1
|
Sarkar S, Pandey A, Kumar Yadav S, Haris Siddiqui M, Pant AB, Yadav S. Differentiated and mature neurons are more responsive to neurotoxicant exposure at both transcriptional and translational levels. Neuroscience 2025; 564:110-125. [PMID: 39571964 DOI: 10.1016/j.neuroscience.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/13/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024]
Abstract
SH-SY5Y human neuroblastoma cells have been extensively used as an in vitro model system in a diverse range of studies involving neurodevelopment, neurotoxicity, neurodegeneration, and neuronal ageing. Both naïve and differentiated phenotypes of SH-SY5Y cells are utilized to model human neurons under in vitro conditions. The process of differentiation causes extensive remodeling of neuronal cells at multiple omic levels, including the epigenome and proteome. In the present investigation, the miRNAome and proteome profiles of arsenic-treated naïve and differentiated SH-SY5Y cells were generated using the miRNA OpenArray technology and high-resolution mass spectrometry. Our findings demonstrated that differentiation dramatically affected the response of SH-SY5Y cells to toxicant exposure, as indicated by increased tolerance of differentiated cells against arsenic exposure compared to naïve cells in cell viability assay. Arsenic-exposed naïve and differentiated SH-SY5Y cells possess distinct miRNA and protein profiles with few similarities. Compared to naïve cells, differentiated cells have undergone higher deregulation in the expression of brain-enriched miRNAs and proteins and have shown a more drastic decrease in oxygen consumption rate, which is a measure of mitochondrial respiration after exposure to arsenic. Proteins identified in arsenic-treated differentiated SH-SY5Y cells were more enriched in pathways underlying multifactorial neurotoxic events. Additionally, more functional regulatory modules have been identified between the miRNAs and proteins differentially expressed in arsenic-treated differentiated SH-SY5Y cells relative to naïve cells. Collectively, our studies have shown that differentiated SH-SY5Y cells displayed alterations in the expression of a greater number of miRNAs and proteins following neurotoxicant exposure, indicating their higher responsivity.
Collapse
Affiliation(s)
- Sana Sarkar
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, Lucknow, Uttar Pradesh, India; Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, India.
| | - Anuj Pandey
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, Lucknow, Uttar Pradesh, India.
| | - Sanjeev Kumar Yadav
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, Lucknow, Uttar Pradesh, India.
| | | | - A B Pant
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, Lucknow, Uttar Pradesh, India.
| | - Sanjay Yadav
- All India Institute of Medical Sciences (AIIMS), Raebareli, Uttar Pradesh, India.
| |
Collapse
|
2
|
Sarkar R, Choudhury SM, Kanneganti TD. Classical apoptotic stimulus, staurosporine, induces lytic inflammatory cell death, PANoptosis. J Biol Chem 2024; 300:107676. [PMID: 39151726 PMCID: PMC11418131 DOI: 10.1016/j.jbc.2024.107676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/27/2024] [Accepted: 08/03/2024] [Indexed: 08/19/2024] Open
Abstract
Innate immunity is the body's first line of defense against disease, and regulated cell death is a central component of this response that balances pathogen clearance and inflammation. Cell death pathways are generally categorized as non-lytic and lytic. While non-lytic apoptosis has been extensively studied in health and disease, lytic cell death pathways are also increasingly implicated in infectious and inflammatory diseases and cancers. Staurosporine (STS) is a well-known inducer of non-lytic apoptosis. However, in this study, we observed that STS also induces lytic cell death at later timepoints. Using biochemical assessments with genetic knockouts, pharmacological inhibitors, and gene silencing, we identified that STS triggered PANoptosis via the caspase-8/RIPK3 axis, which was mediated by RIPK1. PANoptosis is a lytic, innate immune cell death pathway initiated by innate immune sensors and driven by caspases and RIPKs through PANoptosome complexes. Deletion of caspase-8 and RIPK3, core components of the PANoptosome complex, protected against STS-induced lytic cell death. Overall, our study identifies STS as a time-dependent inducer of lytic cell death, PANoptosis. These findings emphasize the importance of understanding trigger- and time-specific activation of distinct cell death pathways to advance our understanding of the molecular mechanisms of innate immunity and cell death for clinical translation.
Collapse
Affiliation(s)
- Roman Sarkar
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Sk Mohiuddin Choudhury
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | |
Collapse
|
3
|
Urano Y, Noguchi N. Enzymatically Formed Oxysterols and Cell Death. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:193-211. [PMID: 38036881 DOI: 10.1007/978-3-031-43883-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The side-chain hydroxylation of cholesterol by specific enzymes produces 24(S)-hydroxycholesterol, 25-hydroxycholesterol, 27-hydroxycholesterol, and other products. These enzymatically formed side-chain oxysterols act as intermediates in the biosynthesis of bile acids and serve as signaling molecules that regulate cholesterol homeostasis. Besides these intracellular functions, an imbalance in oxysterol homeostasis is implicated in pathophysiology. Furthermore, growing evidence reveals that oxysterols affect cell proliferation and cause cell death. This chapter provides an overview of the pathophysiological role of side-chain oxysterols in developing human diseases. We also summarize our understanding of the molecular mechanisms underlying the induction of various forms of cell death by side-chain oxysterols.
