1
|
Buccellato FR, D’Anca M, Tartaglia GM, Del Fabbro M, Scarpini E, Galimberti D. Treatment of Alzheimer's Disease: Beyond Symptomatic Therapies. Int J Mol Sci 2023; 24:13900. [PMID: 37762203 PMCID: PMC10531090 DOI: 10.3390/ijms241813900] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
In an ever-increasing aged world, Alzheimer's disease (AD) represents the first cause of dementia and one of the first chronic diseases in elderly people. With 55 million people affected, the WHO considers AD to be a disease with public priority. Unfortunately, there are no final cures for this pathology. Treatment strategies are aimed to mitigate symptoms, i.e., acetylcholinesterase inhibitors (AChEI) and the N-Methyl-D-aspartate (NMDA) antagonist Memantine. At present, the best approaches for managing the disease seem to combine pharmacological and non-pharmacological therapies to stimulate cognitive reserve. Over the last twenty years, a number of drugs have been discovered acting on the well-established biological hallmarks of AD, deposition of β-amyloid aggregates and accumulation of hyperphosphorylated tau protein in cells. Although previous efforts disappointed expectations, a new era in treating AD has been working its way recently. The Food and Drug Administration (FDA) gave conditional approval of the first disease-modifying therapy (DMT) for the treatment of AD, aducanumab, a monoclonal antibody (mAb) designed against Aβ plaques and oligomers in 2021, and in January 2023, the FDA granted accelerated approval for a second monoclonal antibody, Lecanemab. This review describes ongoing clinical trials with DMTs and non-pharmacological therapies. We will also present a future scenario based on new biomarkers that can detect AD in preclinical or prodromal stages, identify people at risk of developing AD, and allow an early and curative treatment.
Collapse
Affiliation(s)
- Francesca R. Buccellato
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Marianna D’Anca
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Gianluca Martino Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Massimo Del Fabbro
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Elio Scarpini
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
2
|
Cabrera-Muñoz EA, Ramírez-Rodríguez GB, Díaz-Yañez L, Reyes-Galindo V, Meneses-San Juan D, Vega-Rivera NM. Melatonin Prevents Depression but Not Anxiety-like Behavior Produced by the Chemotherapeutic Agent Temozolomide: Implication of Doublecortin Cells and Hilar Oligodendrocytes. Int J Mol Sci 2023; 24:13376. [PMID: 37686181 PMCID: PMC10487426 DOI: 10.3390/ijms241713376] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/15/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Melatonin is a hormone synthesized by the pineal gland with neuroprotective and neurodevelopmental effects. Also, melatonin acts as an antidepressant by modulating the generation of new neurons in the dentate gyrus of the hippocampus. The positive effects of melatonin on behavior and neural development may suggest it is used for reverting stress but also for the alterations produced by chemotherapeutic drugs influencing behavior and brain plasticity. In this sense, temozolomide, an alkylating/anti-proliferating agent used in treating brain cancer, is associated with decreased cognitive functions and depression. We hypothesized that melatonin might prevent the effects of temozolomide on depression- and anxiety-like behavior by modulating some aspects of the neurogenic process in adult Balb/C mice. Mice were treated with temozolomide (25 mg/kg) for three days of two weeks, followed by melatonin (8 mg/kg) for fourteen days. Temozolomide produced short- and long-term decrements in cell proliferation (Ki67-positive cells: 54.89% and 53.38%, respectively) and intermediate stages of the neurogenic process (doublecortin-positive cells: 68.23% and 50.08%, respectively). However, melatonin prevented the long-term effects of temozolomide with the increased number of doublecortin-positive cells (47.21%) and the immunoreactivity of 2' 3'-Cyclic-nucleotide-3 phosphodiesterase (CNPase: 82.66%), an enzyme expressed by mature oligodendrocytes, in the hilar portion of the dentate gyrus. The effects of melatonin in the temozolomide group occurred with decreased immobility in the forced swim test (45.55%) but not anxiety-like behavior. Thus, our results suggest that melatonin prevents the harmful effects of temozolomide by modulating doublecortin cells, hilar oligodendrocytes, and depression-like behavior tested in the forced swim test. Our study could point out melatonin's beneficial effects for counteracting temozolomide's side effects.
Collapse
Affiliation(s)
- Edith Araceli Cabrera-Muñoz
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Calzada Mexico-Xochimilco 101, Ciudad de México 14370, Mexico (D.M.-S.J.)
| | - Gerardo Bernabé Ramírez-Rodríguez
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Calzada Mexico-Xochimilco 101, Ciudad de México 14370, Mexico (D.M.-S.J.)
| | - Lizeth Díaz-Yañez
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Calzada Mexico-Xochimilco 101, Ciudad de México 14370, Mexico (D.M.-S.J.)
| | - Verónica Reyes-Galindo
- Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior sin Número, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - David Meneses-San Juan
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Calzada Mexico-Xochimilco 101, Ciudad de México 14370, Mexico (D.M.-S.J.)
| | - Nelly Maritza Vega-Rivera
- Laboratorio de Neurpsicofarmacología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Calzada Mexico-Xochimilco 101, Ciudad de México 14370, Mexico;
| |
Collapse
|
3
|
Ramírez-Rodríguez GB, Meneses San-Juan D, Rico-Becerra AI, González-Olvera JJ, Reyes-Galindo V. Repetitive transcranial magnetic stimulation and fluoxetine reverse depressive-like behavior but with differential effects on Olig2-positive cells in chronically stressed mice. Neuropharmacology 2023; 236:109567. [PMID: 37209812 DOI: 10.1016/j.neuropharm.2023.109567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/22/2023]
Abstract
Depression is a mood disorder coursing with several behavioral, cellular, and neurochemical alterations. The negative impact of chronic stress may precipitate this neuropsychiatric disorder. Interestingly, downregulation of oligodendrocyte-related genes, abnormal myelin structure, and reduced numbers and density of oligodendrocytes in the limbic system have been identified in patients diagnosed with depression, but also in rodents exposed to chronic mild stress (CMS). Several reports have emphasized the importance of pharmacological or stimulation-related strategies in influencing oligodendrocytes in the hippocampal neurogenic niche. Repetitive transcranial magnetic stimulation (rTMS) has gained attention as an intervention to revert depression. Here, we hypothesized that 5 Hz (Hz) of rTMS or Fluoxetine (Flx) would revert depressive-like behaviors by influencing oligodendrocytes and revert neurogenic alterations caused by CMS in female Swiss Webster mice. Our results showed that 5 Hz rTMS or Flx revert depressive-like behavior. Only rTMS influenced oligodendrocytes by increasing the number of Olig2-positive cells in the hilus of the dentate gyrus and the prefrontal cortex. However, both strategies exerted effects on some events of the hippocampal neurogenic processes, such as cell proliferation (Ki67-positive cells), survival (CldU-positive cells), and intermediate stages (doublecortin-positive cells) along the dorsal-ventral axis of this region. Interestingly, the combination of rTMS-Flx exerted antidepressant-like effects, but the increased number of Olig2-positive cells observed in mice treated only with rTMS was canceled. However, rTMS-Flx exerted a synergistic effect by increasing the number of Ki67-positive cells. It also increased the number of CldU- and doublecortin-positive cells in the dentate gyrus. Our results demonstrate that 5 Hz rTMS has beneficial effects, as it reverted depressive-like behavior by increasing the number of Olig2-positive cells and reverting the decrement in hippocampal neurogenesis in CMS-exposed mice. Nevertheless, the effects of rTMS on other glial cells require further investigation.
Collapse
Affiliation(s)
- Gerardo Bernabé Ramírez-Rodríguez
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Alcaldía Tlalpan, C.P, 14370, Ciudad de México, Mexico.
| | - David Meneses San-Juan
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Alcaldía Tlalpan, C.P, 14370, Ciudad de México, Mexico
| | - Allan Irasek Rico-Becerra
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Alcaldía Tlalpan, C.P, 14370, Ciudad de México, Mexico; Licenciatura en Neurociencias, Facultad de Medicina. Universidad Nacional Autónoma de México. Circuito Interior, Avenida Universidad 3000, Ciudad Universitaria, Alcaldía Coyoacán, C.P, 04510, Ciudad de México, Mexico
| | - Jorge Julio González-Olvera
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101. Alcaldía Tlalpan, C.P, 14370, Ciudad de México, Mexico
| | - Verónica Reyes-Galindo
- Instituto de Ecología. Universidad Nacional Autónoma de México. Circuito Interior, Avenida Universidad 3000, Ciudad Universitaria. Alcaldía Coyoacán, C.P, 04510, Ciudad de México, Mexico
| |
Collapse
|
4
|
Potes Y, Cachán-Vega C, Antuña E, García-González C, Menéndez-Coto N, Boga JA, Gutiérrez-Rodríguez J, Bermúdez M, Sierra V, Vega-Naredo I, Coto-Montes A, Caballero B. Benefits of the Neurogenic Potential of Melatonin for Treating Neurological and Neuropsychiatric Disorders. Int J Mol Sci 2023; 24:ijms24054803. [PMID: 36902233 PMCID: PMC10002978 DOI: 10.3390/ijms24054803] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
There are several neurological diseases under which processes related to adult brain neurogenesis, such cell proliferation, neural differentiation and neuronal maturation, are affected. Melatonin can exert a relevant benefit for treating neurological disorders, given its well-known antioxidant and anti-inflammatory properties as well as its pro-survival effects. In addition, melatonin is able to modulate cell proliferation and neural differentiation processes in neural stem/progenitor cells while improving neuronal maturation of neural precursor cells and newly created postmitotic neurons. Thus, melatonin shows relevant pro-neurogenic properties that may have benefits for neurological conditions associated with impairments in adult brain neurogenesis. For instance, the anti-aging properties of melatonin seem to be linked to its neurogenic properties. Modulation of neurogenesis by melatonin is beneficial under conditions of stress, anxiety and depression as well as for the ischemic brain or after a brain stroke. Pro-neurogenic actions of melatonin may also be beneficial for treating dementias, after a traumatic brain injury, and under conditions of epilepsy, schizophrenia and amyotrophic lateral sclerosis. Melatonin may represent a pro-neurogenic treatment effective for retarding the progression of neuropathology associated with Down syndrome. Finally, more studies are necessary to elucidate the benefits of melatonin treatments under brain disorders related to impairments in glucose and insulin homeostasis.
Collapse
Affiliation(s)
- Yaiza Potes
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
- Correspondence: (Y.P.); (B.C.); Tel.: +34-985102767 (Y.P.); +34-985102784 (B.C.)
| | - Cristina Cachán-Vega
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Eduardo Antuña
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Claudia García-González
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Nerea Menéndez-Coto
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Jose Antonio Boga
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - José Gutiérrez-Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Manuel Bermúdez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Verónica Sierra
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33300 Villaviciosa, Asturias, Spain
| | - Ignacio Vega-Naredo
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
| | - Ana Coto-Montes
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
| | - Beatriz Caballero
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
- Correspondence: (Y.P.); (B.C.); Tel.: +34-985102767 (Y.P.); +34-985102784 (B.C.)
| |
Collapse
|
5
|
Ramos E, Romero A, Morales-García J. Melatonin: a multitasking indoleamine to modulate hippocampal neurogenesis. Neural Regen Res 2023; 18:503-505. [DOI: 10.4103/1673-5374.350189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
6
|
Cachán-Vega C, Vega-Naredo I, Potes Y, Bermejo-Millo JC, Rubio-González A, García-González C, Antuña E, Bermúdez M, Gutiérrez-Rodríguez J, Boga JA, Coto-Montes A, Caballero B. Chronic Treatment with Melatonin Improves Hippocampal Neurogenesis in the Aged Brain and Under Neurodegeneration. Molecules 2022; 27:molecules27175543. [PMID: 36080336 PMCID: PMC9457692 DOI: 10.3390/molecules27175543] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/19/2022] Open
Abstract
Adult hippocampal neurogenesis is altered during aging and under different neuropsychiatric and neurodegenerative diseases. Melatonin shows neurogenic and neuroprotective properties during aging and neuropathological conditions. In this study, we evaluated the effects of chronic treatment with melatonin on different markers of neurodegeneration and hippocampal neurogenesis using immunohistochemistry in the aged and neurodegenerative brains of SAMP8 mice, which is an animal model of accelerated senescence that mimics aging-related Alzheimer’s pathology. Neurodegenerative processes observed in the brains of aged SAMP8 mice at 10 months of age include the presence of damaged neurons, disorganization in the layers of the brain cortex, alterations in neural processes and the length of neuronal prolongations and β-amyloid accumulation in the cortex and hippocampus. This neurodegeneration may be associated with neurogenic responses in the hippocampal dentate gyrus of these mice, since we observed a neurogenic niche of neural stem and progenitor/precursors cells in the hippocampus of SAMP8 mice. However, hippocampal neurogenesis seems to be compromised due to alterations in the cell survival, migration and/or neuronal maturation of neural precursor cells due to the neurodegeneration levels in these mice. Chronic treatment with melatonin for 9 months decreased these neurodegenerative processes and the neurodegeneration-induced neurogenic response. Noticeably, melatonin also induced recovery in the functionality of adult hippocampal neurogenesis in aged SAMP8 mice.
