risks. The effects of prolonged ketamine on the brain can be observationally studied in chronic recreational users. We performed a systematic review of studies reporting functional and structural brain changes after repeated ketamine abuse. We searched the following electronic databases: Medline, Embase and PsycINFO We screened 11,438 records and 16 met inclusion criteria, totaling 440 chronic recreational ketamine users (2–9.7 years; mean use 2.4 g/day), 259 drug-free controls and 44 poly-drug controls. Long-term recreational ketamine use was associated with lower gray matter volume and less white matter integrity, lower functional thalamocortical and corticocortical connectivity. The observed differences in both structural and functional neuroanatomy between ketamine users and controls may explain some of its long-term cognitive and psychiatric side effects, such as memory impairment and executive functioning. Given the effect that long-term ketamine exposure may yield, an effort should be made to curb its abuse.
Collapse
Affiliation(s)
- Jurriaan F. M. Strous
- Department of Psychiatry, University Medical Center Groningen, Groningen, Netherlands
- *Correspondence: Jurriaan F. M. Strous
| | - Cees J. Weeland
- Amsterdam University Medical Center, Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Joost G. Daams
- Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, Netherlands
| | - Damiaan Denys
- Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Anja Lok
- Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, Netherlands
| | - Robert A. Schoevers
- Department of Psychiatry, University Medical Center Groningen, Groningen, Netherlands
| | - Martijn Figee
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
9
|
Zhou Y, Wang Q, Ren H, Wang X, Liao Y, Yang Z, Hao Y, Wang Y, Li M, Ma Y, Wu Q, Wang Y, Yang D, Xin J, Yang WFZ, Wang L, Liu T. Regional Homogeneity Abnormalities and Its Correlation With Impulsivity in Male Abstinent Methamphetamine Dependent Individuals. Front Mol Neurosci 2022; 14:810726. [PMID: 35126053 PMCID: PMC8811469 DOI: 10.3389/fnmol.2021.810726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/27/2021] [Indexed: 11/30/2022] Open
Abstract
Methamphetamine (MA) use affects the brain structure and function. However, no studies have investigated the relationship between changes in regional homogeneity (ReHo) and impulsivity in MA dependent individuals (MADs). The aim of this study was to investigate the changes of brain activity under resting state in MADs and their relationship to impulsivity using ReHo method. Functional magnetic resonance imaging (fMRI) was performed to collect data from 46 MADs and 44 healthy controls (HCs) under resting state. ReHo method was used to investigate the differences in average ReHo values between the two groups. The ReHo values abnormalities of the brain regions found in inter-group comparisons were extracted and correlated with impulsivity. Compared to the HCs, MADs showed significant increased ReHo values in the bilateral striatum, while the ReHo values of the bilateral precentral gyrus and the bilateral postcentral gyrus decreased significantly. The ReHo values of the left precentral gyrus were negatively correlated with the BIS-attention, BIS-motor, and BIS-nonplanning subscale scores, while the ReHo values of the postcentral gyrus were only negatively correlated with the BIS-motor subscale scores in MADs. The abnormal spontaneous brain activity in the resting state of MADs revealed in this study may further improve our understanding of the neuro-matrix of MADs impulse control dysfunction and may help us to explore the neuropathological mechanism of MADs related dysfunction and rehabilitation.
Collapse
Affiliation(s)
- Yanan Zhou
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
- Department of Psychiatry, Hunan Brain Hospital (Hunan Second People’s Hospital), Changsha, China
| | - Qianjin Wang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Honghong Ren
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Xuyi Wang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Yanhui Liao
- Department of Psychiatry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhi Yang
- Laboratory of Psychological Heath and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| | - Yuzhu Hao
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Yunfei Wang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Manyun Li
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Yuejiao Ma
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Qiuxia Wu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Yingying Wang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Dong Yang
- Department of Psychiatry, Hunan Brain Hospital (Hunan Second People’s Hospital), Changsha, China
| | - Jiang Xin
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Winson Fu Zun Yang
- Department of Psychological Sciences, College of Arts & Sciences, Texas Tech University, Lubbock, TX, United States
- *Correspondence: Winson Fu Zun Yang,
| | - Long Wang
- Department of Psychiatry, Sanming City Taijiang Hospital, Sanming, China
- Long Wang,
| | - Tieqiao Liu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
- Tieqiao Liu,
| |
Collapse
|
10
|
Li D, Vlisides PE, Mashour GA. Dynamic reconfiguration of frequency-specific cortical coactivation patterns during psychedelic and anesthetized states induced by ketamine. Neuroimage 2022; 249:118891. [PMID: 35007718 PMCID: PMC8903080 DOI: 10.1016/j.neuroimage.2022.118891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/16/2021] [Accepted: 01/06/2022] [Indexed: 01/08/2023] Open
Abstract
Recent neuroimaging studies have demonstrated that spontaneous brain activity exhibits rich spatiotemporal structure that can be characterized as the exploration of a repertoire of spatially distributed patterns that recur over time. The repertoire of brain states may reflect the capacity for consciousness, since general anesthetics suppress and psychedelic drugs enhance such dynamics. However, the modulation of brain activity repertoire across varying states of consciousness has not yet been studied in a systematic and unified framework. As a unique drug that has both psychedelic and anesthetic properties depending on the dose, ketamine offers an opportunity to examine brain reconfiguration dynamics along a continuum of consciousness. Here we investigated the dynamic organization of cortical activity during wakefulness and during altered states of consciousness induced by different doses of ketamine. Through k-means clustering analysis of the envelope data of source-localized electroencephalographic (EEG) signals, we identified a set of recurring states that represent frequency-specific spatial coactivation patterns. We quantified the effect of ketamine on individual brain states in terms of fractional occupancy and transition probabilities and found that ketamine anesthesia tends to shift the configuration toward brain states with low spatial variability. Furthermore, by assessing the temporal dynamics of the occurrence and transitions of brain states, we showed that subanesthetic ketamine is associated with a richer repertoire, while anesthetic ketamine induces dynamic changes in brain state organization, with the repertoire richness evolving from a reduced level to one comparable to that of normal wakefulness before recovery of consciousness. These results provide a novel description of ketamine's modulation of the dynamic configuration of cortical activity and advance understanding of the neurophysiological mechanism of ketamine in terms of the spatial, temporal, and spectral structures of underlying whole-brain dynamics.
Collapse
Affiliation(s)
- Duan Li
- Center for Consciousness Science; Department of Anesthesiology.
| | | | - George A Mashour
- Center for Consciousness Science; Department of Anesthesiology; Neuroscience Graduate Program; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, United States
| |
Collapse
|
11
|
Van Amsterdam J, Van Den Brink W. Harm related to recreational ketamine use and its relevance for the clinical use of ketamine. A systematic review and comparison study. Expert Opin Drug Saf 2021; 21:83-94. [PMID: 34176409 DOI: 10.1080/14740338.2021.1949454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUNDS Ketamine is a dissociative anesthetic that is currently considered for several new indications. AIM To deduce the safety of long-term ketamine treatment using the harm of heavy recreational (non-medical) ketamine use as a proxy for maximal possible harm of ketamine treatment. METHODS Systematic literature review according to PRISMA guidelines to identify controlled studies on ketamine-related harm in heavy recreational ketamine users. Results were compared with serious adverse events (SAEs) in patients treated with ketamine according to three systematic reviews considering dosing regimen and cumulative dose. RESULTS The systematic search yielded 25 studies. Heavy recreational ketamine use can escalate to ketamine dependency and was often dose-dependently associated with other SAEs, including cognitive and mental disorders, and gastrointestinal and urinary tract symptoms, which disappeared upon marked reduction of ketamine use. Heavy ketamine users have a much higher cumulative exposure to ketamine than ketamine treated patients (>90 times), which may explain why SAEs in the clinical context are mostly mild and reversible and why ketamine dependence was not reported in these patients. CONCLUSION Treatment of patients with ketamine is not associated with ketamine dependency or SAEs. However, caution is needed since data on long-term clinical ketamine use with a long-term follow-up is lacking.