Collapse
Affiliation(s)
- Yasuomi Urano
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan.
| | - Noriko Noguchi
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| |
Collapse
|
4
|
Srivastava A, Johnson M, Renna HA, Sheehan KM, Ahmed S, Palaia T, Pinkhasov A, Gomolin IH, De Leon J, Reiss AB. Therapeutic Potential of P110 Peptide: New Insights into Treatment of Alzheimer's Disease. Life (Basel) 2023; 13:2156. [PMID: 38004296 PMCID: PMC10672680 DOI: 10.3390/life13112156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Mitochondrial degeneration in various neurodegenerative diseases, specifically in Alzheimer's disease, involves excessive mitochondrial fission and reduced fusion, leading to cell damage. P110 is a seven-amino acid peptide that restores mitochondrial dynamics by acting as an inhibitor of mitochondrial fission. However, the role of P110 as a neuroprotective agent in AD remains unclear. Therefore, we performed cell culture studies to evaluate the neuroprotective effect of P110 on amyloid-β accumulation and mitochondrial functioning. Human SH-SY5Y neuronal cells were incubated with 1 µM and 10 µM of P110, and Real-Time PCR and Western blot analysis were done to quantify the expression of genes pertaining to AD and neuronal health. Exposure of SH-SY5Y cells to P110 significantly increased APP mRNA levels at 1 µM, while BACE1 mRNA levels were increased at both 1 µM and 10 µM. However, protein levels of both APP and BACE1 were significantly reduced at 10 µM of P110. Further, P110 treatment significantly increased ADAM10 and Klotho protein levels at 10 µM. In addition, P110 exposure significantly increased active mitochondria and reduced ROS in live SH-SY5Y cells at both 1 µM and 10 µM concentrations. Taken together, our results indicate that P110 might be useful in attenuating amyloid-β generation and improving neuronal health by maintaining mitochondrial function in neurons.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (A.S.); (M.J.); (H.A.R.); (K.M.S.); (S.A.); (T.P.); (A.P.); (I.H.G.); (J.D.L.)
| |
Collapse
|
5
|
Sendra M, Štampar M, Fras K, Novoa B, Figueras A, Žegura B. Adverse (geno)toxic effects of bisphenol A and its analogues in hepatic 3D cell model. ENVIRONMENT INTERNATIONAL 2023; 171:107721. [PMID: 36580735 PMCID: PMC9875311 DOI: 10.1016/j.envint.2022.107721] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/05/2022] [Accepted: 12/23/2022] [Indexed: 05/10/2023]
Abstract
Bisphenol A (BPA) is one of the most widely used and versatile chemical compounds in polymer additives and epoxy resins for manufacturing a range of products for human applications. It is known as endocrine disruptor, however, there is growing evidence that it is genotoxic. Because of its adverse effects, the European Union has restricted its use to protect human health and the environment. As a result, the industry has begun developing BPA analogues, but there are not yet sufficient toxicity data to claim that they are safe. We investigated the adverse toxic effects of BPA and its analogues (BPS, BPAP, BPAF, BPFL, and BPC) with emphasis on their cytotoxic and genotoxic activities after short (24-h) and prolonged (96-h) exposure in in vitro hepatic three-dimensional cell model developed from HepG2 cells. The results showed that BPFL and BPC (formed by an additional ring system) were the most cytotoxic analogues that affected cell viability, spheroid surface area and morphology, cell proliferation, and apoptotic cell death. BPA, BPAP, and BPAF induced DNA double-strand break formation (γH2AX assay), whereas BPAF and BPC increased the percentage of p-H3-positive cells, indicating their aneugenic activity. All BPs induced DNA single-strand break formation (comet assay), with BPAP (≥0.1 μM) being the most effective and BPA and BPC the least effective (≥1 μM) under conditions applied. The results indicate that not all of the analogues studied are safer alternatives to BPA and thus more in-depth research is urgently needed to adequately evaluate the risks of BPA analogues and assess their safety for humans.
Collapse
Affiliation(s)
- Marta Sendra
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001 Burgos, Spain; International Research Center in Critical Raw Materials-ICCRAM, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - Martina Štampar
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, 1000 Ljubljana, Slovenia.
| | - Katarina Fras
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, 1000 Ljubljana, Slovenia.
| | - Beatriz Novoa
- Immunology and Genomics Group, Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), Vigo, Spain.
| | - Antonio Figueras
- Immunology and Genomics Group, Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), Vigo, Spain.
| | - Bojana Žegura
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, 1000 Ljubljana, Slovenia; Jozef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia.
| |
Collapse
|
6
|
Oxysterols are potential physiological regulators of ageing. Ageing Res Rev 2022; 77:101615. [PMID: 35351610 DOI: 10.1016/j.arr.2022.101615] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/18/2022] [Accepted: 03/24/2022] [Indexed: 12/24/2022]
Abstract
Delaying and even reversing ageing is a major public health challenge with a tremendous potential to postpone a plethora of diseases including cancer, metabolic syndromes and neurodegenerative disorders. A better understanding of ageing as well as the development of innovative anti-ageing strategies are therefore an increasingly important field of research. Several biological processes including inflammation, proteostasis, epigenetic, oxidative stress, stem cell exhaustion, senescence and stress adaptive response have been reported for their key role in ageing. In this review, we describe the relationships that have been established between cholesterol homeostasis, in particular at the level of oxysterols, and ageing. Initially considered as harmful pro-inflammatory and cytotoxic metabolites, oxysterols are currently emerging as an expanding family of fine regulators of various biological processes involved in ageing. Indeed, depending of their chemical structure and their concentration, oxysterols exhibit deleterious or beneficial effects on inflammation, oxidative stress and cell survival. In addition, stem cell differentiation, epigenetics, cellular senescence and proteostasis are also modulated by oxysterols. Altogether, these data support the fact that ageing is influenced by an oxysterol profile. Further studies are thus required to explore more deeply the impact of the "oxysterome" on ageing and therefore this cholesterol metabolic pathway constitutes a promising target for future anti-ageing interventions.