Collapse
Affiliation(s)
- Cristina Cachán-Vega
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Ignacio Vega-Naredo
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
| | - Yaiza Potes
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
| | - Juan Carlos Bermejo-Millo
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
| | - Adrian Rubio-González
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
| | - Claudia García-González
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Eduardo Antuña
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Manuel Bermúdez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Hospital Monte Naranco, 33012 Oviedo, Asturias, Spain
| | - José Gutiérrez-Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Hospital Monte Naranco, 33012 Oviedo, Asturias, Spain
| | - José Antonio Boga
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Ana Coto-Montes
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
| | - Beatriz Caballero
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
- Correspondence: ; Tel.: +34-98-510-2784
| |
Collapse
|
7
|
5 Hz of repetitive transcranial magnetic stimulation improves cognition and induces modifications in hippocampal neurogenesis in adult female Swiss Webster mice. Brain Res Bull 2022; 186:91-105. [PMID: 35688304 DOI: 10.1016/j.brainresbull.2022.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/23/2022] [Accepted: 06/03/2022] [Indexed: 11/22/2022]
Abstract
Adult hippocampal neurogenesis is regulated by several stimuli to promote the creation of a reserve that may facilitate coping with environmental challenges. In this regard, repetitive transcranial magnetic stimulation (rTMS), a neuromodulation therapy, came to our attention because in clinical studies it reverts behavioral and cognitive alterations related to changes in brain plasticity. Some preclinical studies emphasize the need to understand the underlying mechanism of rTMS to induce behavioral modifications. In this study, we investigated the effects of rTMS on cognition, neurogenic-associated modifications, and neuronal activation in the hippocampus of female Swiss Webster mice. We applied 5 Hz of rTMS twice a day for 14 days. Three days later, mice were exposed to the behavioral battery. Then, brains were collected and immunostained for Ki67-positive cells, doublecortin-positive (DCX+)-cells, calbindin, c-Fos and FosB/Delta-FosB in the dentate gyrus. Also, we analyzed mossy fibers and CA3 with calbindin immunostaining. Mice exposed to rTMS exhibited cognitive improvement, an increased number of proliferative cells, DCX cells, DCX cells with complex dendrite morphology, c-Fos and immunoreactivity of FosB/Delta-FosB in the granular cell layer. The volume of the granular cell layer, mossy fibers and CA3 in rTMS mice also increased. Interestingly, cognitive improvement correlated with DCX cells with complex dendrite morphology. Also, those DCX cells and calbindin immunoreactivity correlated with c-Fos in the granular cell layer. Our results suggest that 5 Hz of rTMS applied twice a day modify cell proliferation, doublecortin cells, mossy fibers and enhance cognitive behavior in healthy female Swiss Webster mice.
Collapse
|
8
|
Environmental enrichment: dissociated effects between physical activity and changing environmental complexity on anxiety and neurogenesis in adult male Balb/C mice. Physiol Behav 2022; 254:113878. [PMID: 35700814 DOI: 10.1016/j.physbeh.2022.113878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/27/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022]
Abstract
Several factors, including environmental modifications, stimulate neuroplasticity. One type of neuroplasticity consists in the generation of new neurons in the dentate gyrus of the hippocampus. Neurogenesis is modulated by environmental enrichment (ENR, tunnels plus running wheel) and affected by the time of exposure to ENR. Despite the wide use of ENR to stimulate neuroplasticity, the degree to which ENR variations modeled by temporally changing the level of environmental complexity affect hippocampal neurogenesis and anxiety is still unclear. Thus, we investigated the effects of five housing conditions on young adult male Balb/C mice exposed for 42 days. The groups were as follows: standard conditions without ENR, constant ENR complexity, gradual increase of ENR complexity followed by a gradual decrease of ENR complexity, gradual increase of ENR complexity followed by constant ENR complexity, and constant ENR complexity followed by a gradual decrease of ENR complexity. On day 44, mice were exposed to the elevated plus-maze to evaluate anxiety. Further, we analyzed neurogenesis and quantified corticosterone levels. In an additional experiment, we explored the effect of voluntary physical activity on anxiety, neurogenesis, and corticosterone during the variations in ENR complexity. Our results showed that any change in ENR complexity over time reduced anxiety. Also, voluntary physical activity alone or in the context of a complex environment increased doublecortin cell maturation in the granular cell layer of the hippocampus. Finally, our study supports that physical activity acts proneurogenic, whereas any change in environmental complexity decreases anxiety-like behavior. However, the decrease in corticosterone levels elicited by physical activity was lower than the decrease produced by the decrement in environmental complexity.
Collapse
|
9
|
Xia Z, Gao M, Sheng P, Shen M, Zhao L, Gao L, Yan B. Fe 3O 4 Nanozymes Improve Neuroblast Differentiation and Blood-Brain Barrier Integrity of the Hippocampal Dentate Gyrus in D-Galactose-Induced Aged Mice. Int J Mol Sci 2022; 23:ijms23126463. [PMID: 35742908 PMCID: PMC9224281 DOI: 10.3390/ijms23126463] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Aging is a process associated with blood-brain barrier (BBB) damage and the reduction in neurogenesis, and is the greatest known risk factor for neurodegenerative disorders. However, the effects of Fe3O4 nanozymes on neurogenesis have rarely been studied. This study examined the effects of Fe3O4 nanozymes on neuronal differentiation in the dentate gyrus (DG) and BBB integrity of D-galactose-induced aged mice. Long-term treatment with Fe3O4 nanozymes (10 μg/mL diluted in ddH2O daily) markedly increased the doublecortin (DCX) immunoreactivity and decreased BBB injury induced by D-galactose treatment. In addition, the decreases in the levels of antioxidant proteins including superoxide dismutase (SOD) and catalase as well as autophagy-related proteins such as Becin-1, LC3II/I, and Atg7 induced by D-galactose treatment were significantly ameliorated by Fe3O4 nanozymes in the DG of the mouse hippocampus. Furthermore, Fe3O4 nanozyme treatment showed an inhibitory effect against apoptosis in the hippocampus. In conclusion, Fe3O4 nanozymes can relieve neuroblast damage and promote neuroblast differentiation in the hippocampal DG by regulating oxidative stress, apoptosis, and autophagy.
Collapse
Affiliation(s)
- Zihao Xia
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China; (Z.X.); (M.G.); (P.S.); (M.S.); (L.Z.)
| | - Manman Gao
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China; (Z.X.); (M.G.); (P.S.); (M.S.); (L.Z.)
| | - Peng Sheng
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China; (Z.X.); (M.G.); (P.S.); (M.S.); (L.Z.)
| | - Mengmeng Shen
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China; (Z.X.); (M.G.); (P.S.); (M.S.); (L.Z.)
| | - Lin Zhao
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China; (Z.X.); (M.G.); (P.S.); (M.S.); (L.Z.)
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;
| | - Bingchun Yan
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China; (Z.X.); (M.G.); (P.S.); (M.S.); (L.Z.)
- Correspondence: ; Tel.: +86-514-87992215
| |
Collapse
|
10
|
Ali AAH, von Gall C. Adult Neurogenesis under Control of the Circadian System. Cells 2022; 11:cells11050764. [PMID: 35269386 PMCID: PMC8909047 DOI: 10.3390/cells11050764] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
The mammalian circadian system is a hierarchically organized system, which controls a 24-h periodicity in a wide variety of body and brain functions and physiological processes. There is increasing evidence that the circadian system modulates the complex multistep process of adult neurogenesis, which is crucial for brain plasticity. This modulatory effect may be exercised via rhythmic systemic factors including neurotransmitters, hormones and neurotrophic factors as well as rhythmic behavior and physiology or via intrinsic factors within the neural progenitor cells such as the redox state and clock genes/molecular clockwork. In this review, we discuss the role of the circadian system for adult neurogenesis at both the systemic and the cellular levels. Better understanding of the role of the circadian system in modulation of adult neurogenesis can help develop new treatment strategies to improve the cognitive deterioration associated with chronodisruption due to detrimental light regimes or neurodegenerative diseases.
Collapse
|
11
|
Melatonin and the Programming of Stem Cells. Int J Mol Sci 2022; 23:ijms23041971. [PMID: 35216086 PMCID: PMC8879213 DOI: 10.3390/ijms23041971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
Melatonin interacts with various types of stem cells, in multiple ways that comprise stimulation of proliferation, maintenance of stemness and self-renewal, protection of survival, and programming toward functionally different cell lineages. These various properties are frequently intertwined but may not be always jointly present. Melatonin typically stimulates proliferation and transition to the mature cell type. For all sufficiently studied stem or progenitor cells, melatonin’s signaling pathways leading to expression of respective morphogenetic factors are discussed. The focus of this article will be laid on the aspect of programming, particularly in pluripotent cells. This is especially but not exclusively the case in neural stem cells (NSCs) and mesenchymal stem cells (MSCs). Concerning developmental bifurcations, decisions are not exclusively made by melatonin alone. In MSCs, melatonin promotes adipogenesis in a Wnt (Wingless-Integration-1)-independent mode, but chondrogenesis and osteogenesis Wnt-dependently. Melatonin upregulates Wnt, but not in the adipogenic lineage. This decision seems to depend on microenvironment and epigenetic memory. The decision for chondrogenesis instead of osteogenesis, both being Wnt-dependent, seems to involve fibroblast growth factor receptor 3. Stem cell-specific differences in melatonin and Wnt receptors, and contributions of transcription factors and noncoding RNAs are outlined, as well as possibilities and the medical importance of re-programming for transdifferentiation.