Collapse
Affiliation(s)
- Jan Van Amsterdam
- Department of Psychiatry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Wim Van Den Brink
- Department of Psychiatry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Altered patterns of fractional amplitude of low-frequency fluctuation and regional homogeneity in abstinent methamphetamine-dependent users. Sci Rep 2021; 11:7705. [PMID: 33833282 PMCID: PMC8032776 DOI: 10.1038/s41598-021-87185-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/22/2021] [Indexed: 02/01/2023] Open
Abstract
Methamphetamine (MA) could induce functional and structural brain alterations in dependent subjects. However, few studies have investigated resting-state activity in methamphetamine-dependent subjects (MADs). We aimed to investigate alterations of brain activity during resting-state in MADs using fractional amplitude of low-frequency fluctuation (fALFF) and regional homogeneity (ReHo). We analyzed fALFF and ReHo between MADs (n = 70) and healthy controls (HCs) (n = 84) and performed regression analysis using MA use variables. Compared to HCs, abstinent MADs showed increased fALFF and ReHo values in the bilateral striatum, decreased fALFF in the left inferior frontal gyrus, and decreased ReHo in the bilateral anterior cingulate cortex, sensorimotor cortex, and left precuneus. We also observed the fALFF values of bilateral striatum were positively correlated with the age of first MA use, and negatively correlated with the duration of MA use. The fALFF value of right striatum was also positively correlated with the duration of abstinence. The alterations of spontaneous cerebral activity in abstinent MADs may help us probe into the neurological pathophysiology underlying MA-related dysfunction and recovery. Since MADs with higher fALFF in the right striatum had shorter MA use and longer abstinence, the increased fALFF in the right striatum might implicate early recovery during abstinence.
Collapse
|
13
|
Lane HY, Tu CH, Lin WC, Lin CH. Brain Activity of Benzoate, a D-Amino Acid Oxidase Inhibitor, in Patients With Mild Cognitive Impairment in a Randomized, Double-Blind, Placebo Controlled Clinical Trial. Int J Neuropsychopharmacol 2021; 24:392-399. [PMID: 33406269 PMCID: PMC8130199 DOI: 10.1093/ijnp/pyab001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Current anti-dementia drugs cannot benefit mild cognitive impairment (MCI). Sodium benzoate (a D-amino acid oxidase [DAO] inhibitor) has been found to improve the cognitive function of patients with early-phase Alzheimer's disease (mild Alzheimer's disease or MCI). However, its effect on brain function remains unknown. This study aimed to evaluate the influence of benzoate on functional magnetic resonance imaging in patients with amnestic MCI. METHODS This was a 24-week, randomized, double-blind, placebo-controlled trial that enrolled 21 patients with amnestic MCI and allocated them randomly to either of 2 treatment groups: (1) benzoate group (250-1500 mg/d), or (2) placebo group. We assessed the patients' working memory, verbal learning and memory, and resting-state functional magnetic resonance imaging and regional homogeneity (ReHo) maps at baseline and endpoint. RESULTS Resting-state ReHo decreased in right orbitofrontal cortex after benzoate treatment but did not change after placebo. Moreover, after benzoate treatment, the change in working memory was positively correlated with the change in ReHo in right precentral gyrus and right middle occipital gyrus; and the change in verbal learning and memory was positively correlated with the change in ReHo in left precuneus. In contrast, after placebo treatment, the change in working memory or in verbal learning and memory was not correlated with the change in ReHo in any brain region. CONCLUSION The current study is the first to our knowledge to demonstrate that a DAO inhibitor, sodium benzoate herein, can alter brain activity as well as cognitive functions in individuals with MCI. The preliminary finding lends supports for DAO inhibition as a novel approach for early dementing processes.
Collapse
Affiliation(s)
- Hsien-Yuan Lane
- Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan ,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan ,Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| | - Cheng-Hao Tu
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Wei-Che Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chieh-Hsin Lin
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan,Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan,School of Medicine, Chang Gung University, Taoyuan, Taiwan ,Correspondence: Chieh-Hsin Lin, MD, PhD, Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong District, Kaohsiung City, 833, Taiwan ()
| |
Collapse
|
14
|
Wu Q, Qi C, Long J, Liao Y, Wang X, Xie A, Liu J, Hao W, Tang Y, Yang B, Liu T, Tang J. Metabolites Alterations in the Medial Prefrontal Cortex of Methamphetamine Users in Abstinence: A 1H MRS Study. Front Psychiatry 2018; 9:478. [PMID: 30420814 PMCID: PMC6215956 DOI: 10.3389/fpsyt.2018.00478] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 09/12/2018] [Indexed: 11/13/2022] Open
Abstract
Background: The medial prefrontal cortex (mPFC) contains various neurotransmitter systems and plays an important role in drug use. Broad body of literature on how methamphetamine (MA) affects the structure and metabolism in the animal's mPFC is emerging, while the effects on metabolites of mPFC among human is still unclear. In this study, proton magnetic resonance spectroscopy (1H MRS) was used to measure metabolites of mPFC in methamphetamine dependent subjects. Methods: Sixty-one subjects with a history of MA dependence (fulfiled the Diagnostic and Statistical Manual of Mental Disorders, fourth edition criteria) and 65 drug-naïve control subjects (age19-45) completed 1H MRS scans using 3.0T Siemens MRI scanner. Single voxel spectra were acquired from the mPFC bilaterally using a point resolved spectroscopy sequence (PRESS). The 1H MRS data were automatically fit with linear combination model for quantification of metabolite levels of n-acetyl-aspartate (NAA), myo-inositol (mI), glycerophosphocholine plus phosphocholine(GPC+PC), phosphocreatine plus creatine (PCr+Cr), and glutamate (Glu). Metabolite levels were reported as ratios to PCr+Cr. Results: The MA group showed a significant reduction in NAA/PCr+Cr ratio and elevation in Glu/PCr+Cr ratio and mI/PCr+Cr ratio, compared with healthy control. No significant correlation was found between metabolite ratios and MA use variables. Conclusions: MA use is associated with a significant increased Glu/PCr+Cr ratio, mI/PCr+Cr ratio and reduced NAA/PCr+Cr ratio in the mPFC of MA dependence subjects. These findings suggest that Glu may play a key role in MA induced neurotoxicity.