Collapse
|
7
|
Abdullah NAH, Rusmili MRA, Zainal Abidin SA, Shaikh MF, Hodgson WC, Othman I. Isolation and Characterization of A2-EPTX-Nsm1a, a Secretory Phospholipase A 2 from Malaysian Spitting Cobra ( Naja sumatrana) Venom. Toxins (Basel) 2021; 13:toxins13120859. [PMID: 34941697 PMCID: PMC8709200 DOI: 10.3390/toxins13120859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 02/07/2023] Open
Abstract
Phospholipase A2 (PLA2) toxins are one of the main toxin families found in snake venom. PLA2 toxins are associated with various detrimental effects, including neurotoxicity, myotoxicity, hemostatic disturbances, nephrotoxicity, edema, and inflammation. Although Naja sumatrana venom contains substantial quantities of PLA2 components, there is limited information on the function and activities of PLA2 toxins from the venom. In this study, a secretory PLA2 from the venom of Malaysian N. sumatrana, subsequently named A2-EPTX-Nsm1a, was isolated, purified, and characterized. A2-EPTX-Nsm1a was purified using a mass spectrometry-guided approach and multiple chromatography steps. Based on LC-MSMS, A2-EPTX-Nsm1a was found to show high sequence similarity with PLA2 from venoms of other Naja species. The PLA2 activity of A2-EPTX-Nsm1 was inhibited by 4-BPB and EDTA. A2-EPTX-Nsm1a was significantly less cytotoxic in a neuroblastoma cell line (SH-SY5Y) compared to crude venom and did not show a concentration-dependent cytotoxic activity. To our knowledge, this is the first study that characterizes and investigates the cytotoxicity of an Asp49 PLA2 isolated from Malaysian N. sumatrana venom in a human neuroblastoma cell line.
Collapse
Affiliation(s)
- Nur Atiqah Haizum Abdullah
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia; (S.A.Z.A.); (M.F.S.)
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
- Correspondence: or (N.A.H.A.); (I.O.)
| | - Muhamad Rusdi Ahmad Rusmili
- Kulliyyah of Pharmacy, Kuantan Campus, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan 25200, Malaysia;
| | - Syafiq Asnawi Zainal Abidin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia; (S.A.Z.A.); (M.F.S.)
| | - Mohd Farooq Shaikh
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia; (S.A.Z.A.); (M.F.S.)
| | - Wayne C. Hodgson
- Monash Venom Group, Department of Pharmacology, Biomedical Discovery Institute, Monash University, Clayton, VIC 3800, Australia;
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia; (S.A.Z.A.); (M.F.S.)
- Correspondence: or (N.A.H.A.); (I.O.)
| |
Collapse
|
8
|
Sodero AO. 24S-hydroxycholesterol: Cellular effects and variations in brain diseases. J Neurochem 2020; 157:899-918. [PMID: 33118626 DOI: 10.1111/jnc.15228] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 12/12/2022]
Abstract
The adult brain exhibits a characteristic cholesterol homeostasis, with low synthesis rate and active catabolism. Brain cholesterol turnover is possible thanks to the action of the enzyme cytochrome P450 46A1 (CYP46A1) or 24-cholesterol hydroxylase, that transforms cholesterol into 24S-hydroxycholesterol (24S-HC). But before crossing the blood-brain barrier (BBB), this oxysterol, that is the most abundant in the brain, can act locally, affecting the functioning of neurons, astrocytes, oligodendrocytes, and vascular cells. The first part of this review addresses different aspects of 24S-HC production and elimination from the brain. The second part concentrates in the effects of 24S-HC at the cellular level, describing how this oxysterol affects cell viability, amyloid β production, neurotransmission, and transcriptional activity. Finally, the role of 24S-HC in Alzheimer, Huntington and Parkinson diseases, multiple sclerosis and amyotrophic lateral sclerosis, as well as the possibility of using this oxysterol as predictive and/or evolution biomarker in different brain disorders is discussed.
Collapse
Affiliation(s)
- Alejandro O Sodero
- Institute of Biomedical Research (BIOMED), Pontifical Catholic University of Argentina (UCA) and National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
9
|
Xicoy H, Brouwers JF, Kalnytska O, Wieringa B, Martens GJM. Lipid Analysis of the 6-Hydroxydopamine-Treated SH-SY5Y Cell Model for Parkinson's Disease. Mol Neurobiol 2020; 57:848-859. [PMID: 31493240 PMCID: PMC7031185 DOI: 10.1007/s12035-019-01733-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/15/2019] [Indexed: 11/20/2022]
Abstract
Parkinson's disease (PD) is a highly prevalent neurodegenerative disease for which no disease-modifying treatments are available, mainly because knowledge about its pathogenic mechanism is still incomplete. Recently, a key role for lipids emerged, but lipid profiling of brain samples from human subjects is demanding. Here, we used an unbiased approach, lipidomics, to determine PD-linked changes in the lipid profile of a well-established cell model for PD, the catecholaminergic neuronal cell line SH-SY5Y treated with the neurotoxin 6-hydroxydopamine (6-OHDA). We observed changes in multiple lipid classes, including phosphatidylcholine (PC), phosphatidylglycerol (PG), phosphatidylinositol (PI), phosphatidylserine (PS), sphingomyelin (SM), and total cholesterol, in 6-OHDA-treated SH-SY5Y cells. Furthermore, we found differences in the length and degree of unsaturation of the fatty acyl chains, indicating changes in their metabolism. Except for the observed decreased PS levels, the alterations in PC, PG, PI, and cholesterol levels are in agreement with the results of previous studies on PD-patient material. Opposite to what has been previously described, the cholesterol-lowering drug statins did not have a protective effect, while low doses of cholesterol supplementation partially protected SH-SY5Y cells from 6-OHDA toxicity. However, cholesterol supplementation triggered neuronal differentiation, which could have confounded the results of cholesterol modulation. Taken together, our results show that 6-OHDA-treated SH-SY5Y cells display many lipid changes also found in PD patient and animal model brains, although the SH-SY5Y cell model seems less suitable to study the involvement of cholesterol in PD initiation and progression.