Collapse
|
12
|
Chanmanee T, Wongpun J, Tocharus C, Govitrapong P, Tocharus J. The effects of agomelatine on endoplasmic reticulum stress related to mitochondrial dysfunction in hippocampus of aging rat model. Chem Biol Interact 2022; 351:109703. [PMID: 34673010 DOI: 10.1016/j.cbi.2021.109703] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/03/2021] [Accepted: 10/10/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Agomelatine, a novel antidepressant, is a melatonin MT receptor agonist and serotonin 5HT2C receptor antagonist. In this study, agomelatine was used to investigate the molecular mechanisms of hippocampal aging associated with endoplasmic reticulum (ER) stress, mitochondrial dysfunction, and apoptosis, all of which led to short-term memory impairment. METHOD Hippocampal aging was induced in male Wistar rats by d-galactose (D-gal) intraperitoneal injection (100 mg/kg) for 14 weeks. During the last 4 weeks of D-gal treatment, rats were treated with agomelatine (40 mg/kg) or melatonin (10 mg/kg). At the end of the experiment, all rats were assessed for short-term memory by using the Morris water maze test. Subsequently, rats were sacrified and the hippocampus was removed from each rat for determination of reactive oxygen species (ROS), malondialdehyde (MDA), and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays; and immunohistochemistry related to ER stress, mitochondrial dysfunction, and apoptosis. RESULTS Agomelatine suppressed the expression of the aging-related proteins P16 and receptor for advanced glycation endproducts (RAGE), the expression of NADPH oxidase (NOX) 2 and 4, and ROS production. This treatment also shifted the morphology of astrocytes and microglia toward homeostasis. Furthermore, agomelatine decreased inositol-requiring enzyme 1 (pIRE1), protein kinase R-like endoplasmic reticulum kinase (pPERK), and chaperone binding immunoglobulin protein (BiP), leading to suppression of ER stress markers C/EBP homologous protein (CHOP) and caspase-12. Agomelatine reduced Ca2+ from the ER and stabilized the mitochondrial membrane stability, which was denoted by the BCL2 Associated X (Bax)/B-cell lymphoma 2 (Bcl2) balance. Agomelatine decreased cleaved caspase-3 production and the Terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL)-positive area, and glutamate excitotoxicity was prevented via suppression of N-methyl-d-aspartate (NMDA) receptor subunit expression. Agomelatine exhibited effects that were similar to melatonin. CONCLUSION Agomelatine improved neurodegeneration in a rat model of hippocampal aging by attenuating ROS production, ER stress, mitochondrial dysfunction, excitotoxicity, and apoptosis.
Collapse
Affiliation(s)
- Teera Chanmanee
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Graduate School, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jittiporn Wongpun
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Kamphaeng Phet 6 Road, Lak Si, Bangkok, 10210, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Functional Food Research Center for Well-being, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
13
|
Melatonin: From Neurobiology to Treatment. Brain Sci 2021; 11:brainsci11091121. [PMID: 34573143 PMCID: PMC8468230 DOI: 10.3390/brainsci11091121] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 01/12/2023] Open
Abstract
Melatonin, the major regulator of the sleep/wake cycle, also plays important physiological and pharmacological roles in the control of neuronal plasticity and neuroprotection. Accordingly, the secretion of this hormone reaches the maximal extent during brain development (childhood-adolescence) while it is greatly reduced during aging, a condition associated to altered sleep pattern and reduced neuronal plasticity. Altogether, these properties of melatonin have allowed us to demonstrate in both experimental models and clinical studies the great chronobiotic efficacy and sleep promoting effects of exogenous melatonin. Thus, the prolonged release formulation of melatonin, present as a drug in the pharmaceutical market, has been recently recommended for the treatment of insomnia in over 55 years old subjects.
Collapse
|
14
|
Leung JWH, Cheung KK, Ngai SPC, Tsang HWH, Lau BWM. Protective Effects of Melatonin on Neurogenesis Impairment in Neurological Disorders and Its Relevant Molecular Mechanisms. Int J Mol Sci 2020; 21:ijms21165645. [PMID: 32781737 PMCID: PMC7460604 DOI: 10.3390/ijms21165645] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 02/05/2023] Open
Abstract
Neurogenesis is the process by which functional new neurons are generated from the neural stem cells (NSCs) or neural progenitor cells (NPCs). Increasing lines of evidence show that neurogenesis impairment is involved in different neurological illnesses, including mood disorders, neurogenerative diseases, and central nervous system (CNS) injuries. Since reversing neurogenesis impairment was found to improve neurological outcomes in the pathological conditions, it is speculated that modulating neurogenesis is a potential therapeutic strategy for neurological diseases. Among different modulators of neurogenesis, melatonin is a particularly interesting one. In traditional understanding, melatonin controls the circadian rhythm and sleep-wake cycle, although it is not directly involved in the proliferation and survival of neurons. In the last decade, it was reported that melatonin plays an important role in the regulation of neurogenesis, and thus it may be a potential treatment for neurogenesis-related disorders. The present review aims to summarize and discuss the recent findings regarding the protective effects of melatonin on the neurogenesis impairment in different neurological conditions. We also address the molecular mechanisms involved in the actions of melatonin in neurogenesis modulation.
Collapse
Affiliation(s)
- Joseph Wai-Hin Leung
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Kwok-Kuen Cheung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China; (K.-K.C.); (S.P.-C.N.)
| | - Shirley Pui-Ching Ngai
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China; (K.-K.C.); (S.P.-C.N.)
| | - Hector Wing-Hong Tsang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China; (K.-K.C.); (S.P.-C.N.)
- Correspondence: (H.W.-H.T.); (B.W.-M.L.)
| | - Benson Wui-Man Lau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China; (K.-K.C.); (S.P.-C.N.)
- Correspondence: (H.W.-H.T.); (B.W.-M.L.)
| |
Collapse
|
15
|
Ang MJ, Kang S, Moon C. Melatonin alters neuronal architecture and increases cysteine-rich protein 1 signaling in the male mouse hippocampus. J Neurosci Res 2020; 98:2333-2348. [PMID: 32754943 DOI: 10.1002/jnr.24708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/13/2020] [Accepted: 07/19/2020] [Indexed: 01/10/2023]
Abstract
Neuronal plasticity describes changes in structure, function, and connections of neurons. The hippocampus, in particular, has been shown to exhibit considerable plasticity regarding both physiological and morphological functions. Melatonin, a hormone released by the pineal gland, promotes cell survival and dendrite maturation of neurons in the newborn brain and protects against neurological disorders. In this study, we investigated the effect of exogenous melatonin on neuronal architecture and its possible mechanism in the hippocampus of adult male C57BL/6 mice. Melatonin treatment significantly increased the total length and complexity of dendrites in the apical and basal cornu ammonis (CA) 1 and in the dentate gyrus in mouse hippocampi. Spine density in CA1 apical dendrites was increased, but no significant differences in other subregions were observed. In primary cultured hippocampal neurons, the length and arborization of neurites were significantly augmented by melatonin treatment. Additionally, western blot and immunohistochemical analyses in both in vivo and in vitro systems revealed significant increases in the level of cysteine-rich protein 1 (crp-1) protein, which is known to be involved in dendritic branching in mouse hippocampal neurons after melatonin treatment. Our results suggest that exogenous melatonin leads to significant alterations of neuronal micromorphometry in the adult hippocampus, possibly via crp-1 signaling.
Collapse
Affiliation(s)
- Mary Jasmin Ang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, South Korea
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, South Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
16
|
Benitah SA, Welz PS. Circadian Regulation of Adult Stem Cell Homeostasis and Aging. Cell Stem Cell 2020; 26:817-831. [DOI: 10.1016/j.stem.2020.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Vega-Rivera NM, Ortiz-López L, Granados-Juárez A, Estrada-Camarena EM, Ramírez-Rodríguez GB. Melatonin Reverses the Depression-associated Behaviour and Regulates Microglia, Fractalkine Expression and Neurogenesis in Adult Mice Exposed to Chronic Mild Stress. Neuroscience 2020; 440:316-336. [PMID: 32417342 DOI: 10.1016/j.neuroscience.2020.05.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 02/08/2023]
Abstract
Depression may be precipitated by the negative impact of chronic stress, which is considered to play a key role in this neuropsychiatric disorder. Interestingly, depressed patients show decreased levels of melatonin. This hormone acts pro-neurogenic and exhibits anti-depressant effects in rodent models of predictive antidepressant-like effects. However, the benefits of melatonin in reversing the deleterious effects of chronic mild stress on the alterations in behaviour and in the neurogenic niche of the hippocampus in male BALB/c mice are unknown. In this study, we compared the effects of melatonin (2.5 mg/kg) and citalopram (5 mg/kg), an antidepressant drug belonging to the selective serotonin reuptake inhibitors, in male BALB/c mice exposed to chronic mild stress (CMS). We also investigated the potential effects of melatonin and citalopram on microglial cells, hippocampal neurogenesis and peripheral cytokine profiles. Melatonin and citalopram induced similar antidepressant-like activities that occurred with some of the the following findings: (1) reversal of the morphological alterations in microglia; (2) reversal of the decreased immunoreactivity to CX3CL1 and CX3CR1 in the dentate gyrus; (3) positive regulation of cell proliferation, survival and complexity of the dendritic trees of doublecortin-cells; and (4) modifications of peripheral CX3CL1 expression. This outcome is consistent with the hypothesis about the antidepressant-like effect of melatonin and supports its relevance as a modulator of the niche in the dentate gyrus.
Collapse
Affiliation(s)
- Nelly Maritza Vega-Rivera
- Laboratorio de Neuropsicofarmacología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, 14370 Ciudad de México, Mexico
| | - Leonardo Ortiz-López
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, 14370 Ciudad de México, Mexico
| | - Andrea Granados-Juárez
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, 14370 Ciudad de México, Mexico
| | - Erika Monserrat Estrada-Camarena
- Laboratorio de Neuropsicofarmacología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, 14370 Ciudad de México, Mexico
| | - Gerardo Bernabé Ramírez-Rodríguez
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, 14370 Ciudad de México, Mexico.
| |
Collapse
|
18
|
Ramírez-Rodríguez GB, Palacios-Cabriales DM, Ortiz-López L, Estrada-Camarena EM, Vega-Rivera NM. Melatonin Modulates Dendrite Maturation and Complexity in the Dorsal- and Ventral- Dentate Gyrus Concomitantly with Its Antidepressant-Like Effect in Male Balb/C Mice. Int J Mol Sci 2020; 21:ijms21051724. [PMID: 32138332 PMCID: PMC7084558 DOI: 10.3390/ijms21051724] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
Adult neurogenesis occurs in the dentate gyrus (DG) of the hippocampus. New neurons help to counteract the effects of stress and several interventions including antidepressant drugs, environmental modifications and internal factors act pro-neurogenic with consequences in the dorsal and ventral DG. Melatonin, the main product synthesized by the pineal gland, induces antidepressant-like effects and modulates several events of the neurogenic process. However, the information related to the capability of melatonin to modulate dendrite maturation and complexity in the dorsal and ventral regions of the DG and their correlation with its antidepressant-like effect is absent. Thus, in this study, we analyzed the impact of melatonin (0, 0.5, 1, 2.5, 5 or 10 mg/kg) administered daily for fourteen days on the number, dendrite complexity and distribution of doublecortin (DCX)-cells in the dorsal-ventral regions of the DG in male Balb/C mice. Doublecortin is a microtubule-associated protein that is expressed during the course of dendritic maturation of newborn neurons. Also, we analyzed the impact of melatonin on despair-like behavior in the forced swim test. We first found a significant increase in the number and higher dendrite complexity, mainly with the doses of 2.5, 5 and 10 mg/kg of melatonin (81%, 122%, 78%). These cells showed more complex dendritic trees in the ventral- and the dorsal- DG. Concomitantly, the doses of 5 and 10 mg/kg of melatonin decreased depressant-like behavior (76%, 82%). Finally, the data corroborate the antidepressant-like effect of melatonin and the increasing number of doublecortin-associated cells. Besides, the data indicate that melatonin favors the number and dendrite complexity of DCX-cells in the dorsal- and ventral- region of the DG, which may explain part of the antidepressant-like effect of melatonin.
Collapse
Affiliation(s)
- Gerardo Bernabé Ramírez-Rodríguez
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry “Ramón de la Fuente Muñiz”, Calzada Mexico-Xochimilco No. 101, Mexico City C.P. 14370, Mexico; (D.M.P.-C.); (L.O.-L.)