Collapse
Affiliation(s)
- Qiuxia Wu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, China
- Chinese National Clinical Research Center on Mental Disorders, Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
- National Technology Institute on Mental Disorders, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
- Department of Psychological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Chang Qi
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, China
- Chinese National Clinical Research Center on Mental Disorders, Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
- National Technology Institute on Mental Disorders, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Jiang Long
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, China
- Chinese National Clinical Research Center on Mental Disorders, Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
- National Technology Institute on Mental Disorders, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Yanhui Liao
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, China
- Chinese National Clinical Research Center on Mental Disorders, Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
- National Technology Institute on Mental Disorders, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Xuyi Wang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, China
- Chinese National Clinical Research Center on Mental Disorders, Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
- National Technology Institute on Mental Disorders, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - An Xie
- Department of Radiology, Hunan Provincial People's Hospital, Changsha, China
| | - Jianbin Liu
- Department of Radiology, Hunan Provincial People's Hospital, Changsha, China
| | - Wei Hao
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, China
- Chinese National Clinical Research Center on Mental Disorders, Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
- National Technology Institute on Mental Disorders, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Yiyuan Tang
- Department of Psychological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Baozhu Yang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Tieqiao Liu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, China
- Chinese National Clinical Research Center on Mental Disorders, Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
- National Technology Institute on Mental Disorders, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Jinsong Tang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, China
- Chinese National Clinical Research Center on Mental Disorders, Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
- National Technology Institute on Mental Disorders, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| |
Collapse
|
15
|
Ketcherside A, Filbey FM, Aubert PM, Seibyl JP, Price JL, Adinoff B. Brain intrinsic network connectivity in individuals with frequent tanning behavior. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2018; 44:668-677. [PMID: 29714526 DOI: 10.1080/00952990.2018.1461878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Emergent studies suggest a bidirectional relationship between brain functioning and the skin. This neurocutaneous connection may be responsible for the reward response to tanning and, thus, may contribute to excessive tanning behavior. To date, however, this association has not yet been examined. OBJECTIVES To explore whether intrinsic brain functional connectivity within the default mode network (DMN) is related to indoor tanning behavior. METHODS Resting state functional connectivity (rsFC) was obtained in twenty adults (16 females) with a history of indoor tanning. Using a seed-based [(posterior cingulate cortex (PCC)] approach, the relationship between tanning severity and FC strength was assessed. Tanning severity was measured with symptom count from the Structured Clinical Interview for Tanning Abuse and Dependence (SITAD) and tanning intensity (lifetime indoor tanning episodes/years tanning). RESULTS rsFC strength between the PCC and other DMN regions (left globus pallidus, left medial frontal gyrus, left superior frontal gyrus) is positively correlated with tanning symptom count. rsFC strength between the PCC and salience network regions (right anterior cingulate cortex, left inferior parietal lobe, left inferior temporal gyrus) is correlated with tanning intensity. CONCLUSION Greater connectivity between tanning severity and DMN and salience network connectivity suggests that heightened self-awareness of salient stimuli may be a mechanism that underlies frequent tanning behavior. These findings add to the growing evidence of brain-skin connection and reflect dysregulation in the reward processing networks in those with frequent tanning.
Collapse
Affiliation(s)
- Ariel Ketcherside
- a Center for Brain Health , University of Texas Dallas , Dallas , TX , USA
| | - Francesca M Filbey
- a Center for Brain Health , University of Texas Dallas , Dallas , TX , USA
| | - Pamela M Aubert
- b Department of Dermatology , University of Texas Southwestern , Dallas , TX , USA
| | - John P Seibyl
- c Institute for Neurodegenerative Disorders, Molecular Neuroimaging , LLC, and Yale University , New Haven , CT , USA
| | - Julianne L Price
- d Department of Psychiatry , University of Florida , Gainesville , FL , USA
| | - Bryon Adinoff
- e Department of Psychiatry , University of Texas Southwestern , Dallas , TX , USA.,f Mental Health , VA North Texas Health Care System , Dallas , TX , USA
| |
Collapse
|
16
|
Rao JS, Liu Z, Zhao C, Wei RH, Zhao W, Tian PY, Zhou X, Yang ZY, Li XG. Ketamine changes the local resting-state functional properties of anesthetized-monkey brain. Magn Reson Imaging 2017; 43:144-150. [PMID: 28755862 DOI: 10.1016/j.mri.2017.07.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/27/2017] [Accepted: 07/24/2017] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Ketamine is a well-known anesthetic. 'Recreational' use of ketamine common induces psychosis-like symptoms and cognitive impairments. The acute and chronic effects of ketamine on relevant brain circuits have been studied, but the effects of single-dose ketamine administration on the local resting-state functional properties of the brain remain unknown. In this study, we aimed to assess the effects of single-dose ketamine administration on the brain local intrinsic properties. METHODS We used resting-state functional magnetic resonance imaging (rs-fMRI) to explore the ketamine-induced alterations of brain intrinsic properties. Seven adult rhesus monkeys were imaged with rs-fMRI to examine the fractional amplitude of low-frequency fluctuation (fALFF) and regional homogeneity (ReHo) in the brain before and after ketamine injection. Paired comparisons were used to detect the significantly altered regions. RESULTS Results showed that the fALFF of the prefrontal cortex (p=0.046), caudate nucleus (left side, p=0.018; right side, p=0.025), and putamen (p=0.020) in post-injection stage significantly increased compared with those in pre-injection period. The ReHo of nucleus accumbens (p=0.049), caudate nucleus (p=0.037), and hippocampus (p=0.025) increased after ketamine injection, but that of prefrontal cortex decreased (p<0.05). CONCLUSIONS These findings demonstrated that single-dose ketamine administration can change the regional intensity and synchronism of brain activity, thereby providing evidence of ketamine-induced abnormal resting-state functional properties in primates. This evidence may help further elucidate the effects of ketamine on the cerebral resting status.
Collapse
Affiliation(s)
- Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| | - Zuxiang Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Can Zhao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Rui-Han Wei
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Wen Zhao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Peng-Yu Tian
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xia Zhou
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Zhao-Yang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiao-Guang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
17
|
Resting-state Network-specific Breakdown of Functional Connectivity during Ketamine Alteration of Consciousness in Volunteers. Anesthesiology 2017; 125:873-888. [PMID: 27496657 DOI: 10.1097/aln.0000000000001275] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Consciousness-altering anesthetic agents disturb connectivity between brain regions composing the resting-state consciousness networks (RSNs). The default mode network (DMn), executive control network, salience network (SALn), auditory network, sensorimotor network (SMn), and visual network sustain mentation. Ketamine modifies consciousness differently from other agents, producing psychedelic dreaming and no apparent interaction with the environment. The authors used functional magnetic resonance imaging to explore ketamine-induced changes in RSNs connectivity. METHODS Fourteen healthy volunteers received stepwise intravenous infusions of ketamine up to loss of responsiveness. Because of agitation, data from six subjects were excluded from analysis. RSNs connectivity was compared between absence of ketamine (wake state [W1]), light ketamine sedation, and ketamine-induced unresponsiveness (deep sedation [S2]). RESULTS Increasing the depth of ketamine sedation from W1 to S2 altered DMn and SALn connectivity and suppressed the anticorrelated activity between DMn and other brain regions. During S2, DMn connectivity, particularly between the medial prefrontal cortex and the remaining network (effect size β [95% CI]: W1 = 0.20 [0.18 to 0.22]; S2 = 0.07 [0.04 to 0.09]), and DMn anticorrelated activity (e.g., right sensory cortex: W1 = -0.07 [-0.09 to -0.04]; S2 = 0.04 [0.01 to 0.06]) were broken down. SALn connectivity was nonuniformly suppressed (e.g., left parietal operculum: W1 = 0.08 [0.06 to 0.09]; S2 = 0.05 [0.02 to 0.07]). Executive control networks, auditory network, SMn, and visual network were minimally affected. CONCLUSIONS Ketamine induces specific changes in connectivity within and between RSNs. Breakdown of frontoparietal DMn connectivity and DMn anticorrelation and sensory and SMn connectivity preservation are common to ketamine and propofol-induced alterations of consciousness.