Collapse
Affiliation(s)
- Helena Xicoy
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
- Department of Molecular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Neuroscience, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| | - Jos F. Brouwers
- Department of Biochemistry & Cell Biology, Lipidomics Facility, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
| | - Oleksandra Kalnytska
- Department of Molecular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Neuroscience, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| | - Bé Wieringa
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| | - Gerard J. M. Martens
- Department of Molecular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Neuroscience, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
10
|
Yalcinkaya M, Kerksiek A, Gebert K, Annema W, Sibler R, Radosavljevic S, Lütjohann D, Rohrer L, von Eckardstein A. HDL inhibits endoplasmic reticulum stress-induced apoptosis of pancreatic β-cells in vitro by activation of Smoothened. J Lipid Res 2020; 61:492-504. [PMID: 31907205 DOI: 10.1194/jlr.ra119000509] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/18/2019] [Indexed: 01/20/2023] Open
Abstract
Loss of pancreatic β-cell mass and function as a result of sustained ER stress is a core step in the pathogenesis of diabetes mellitus type 2. The complex control of β-cells and insulin production involves hedgehog (Hh) signaling pathways as well as cholesterol-mediated effects. In fact, data from studies in humans and animal models suggest that HDL protects against the development of diabetes through inhibition of ER stress and β-cell apoptosis. We investigated the mechanism by which HDL inhibits ER stress and apoptosis induced by thapsigargin, a sarco/ER Ca2+-ATPase inhibitor, in β-cells of a rat insulinoma cell line, INS1e. We further explored effects on the Hh signaling receptor Smoothened (SMO) with pharmacologic agonists and inhibitors. Interference with sterol synthesis or efflux enhanced β-cell apoptosis and abrogated the anti-apoptotic activity of HDL. During ER stress, HDL facilitated the efflux of specific oxysterols, including 24-hydroxycholesterol (OHC). Supplementation of reconstituted HDL with 24-OHC enhanced and, in cells lacking ABCG1 or the 24-OHC synthesizing enzyme CYP46A1, restored the protective activity of HDL. Inhibition of SMO countered the beneficial effects of HDL and also LDL, and SMO agonists decreased β-cell apoptosis in the absence of ABCG1 or CYP46A1. The translocation of the SMO-activated transcription factor glioma-associated oncogene GLI-1 was inhibited by ER stress but restored by both HDL and 24-OHC. In conclusion, the protective effect of HDL to counter ER stress and β-cell death involves the transport, generation, and mobilization of oxysterols for activation of the Hh signaling receptor SMO.
Collapse
Affiliation(s)
- Mustafa Yalcinkaya
- Institute of Clinical Chemistry, University and University Hospital of Zurich, Zurich, Switzerland
| | - Anja Kerksiek
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Katrin Gebert
- Institute of Clinical Chemistry, University and University Hospital of Zurich, Zurich, Switzerland
| | - Wijtske Annema
- Institute of Clinical Chemistry, University and University Hospital of Zurich, Zurich, Switzerland
| | - Rahel Sibler
- Institute of Clinical Chemistry, University and University Hospital of Zurich, Zurich, Switzerland
| | - Silvija Radosavljevic
- Institute of Clinical Chemistry, University and University Hospital of Zurich, Zurich, Switzerland
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Lucia Rohrer
- Institute of Clinical Chemistry, University and University Hospital of Zurich, Zurich, Switzerland
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University and University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Riscal R, Skuli N, Simon MC. Even Cancer Cells Watch Their Cholesterol! Mol Cell 2019; 76:220-231. [PMID: 31586545 DOI: 10.1016/j.molcel.2019.09.008] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 02/07/2023]
Abstract
Deregulated cell proliferation is an established feature of cancer, and altered tumor metabolism has witnessed renewed interest over the past decade, including the study of how cancer cells rewire metabolic pathways to renew energy sources and "building blocks" that sustain cell division. Microenvironmental oxygen, glucose, and glutamine are regarded as principal nutrients fueling tumor growth. However, hostile tumor microenvironments render O2/nutrient supplies chronically insufficient for increased proliferation rates, forcing cancer cells to develop strategies for opportunistic modes of nutrient acquisition. Recent work shows that cancer cells overcome this nutrient scarcity by scavenging other substrates, such as proteins and lipids, or utilizing adaptive metabolic pathways. As such, reprogramming lipid metabolism plays important roles in providing energy, macromolecules for membrane synthesis, and lipid-mediated signaling during cancer progression. In this review, we highlight more recently appreciated roles for lipids, particularly cholesterol and its derivatives, in cancer cell metabolism within intrinsically harsh tumor microenvironments.
Collapse
Affiliation(s)
- Romain Riscal
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicolas Skuli
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease characterized by a progressive loss of dopaminergic neurons from the nigrostriatal pathway, formation of Lewy bodies, and microgliosis. During the past decades multiple cellular pathways have been associated with PD pathology (i.e., oxidative stress, endosomal-lysosomal dysfunction, endoplasmic reticulum stress, and immune response), yet disease-modifying treatments are not available. We have recently used genetic data from familial and sporadic cases in an unbiased approach to build a molecular landscape for PD, revealing lipids as central players in this disease. Here we extensively review the current knowledge concerning the involvement of various subclasses of fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, and lipoproteins in PD pathogenesis. Our review corroborates a central role for most lipid classes, but the available information is fragmented, not always reproducible, and sometimes differs by sex, age or PD etiology of the patients. This hinders drawing firm conclusions about causal or associative effects of dietary lipids or defects in specific steps of lipid metabolism in PD. Future technological advances in lipidomics and additional systematic studies on lipid species from PD patient material may improve this situation and lead to a better appreciation of the significance of lipids for this devastating disease.