- Correspondence: (G.B.R.-R.); (N.M.V.-R.)
| | - Diana Montserrat Palacios-Cabriales
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry “Ramón de la Fuente Muñiz”, Calzada Mexico-Xochimilco No. 101, Mexico City C.P. 14370, Mexico; (D.M.P.-C.); (L.O.-L.)
| | - Leonardo Ortiz-López
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry “Ramón de la Fuente Muñiz”, Calzada Mexico-Xochimilco No. 101, Mexico City C.P. 14370, Mexico; (D.M.P.-C.); (L.O.-L.)
| | - Erika Montserrat Estrada-Camarena
- Laboratory of Neuropsychopharmacology, Division of Neurosciences, National Institute of Psychiatry “Ramón de la Fuente Muñiz”, Calzada Mexico-Xochimilco No. 101, Mexico City C.P. 14370, Mexico;
| | - Nelly Maritza Vega-Rivera
- Laboratory of Neuropsychopharmacology, Division of Neurosciences, National Institute of Psychiatry “Ramón de la Fuente Muñiz”, Calzada Mexico-Xochimilco No. 101, Mexico City C.P. 14370, Mexico;
- Correspondence: (G.B.R.-R.); (N.M.V.-R.)
| |
Collapse
|
19
|
Herrera-Arozamena C, Estrada-Valencia M, Pérez C, Lagartera L, Morales-García JA, Pérez-Castillo A, Franco-Gonzalez JF, Michalska P, Duarte P, León R, López MG, Mills A, Gago F, García-Yagüe ÁJ, Fernández-Ginés R, Cuadrado A, Rodríguez-Franco MI. Tuning melatonin receptor subtype selectivity in oxadiazolone-based analogues: Discovery of QR2 ligands and NRF2 activators with neurogenic properties. Eur J Med Chem 2020; 190:112090. [DOI: 10.1016/j.ejmech.2020.112090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/18/2022]
|
20
|
Pipová Kokošová N, Kisková T, Vilhanová K, Štafuriková A, Jendželovský R, Račeková E, Šmajda B. Melatonin mitigates hippocampal and cognitive impairments caused by prenatal irradiation. Eur J Neurosci 2020; 52:3575-3594. [PMID: 31985866 DOI: 10.1111/ejn.14687] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 01/10/2020] [Accepted: 01/17/2020] [Indexed: 12/11/2022]
Abstract
Formation of new neurons and glial cells in the brain is taking place in mammals not only during prenatal embryogenesis but also during adult life. As an enhancer of oxidative stress, ionizing radiation represents a potent inhibitor of neurogenesis and gliogenesis in the brain. It is known that the pineal hormone melatonin is a potent free radical scavenger and counteracts inflammation and apoptosis in brain injuries. The aim of our study was to establish the effects of melatonin on cells in the hippocampus and selected forms of behaviour in prenatally irradiated rats. The male progeny of irradiated (1 Gy of gamma rays; n = 38) and sham-irradiated mothers (n = 19), aged 3 weeks or 2 months, were used in the experiment. Melatonin was administered daily in drinking water (4 mg/kg b. w.) to a subset of animals from each age group. Prenatal irradiation markedly suppressed proliferative activity in the dentate gyrus in both age groups. Melatonin significantly increased the number of proliferative BrdU-positive cells in hilus of young irradiated animals, and the number of mature NeuN-positive neurons in hilus and granular cell layer of the dentate gyrus in these rats and in CA1 region of adult irradiated rats. Moreover, melatonin significantly improved the spatial memory impaired by irradiation, assessed in Morris water maze. A significant correlation between the number of proliferative cells and cognitive performances was found, too. Our study indicates that melatonin may decrease the loss of hippocampal neurons in the CA1 region and improve cognitive abilities after irradiation.
Collapse
Affiliation(s)
- Natália Pipová Kokošová
- Department of Animal Physiology, Faculty of Science, Institute of Biology and Ecology, P. J. Šafárik University in Košice, Košice, Slovak Republic
| | - Terézia Kisková
- Department of Animal Physiology, Faculty of Science, Institute of Biology and Ecology, P. J. Šafárik University in Košice, Košice, Slovak Republic
| | - Katarína Vilhanová
- Department of Animal Physiology, Faculty of Science, Institute of Biology and Ecology, P. J. Šafárik University in Košice, Košice, Slovak Republic
| | - Andrea Štafuriková
- Department of Animal Physiology, Faculty of Science, Institute of Biology and Ecology, P. J. Šafárik University in Košice, Košice, Slovak Republic
| | - Rastislav Jendželovský
- Department of Cell Biology, Faculty of Science, Institute of Biology and Ecology, P. J. Šafárik University in Košice, Košice, Slovak Republic
| | - Enikő Račeková
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Košice, Slovak Republic
| | - Beňadik Šmajda
- Department of Animal Physiology, Faculty of Science, Institute of Biology and Ecology, P. J. Šafárik University in Košice, Košice, Slovak Republic
| |
Collapse
|
21
|
Bizzarri M. Advances in Characterizing Recently-Identified Molecular Actions of Melatonin: Clinical Implications. APPROACHING COMPLEX DISEASES 2020. [PMCID: PMC7164543 DOI: 10.1007/978-3-030-32857-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Melatonin, N-acetyl-5-methoxy-tryptamine, was discovered to be a product of serotonin metabolism in the mammalian pineal gland where its synthesis is under control of the light:dark cycle. Besides its regulatory pathway involving ganglion cells in the retina, the neural connections between the eyes and the pineal gland include the master circadian clock, the suprachiasmatic nuclei, and the central and peripheral nervous systems. Since pineal melatonin is released into the blood and into the cerebrospinal fluid, it has access to every cell in an organism and it mediates system-wide effects. Subsequently, melatonin was found in several extrapineal organs and, more recently, perhaps in every cell of every organ. In contrast to the pinealocytes, non-pineal cells do not discharge melatonin into the blood; rather it is used locally in an intracrine, autocrine, or paracrine manner. Melatonin levels in non-pineal cells do not exhibit a circadian rhythm and do not depend on circulating melatonin concentrations although when animals are treated with exogenous melatonin it is taken up by presumably all cells. Mitochondria are the presumed site of melatonin synthesis in all cells; the enzymatic machinery for melatonin synthesis has been identified in mitochondria. The association of melatonin with mitochondria, because of its ability to inhibit oxidative stress, is very fortuitous since these organelles are a major site of damaging reactive oxygen species generation. In this review, some of the actions of non-pineal-derived melatonin are discussed in terms of cellular and subcellular physiology.
Collapse
Affiliation(s)
- Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
22
|
Melatonin in Alzheimer’s Disease: A Latent Endogenous Regulator of Neurogenesis to Mitigate Alzheimer’s Neuropathology. Mol Neurobiol 2019; 56:8255-8276. [DOI: 10.1007/s12035-019-01660-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 12/15/2022]
|
23
|
Protective effects of melatonin against valproic acid-induced memory impairments and reductions in adult rat hippocampal neurogenesis. Neuroscience 2019; 406:580-593. [DOI: 10.1016/j.neuroscience.2019.02.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 01/12/2023]
|
24
|
Ramírez-Rodríguez GB, Olvera-Hernández S, Vega-Rivera NM, Ortiz-López L. Melatonin Influences Structural Plasticity in the Axons of Granule Cells in the Dentate Gyrus of Balb/C Mice. Int J Mol Sci 2018; 20:ijms20010073. [PMID: 30585191 PMCID: PMC6337618 DOI: 10.3390/ijms20010073] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023] Open
Abstract
Melatonin, the main product synthesized by the pineal gland, acts as a regulator of the generation of new neurons in the dentate gyrus (DG). Newborn neurons buffer the deleterious effects of stress and are involved in learning and memory processes. Furthermore, melatonin, through the regulation of the cytoskeleton, favors dendrite maturation of newborn neurons. Moreover, newborn neurons send their axons via the mossy fiber tract to Cornu Ammonis 3 (CA3) region to form synapses with pyramidal neurons. Thus, axons of newborn cells contribute to the mossy fiber projection and their plasticity correlates with better performance in several behavioral tasks. Thus, in this study, we analyzed the impact of exogenous melatonin (8 mg/kg) administered daily for one- or six-months on the structural plasticity of infrapyramidal- and suprapyramidal mossy fiber projection of granule cells in the DG in male Balb/C mice. We analyzed the mossy fiber projection through the staining of calbindin, that is a calcium-binding protein localized in dendrites and axons. We first found an increase in the number of calbindin-positive cells in the granular cell layer in the DG (11%, 33%) after treatment. Futhermore, we found an increase in the volume of suprapyramidal (>135%, 59%) and infrapyramidal (>128%, 36%) mossy fiber projection of granule neurons in the DG after treatment. We also found an increase in the volume of CA3 region (>146%, 33%) after treatment, suggesting that melatonin modulates the structural plasticity of the mossy fiber projection to establish functional synapses in the hippocampus. Together, the data suggest that, in addition to the previously reported effects of melatonin on the generation of new neurons and its antidepressant like effects, melatonin also modulates the structural plasticity of axons in granule cells in the DG.
Collapse
Affiliation(s)
- Gerardo Bernabé Ramírez-Rodríguez
- Laboratorio de Neurogenesis, Subidrección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, México City C.P. 14370, México.
| | - Sandra Olvera-Hernández
- Laboratorio de Neurogenesis, Subidrección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, México City C.P. 14370, México.
| | - Nelly Maritza Vega-Rivera
- Laboratorio de Neuropsicofarmacología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, México City C.P. 14370, México.
| | - Leonardo Ortiz-López
- Laboratorio de Neurogenesis, Subidrección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, México City C.P. 14370, México.
| |
Collapse
|
25
|
Exposure to Patterned Auditory Stimuli during Acute Stress Prevents Despair-Like Behavior in Adult Mice That Were Previously Housed in an Enriched Environment in Combination with Auditory Stimuli. Neural Plast 2018; 2018:8205245. [PMID: 30627149 PMCID: PMC6304879 DOI: 10.1155/2018/8205245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 10/11/2018] [Accepted: 11/05/2018] [Indexed: 01/16/2023] Open
Abstract
Several interventions have been shown to counteract the effects of stress that may be related to improved neuroplasticity and neuronal activation. In this sense, environmental enrichment (ENR) protects against acute stress and increases neuroplasticity. It has been suggested that the use of patterned auditory stimuli (PAS) may be beneficial in increasing the effectiveness of ENR on disorders related to stress, such as depression and anxiety. Examples of PAS are classical music compositions that have interesting effects at both clinical and preclinical levels. Thus, we analyzed the effects of the exposure to PAS, represented in this study by Mozart's compositions, during ENR housing for 35 days in adult male Balb/C mice to evaluate depression-associated behavior using the forced-swim test (FST) paradigm with an additional short exposure to PAS. We found that the ENR mice that were exposed to PAS during both housing and behavioral task (ENR + PAS/FST + PAS) show decreased immobility and the number of despair episodes within a higher latency to show the first bout of immobility. Additionally, we found increased neuronal activation evaluated by the identification of activity-regulated cytoskeleton-associated protein- (Arc-) labeled cells in the prefrontal cortex (PFC) in mice exposed to PAS during housing and in the absence or presence of PAS during FST. Moreover, we found increased neuronal activation in the auditory cortex (AuCx) of mice exposed to PAS during FST. Our study suggests that the exposure to PAS during an emotional challenge decreases despair-like behavior in rodents that were previously housed in an enriched environment in combination with auditory stimuli. Thus, our data indicate that the role of the exposure to PAS as an intervention or in combination with positive environment to aid in treating neuropsychiatric disorders is worth pursuing.