Collapse
|
18
|
Li Q, Shi L, Lu G, Yu HL, Yeung FK, Wong NK, Sun L, Liu K, Yew D, Pan F, Wang DF, Sham PC. Chronic Ketamine Exposure Causes White Matter Microstructural Abnormalities in Adolescent Cynomolgus Monkeys. Front Neurosci 2017; 11:285. [PMID: 28579941 PMCID: PMC5437169 DOI: 10.3389/fnins.2017.00285] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/02/2017] [Indexed: 01/05/2023] Open
Abstract
Acute and repeated exposures to ketamine mimic aspects of positive, negative, and cognitive symptoms of schizophrenia in humans. Recent studies by our group and others have shown that chronicity of ketamine use may be a key element for establishing a more valid model of cognitive symptoms of schizophrenia. However, current understanding on the long-term consequences of ketamine exposure on brain circuits has remained incomplete, particularly with regard to microstructural changes of white matter tracts that underpin the neuropathology of schizophrenia. Thus, the present study aimed to expand on previous investigations by examining causal effects of repeated ketamine exposure on white matter integrity in a non-human primate model. Ketamine or saline (control) was administered intravenously for 3 months to male adolescent cynomolgus monkeys (n = 5/group). Diffusion tensor imaging (DTI) experiments were performed and tract-based spatial statistics (TBSS) was used for data analysis. Fractional anisotropy (FA) was quantified across the whole brain. Profoundly reduced FA on the right side of sagittal striatum, posterior thalamic radiation (PTR), retrolenticular limb of the internal capsule (RLIC) and superior longitudinal fasciculus (SLF), and on the left side of PTR, middle temporal gyrus and inferior frontal gyrus were observed in the ketamine group compared to controls. Diminished white matter integrity found in either fronto-thalamo-temporal or striato-thalamic connections with tracts including the SLF, PTR, and RLIC lends support to similar findings from DTI studies on schizophrenia in humans. This study suggests that chronic ketamine exposure is a useful pharmacological paradigm that might provide translational insights into the pathophysiology and treatment of schizophrenia.
Collapse
Affiliation(s)
- Qi Li
- Department of Psychiatry, The University of Hong KongHong Kong, Hong Kong.,State Key Laboratory for Cognitive and Brain Sciences, The University of Hong KongHong Kong, Hong Kong.,The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), The University of Hong KongHong Kong, Hong Kong
| | - Lin Shi
- Department of Medicine and Therapeutics, Chinese University of Hong KongHong Kong, Hong Kong.,Chow Yuk Ho Center of Innovative Technology for Medicine, Chinese University of Hong KongHong Kong, Hong Kong
| | - Gang Lu
- School of Biomedical Sciences, Chinese University of Hong KongHong Kong, Hong Kong
| | - Hong-Luan Yu
- Department of Psychology, Qilu Hospital of Shandong UniversityJinan, China
| | - Fu-Ki Yeung
- Research Center for Medical Image Computing, Department of Imaging and Interventional Radiology, Chinese University of Hong KongHong Kong, Hong Kong
| | - Nai-Kei Wong
- Chemical Biology Laboratory for Infectious Diseases, Shenzhen Institute of Hepatology, The Third People's Hospital of ShenzhenShenzhen, China
| | - Lin Sun
- Department of Psychology, Weifang Medical UniversityWeifang, China
| | - Kai Liu
- Research Center for Medical Image Computing, Department of Imaging and Interventional Radiology, Chinese University of Hong KongHong Kong, Hong Kong
| | - David Yew
- School of Chinese Medicine, Chinese University of Hong KongHong Kong, Hong Kong
| | - Fang Pan
- Department of Medical Psychology, Shandong University School of MedicineJinan, China
| | - De-Feng Wang
- Research Center for Medical Image Computing, Department of Imaging and Interventional Radiology, Chinese University of Hong KongHong Kong, Hong Kong
| | - Pak C Sham
- Department of Psychiatry, The University of Hong KongHong Kong, Hong Kong.,State Key Laboratory for Cognitive and Brain Sciences, The University of Hong KongHong Kong, Hong Kong.,Genome Research Centre, The University of Hong KongHong Kong, Hong Kong
| |
Collapse
|
19
|
Liao Y, Tang YL, Hao W. Ketamine and international regulations. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2017. [DOI: 10.1080/00952990.2016.1278449] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yanhui Liao
- Mental Health Institute of the Second Xiangya Hospital, Central South University, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha, Hunan, China
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA, USA
| | - Yi-lang Tang
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Mental Health Service Line, Decatur, GA, USA
| | - Wei Hao
- Mental Health Institute of the Second Xiangya Hospital, Central South University, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha, Hunan, China
| |
Collapse
|
20
|
Subchronic anesthetic ketamine injections in rats impair choice reversal learning, but have no effect on reinforcer devaluation. Behav Pharmacol 2017; 28:294-302. [PMID: 28118210 DOI: 10.1097/fbp.0000000000000289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Previous exposure to a variety of drugs of abuse has been shown to cause long-term impairments in reversal learning and reinforcer devaluation tasks. However, there is mixed evidence in the literature for a long-term effect of ketamine exposure on reversal learning and the long-term effect of ketamine exposure on devaluation is not known. We determined whether repeated injections of an anesthetic dose of ketamine would lead to impairments in choice reversal learning after discrimination learning or impairments in reinforcer devaluation. In two experiments, rats received three injections once-daily of ketamine (100 mg/kg, intraperitoneally) or saline and then began behavioral training 19 days later so that the key reversal learning and devaluation tests would occur about 1 month after the final ketamine injection. This ketamine exposure regimen did not impair learning in our discrimination task, but led to an increase in perseverative errors in reversal learning. However, the same ketamine exposure regimen (or injections of a lower 50 mg/kg dose) had no effect on behavior in the devaluation task. The behavioral patterns observed suggest possible neural mechanisms for the effects of ketamine, but future neurobiological investigations will be needed to isolate these mechanisms.
Collapse
|
21
|
Liao Y, Tang J, Liu J, Xie A, Yang M, Johnson M, Wang X, Deng Q, Chen H, Xiang X, Liu T, Chen X, Song M, Hao W. Decreased Thalamocortical Connectivity in Chronic Ketamine Users. PLoS One 2016; 11:e0167381. [PMID: 27977717 PMCID: PMC5157971 DOI: 10.1371/journal.pone.0167381] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 11/14/2016] [Indexed: 12/03/2022] Open
Abstract
Disintegration in thalamocortical integration suggests its role in the mechanistic 'switch' from recreational to dysregulated drug seeking/addiction. In this study, we aimed to address whether thalamic nuclear groups show altered functional connectivity within the cerebral cortex in chronic ketamine users. One hundred and thirty subjects (41 ketamine users and 89 control subjects) underwent rsfMRI (resting-state functional Magnetic Resonance Imaging). Based on partial correlation functional connectivity analysis we partitioned the thalamus into six nuclear groups that correspond well with human histology. Then, in the area of each nuclear group, the functional connectivity differences between the chronic ketamine user group and normal control group were investigated. We found that the ketamine user group showed significantly less connectivity between the thalamic nuclear groups and the cortical regions-of-interest, including the prefrontal cortex, the motor cortex /supplementary motor area, and the posterior parietal cortex. However, no increased thalamic connectivity was observed for these regions as compared with controls. This study provides the first evidence of abnormal thalamocortical connectivity of resting state brain activity in chronic ketamine users. Further understanding of pathophysiological mechanisms of the thalamus in addiction (ketamine addiction) may facilitate the evaluation of much-needed novel pharmacological agents for improved therapy of this complex disease.