Collapse
|
13
|
Jiang P, Wang X, Chen X, Wang Y, Kang Z, Wang J, Zhang D. A potential molecular model for studying apoptosis enhanced by the interaction of BCL-G with JAB1 in swine. Oncotarget 2018; 7:62912-62924. [PMID: 27542239 PMCID: PMC5325336 DOI: 10.18632/oncotarget.11230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 07/14/2016] [Indexed: 12/02/2022] Open
Abstract
BCL-G, an apoptotic factor in Bcl-2 family, is involved in several kinds of diseases by interacting with several proteins. Although many studies on mouse and human BCL-G have been reported, porcine BCL-G (pBCL-G) has been little investigated. In this study, our results showed that pBCL-G was universally expressed in porcine tissues. The BH2 domain affected the subcellular distribution of pBCL-G protein. pBCL-G could interact with porcine JAB1 (pJAB1), by which its subcellular distribution was affected. pBCL-G promoted staurosporine-induced apoptosis that was significantly enhanced by interaction of pBCL-G with pJAB1. The apoptosis at least partially depended on the activated caspase-8, -9 and -3. Owing to the close phylogenetic distance between pigs and humans and their many physiological similarities, our findings may provide a potential molecular model to study human BCL-G and also may have implications in the treatment of diseases relevant with BCL-G.
Collapse
Affiliation(s)
- Pengfei Jiang
- Department of Microbiology & Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China.,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Xingye Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Xiaolin Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Yaping Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Zhanzhan Kang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Jingna Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Deli Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
14
|
Marwarha G, Raza S, Hammer K, Ghribi O. 27-hydroxycholesterol: A novel player in molecular carcinogenesis of breast and prostate cancer. Chem Phys Lipids 2017; 207:108-126. [PMID: 28583434 DOI: 10.1016/j.chemphyslip.2017.05.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 12/13/2022]
Abstract
Several studies have suggested an etiological role for hypercholesterolemia in the pathogenesis of breast cancer and prostate cancer (PCa). However, the molecular mechanisms that underlie and mediate the hypercholesterolemia-fostered increased risk for breast cancer and PCa are yet to be determined. The discovery that the most abundant cholesterol oxidized metabolite in the plasma, 27 hydroxycholesterol (27-OHC), is a selective estrogen receptor modulator (SERM) and an agonist of Liver X receptors (LXR) partially fills the void in our understanding and knowledge of the mechanisms that may link hypercholesterolemia to development and progression of breast cancer and PCa. The wide spectrum and repertoire of SERM and LXR-dependent effects of 27-OHC in the context of all facets and aspects of breast cancer and prostate cancer biology are reviewed in this manuscript in a very comprehensive manner. This review highlights recent findings pertaining to the role of 27-OHC in breast cancer and PCa and delineates the signaling mechanisms involved in the governing of different facets of tumor biology, that include tumor cell proliferation, epithelial-mesenchymal transition (EMT), as well as tumor cell invasion, migration, and metastasis. We also discuss the limitations of contemporary studies and lack of our comprehension of the entire gamut of effects exerted by 27-OHC that may be relevant to the pathogenesis of breast cancer and PCa. We unveil and propose potential future directions of research that may further our understanding of the role of 27-OHC in breast cancer and PCa and help design therapeutic interventions against endocrine therapy-resistant breast cancer and PCa.
Collapse
Affiliation(s)
- Gurdeep Marwarha
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA
| | - Shaneabbas Raza
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA
| | - Kimberly Hammer
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA; Department of Veteran Affairs, Fargo VA Health Care System, Fargo, North Dakota 58102, USA
| | - Othman Ghribi
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA.
| |
Collapse
|
15
|
Cha E, Lee KM, Park KD, Park KS, Lee KW, Kim SM, Lee J. Hydroxycholesterol Levels in the Serum and Cerebrospinal Fluid of Patients with Neuromyelitis Optica Revealed by LC-Ag+CIS/MS/MS and LC-ESI/MS/MS with Picolinic Derivatization: Increased Levels and Association with Disability during Acute Attack. PLoS One 2016; 11:e0167819. [PMID: 27942009 PMCID: PMC5152860 DOI: 10.1371/journal.pone.0167819] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 11/21/2016] [Indexed: 01/19/2023] Open
Abstract
Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system (CNS). Hydroxycholesterols (OHCs), metabolites of CNS cholesterol, are involved in diverse cellular responses to inflammation and demyelination, and may also be involved in the pathogenesis of NMO. We aimed to develop a sensitive and reliable method for the quantitative analysis of three major OHCs (24S-, 25-, and 27-OHCs), and to evaluate their concentration in the cerebrospinal fluid (CSF) and serum of patients with NMO. The levels of the three OHCs in the serum and CSF were measured using liquid chromatography-silver ion coordination ionspray tandem mass spectrometry and liquid chromatography-electrospray ionization tandem mass spectrometry with picolinyl ester derivatization, respectively. The linear range was 5–250 ng/mL for 24S- and 27-OHC, and 0.5–25 ng/mL for 25-OHC in serum, and was 0.1–5 ng/mL for 24S- and 27-OHC, and 0.03–1 ng/mL for 25-OHC in CSF. Precision and accuracy were 0.5%–14.7% and 92.5%–109.7%, respectively, in serum, and were 0.8%–7.7% and 94.5%–119.2%, respectively, in CSF. Extraction recovery was 82.7%–90.7% in serum and 68.4%–105.0% in CSF. When analyzed in 26 NMO patients and 23 control patients, the 25-OHC (0.54 ± 0.96 ng/mL vs. 0.09 ± 0.04 ng/mL, p = 0.032) and 27-OHC (2.68 ± 3.18 ng/mL vs. 0.68 ± 0.25 ng/mL, p = 0.005) were increased in the CSF from NMO patients. When we measured the OHCCSF index that controls the effects of blood–brain barrier disruption on the level of OHC in the CSF, the 27-OHCCSF index was associated with disability (0.723; 95% confidence interval (CI)– 0.181, 0.620; p = 0.002), while the 24-OHCCSF index (0.518; 95% CI– 1.070, 38.121; p = 0.040) and 25-OHCCSF index (0.677; 95% CI– 4.313, 18.532; p = 0.004) were associated with the number of white blood cells in the CSF of NMO patients. Our results imply that OHCs in the CNS could play a role in the pathogenesis of NMO.