Collapse
|
26
|
Beigi B, Shahidi S, Komaki A, Sarihi A, Hashemi-Firouzi N. Pretraining hippocampal stimulation of melatonin type 2 receptors can improve memory acquisition in rats. Int J Neurosci 2018; 129:492-500. [PMID: 30431374 DOI: 10.1080/00207454.2018.1545770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Learning and memory are among the most important cognitive functions of the brain. Melatonin receptor type 2 (MT2R) is located in the hippocampus and participates in learning and memory processes. In the present study, we examined the role of hippocampal MT2R activation in the acquisition, consolidation, and retrieval of learning and memory in novel object recognition (NOR) and passive avoidance (PA) tasks. METHODS IIK7 (0.03, 0.3, and 3 μg/μl/side), as a selective MT2R agonist, or vehicle was injected bilaterally into the dentate gyrus (DG) region of the hippocampus in rats five minutes before training, immediately after training, and five minutes before the retrieval-behavioral tasks, respectively. The discrimination index (DI) was measured in the NOR task, while step-through latency in acquisition (STLa), number of trials to acquisition (NOT), step-through latency in the retention trial (STLr), and time spent in the dark compartment (TDC) were determined in the PA task. RESULTS The pretraining intrahippocampal injection of IIK7 at all doses significantly improved acquisition in the PA task. On the other hand, the posttraining intrahippocampal administration of IIK7 had no significant effects on consolidation. The preretrieval intrahippocampal injection of IIK7 at different doses attenuated the retrieval of memory. However, the NOR data showed that the intrahippocampal injection of IIK7 at different doses had no significant effects on the acquisition, consolidation, or retrieval in this task. DISCUSSION Based on the findings, stimulation of MT2R could improve acquisition, whereas it had no effects on consolidation. It could impair retrieval in the PA task, while it had no effects on object recognition in rats.
Collapse
Affiliation(s)
- Bita Beigi
- a Neurophysiology Research Center , Hamadan University of Medical Science , Hamadan , Iran
| | - Siamak Shahidi
- a Neurophysiology Research Center , Hamadan University of Medical Science , Hamadan , Iran
| | - Alireza Komaki
- a Neurophysiology Research Center , Hamadan University of Medical Science , Hamadan , Iran
| | - Abdolrahman Sarihi
- a Neurophysiology Research Center , Hamadan University of Medical Science , Hamadan , Iran
| | - Nasrin Hashemi-Firouzi
- a Neurophysiology Research Center , Hamadan University of Medical Science , Hamadan , Iran
| |
Collapse
|
27
|
Majidinia M, Reiter RJ, Shakouri SK, Yousefi B. The role of melatonin, a multitasking molecule, in retarding the processes of ageing. Ageing Res Rev 2018; 47:198-213. [PMID: 30092361 DOI: 10.1016/j.arr.2018.07.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023]
Abstract
Biological ageing is generally accompanied by a gradual loss of cellular functions and physiological integrity of organ systems, the consequential enhancement of vulnerability, senescence and finally death. Mechanisms which underlie ageing are primarily attributed to an array of diverse but related factors including free radical-induced damage, dysfunction of mitochondria, disruption of circadian rhythms, inflammaging, genomic instability, telomere attrition, loss of proteostasis, deregulated sensing of nutrients, epigenetic alterations, altered intercellular communication, and decreased capacity for tissue repair. Melatonin, a prime regulator of human chronobiological and endocrine physiology, is highly reputed as an antioxidant, immunomodulatory, antiproliferative, oncostatic, and endocrine-modulatory molecule. Interestingly, several recent reports support melatonin as an anti-ageing agent whose multifaceted functions may lessen the consequences of ageing. This review depicts four categories of melatonin's protective effects on ageing-induced molecular and structural alterations. We also summarize recent findings related to the function of melatonin during ageing in various tissues and organs.
Collapse
|
28
|
Shukla M, Govitrapong P, Boontem P, Reiter RJ, Satayavivad J. Mechanisms of Melatonin in Alleviating Alzheimer's Disease. Curr Neuropharmacol 2017; 15:1010-1031. [PMID: 28294066 PMCID: PMC5652010 DOI: 10.2174/1570159x15666170313123454] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/10/2017] [Accepted: 03/09/2017] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic, progressive and prevalent neurodegenerative disease characterized by the loss of higher cognitive functions and an associated loss of memory. The thus far "incurable" stigma for AD prevails because of variations in the success rates of different treatment protocols in animal and human studies. Among the classical hypotheses explaining AD pathogenesis, the amyloid hypothesis is currently being targeted for drug development. The underlying concept is to prevent the formation of these neurotoxic peptides which play a central role in AD pathology and trigger a multispectral cascade of neurodegenerative processes post-aggregation. This could possibly be achieved by pharmacological inhibition of β- or γ-secretase or stimulating the nonamyloidogenic α-secretase. Melatonin the pineal hormone is a multifunctioning indoleamine. Production of this amphiphilic molecule diminishes with advancing age and this decrease runs parallel with the progression of AD which itself explains the potential benefits of melatonin in line of development and devastating consequences of the disease progression. Our recent studies have revealed a novel mechanism by which melatonin stimulates the nonamyloidogenic processing and inhibits the amyloidogenic processing of β-amyloid precursor protein (βAPP) by stimulating α -secretases and consequently down regulating both β- and γ-secretases at the transcriptional level. In this review, we discuss and evaluate the neuroprotective functions of melatonin in AD pathogenesis, including its role in the classical hypotheses in cellular and animal models and clinical interventions in AD patients, and suggest that with early detection, melatonin treatment is qualified to be an anti-AD therapy.
Collapse
Affiliation(s)
- Mayuri Shukla
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok10210, Thailand
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok10210, Thailand
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand
| | - Parichart Boontem
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok10210, Thailand
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jutamaad Satayavivad
- Chulabhorn Research Institute and Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok10210, Thailand
| |
Collapse
|
29
|
Comparing the Behavioural Effects of Exogenous Growth Hormone and Melatonin in Young and Old Wistar Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5863402. [PMID: 28050228 PMCID: PMC5165162 DOI: 10.1155/2016/5863402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/25/2016] [Accepted: 10/16/2016] [Indexed: 11/18/2022]
Abstract
Growth hormone (GH) and melatonin are two hormones with quite different physiological effects. Curiously, their secretion shows parallel and severe age-related reductions. This has promoted many reports for studying the therapeutic supplementation of both hormones in an attempt to avoid or delay the physical, physiological, and psychological decay observed in aged humans and in experimental animals. Interestingly, the effects of the external administration of low doses of GH and of melatonin were surprisingly similar, as both hormones caused significant improvements in the functional capabilities of aged subjects. The present report aims at discerning the eventual difference between cognitive and motor effects of the two hormones when administered to young and aged Wistar rats. The effects were tested in the radial maze, a test highly sensitive to the age-related impairments in working memory and also in the rotarod test, for evaluating the motor coordination. The results showed that both hormones caused clear improvements in both tasks. However, while GH improved the cognitive capacity and, most importantly, the physical stamina, the effects of melatonin should be attributed to its antioxidant, anxiolytic, and neuroprotective properties.
Collapse
|
30
|
Melatoninergic System in Parkinson's Disease: From Neuroprotection to the Management of Motor and Nonmotor Symptoms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3472032. [PMID: 27829983 PMCID: PMC5088323 DOI: 10.1155/2016/3472032] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/25/2016] [Indexed: 12/13/2022]
Abstract
Melatonin is synthesized by several tissues besides the pineal gland, and beyond its regulatory effects in light-dark cycle, melatonin is a hormone with neuroprotective, anti-inflammatory, and antioxidant properties. Melatonin acts as a free-radical scavenger, reducing reactive species and improving mitochondrial homeostasis. Melatonin also regulates the expression of neurotrophins that are involved in the survival of dopaminergic neurons and reduces α-synuclein aggregation, thus protecting the dopaminergic system against damage. The unbalance of pineal melatonin synthesis can predispose the organism to inflammatory and neurodegenerative diseases such as Parkinson's disease (PD). The aim of this review is to summarize the knowledge about the potential role of the melatoninergic system in the pathogenesis and treatment of PD. The literature reviewed here indicates that PD is associated with impaired brain expression of melatonin and its receptors MT1 and MT2. Exogenous melatonin treatment presented an outstanding neuroprotective effect in animal models of PD induced by different toxins, such as 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone, paraquat, and maneb. Despite the neuroprotective effects and the improvement of motor impairments, melatonin also presents the potential to improve nonmotor symptoms commonly experienced by PD patients such as sleep and anxiety disorders, depression, and memory dysfunction.
Collapse
|
31
|
Recent Advances in Neurogenic Small Molecules as Innovative Treatments for Neurodegenerative Diseases. Molecules 2016; 21:molecules21091165. [PMID: 27598108 PMCID: PMC6273783 DOI: 10.3390/molecules21091165] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/22/2016] [Accepted: 08/29/2016] [Indexed: 12/20/2022] Open
Abstract
The central nervous system of adult mammals has long been considered as a complex static structure unable to undergo any regenerative process to refurbish its dead nodes. This dogma was challenged by Altman in the 1960s and neuron self-renewal has been demonstrated ever since in many species, including humans. Aging, neurodegenerative, and some mental diseases are associated with an exponential decrease in brain neurogenesis. Therefore, the controlled pharmacological stimulation of the endogenous neural stem cells (NSCs) niches might counteract the neuronal loss in Alzheimer’s disease (AD) and other pathologies, opening an exciting new therapeutic avenue. In the last years, druggable molecular targets and signalling pathways involved in neurogenic processes have been identified, and as a consequence, different drug types have been developed and tested in neuronal plasticity. This review focuses on recent advances in neurogenic agents acting at serotonin and/or melatonin systems, Wnt/β-catenin pathway, sigma receptors, nicotinamide phosphoribosyltransferase (NAMPT) and nuclear erythroid 2-related factor (Nrf2).
Collapse
|
32
|
Prophylactic Role of Oral Melatonin Administration on Neurogenesis in Adult Balb/C Mice during REM Sleep Deprivation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2136902. [PMID: 27579149 PMCID: PMC4992538 DOI: 10.1155/2016/2136902] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/10/2016] [Accepted: 06/20/2016] [Indexed: 12/17/2022]
Abstract
Purpose. The aim of this study was to assess the effect of melatonin in the proliferation of neural progenitors, melatonin concentration, and antiapoptotic proteins in the hippocampus of adult mice exposed to 96 h REM sleep deprivation (REMSD) prophylactic administration of melatonin for 14 days. Material and Methods. Five groups of Balb/C mice were used: (1) control, (2) REMSD, (3) melatonin (10 mg/kg) plus REMSD, (4) melatonin and intraperitoneal luzindole (once a day at 5 mg/kg) plus REMSD, and (5) luzindole plus REMSD. To measure melatonin content in hippocampal tissue we used HPLC. Bcl-2 and Bcl-xL proteins were measured by Western Blot and neurogenesis was determined by injecting 5-bromo-2-deoxyuridine (BrdU) and BrdU/nestin expressing cells in the subgranular zone of the dentate gyrus were quantified by epifluorescence. Results. The melatonin-treated REMSD group showed an increased neural precursor in 44% with respect to the REMSD group and in 28% when contrasted with the control group (P < 0.021). The melatonin-treated REMSD group also showed the highest expression of Bcl-2 and Bcl-xL as compared to the rest of the groups. Conclusion. The exogenous administration of melatonin restores the tissue levels of sleep-deprived group and appears to be an efficient neuroprotective agent against the deleterious effects of REMSD.