Collapse
Affiliation(s)
- Yanhui Liao
- Institute of Mental Health of the Second Xiangya Hospital of Central South University, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha, Hunan, China
- Department of Psychiatry and Biobehavioral Sciences, UCLA, 760 Westwood Plaza, Los Angeles, United States of America
| | - Jinsong Tang
- Institute of Mental Health of the Second Xiangya Hospital of Central South University, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha, Hunan, China
- Department of Psychiatry and Biobehavioral Sciences, UCLA, 760 Westwood Plaza, Los Angeles, United States of America
| | - Jianbin Liu
- Department of Radiology, The People's Hospital of Hunan Province, Changsha, China
| | - An Xie
- Department of Radiology, The People's Hospital of Hunan Province, Changsha, China
| | - Mei Yang
- Institute of Mental Health of the Second Xiangya Hospital of Central South University, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha, Hunan, China
- Department of Addiction Medicine, Hunan Brain Hospital, Changsha, China
- Department of Addiction Medicine, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen, China
| | - Maritza Johnson
- Department of Psychiatry and Biobehavioral Sciences, UCLA, 760 Westwood Plaza, Los Angeles, United States of America
| | - Xuyi Wang
- Institute of Mental Health of the Second Xiangya Hospital of Central South University, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha, Hunan, China
| | - Qijian Deng
- Institute of Mental Health of the Second Xiangya Hospital of Central South University, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha, Hunan, China
| | - Hongxian Chen
- Institute of Mental Health of the Second Xiangya Hospital of Central South University, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha, Hunan, China
| | - Xiaojun Xiang
- Institute of Mental Health of the Second Xiangya Hospital of Central South University, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha, Hunan, China
| | - Tieqiao Liu
- Institute of Mental Health of the Second Xiangya Hospital of Central South University, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha, Hunan, China
| | - Xiaogang Chen
- Institute of Mental Health of the Second Xiangya Hospital of Central South University, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha, Hunan, China
| | - Ming Song
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences Beijing, China
| | - Wei Hao
- Institute of Mental Health of the Second Xiangya Hospital of Central South University, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha, Hunan, China
| |
Collapse
|
22
|
The brain effects of laser acupuncture at thirteen ghost acupoints in healthy individuals: A resting-state functional MRI investigation. Comput Med Imaging Graph 2016; 54:48-54. [DOI: 10.1016/j.compmedimag.2016.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 08/03/2016] [Accepted: 08/08/2016] [Indexed: 01/19/2023]
|
23
|
Han E, Kwon NJ, Feng LY, Li JH, Chung H. Illegal use patterns, side effects, and analytical methods of ketamine. Forensic Sci Int 2016; 268:25-34. [DOI: 10.1016/j.forsciint.2016.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/23/2016] [Accepted: 09/02/2016] [Indexed: 12/22/2022]
|
24
|
Wang C, Ji F, Hong Z, Poh JS, Krishnan R, Lee J, Rekhi G, Keefe RSE, Adcock RA, Wood SJ, Fornito A, Pasternak O, Chee MWL, Zhou J. Disrupted salience network functional connectivity and white-matter microstructure in persons at risk for psychosis: findings from the LYRIKS study. Psychol Med 2016; 46:2771-2783. [PMID: 27396386 PMCID: PMC5358474 DOI: 10.1017/s0033291716001410] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Salience network (SN) dysconnectivity has been hypothesized to contribute to schizophrenia. Nevertheless, little is known about the functional and structural dysconnectivity of SN in subjects at risk for psychosis. We hypothesized that SN functional and structural connectivity would be disrupted in subjects with At-Risk Mental State (ARMS) and would be associated with symptom severity and disease progression. METHOD We examined 87 ARMS and 37 healthy participants using both resting-state functional magnetic resonance imaging and diffusion tensor imaging. Group differences in SN functional and structural connectivity were examined using a seed-based approach and tract-based spatial statistics. Subject-level functional connectivity measures and diffusion indices of disrupted regions were correlated with CAARMS scores and compared between ARMS with and without transition to psychosis. RESULTS ARMS subjects exhibited reduced functional connectivity between the left ventral anterior insula and other SN regions. Reduced fractional anisotropy (FA) and axial diffusivity were also found along white-matter tracts in close proximity to regions of disrupted functional connectivity, including frontal-striatal-thalamic circuits and the cingulum. FA measures extracted from these disrupted white-matter regions correlated with individual symptom severity in the ARMS group. Furthermore, functional connectivity between the bilateral insula and FA at the forceps minor were further reduced in subjects who transitioned to psychosis after 2 years. CONCLUSIONS Our findings support the insular dysconnectivity of the proximal SN hypothesis in the early stages of psychosis. Further developed, the combined structural and functional SN assays may inform the prognosis of persons at-risk for psychosis.
Collapse
Affiliation(s)
- C. Wang
- Center for Cognitive Neuroscience,
Neuroscience and Behavioral Disorder Program, Duke-NUS
Medical School, National University of Singapore,
Singapore
| | - F. Ji
- Center for Cognitive Neuroscience,
Neuroscience and Behavioral Disorder Program, Duke-NUS
Medical School, National University of Singapore,
Singapore
| | - Z. Hong
- Center for Cognitive Neuroscience,
Neuroscience and Behavioral Disorder Program, Duke-NUS
Medical School, National University of Singapore,
Singapore
| | - J. S. Poh
- Center for Cognitive Neuroscience,
Neuroscience and Behavioral Disorder Program, Duke-NUS
Medical School, National University of Singapore,
Singapore
| | - R. Krishnan
- Center for Cognitive Neuroscience,
Neuroscience and Behavioral Disorder Program, Duke-NUS
Medical School, National University of Singapore,
Singapore
| | - J. Lee
- Research Division,
Institute of Mental Health, Singapore
- Office of Clinical Sciences,
Duke-NUS Medical School, Singapore
| | - G. Rekhi
- Research Division,
Institute of Mental Health, Singapore
| | - R. S. E. Keefe
- Department of Psychiatry and Behavioral
Sciences, Duke University, Durham,
NC, USA
| | - R. A. Adcock
- Department of Psychiatry and Behavioral
Sciences, Duke University, Durham,
NC, USA
- Center for Cognitive Neuroscience,
Duke University, Durham, NC,
USA
| | - S. J. Wood
- School of Psychology,
University of Birmingham, Edgbaston,
UK
- Department of Psychiatry,
Melbourne Neuropsychiatry Centre, University of
Melbourne and Melbourne Health, Victoria,
Australia
| | - A. Fornito
- Monash Clinical and Imaging
Neuroscience, School of Psychology and Psychiatry & Monash
Biomedical Imaging, Monash University,
Australia
| | - O. Pasternak
- Departments of Psychiatry and Radiology,
Brigham and Women's Hospital, Harvard Medical
School, Boston, MA, USA
| | - M. W. L. Chee
- Center for Cognitive Neuroscience,
Neuroscience and Behavioral Disorder Program, Duke-NUS
Medical School, National University of Singapore,
Singapore
| | - J. Zhou
- Center for Cognitive Neuroscience,
Neuroscience and Behavioral Disorder Program, Duke-NUS
Medical School, National University of Singapore,
Singapore
- Clinical Imaging Research Centre, the Agency for
Science, Technology and Research and National University of
Singapore, Singapore
| |
Collapse
|
25
|
Bobo WV, Vande Voort JL, Croarkin PE, Leung JG, Tye SJ, Frye MA. KETAMINE FOR TREATMENT-RESISTANT UNIPOLAR AND BIPOLAR MAJOR DEPRESSION: CRITICAL REVIEW AND IMPLICATIONS FOR CLINICAL PRACTICE. Depress Anxiety 2016; 33:698-710. [PMID: 27062450 DOI: 10.1002/da.22505] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/09/2016] [Accepted: 03/11/2016] [Indexed: 12/21/2022] Open
Abstract
There is an urgent need for more rapidly effective pharmacotherapies for major depressive disorder and bipolar disorder (BP) that are efficacious and tolerable for depressed patients who respond poorly to conventional treatments. Multiple controlled trials have now demonstrated a rapid, nonsustained antidepressive response to a single intravenous infusion of ketamine. Early controlled studies of intranasal or serial infusion therapy appear promising. The effective dose for depression is lower than the typical anesthetic doses, and side-effects are generally mild and transient. The data investigating the adjunctive use of concurrent ketamine in the course of electroconvulsive therapy (ECT) for depression do not suggest efficacy or tolerability. The therapeutic potential of ketamine has stimulated considerable excitement among clinicians, patients, and industry, and has led to the increasing use of ketamine as an off-label substitute for ECT and other antidepressive treatments. This clinical review of ketamine will assess the evidence-based use of ketamine and initial clinical implications of further development of a potentially novel treatment for rapid reduction of symptoms in depressed patients.