Collapse
Affiliation(s)
- Eunju Cha
- Doping Control Center, Korea Institute of Science and Technology, Seoul, Korea
| | - Kang Mi Lee
- Doping Control Center, Korea Institute of Science and Technology, Seoul, Korea
| | - Ki Duk Park
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Kyung Seok Park
- Department of Neurology, Seoul National University Bundang Hospital, Gyeonggi-do, Korea
| | - Kwang-Woo Lee
- Department of Neurology, College of Medicine, Seoul National University, Seoul, Korea
| | - Sung-Min Kim
- Department of Neurology, College of Medicine, Seoul National University, Seoul, Korea
- * E-mail: (JL); (SMK)
| | - Jaeick Lee
- Doping Control Center, Korea Institute of Science and Technology, Seoul, Korea
- * E-mail: (JL); (SMK)
| |
Collapse
|
16
|
Wang H, Liu J, Gao G, Wu X, Wang X, Yang H. Protection effect of piperine and piperlonguminine from Piper longum L. alkaloids against rotenone-induced neuronal injury. Brain Res 2016; 1639:214-27. [PMID: 26232071 DOI: 10.1016/j.brainres.2015.07.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 07/18/2015] [Accepted: 07/20/2015] [Indexed: 12/22/2022]
Abstract
Currently available treatment approaches for Parkinson׳s disease (PD) are limited in terms of variety and efficacy. Piper longum L. (PLL; Piperaceae) is used in traditional medicine in Asia and the Pacific Islands, with demonstrated anti-inflammatory and antioxidant activities in preclinical studies, and alkaloid extracts of PLL have shown protective effects in PD models. The present study investigated the mechanistic basis for the observed protective effects of PLL. Rats treated with PLL-derived alkaloids showed improvement in rotenone-induced motor deficits, while reactive oxygen species (ROS) production was decreased, mitochondrial membrane potential was stabilized, and the opening of the mitochondrial permeability transition pore (mPTP)-which is involved in ROS production-was inhibited. In addition, rotenone-induced apoptosis was abrogated in the presence of these alkaloids, while a pretreatment stimulated autophagy, likely mitigating neuronal injury by the removal of damaged mitochondria. These findings provide novel insight into the neuroprotective function of PLL as well as evidence in favor of its use in PD treatment. This article is part of a Special Issue entitled SI: Neuroprotection.
Collapse
Affiliation(s)
- Hao Wang
- Center of Parkinson׳s Disease Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Department of Neurobiology Capital Medical University, Beijing 100069, China
| | - Jia Liu
- Center of Parkinson׳s Disease Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Department of Neurobiology Capital Medical University, Beijing 100069, China
| | - Ge Gao
- Center of Parkinson׳s Disease Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Department of Neurobiology Capital Medical University, Beijing 100069, China
| | - Xia Wu
- Center of Parkinson׳s Disease Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Department of Neurobiology Capital Medical University, Beijing 100069, China
| | - Xiaomin Wang
- Center of Parkinson׳s Disease Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Department of Neurobiology Capital Medical University, Beijing 100069, China
| | - Hui Yang
- Center of Parkinson׳s Disease Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Department of Neurobiology Capital Medical University, Beijing 100069, China.
| |
Collapse
|
17
|
Vurusaner B, Leonarduzzi G, Gamba P, Poli G, Basaga H. Oxysterols and mechanisms of survival signaling. Mol Aspects Med 2016; 49:8-22. [PMID: 27017897 DOI: 10.1016/j.mam.2016.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/27/2016] [Accepted: 02/29/2016] [Indexed: 12/19/2022]
Abstract
Oxysterols, a family of oxidation products of cholesterol, are increasingly drawing attention of scientists to their multifaceted biochemical properties, several of them of clear relevance to human pathophysiology. Taken up by cells through both vesicular and non-vesicular ways or often generated intracellularly, oxysterols contribute to modulate not only the inflammatory and immunological response but also cell viability, metabolism and function by modulating several signaling pathways. Moreover, they have been recognized as elective ligands for the most important nuclear receptors. The outcome of such a complex network of intracellular reactions promoted by these cholesterol oxidation products appears to be largely dependent not only on the type of cells, the dynamic conditions of the cellular and tissue environment but also on the concentration of the oxysterols. Here focus has been given to the cascade of molecular events exerted by relatively low concentrations of certain oxysterols that elicit survival and functional signals in the cells, with the aim to contribute to further expand the knowledge about the biological and physiological potential of the biochemical reactions triggered and modulated by oxysterols.
Collapse
Affiliation(s)
- Beyza Vurusaner
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli-Tuzla, 34956 Istanbul, Turkey
| | | | - Paola Gamba
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy.
| | - Huveyda Basaga
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli-Tuzla, 34956 Istanbul, Turkey.