Collapse
|
33
|
Piromelatine ameliorates memory deficits associated with chronic mild stress-induced anhedonia in rats. Psychopharmacology (Berl) 2016; 233:2229-39. [PMID: 27007604 DOI: 10.1007/s00213-016-4272-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 03/08/2016] [Indexed: 12/15/2022]
Abstract
RATIONALE Previous studies have demonstrated that piromelatine (a melatonin and serotonin 5-HT1A and 5-HT1D agonist) exerts an antidepressant activity in rodent models of acute stress and improves cognitive impairments in a rat model of Alzheimer's disease (AD). However, the role of piromelatine in chronic stress-induced memory dysfunction remains unclear. OBJECTIVE The aim of this study was to determine whether piromelatine ameliorates chronic mild stress (CMS)-induced memory deficits and explore the underlying mechanisms. METHODS Rats were exposed randomly to chronic mild stressors for 7 weeks to induce anhedonia (reflected by a significant decrease in sucrose intake), which was used to select rats vulnerable (CMS-anhedonic, CMSA) or resistant (CMS-resistant, CMSR) to stress. Piromelatine (50 mg/kg) was administered daily during the last 2 weeks of CMS. The tail suspension and forced swimming tests were adopted to further characterize vulnerable and resilient rats. The Y-maze and novel object recognition (NOR) tests were used to evaluate memory performance. Brain-derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), phosphorylated CREB (pCREB), and cytogenesis were measured in the hippocampus. RESULTS We found that only CMSA rats displayed significant increases in immobility time in the tail suspension and forced swimming tests; memory deficits in the Y-maze and NOR tests; significant decreases in hippocampal BDNF, CREB, and pCREB expression; and cytogenesis. All these anhedonia-associated effects were reversed by piromelatine. CONCLUSIONS Piromelatine ameliorates memory deficits associated with CMS-induced anhedonia in rats and this effect may be mediated by restoring hippocampal BDNF, CREB, and cytogenesis deficits.
Collapse
|
34
|
Torres-Pérez M, Tellez-Ballesteros RI, Ortiz-López L, Ichwan M, Vega-Rivera NM, Castro-García M, Gómez-Sánchez A, Kempermann G, Ramirez-Rodriguez GB. Resveratrol Enhances Neuroplastic Changes, Including Hippocampal Neurogenesis, and Memory in Balb/C Mice at Six Months of Age. PLoS One 2015; 10:e0145687. [PMID: 26695764 PMCID: PMC4690610 DOI: 10.1371/journal.pone.0145687] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 12/06/2015] [Indexed: 01/29/2023] Open
Abstract
Resveratrol (RVTL) is a flavonoid found in red wine and has been publicized heavily as an anti-aging compound. Indeed, basic research confirms that although there is much hype in the promotion of RVTL, flavonoids such as RVTL have a wide range of biological effects. We here investigated the effects of RVTL treatment on hippocampal plasticity and memory performance in female Balb/C mice, a strain with low baseline levels of adult neurogenesis. Two weeks of treatment with RVTL (40 mg/kg) induced the production of new neurons in vivo by increasing cell survival and possibly precursor cell proliferation. In addition, RVTL decreased the number of apoptotic cells. The number of doublecortin (DCX)-expressing intermediate cells was increased. RVTL stimulated neuronal differentiation in vitro without effects on proliferation. In the dentate gyrus, RVTL promoted the formation and maturation of spines on granule cell dendrites. RVTL also improved performance in the step down passive avoidance test. The RVTL-treated mice showed increase in the levels of two key signaling proteins, phospho-Akt and phospho-PKC, suggesting the involvement of these signaling pathways. Our results support the vision that flavonoids such as resveratrol deserve further examination as plasticity-inducing compounds in the context of successful cognitive aging.
Collapse
Affiliation(s)
- Mario Torres-Pérez
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry “Ramón de la Fuente Muñiz”, Calz. México-Xochimilco 101, 14370, México, D.F., México
| | - Ruth Ivonne Tellez-Ballesteros
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry “Ramón de la Fuente Muñiz”, Calz. México-Xochimilco 101, 14370, México, D.F., México
| | - Leonardo Ortiz-López
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry “Ramón de la Fuente Muñiz”, Calz. México-Xochimilco 101, 14370, México, D.F., México
| | - Muhammad Ichwan
- CRTD - Center for Regenerative Therapies Dresden, Tatzberg 47–79, 01307, Dresden, Germany
- Department of Pharmacology and Therapeutic, Faculty of Medicine, Universitas Sumatera Utara, Jalan Dr. Mansur 5, Medan, Indonesia
| | - Nelly Maritza Vega-Rivera
- Laboratory of Neuropsychopharmacology, Division of Neurosciences, National Institute of Psychiatry “Ramón de la Fuente Muñiz”, Calz. México-Xochimilco 101, 14370, México, D.F., México
| | - Mario Castro-García
- Laboratory of Neuropsychopharmacology, Division of Neurosciences, National Institute of Psychiatry “Ramón de la Fuente Muñiz”, Calz. México-Xochimilco 101, 14370, México, D.F., México
| | - Ariadna Gómez-Sánchez
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry “Ramón de la Fuente Muñiz”, Calz. México-Xochimilco 101, 14370, México, D.F., México
| | - Gerd Kempermann
- CRTD - Center for Regenerative Therapies Dresden, Tatzberg 47–79, 01307, Dresden, Germany
- DZNE, German Center for Neurodegenerative Diseases, Dresden, Tatzberg 47–49, 01307, Dresden, Germany
- * E-mail: (GK); (GBRR)
| | - Gerardo Bernabe Ramirez-Rodriguez
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry “Ramón de la Fuente Muñiz”, Calz. México-Xochimilco 101, 14370, México, D.F., México
- * E-mail: (GK); (GBRR)
| |
Collapse
|
35
|
Vega-Rivera NM, Ortiz-López L, Gómez-Sánchez A, Oikawa-Sala J, Estrada-Camarena EM, Ramírez-Rodríguez GB. The neurogenic effects of an enriched environment and its protection against the behavioral consequences of chronic mild stress persistent after enrichment cessation in six-month-old female Balb/C mice. Behav Brain Res 2015; 301:72-83. [PMID: 26721469 DOI: 10.1016/j.bbr.2015.12.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/10/2015] [Accepted: 12/16/2015] [Indexed: 01/02/2023]
Abstract
Because stress may underlie the presence of depressive episodes, strategies to produce protection against or to reverse the effects of stress on neuroplasticity and behavior are relevant. Preclinical studies showed that exposure to stimuli, such as physical activity and environmental enrichment (ENR), produce beneficial effects against stress causing antidepressant-like effects in rodents. Additionally, ENR induces positive effects on neuroplasticity, neurochemistry and behavior at any age of rodents tested. Here, we analyzed whether ENR exposure prevents the development of depressive-like behavior produced by unpredictable, chronic mild stress (CMS) exposure as well as changes in hippocampal neurogenesis in a six-month-old female Balb/C mice, strain that shows low baseline levels of hippocampal neurogenesis. Mice were assigned to one of four groups: (1) normal housing-normal housing (NH-NH), (2) NH-CMS, (3) ENR-NH, or (4) ENR-CMS. The animals were exposed over 46 days to ENR or NH and subsequently to NH or CMS for 4 weeks. ENR induces long-term effects protecting against CMS induction of anhedonia and hopelessness behaviors. Independent of housing conditions, ENR increased the number of proliferative cells (Ki67), and CMS decreased the number of proliferative cells. ENR increased the newborn cells (BrdU) and mature phenotypes of neurons; these effects were not changed by CMS exposure. Similarly, the number of doublecortin-positive cells was not affected by CMS in ENR mice, which showed more cells with complex dendrite arborizations. Our study suggests that ENR induces protection against the effects of CMS on behavior and neuroplasticity in six-month-old Balb/C mice.
Collapse
Affiliation(s)
- Nelly Maritza Vega-Rivera
- Laboratory of Neuropsychopharmacology, Division of Neurosciences, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, 14370 México, D.F., Mexico
| | - Leonardo Ortiz-López
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, 14370 México, D.F., Mexico
| | - Ariadna Gómez-Sánchez
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, 14370 México, D.F., Mexico
| | - Julian Oikawa-Sala
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, 14370 México, D.F., Mexico
| | - Erika Monserrat Estrada-Camarena
- Laboratory of Neuropsychopharmacology, Division of Neurosciences, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, 14370 México, D.F., Mexico.
| | - Gerardo Bernabé Ramírez-Rodríguez
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, 14370 México, D.F., Mexico.
| |
Collapse
|
36
|
Ortiz-López L, Pérez-Beltran C, Ramírez-Rodríguez G. Chronic administration of a melatonin membrane receptor antagonist, luzindole, affects hippocampal neurogenesis without changes in hopelessness-like behavior in adult mice. Neuropharmacology 2015; 103:211-21. [PMID: 26686389 DOI: 10.1016/j.neuropharm.2015.11.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/27/2015] [Accepted: 11/28/2015] [Indexed: 11/28/2022]
Abstract
Melatonin is involved in the regulation of hippocampal neuronal development during adulthood. Emerging evidence indicates that exogenous melatonin acts during different events of the neurogenic process and exerts antidepressant-like behavior in rodents. Thus, melatonin might act through different mechanism, including acting as an antioxidant, interacting with intracellular proteins and/or activating membrane receptors. The melatonin membrane receptors (MMRs; Mt1/Mt2) are distributed throughout the hippocampus with an interesting localization in the hippocampal neurogenic microenvironment (niche), suggesting the involvement of these receptors in the beneficial effects of melatonin on hippocampal neurogenesis and behavior. In this study, we analyzed the participation of MMRs in the baseline neurogenesis in C57BL/6 mice. To this end, we used a pharmacological approach, administering luzindole (10 mg/kg) for 14 days. We observed a decrease in the absolute number of doublecortin-positive cells (49%) without changes in either the dendrite complexity of mature doublecortin-cells or the number of apoptotic cells (TUNEL). However, after the chronic administration of luzindole, cell proliferation (Ki67) significantly decreased (36%) with increasing (>100%) number of neural stem cells (NSCs; GFAP(+)/Sox2(+)) in the subgranular zone of the dentate gyrus of the hippocampus. In addition, luzindole did not affect hopelessness-like behavior in the forced swim test (FST) or changes in the novelty suppressed feeding test (NST) after 14 days of treatment either neuronal activation in the dentate gyrus after FST. These results suggest that the MMRs are involved in the effects of endogenous melatonin to mediate the transition from NSCs and proliferative cells to the following developmental stages implicated in the hippocampal neurogenic process of adult female C57BL/6 mice.
Collapse
Affiliation(s)
- Leonardo Ortiz-López
- Laboratory of Neurogenesis, Division of Clinical Research, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, C.P. 14370, México, D.F., Mexico
| | - Carlos Pérez-Beltran
- Laboratory of Neurogenesis, Division of Clinical Research, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, C.P. 14370, México, D.F., Mexico
| | - Gerardo Ramírez-Rodríguez
- Laboratory of Neurogenesis, Division of Clinical Research, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, C.P. 14370, México, D.F., Mexico.
| |
Collapse
|
37
|
Kempermann G. Activity Dependency and Aging in the Regulation of Adult Neurogenesis. Cold Spring Harb Perspect Biol 2015; 7:a018929. [PMID: 26525149 PMCID: PMC4632662 DOI: 10.1101/cshperspect.a018929] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Age and activity might be considered the two antagonistic key regulators of adult neurogenesis. Adult neurogenesis decreases with age but remains present, albeit at a very low level, even in the oldest individuals. Activity, be it physical or cognitive, increases adult neurogenesis and thereby seems to counteract age effects. It is, thus, proposed that activity-dependent regulation of adult neurogenesis might contribute to some sort of "neural reserve," the brain's ability to compensate functional loss associated with aging or neurodegeneration. Activity can have nonspecific and specific effects on adult neurogenesis. Mechanistically, nonspecific stimuli that largely affect precursor cell stages might be related by the local microenvironment, whereas more specific, survival-promoting effects take place at later stages of neuronal development and require the synaptic integration of the new cell and its particular synaptic plasticity.