Collapse
Affiliation(s)
- William V Bobo
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, Minnesota
| | | | - Paul E Croarkin
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, Minnesota
| | - Jonathan G Leung
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, Minnesota
| | - Susannah J Tye
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, Minnesota
| | - Mark A Frye
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
26
|
Abstract
Ketamine has been linked to psychosis and used in the treatment of depression. However, no study has examined the prevalence of psychotic and depressive disorders in dependent ketamine users. This study aimed to examine the frequency of various psychopathologies among a series of patients seeking treatment for ketamine use in Hong Kong, China. The case records of 129 patients with a history of ketamine use receiving treatment at three substance use clinics between January 2008 and August 2012 were retrieved for data collection. Patients' demographic data, patterns of substance misuse, and comorbid psychiatric diagnoses were recorded and entered into analyses. The mean age of onset and length of ketamine use were 17.7 ± 4.4 and 8.7 ± 5.7 years, respectively. All patients were dependent on ketamine at the time of data collection. Multiple substance misuse was common. Eighty-four of the 129 (65.1%) patients were found to have comorbid psychiatric disorders, most commonly substance-induced psychotic disorder (31.8%) followed by depressive disorder (27.9%). Psychosis and/or depression were common in ketamine-dependent patients referred to a psychiatric substance use clinic. The findings provide evidence of an association between chronic ketamine use and the presence of psychosis and/or depression. The results raise the issue of safety when using ketamine in the long-term treatment of depression.
Collapse
|
27
|
Affiliation(s)
- Rachel Quibell
- Newcastle upon Tyne Hospitals Foundation Trust, Newcastle, United Kingdom
| | - Marie Fallon
- University of Edinburgh, Edinburgh, United Kingdom
| | - Mary Mihalyo
- Mylan School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
28
|
Local-to-remote cortical connectivity in early- and adulthood-onset schizophrenia. Transl Psychiatry 2015; 5:e566. [PMID: 25966366 PMCID: PMC4471290 DOI: 10.1038/tp.2015.59] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/12/2015] [Accepted: 02/23/2015] [Indexed: 12/18/2022] Open
Abstract
Schizophrenia is increasingly thought of as a brain network or connectome disorder and is associated with neurodevelopmental processes. Previous studies have suggested the important role of anatomical distance in developing a connectome with optimized performance regarding both the cost and efficiency of information processing. Distance-related disturbances during development have not been investigated in schizophrenia. To test the distance-related miswiring profiles of connectomes in schizophrenia, we acquired resting-state images from 20 adulthood-onset (AOS) and 26 early-onset schizophrenia (EOS) patients, as well as age-matched healthy controls. All patients were drug naive and had experienced their first psychotic episode. A novel threshold-free surface-based analytic framework was developed to examine local-to-remote functional connectivity profiles in both AOS and EOS patients. We observed consistent increases of local connectivity across both EOS and AOS patients in the right superior frontal gyrus, where the connectivity strength was correlated with a positive syndrome score in AOS patients. In contrast, EOS but not AOS patients exhibited reduced local connectivity within the right postcentral gyrus and the left middle occipital cortex. These regions' remote connectivity with their interhemispheric areas and brain network hubs was altered. Diagnosis-age interactions were detectable for both local and remote connectivity profiles. The functional covariance between local and remote homotopic connectivity was present in typically developing controls, but was absent in EOS patients. These findings suggest that a distance-dependent miswiring pattern may be one of the key neurodevelopmental features of the abnormal connectome organization in schizophrenia.
Collapse
|
29
|
Hall EL, Robson SE, Morris PG, Brookes MJ. The relationship between MEG and fMRI. Neuroimage 2014; 102 Pt 1:80-91. [DOI: 10.1016/j.neuroimage.2013.11.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 09/12/2013] [Accepted: 11/04/2013] [Indexed: 10/26/2022] Open
|
30
|
Barnes SA, Sawiak SJ, Caprioli D, Jupp B, Buonincontri G, Mar AC, Harte MK, Fletcher PC, Robbins TW, Neill JC, Dalley JW. Impaired limbic cortico-striatal structure and sustained visual attention in a rodent model of schizophrenia. Int J Neuropsychopharmacol 2014; 18:pyu010. [PMID: 25552430 PMCID: PMC4368881 DOI: 10.1093/ijnp/pyu010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/09/2014] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND N-methyl-d-aspartate receptor (NMDAR) dysfunction is thought to contribute to the pathophysiology of schizophrenia. Accordingly, NMDAR antagonists such as phencyclidine (PCP) are used widely in experimental animals to model cognitive impairment associated with this disorder. However, it is unclear whether PCP disrupts the structural integrity of brain areas relevant to the profile of cognitive impairment in schizophrenia. METHODS Here we used high-resolution magnetic resonance imaging and voxel-based morphometry to investigate structural alterations associated with sub-chronic PCP treatment in rats. RESULTS Sub-chronic exposure of rats to PCP (5mg/kg twice daily for 7 days) impaired sustained visual attention on a 5-choice serial reaction time task, notably when the attentional load was increased. In contrast, sub-chronic PCP had no significant effect on the attentional filtering of a pre-pulse auditory stimulus in an acoustic startle paradigm. Voxel-based morphometry revealed significantly reduced grey matter density bilaterally in the hippocampus, anterior cingulate cortex, ventral striatum, and amygdala. PCP-treated rats also exhibited reduced cortical thickness in the insular cortex. CONCLUSIONS These findings demonstrate that sub-chronic NMDA receptor antagonism is sufficient to produce highly-localized morphological abnormalities in brain areas implicated in the pathogenesis of schizophrenia. Furthermore, PCP exposure resulted in dissociable impairments in attentional function.