| |
Collapse
|
18
|
Wang Y, Jiang H, Huang H, Xie Y, Zhao Y, You X, Tang L, Wang Y, Yin W, Qiu P, Yan G, Hu H. Determination of neuroprotective oxysterols in Calculus bovis
, human gallstones, and traditional Chinese medicine preparations by liquid chromatography with mass spectrometry. J Sep Sci 2015; 38:796-803. [DOI: 10.1002/jssc.201400850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 12/05/2014] [Accepted: 12/10/2014] [Indexed: 01/15/2023]
Affiliation(s)
- Yalong Wang
- Lab of Pharmaceutics; School of Pharmaceutical Sciences; Sun Yat-sen University; Guangzhou China
| | - Han Jiang
- Lab of Pharmaceutics; School of Pharmaceutical Sciences; Sun Yat-sen University; Guangzhou China
| | - Huizhi Huang
- Lab of Pharmaceutics; School of Pharmaceutical Sciences; Sun Yat-sen University; Guangzhou China
| | - Yanqi Xie
- Lab of Pharmaceutics; School of Pharmaceutical Sciences; Sun Yat-sen University; Guangzhou China
| | - Yunshi Zhao
- Lab of Pharmaceutics; School of Pharmaceutical Sciences; Sun Yat-sen University; Guangzhou China
| | - Xiuhua You
- Lab of Pharmaceutics; School of Pharmaceutical Sciences; Sun Yat-sen University; Guangzhou China
| | - Lipeng Tang
- Department of Pharmacology; Zhongshan School of Medicine; Sun Yat-sen University; Guangzhou China
| | - Youqiong Wang
- Department of Pharmacology; Zhongshan School of Medicine; Sun Yat-sen University; Guangzhou China
| | - Wei Yin
- Department of Pharmacology; Zhongshan School of Medicine; Sun Yat-sen University; Guangzhou China
| | - Pengxin Qiu
- Department of Pharmacology; Zhongshan School of Medicine; Sun Yat-sen University; Guangzhou China
| | - Guangmei Yan
- Department of Pharmacology; Zhongshan School of Medicine; Sun Yat-sen University; Guangzhou China
| | - Haiyan Hu
- Lab of Pharmaceutics; School of Pharmaceutical Sciences; Sun Yat-sen University; Guangzhou China
| |
Collapse
|
19
|
Wicher G, Norlin M. Estrogen-mediated regulation of steroid metabolism in rat glial cells; effects on neurosteroid levels via regulation of CYP7B1-mediated catalysis. J Steroid Biochem Mol Biol 2015; 145:21-7. [PMID: 25263657 DOI: 10.1016/j.jsbmb.2014.09.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 11/28/2022]
Abstract
Many neuroactive steroids, including dehydroepiandrosterone (DHEA), pregnenolone, 27-hydroxycholesterol and 17β-estradiol, are known to affect development and function of the brain and nervous system. These and other steroids can undergo tissue and/or cell-specific enzymatic conversions into steroid metabolites. Carefully regulated production of steroids with various physiological effects is important for cells of the nervous system. Astrocytes express many steroidogenic enzymes and are considered important producers of brain steroids. The quantitative roles of different pathways for steroid metabolism in rat astrocytes are not clear. In the current study we examined effects of estrogens on steroid metabolism catalyzed by CYP7B1 and other enzymes in primary cultures of rat astrocytes. The CYP7B1 enzyme, which has been linked to neurodegenerative disease, is involved in the metabolism of several important neurosteroids. In the present study, we found that 7α-hydroxylation, performed by CYP7B1, is the quantitatively most important pathway for DHEA metabolism in rat astrocytes. In addition, our present experiments on catalytic steroid conversions revealed that estrogens significantly suppress the CYP7B1-catalyzed metabolism of not only DHEA but also of pregnenolone and 27-hydroxycholesterol in rat astrocytes. These novel findings point to a regulatory mechanism for control of the cellular levels of these neurosteroids via CYP7B1. Our hypothesis that estrogens can regulate neurosteroid levels via this enzymatic reaction was supported by experiments using ELISA to assay levels of DHEA and pregnenolone in the presence or absence of estrogen. Furthermore, the present results show that estrogen suppresses CYP7B1-catalyzed 7α-hydroxylation also in primary cultures of rat Schwann cells, indicating that regulation by estrogen via this enzyme may be of relevance in both the CNS and the PNS.
Collapse
Affiliation(s)
- Grzegorz Wicher
- Department of Pharmaceutical Biosciences, Uppsala University, Sweden
| | - Maria Norlin
- Department of Pharmaceutical Biosciences, Uppsala University, Sweden.
| |
Collapse
|
20
|
Clift IC, Bamidele AO, Rodriguez-Ramirez C, Kremer KN, Hedin KE. β-Arrestin1 and distinct CXCR4 structures are required for stromal derived factor-1 to downregulate CXCR4 cell-surface levels in neuroblastoma. Mol Pharmacol 2014; 85:542-52. [PMID: 24452472 DOI: 10.1124/mol.113.089714] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
CXC chemokine receptor 4 (CXCR4) is a G protein-coupled receptor (GPCR) located on the cell surface that signals upon binding the chemokine stromal derived factor-1 (SDF-1; also called CXCL 12). CXCR4 promotes neuroblastoma proliferation and chemotaxis. CXCR4 expression negatively correlates with prognosis and drives neuroblastoma growth and metastasis in mouse models. All functions of CXCR4 require its expression on the cell surface, yet the molecular mechanisms that regulate CXCR4 cell-surface levels in neuroblastoma are poorly understood. We characterized CXCR4 cell-surface regulation in the related SH-SY5Y and SK-N-SH human neuroblastoma cell lines. SDF-1 treatment caused rapid down-modulation of CXCR4 in SH-SY5Y cells. Pharmacologic activation of protein kinase C similarly reduced CXCR4, but via a distinct mechanism. Analysis of CXCR4 mutants delineated two CXCR4 regions required for SDF-1 treatment to decrease cell-surface CXCR4 in neuroblastoma cells: the isoleucine-leucine motif at residues 328 and 329 and residues 343-352. In contrast, and unlike CXCR4 regulation in other cell types, serines 324, 325, 338, and 339 were not required. Arrestin proteins can bind and regulate GPCR cell-surface expression, often functioning together with kinases such as G protein-coupled receptor kinase 2 (GRK2). Using SK-N-SH cells which are naturally deficient in β-arrestin1, we showed that β-arrestin1 is required for the CXCR4 343-352 region to modulate CXCR4 cell-surface expression following treatment with SDF-1. Moreover, GRK2 overexpression enhanced CXCR4 internalization, via a mechanism requiring both β-arrestin1 expression and the 343-352 region. Together, these results characterize CXCR4 structural domains and β-arrestin1 as critical regulators of CXCR4 cell-surface expression in neuroblastoma. β-Arrestin1 levels may therefore influence the CXCR4-driven metastasis of neuroblastoma as well as prognosis.