Collapse
Affiliation(s)
- Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) Dresden and Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
38
|
Zhang ZC, Luan F, Xie CY, Geng DD, Wang YY, Ma J. Low-frequency transcranial magnetic stimulation is beneficial for enhancing synaptic plasticity in the aging brain. Neural Regen Res 2015. [PMID: 26199608 PMCID: PMC4498353 DOI: 10.4103/1673-5374.158356] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In the aging brain, cognitive function gradually declines and causes a progressive reduction in the structural and functional plasticity of the hippocampus. Transcranial magnetic stimulation is an emerging and novel neurological and psychiatric tool used to investigate the neurobiology of cognitive function. Recent studies have demonstrated that low-frequency transcranial magnetic stimulation (≤1 Hz) ameliorates synaptic plasticity and spatial cognitive deficits in learning-impaired mice. However, the mechanisms by which this treatment improves these deficits during normal aging are still unknown. Therefore, the current study investigated the effects of transcranial magnetic stimulation on the brain-derived neurotrophic factor signal pathway, synaptic protein markers, and spatial memory behavior in the hippocampus of normal aged mice. The study also investigated the downstream regulator, Fyn kinase, and the downstream effectors, synaptophysin and growth-associated protein 43 (both synaptic markers), to determine the possible mechanisms by which transcranial magnetic stimulation regulates cognitive capacity. Transcranial magnetic stimulation with low intensity (110% average resting motor threshold intensity, 1 Hz) increased mRNA and protein levels of brain-derived neurotrophic factor, tropomyosin receptor kinase B, and Fyn in the hippocampus of aged mice. The treatment also upregulated the mRNA and protein expression of synaptophysin and growth-associated protein 43 in the hippocampus of these mice. In conclusion, brain-derived neurotrophic factor signaling may play an important role in sustaining and regulating structural synaptic plasticity induced by transcranial magnetic stimulation in the hippocampus of aging mice, and Fyn may be critical during this regulation. These responses may change the structural plasticity of the aging hippocampus, thereby improving cognitive function.
Collapse
Affiliation(s)
- Zhan-Chi Zhang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Feng Luan
- Department of Otorhinolaryngology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Chun-Yan Xie
- Second Surgical Department, Qinghe Public Hospital of Hebei Province, Xingtai, Hebei Province, China
| | - Dan-Dan Geng
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Yan-Yong Wang
- Department of Neurology, First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China ; Hebei Key Laboratory for Brain Aging and Cognitive Neuroscience, Shijiazhuang, Hebei Province, China
| | - Jun Ma
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei Province, China ; Hebei Key Laboratory for Brain Aging and Cognitive Neuroscience, Shijiazhuang, Hebei Province, China
| |
Collapse
|
39
|
de la Fuente Revenga M, Fernández-Sáez N, Herrera-Arozamena C, Morales-García JA, Alonso-Gil S, Pérez-Castillo A, Caignard DH, Rivara S, Rodríguez-Franco MI. Novel N-Acetyl Bioisosteres of Melatonin: Melatonergic Receptor Pharmacology, Physicochemical Studies, and Phenotypic Assessment of Their Neurogenic Potential. J Med Chem 2015; 58:4998-5014. [PMID: 26023814 DOI: 10.1021/acs.jmedchem.5b00245] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Herein we present a new family of melatonin-based compounds, in which the acetamido group of melatonin has been bioisosterically replaced by a series of reversed amides and azoles, such as oxazole, 1,2,4-oxadiazole, and 1,3,4-oxadiazole, as well as other related five-membered heterocycles, namely, 1,3,4-oxadiazol(thio)ones, 1,3,4-triazol(thio)ones, and an 1,3,4-thiadiazole. New compounds were fully characterized at melatonin receptors (MT1R and MT2R), and results were rationalized by superimposition studies of their structures to the bioactive conformation of melatonin. We also found that several of these melatonin-based compounds promoted differentiation of rat neural stem cells to a neuronal phenotype in vitro, in some cases to a higher extent than melatonin. This unique profile constitutes the starting point for further pharmacological studies to assess the mechanistic pathways and the relevance of neurogenesis induced by melatonin-related structures.
Collapse
Affiliation(s)
- Mario de la Fuente Revenga
- †Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Nerea Fernández-Sáez
- †Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Clara Herrera-Arozamena
- †Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - José A Morales-García
- ‡Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (IIB-CSIC), C/Arturo Duperier 4, 28029 Madrid, Spain.,§Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), C/Valderrebollo 5, 28031 Madrid, Spain
| | - Sandra Alonso-Gil
- ‡Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (IIB-CSIC), C/Arturo Duperier 4, 28029 Madrid, Spain.,§Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), C/Valderrebollo 5, 28031 Madrid, Spain
| | - Ana Pérez-Castillo
- ‡Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (IIB-CSIC), C/Arturo Duperier 4, 28029 Madrid, Spain.,§Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), C/Valderrebollo 5, 28031 Madrid, Spain
| | - Daniel-Henri Caignard
- ∥Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy sur Seine, France
| | - Silvia Rivara
- ⊥Dipartimento di Farmacia, Università degli Studi di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - María Isabel Rodríguez-Franco
- †Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
40
|
Gałecki P, Talarowska M, Anderson G, Berk M, Maes M. Mechanisms underlying neurocognitive dysfunctions in recurrent major depression. Med Sci Monit 2015; 21:1535-47. [PMID: 26017336 PMCID: PMC4459569 DOI: 10.12659/msm.893176] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Recent work shows that depression is intimately associated with changes in cognitive functioning, including memory, attention, verbal fluency, and other aspects of higher-order cognitive processing. Changes in cognitive functioning are more likely to occur when depressive episodes are recurrent and to abate to some degree during periods of remission. However, with accumulating frequency and duration of depressive episodes, cognitive deficits can become enduring, being evident even when mood improves. Such changes in cognitive functioning give depression links to mild cognitive impairment and thereby with neurodegenerative conditions, including Alzheimer’s disease, Parkinson’s disease, schizophrenia, and multiple sclerosis. Depression may then be conceptualized on a dimension of depression – mild cognitive impairment – dementia. The biological underpinnings of depression have substantial overlaps with those of neurodegenerative conditions, including reduced neurogenesis, increased apoptosis, reactive oxygen species, tryptophan catabolites, autoimmunity, and immune-inflammatory processes, as well as decreased antioxidant defenses. These evolving changes over the course of depressive episodes drive the association of depression with neurodegenerative conditions. As such, the changes in cognitive functioning in depression have important consequences for the treatment of depression and in reconceptualizing the role of depression in wider neuroprogressive conditions. Here we review the data on changes in cognitive functioning in recurrent major depression and their association with other central conditions.
Collapse
Affiliation(s)
- Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Łódź, Łódź, Poland
| | - Monika Talarowska
- Department of Adult Psychiatry, Medical University of Łódź, Łódź, Poland
| | | | - Michael Berk
- Orygen Research Centre, Parkville, VIC, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
41
|
Ekthuwapranee K, Sotthibundhu A, Tocharus C, Govitrapong P. Melatonin ameliorates dexamethasone-induced inhibitory effects on the proliferation of cultured progenitor cells obtained from adult rat hippocampus. J Steroid Biochem Mol Biol 2015; 145:38-48. [PMID: 25305353 DOI: 10.1016/j.jsbmb.2014.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/22/2014] [Accepted: 10/05/2014] [Indexed: 01/15/2023]
Abstract
Glucocorticoids, hormones that are released in response to stress, induce neuronal cell damage. The hippocampus is a primary target of glucocorticoids in the brain, the effects of which include the suppression of cell proliferation and diminished neurogenesis in the dentate gyrus. Our previous study found that melatonin, synthesized primarily in the pineal, pretreatment prevented the negative effects of dexamethasone, the glucocorticoid receptor agonist, on behavior and neurogenesis in rat hippocampus. In the present study, we attempted to investigate the interrelationship between melatonin and dexamethasone on the underlying mechanism of neural stem cell proliferation. Addition of dexamethasone to hippocampal progenitor cells from eight-week old rats resulted in a decrease in the number of neurospheres; pretreatment with melatonin precluded these effects. The immunocytochemical analyses indicated a reduction of Ki67 and nestin-positive cells in the dexamethasone-treated group, which was minimized by melatonin pretreatment. A reduction of the extracellular signal-regulated kinase 1 and 2 (ERK1/2) phosphorylation and G1-S phase cell cycle regulators cyclin E and CDK2 in dexamethasone-treated progenitor cells were prevented by pretreatment of melatonin. Moreover, luzindole, a melatonin receptor antagonist blocked the positive effect of melatonin whereas RU48, the glucocorticoid receptor antagonist blocked the negative effect of dexamethasone on the number of neurospheres. Moreover, we also found that dexamethasone increased the glucocorticoid receptor protein but decreased the level of MT1 melatonin receptor, whereas melatonin increased the level of MT1 melatonin receptor but decreased the glucocorticoid receptor protein. These suggest the crosstalk and cross regulation between the melatonin receptor and the glucocorticoid receptor on hippocampal progenitor cell proliferation.
Collapse
Affiliation(s)
- Kasima Ekthuwapranee
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Thailand
| | | | | | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Thailand; Center for Neuroscience and Department of Pharmacology, Faculty of Science, Mahidol University, Thailand.
| |
Collapse
|
42
|
Ramírez-Rodríguez G, Gómez-Sánchez A, Ortíz-López L. Melatonin maintains calcium-binding calretinin-positive neurons in the dentate gyrus during aging of Balb/C mice. Exp Gerontol 2014; 60:147-52. [PMID: 25446980 DOI: 10.1016/j.exger.2014.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/15/2014] [Accepted: 10/28/2014] [Indexed: 02/07/2023]
Abstract
Melatonin, the main product synthesized by the pineal gland, modulates several brain functions through different mechanisms, some of them involving the activation or participation of calcium binding intracellular proteins, such as the alpha calcium dependent protein kinase C and calmodulin. Another calcium-binding protein is calretinin, which exerts an essential role for adult hippocampal neurogenesis. Melatonin favors calretinin-positive neurons in the dentate gyrus (DG) of young mice but hippocampal neurogenesis and plasma levels of melatonin decrease during aging. Thus, in this study, we analyzed the impact of exogenous supplementation with melatonin in calretinin-neurons and their distribution along the dorsal-ventral DG in the hippocampus at three different time points (1, 3, or 6 months) after daily treatment with melatonin (8 mg/kg) in male Balb/C mice. We found an increase in the number of calretinin-positive neurons in the DG after treatment (>66%). Although a significant decline in the number of calretinin-neurons was found in both treated (~60.46-69.56%) and untreated mice (~68.81-70.34%) with respect to the youngest mice analyzed, melatonin still maintained higher number of cells in the DG. Also, the distribution of calretinin-neurons along the dorsal-ventral DG significantly showed more cells in the ventral-DG of mice treated with melatonin. Together, the data suggest that melatonin also acts on calretinin in the DG, supporting it as a molecule connecting calcium signaling and neuronal development.