Collapse
Affiliation(s)
- Samuel A Barnes
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (Dr Barnes); Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing St, Cambridge UK (Drs Sawiak, Caprioli, Jupp, Mar, Fletcher, Robbins, and Dalley); Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Sawiak and Buonincontri); Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Fletcher and Dalley); Manchester Pharmacy School, University of Manchester, UK (Drs Harte and Neill)
| | - Stephen J Sawiak
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (Dr Barnes); Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing St, Cambridge UK (Drs Sawiak, Caprioli, Jupp, Mar, Fletcher, Robbins, and Dalley); Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Sawiak and Buonincontri); Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Fletcher and Dalley); Manchester Pharmacy School, University of Manchester, UK (Drs Harte and Neill)
| | - Daniele Caprioli
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (Dr Barnes); Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing St, Cambridge UK (Drs Sawiak, Caprioli, Jupp, Mar, Fletcher, Robbins, and Dalley); Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Sawiak and Buonincontri); Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Fletcher and Dalley); Manchester Pharmacy School, University of Manchester, UK (Drs Harte and Neill)
| | - Bianca Jupp
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (Dr Barnes); Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing St, Cambridge UK (Drs Sawiak, Caprioli, Jupp, Mar, Fletcher, Robbins, and Dalley); Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Sawiak and Buonincontri); Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Fletcher and Dalley); Manchester Pharmacy School, University of Manchester, UK (Drs Harte and Neill)
| | - Guido Buonincontri
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (Dr Barnes); Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing St, Cambridge UK (Drs Sawiak, Caprioli, Jupp, Mar, Fletcher, Robbins, and Dalley); Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Sawiak and Buonincontri); Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Fletcher and Dalley); Manchester Pharmacy School, University of Manchester, UK (Drs Harte and Neill)
| | - Adam C Mar
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (Dr Barnes); Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing St, Cambridge UK (Drs Sawiak, Caprioli, Jupp, Mar, Fletcher, Robbins, and Dalley); Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Sawiak and Buonincontri); Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Fletcher and Dalley); Manchester Pharmacy School, University of Manchester, UK (Drs Harte and Neill)
| | - Michael K Harte
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (Dr Barnes); Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing St, Cambridge UK (Drs Sawiak, Caprioli, Jupp, Mar, Fletcher, Robbins, and Dalley); Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Sawiak and Buonincontri); Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Fletcher and Dalley); Manchester Pharmacy School, University of Manchester, UK (Drs Harte and Neill)
| | - Paul C Fletcher
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (Dr Barnes); Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing St, Cambridge UK (Drs Sawiak, Caprioli, Jupp, Mar, Fletcher, Robbins, and Dalley); Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Sawiak and Buonincontri); Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Fletcher and Dalley); Manchester Pharmacy School, University of Manchester, UK (Drs Harte and Neill)
| | - Trevor W Robbins
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (Dr Barnes); Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing St, Cambridge UK (Drs Sawiak, Caprioli, Jupp, Mar, Fletcher, Robbins, and Dalley); Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Sawiak and Buonincontri); Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Fletcher and Dalley); Manchester Pharmacy School, University of Manchester, UK (Drs Harte and Neill)
| | - Jo C Neill
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (Dr Barnes); Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing St, Cambridge UK (Drs Sawiak, Caprioli, Jupp, Mar, Fletcher, Robbins, and Dalley); Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Sawiak and Buonincontri); Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Fletcher and Dalley); Manchester Pharmacy School, University of Manchester, UK (Drs Harte and Neill)
| | - Jeffrey W Dalley
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (Dr Barnes); Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing St, Cambridge UK (Drs Sawiak, Caprioli, Jupp, Mar, Fletcher, Robbins, and Dalley); Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Sawiak and Buonincontri); Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Fletcher and Dalley); Manchester Pharmacy School, University of Manchester, UK (Drs Harte and Neill).
| |
Collapse
|
31
|
Tang WK, Morgan CJA, Lau GC, Liang HJ, Tang A, Ungvari GS. Psychiatric morbidity in ketamine users attending counselling and youth outreach services. Subst Abus 2014; 36:67-74. [PMID: 25023206 DOI: 10.1080/08897077.2014.935560] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND No study has examined ketamine users' psychiatric morbidity using structured diagnostic instruments. The aim of this study was thus to determine the psychiatric comorbidity of community-based ketamine users using the Structured Clinical Interview for DSM-IV (Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition), Axis I Disorders (SCID). METHODS A convenience sample of 200 frequent ketamine users was recruited from community organizations in Hong Kong. Participants were screened with the Severity of Dependence Scale (SDS), Beck Depression Inventory (BDI), Anxiety subscale of the Hospital Anxiety Depression Scale (HADSA), and SCID psychotic symptoms. Those who scored above the threshold (cutoff point of 8/9 on the BDI and 4/5 on HADSA) or displayed evidence of psychotic symptoms were referred for a structured clinical interview conducted by a psychiatrist. RESULTS One hundred and seventy participants scored above the cutoff point on 1 or more of the scales, and 115 participants attended the SCID interview. Fifty-one of these 115 participants received a psychiatric diagnosis of 1 or more comorbidities for the month preceding the interview. Mood disorders accounted for 80.4% of the diagnoses, anxiety disorders for 33.3%, and psychotic disorders for 7.8%. CONCLUSIONS Female gender and history of psychiatric/psychological clinic attendance were significantly associated with comorbid psychiatric disorders, whereas ketamine dependence had a borderline association.
Collapse
Affiliation(s)
- Wai Kwong Tang
- a Department of Psychiatry , Chinese University of Hong Kong , Hong Kong SAR , China
| | | | | | | | | | | |
Collapse
|
32
|
Liang HJ, Lau CG, Tang KLA, Chan F, Ungvari GS, Tang WK. Are sexes affected differently by ketamine? An exploratory study in ketamine users. Subst Use Misuse 2014; 49:395-404. [PMID: 24106975 DOI: 10.3109/10826084.2013.841248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
One hundred primary ketamine users and 100 controls were recruited in Hong Kong between December 2009 and December 2011. Cognitive assessment included general intelligence, working, verbal, and visual memory, and executive functions. A Univariate General Linear Model was used to compare cognitive performance between the male and female ketamine users and controls. The female users appeared to have a higher risk of visual memory impairment than their male counterparts. Further studies are warranted to clarify the mechanism of the sex-specific effect of ketamine on cognitive functions.
Collapse
Affiliation(s)
- Hua Jun Liang
- 1Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
33
|
Philip NS, Kuras YI, Valentine TR, Sweet LH, Tyrka AR, Price LH, Carpenter LL. Regional homogeneity and resting state functional connectivity: associations with exposure to early life stress. Psychiatry Res 2013; 214:247-53. [PMID: 24090510 PMCID: PMC3849340 DOI: 10.1016/j.pscychresns.2013.07.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/29/2013] [Accepted: 07/31/2013] [Indexed: 11/19/2022]
Abstract
Early life stress (ELS) confers risk for psychiatric illness. Previous literature suggests ELS is associated with decreased resting-state functional connectivity (rs-FC) in adulthood, but there are no studies of resting-state neuronal activity in this population. This study investigated whether ELS-exposed individuals demonstrate resting-state activity patterns similar to those found in PTSD. Twenty-seven adults (14 with at least moderate ELS), who were medication-free and without psychiatric or medical illness, underwent MRI scans during two 4-minute rest periods. Resting-state activity was examined using regional homogeneity (ReHo), which estimates regional activation patterns through indices of localized concordance. ReHo values were compared between groups, followed by rs-FC analyses utilizing ReHo-localized areas as seeds to identify other involved regions. Relative to controls, ELS subjects demonstrated diminished ReHo in the inferior parietal lobule (IPL) and superior temporal gyrus (STG). ReHo values were inversely correlated with ELS severity. Secondary analyses revealed decreased rs-FC between the IPL and right precuneus/posterior cingulate, left fusiform gyrus, cerebellum and caudate in ELS subjects. These findings indicate that ELS is associated with altered resting-state activity and connectivity in brain regions involved in trauma-related psychiatric disorders. Future studies are needed to evaluate whether these associations represent potential imaging biomarkers of stress exposure.