Collapse
Affiliation(s)
- Ian C Clift
- Neurobiology of Disease (I.C.C.), Molecular Pharmacology and Experimental Therapeutics (A.O.B.), and Department of Immunology (C.R.-R., K.N.K., K.E.H.), Mayo Clinic College of Medicine, Mayo Graduate School, Mayo Clinic, Rochester, Minnesota
| | | | | | | | | |
Collapse
|
21
|
Porcine JAB1 significantly enhances apoptosis induced by staurosporine. Cell Death Dis 2013; 4:e823. [PMID: 24091666 PMCID: PMC3824667 DOI: 10.1038/cddis.2013.357] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/08/2013] [Accepted: 08/12/2013] [Indexed: 01/18/2023]
Abstract
c-Jun activation domain-binding protein-1 (JAB1), also known as the subunit 5 of the COP9 signalosome, is a multifunctional protein that regulates cell proliferation, apoptosis and oncogenesis by interacting with and subsequently degrading a large number of proteins. Although human JAB1 (hJAB1) has been studied for a long time, studies on porcine JAB1 (pJAB1) have never been reported. In the present study, we cloned and characterized the pJAB1 gene. The genomic structure of the pJAB1 gene was determined. The open-reading frame of pJAB1 encoded 334 amino acids. The deduced amino acid sequence was highly similar to homologs in other species. Furthermore, the tertiary structure analysis and phylogenetic analysis indicated that JAB1 was highly conservative among species. pJAB1 may interact with several proteins according to protein–protein interactions analysis. In addition, pJAB1 was found to be universally expressed in porcine tissues. Subcellular localization analysis showed that GFP–pJAB1 fusion protein distributed specifically in the cytoplasm. Flow cytometric analysis proved that pJAB1 significantly enhanced apoptosis induced by staurosporine, which at least partially depended on the activation of caspase-9 and caspase-3. This study is useful for understanding the function of pJAB1 and offers a potential molecular model for the investigation of diseases related to hJAB1.
Collapse
|
22
|
N-acetyl-cysteine prevents toxic oxidative effects induced by IFN-α in human neurons. Int J Neuropsychopharmacol 2013; 16:1849-65. [PMID: 23590859 DOI: 10.1017/s1461145713000266] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Currently IFN-α is widely used for effective treatment of viral infections and several malignancies. However, IFN-α can cause neuropsychiatric disturbances and mental impairments, including fatigue, insomnia, depression, irritability and cognitive deficits. Molecular and cellular mechanisms leading to such side-effects are still poorly understood. Neurons seem to be an important target in mediating cellular effects induced by exposure to this cytokine, but so far little is known about IFN-α-induced effects on these cells. We have investigated the ability of IFN-α (2-100 ng/ml) to induce damage and toxicity to the human neuroblastoma SH-SY5Y cell line, commonly used for studying such phenomena, and the mechanisms underlying these effects. After 24 h treatment, IFN-α increased mitochondrial activity, whereas cell density was reduced in a dose- and time-dependent manner. This effect did not depend on reduced cell proliferation, but rather the activation of apoptosis, as revealed by an increased Bax:Bcl-2 mRNA ratio after 72-h IFN-α exposure. At this time-point, IFN-α also reduced the expression of the brain-derived neurotrophic factor gene, and induced an increase in reactive oxygen species (ROS). A co-treatment with N-acetyl-cysteine (NAC; 5 mm), a potent antioxidant and mitochondrial modulator, was able to counteract all of these IFN-α-induced effects. These findings demonstrated that IFN-α induces neurotoxicity and apoptosis that is, in part, very likely due to mitochondrial damages and production of ROS. We suggest that NAC, already tested for the treatment of psychiatric disorders, may be useful to prevent IFN-α-induced central side-effects in a safe and effective way.
Collapse
|
23
|
de Weille J, Fabre C, Bakalara N. Oxysterols in cancer cell proliferation and death. Biochem Pharmacol 2013; 86:154-60. [PMID: 23500545 DOI: 10.1016/j.bcp.2013.02.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 02/27/2013] [Accepted: 02/27/2013] [Indexed: 12/21/2022]
Abstract
Oxysterols have been shown to interfere with proliferation and cause the death of many cancer cell types, such as leukaemia, glioblastoma, colon, breast and prostate cancer cells, while they have little or no effect on senescent cells. The mechanisms by which oxysterols may influence proliferation are manifold: they control the transcription and the turnover of the key enzyme in cholesterol synthesis, 3-hydroxy-3-methylglutaryl CoA reductase, by binding to Insig-1, Insig-2 and liver X receptors. Oxysterols are thought to be generated in proportion to the rate of cholesterol synthesis. Although there is no consensus about the mechanism by which these oxysterols are generated in vivo, it clearly has to be ubiquitous. The 25- and the 27-cholesterol hydroxylases, present in almost all tissues, are possible candidates. Cholesterol uptake from lipoproteins, intracellular vesicle transport and lipid transfer are also modified by oxysterols. Oxysterols interfere with ERK, hedgehog and wnt pathways of proliferation and differentiation. When administered in vitro to cancer cell lines, oxysterols invariably both slow down proliferation and provoke cell death. Perhaps is it sufficient to stop proliferation of a cancer to provoke its eradication. Therefore, the two facets of oxysterol action that seem important for cancer treatment, cytostaticity and cytotoxicity, will be discussed.
Collapse
Affiliation(s)
- Jan de Weille
- Institut des Neurosciences de Montpellier, U1051 INSERM, 80 rue Augustin Fliche, 34295 Montpellier Cedex 05, France.
| | | | | |
Collapse
|