Collapse
Affiliation(s)
- Gerardo Ramírez-Rodríguez
- Laboratory of Neurogenesis, Division of Clinical Research, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, 14370 México, D.F., Mexico.
| | - Ariadna Gómez-Sánchez
- Laboratory of Neurogenesis, Division of Clinical Research, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, 14370 México, D.F., Mexico
| | - Leonardo Ortíz-López
- Laboratory of Neurogenesis, Division of Clinical Research, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, 14370 México, D.F., Mexico
| |
Collapse
|
43
|
Repetitive transcranial magnetic stimulation (rTMS) influences spatial cognition and modulates hippocampal structural synaptic plasticity in aging mice. Exp Gerontol 2014; 58:256-68. [DOI: 10.1016/j.exger.2014.08.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 07/27/2014] [Accepted: 08/26/2014] [Indexed: 01/09/2023]
|
44
|
Ruksee N, Tongjaroenbuangam W, Mahanam T, Govitrapong P. Melatonin pretreatment prevented the effect of dexamethasone negative alterations on behavior and hippocampal neurogenesis in the mouse brain. J Steroid Biochem Mol Biol 2014; 143:72-80. [PMID: 24589478 DOI: 10.1016/j.jsbmb.2014.02.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 01/27/2014] [Accepted: 02/19/2014] [Indexed: 12/18/2022]
Abstract
Glucocorticoids play various physiological functions via the glucocorticoid receptor (GR). Glucocorticoid is associated with the pathophysiology of depression. Dexamethasone (DEX), a synthetic GR agonist, has a greater affinity for GR than the mineralocorticoid receptor (MR) in the hippocampus of pigs and may mimic the effects of GR possession. DEX decreases neurogenesis and induces damage to hippocampal neurons that is associated with depressive-like behavior. Melatonin, a hormone mainly synthesized in the pineal gland, is a potent free radical scavenger and antioxidant. Melatonin alters noradrenergic transmission in depressed patients. It may be interesting to further explore the mechanism of melatonin that is associated with the role of stress as a key factor to precipitate depression and as a factor altering neurogenesis. In this study, we assessed the capability of melatonin to protect the hippocampus of mouse brains to counteract the effects of chronic DEX treatment for 21 days on depressive-like behavior and neurogenesis. Our results revealed that chronic administration of DEX induced depressive-like behavior and that this could be reversed by pretreatment with melatonin. Moreover, the number of 5-bromo-2-deoxyuridine (BrdU)-immunopositive cells and doublecortin (DCX; the neuronal-specific marker) protein levels were significantly reduced in the DEX-treated mice. Pretreatment with melatonin was found to renew BrdU and DCX expression in the dentate gyrus. Furthermore, pretreatment with melatonin prevented DEX-induced reductions in GR and an extracellular-signal-regulated kinase (ERK1/2) in the hippocampal area. Melatonin may protect hippocampal neurons from damage and reverse neurogenesis after chronic DEX by activating brain-derived neurotrophic (BDNF) and ERK1/2 cascades. These results revealed that melatonin pretreatment prevented the reduction of cell proliferation, immature neuron precursor cells, and GR and ERK1/2 expression. This finding indicates that melatonin attenuates the DEX-induced depressive-like behavior, supporting the notion that melatonin possesses anti-stress and neurogenic actions.
Collapse
Affiliation(s)
- Nootchanart Ruksee
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Thailand; National Institute for Child and Family Development, Mahidol University, Thailand
| | - Walaiporn Tongjaroenbuangam
- Faculty of Medicine, Mahasarakham University, Thailand; Department of Biology, Faculty of Science, Mahasarakham University, Thailand
| | | | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Thailand; Center for Neuroscience and Department of Pharmacology, Faculty of Science, Mahidol University, Thailand.
| |
Collapse
|
45
|
Bahna SG, Sathiyapalan A, Foster JA, Niles LP. Regional upregulation of hippocampal melatonin MT2 receptors by valproic acid: Therapeutic implications for Alzheimer's disease. Neurosci Lett 2014; 576:84-7. [DOI: 10.1016/j.neulet.2014.05.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 03/27/2014] [Accepted: 05/29/2014] [Indexed: 01/30/2023]
|
46
|
Tocharus C, Puriboriboon Y, Junmanee T, Tocharus J, Ekthuwapranee K, Govitrapong P. Melatonin enhances adult rat hippocampal progenitor cell proliferation via ERK signaling pathway through melatonin receptor. Neuroscience 2014; 275:314-21. [PMID: 24956284 DOI: 10.1016/j.neuroscience.2014.06.026] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/11/2014] [Accepted: 06/13/2014] [Indexed: 12/13/2022]
Abstract
Melatonin, a neurohormone secreted mainly by the pineal gland, has a variety of physiological functions and neuroprotective effects. Previous studies have shown that melatonin could stimulate the proliferation of neural stem/progenitor cells (NS/PCs). Recent studies reported that the activities of mitogen-activated protein kinase (MAPK) of neural stem cells (NSCs) changed in response to the proliferative effect of melatonin. Therefore, the aim of the present study was to explore the proliferative mechanism mediated by melatonin on the adult rat hippocampal NS/PCs. Treatment with melatonin significantly increased the number of neurospheres in a concentration-dependent manner and up-regulated nestin protein. Pretreatment with luzindole, a melatonin receptor antagonist, and PD98059, a mitogen-activated protein kinase kinase (MEK) inhibitor, prevented the increase in the number of neurospheres formed by the activation of melatonin. The levels of phospho-c-Raf and phospho-extracellular signal-regulated kinase 1/2 (ERK1/2) increased when treated with melatonin. Pretreatment with luzindole or PD98059 prevented the melatonin-induced increase in these signaling molecules. The present results showed that melatonin could induce NS/PCs to proliferate by increasing phosphorylation of ERK1/2 and c-Raf through melatonin receptor. These results provide further evidence for a role of melatonin in promoting neurogenesis, adding to the remarkably pleiotropic nature of this neurohormone. This intrinsic modulator deserves further investigation to better understand its physiological and therapeutic implication.
Collapse
Affiliation(s)
- C Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Y Puriboriboon
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - T Junmanee
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - J Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - K Ekthuwapranee
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand
| | - P Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand; Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
47
|
Talarowska M, Szemraj J, Zajączkowska M, Gałecki P. ASMT gene expression correlates with cognitive impairment in patients with recurrent depressive disorder. Med Sci Monit 2014; 20:905-12. [PMID: 24881886 PMCID: PMC4052942 DOI: 10.12659/msm.890160] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Recurrent depressive disorder is a multifactorial disease; one of the typical features is cognitive impairment. The purpose of this study was analysis of ASMT gene expression both on mRNA and protein levels in patients with recurrent depressive disorder (rDD) and assessment of the relationship between plasma level of ASMT protein, gene expression on mRNA level, and cognitive performance. MATERIAL AND METHODS The study included 236 subjects: patients with rDD (n=131) and healthy subjects (n=105, CG). Cognitive function assessment was based on: Trail Making Test, The Stroop Test, Verbal Fluency Test (VFT), and Auditory Verbal Learning Test (AVLT). RESULTS Both mRNA and protein expression levels of ASMT gene were significantly higher in healthy subjects when compared to rDD. The average ASMT mRNA expression level measured for the entire group was M=0.21 (SD=0.09), and the protein level was M=12.84 (SD=3.29). In patients with rDD, statistically significant correlations occurred between both mRNA and protein expression levels and part A of the TMT (negative correlation) and verbal fluency test (positive correlation). In the group CG, there was no statistically significant association between the analyzed variables. In the entire group there was a statistically significant correlation between both ASMT mRNA and protein expression levels and all the neuropsychological tests used in the survey. CONCLUSIONS 1. Our study confirms previous results showing decreased mRNA and protein expression levels of ASMT gene in depression. 2. Our data suggest a relationship between decreased mRNA and protein expression levels of ASMT gene and cognitive impairment.
Collapse
Affiliation(s)
- Monika Talarowska
- Department of Adult Psychiatry, Medical University of Łódź, Łódź, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Łódź, Łódź, Poland
| | | | - Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Łódź, Łódź, Poland
| |
Collapse
|
48
|
Ramírez-Rodríguez G, Vega-Rivera NM, Oikawa-Sala J, Gómez-Sánchez A, Ortiz-López L, Estrada-Camarena E. Melatonin synergizes with citalopram to induce antidepressant-like behavior and to promote hippocampal neurogenesis in adult mice. J Pineal Res 2014; 56:450-61. [PMID: 24650119 DOI: 10.1111/jpi.12136] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 03/14/2014] [Indexed: 12/25/2022]
Abstract
Adult hippocampal neurogenesis is affected in some neuropsychiatric disorders such as depression. Numerous evidence indicates that plasma levels of melatonin are decreased in depressed patients. Also, melatonin exerts positive effects on the hippocampal neurogenic process and on depressive-like behavior. In addition, antidepressants revert alterations of hippocampal neurogenesis present in models of depression following a similar time course to the improvement of behavior. In this study, we analyzed the effects of both, citalopram, a widely used antidepressant, and melatonin in the Porsolt forced swim test. In addition, we investigated the potential antidepressant role of the combination of melatonin and citalopram (MLTCITAL), its type of pharmacological interaction on depressive behavior, and its effect on hippocampal neurogenesis. Here, we found decreased immobility behavior in mice treated with melatonin (<14-33%) and citalopram (<17-30%). Additionally, the MLTCITAL combination also decreased immobility (<22-35%) in comparison with control mice, reflecting an antidepressant-like effect after 14 days of treatment. Moreover, MLTCITAL decreased plasma corticosterone levels (≤13%) and increased cell proliferation (>29%), survival (>39%), and the absolute number of -associated new neurons (>53%) in the dentate gyrus of the hippocampus. These results indicate that the MLTCITAL combination exerts synergism to induce an antidepressant-like action that could be related to the modulation of adult hippocampal neurogenesis. This outcome opens the opportunity of using melatonin to promote behavioral benefits and hippocampal neurogenesis in depression and also supports the use of the MLTCITAL combination as an alternative to treat depression.
Collapse
Affiliation(s)
- Gerardo Ramírez-Rodríguez
- Division of Clinical Research, Laboratory of Neurogenesis, National Institute of Psychiatry "Ramón de la Fuente Muñiz", México, D.F., México
| | | | | | | | | | | |
Collapse
|
49
|
Environmental enrichment induces neuroplastic changes in middle age female BalbC mice and increases the hippocampal levels of BDNF, p-Akt and p-MAPK1/2. Neuroscience 2014; 260:158-70. [DOI: 10.1016/j.neuroscience.2013.12.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 12/09/2013] [Accepted: 12/11/2013] [Indexed: 12/21/2022]
|
50
|
Corrales A, Vidal R, García S, Vidal V, Martínez P, García E, Flórez J, Sanchez-Barceló EJ, Martínez-Cué C, Rueda N. Chronic melatonin treatment rescues electrophysiological and neuromorphological deficits in a mouse model of Down syndrome. J Pineal Res 2014; 56:51-61. [PMID: 24147912 DOI: 10.1111/jpi.12097] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/20/2013] [Indexed: 12/22/2022]
Abstract
The Ts65Dn mouse (TS), the most commonly used model of Down syndrome (DS), exhibits several key phenotypic characteristics of this condition. In particular, these animals present hypocellularity in different areas of their CNS due to impaired neurogenesis and have alterations in synaptic plasticity that compromise their cognitive performance. In addition, increases in oxidative stress during adulthood contribute to the age-related progression of cognitive and neuronal deterioration. We have previously demonstrated that chronic melatonin treatment improves learning and memory and reduces cholinergic neurodegeneration in TS mice. However, the molecular and physiological mechanisms that mediate these beneficial cognitive effects are not yet fully understood. In this study, we analyzed the effects of chronic melatonin treatment on different mechanisms that have been proposed to underlie the cognitive impairments observed in TS mice: reduced neurogenesis, altered synaptic plasticity, enhanced synaptic inhibition and oxidative damage. Chronic melatonin treatment rescued both impaired adult neurogenesis and the decreased density of hippocampal granule cells in trisomic mice. In addition, melatonin administration reduced synaptic inhibition in TS mice by increasing the density and/or activity of glutamatergic synapses in the hippocampus. These effects were accompanied by a full recovery of hippocampal LTP in trisomic animals. Finally, melatonin treatment decreased the levels of lipid peroxidation in the hippocampus of TS mice. These results indicate that the cognitive-enhancing effects of melatonin in adult TS mice could be mediated by the normalization of their electrophysiological and neuromorphological abnormalities and suggest that melatonin represents an effective treatment in retarding the progression of DS neuropathology.
Collapse
Affiliation(s)
- Andrea Corrales
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|