Collapse
Affiliation(s)
- Noah S Philip
- Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, United States.
| | | | | | | | | | | | | |
Collapse
|
34
|
Vaidya CJ, Gordon EM. Phenotypic variability in resting-state functional connectivity: current status. Brain Connect 2013; 3:99-120. [PMID: 23294010 DOI: 10.1089/brain.2012.0110] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We reviewed the extant literature with the goal of assessing the extent to which resting-state functional connectivity is associated with phenotypic variability in healthy and disordered populations. A large corpus of work has accumulated to date (125 studies), supporting the association between intrinsic functional connectivity and individual differences in a wide range of domains-not only in cognitive, perceptual, motoric, and linguistic performance, but also in behavioral traits (e.g., impulsiveness, risky decision making, personality, and empathy) and states (e.g., anxiety and psychiatric symptoms) that are distinguished by cognitive and affective functioning, and in neurological conditions with cognitive and motor sequelae. Further, intrinsic functional connectivity is sensitive to remote (e.g., early-life stress) and enduring (e.g., duration of symptoms) life experience, and it exhibits plasticity in response to recent experience (e.g., learning and adaptation) and pharmacological treatment. The most pervasive associations were observed with the default network; associations were also widespread between the cingulo-opercular network and both cognitive and affective behaviors, while the frontoparietal network was associated primarily with cognitive functions. Associations of somatomotor, frontotemporal, auditory, and amygdala networks were relatively restricted to the behaviors linked to their respective putative functions. Surprisingly, visual network associations went beyond visual function to include a variety of behavioral traits distinguished by affective function. Together, the reviewed evidence sets the stage for testing causal hypothesis about the functional role of intrinsic connectivity and augments its potential as a biomarker for healthy and disordered brain function.
Collapse
Affiliation(s)
- Chandan J Vaidya
- Department of Psychology, Georgetown University, Washington, District of Columbia 20057, USA.
| | | |
Collapse
|
35
|
Han K, Mac Donald CL, Johnson AM, Barnes Y, Wierzechowski L, Zonies D, Oh J, Flaherty S, Fang R, Raichle ME, Brody DL. Disrupted modular organization of resting-state cortical functional connectivity in U.S. military personnel following concussive 'mild' blast-related traumatic brain injury. Neuroimage 2013; 84:76-96. [PMID: 23968735 DOI: 10.1016/j.neuroimage.2013.08.017] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/05/2013] [Accepted: 08/09/2013] [Indexed: 01/21/2023] Open
Abstract
Blast-related traumatic brain injury (TBI) has been one of the "signature injuries" of the wars in Iraq and Afghanistan. However, neuroimaging studies in concussive 'mild' blast-related TBI have been challenging due to the absence of abnormalities in computed tomography or conventional magnetic resonance imaging (MRI) and the heterogeneity of the blast-related injury mechanisms. The goal of this study was to address these challenges utilizing single-subject, module-based graph theoretic analysis of resting-state functional MRI (fMRI) data. We acquired 20min of resting-state fMRI in 63 U.S. military personnel clinically diagnosed with concussive blast-related TBI and 21 U.S. military controls who had blast exposures but no diagnosis of TBI. All subjects underwent an initial scan within 90days post-injury and 65 subjects underwent a follow-up scan 6 to 12months later. A second independent cohort of 40 U.S. military personnel with concussive blast-related TBI served as a validation dataset. The second independent cohort underwent an initial scan within 30days post-injury. 75% of the scans were of good quality, with exclusions primarily due to excessive subject motion. Network analysis of the subset of these subjects in the first cohort with good quality scans revealed spatially localized reductions in the participation coefficient, a measure of between-module connectivity, in the TBI patients relative to the controls at the time of the initial scan. These group differences were less prominent on the follow-up scans. The 15 brain areas with the most prominent reductions in the participation coefficient were next used as regions of interest (ROIs) for single-subject analyses. In the first TBI cohort, more subjects than would be expected by chance (27/47 versus 2/47 expected, p<0.0001) had 3 or more brain regions with abnormally low between-module connectivity relative to the controls on the initial scans. On the follow-up scans, more subjects than expected by chance (5/37, p=0.044) but fewer subjects than on the initial scans had 3 or more brain regions with abnormally low between-module connectivity. Analysis of the second TBI cohort validation dataset with no free parameters provided a partial replication; again more subjects than expected by chance (8/31, p=0.006) had 3 or more brain regions with abnormally low between-module connectivity on the initial scans, but the numbers were not significant (2/27, p=0.276) on the follow-up scans. A single-subject, multivariate analysis by probabilistic principal component analysis of the between-module connectivity in the 15 identified ROIs, showed that 31/47 subjects in the first TBI cohort were found to be abnormal relative to the controls on the initial scans. In the second TBI cohort, 9/31 patients were found to be abnormal in identical multivariate analysis with no free parameters. Again, there were not substantial differences on the follow-up scans. Taken together, these results indicate that single-subject, module-based graph theoretic analysis of resting-state fMRI provides potentially useful information for concussive blast-related TBI if high quality scans can be obtained. The underlying biological mechanisms and consequences of disrupted between-module connectivity are unknown, thus further studies are required.
Collapse
Affiliation(s)
- Kihwan Han
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Combinational effects of ketamine and amphetamine on behaviors and neurotransmitter systems of mice. Neurotoxicology 2013; 37:136-43. [DOI: 10.1016/j.neuro.2013.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 04/16/2013] [Accepted: 04/25/2013] [Indexed: 11/19/2022]
|
37
|
Krystal JH, Sanacora G, Duman RS. Rapid-acting glutamatergic antidepressants: the path to ketamine and beyond. Biol Psychiatry 2013; 73:1133-41. [PMID: 23726151 PMCID: PMC3671489 DOI: 10.1016/j.biopsych.2013.03.026] [Citation(s) in RCA: 303] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 12/31/2022]
Abstract
Traditional antidepressants require many weeks to reveal their therapeutic effects. However, the widely replicated observation that a single subanesthetic dose of the N-methyl-D-aspartate glutamate receptor antagonist ketamine produced meaningful clinical improvement within hours, suggested that rapid-acting antidepressants might be possible. The ketamine studies stimulated a new generation of basic antidepressant research that identified new neural signaling mechanisms in antidepressant response and provided a conceptual framework linking a group of novel antidepressant mechanisms. This article presents the path that led to the testing of ketamine, considers its promise as an antidepressant, and reviews novel treatment mechanisms that are emerging from this line of research.
Collapse
Affiliation(s)
- John H. Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT,for correspondence: Department of Psychiatry, Yale University School of Medicine, Suite #901, 300 George St, New Haven, CT 06511; , tel: 203-785-6396, fax: 203-785-6196
| | - Gerard Sanacora
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT
| | - Ronald S. Duman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT
| |
Collapse
|