1
|
Dong H, Luo T, Yang C, Liu M, Shen Y, Hao W. Psychotic symptoms associated increased CpG methylation of metabotropic glutamate receptor 8 gene in Chinese Han males with schizophrenia and methamphetamine induced psychotic disorder: a longitudinal study. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:91. [PMID: 39384625 PMCID: PMC11464599 DOI: 10.1038/s41537-024-00506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/05/2024] [Indexed: 10/11/2024]
Abstract
Methamphetamine use can produce psychotic symptoms almost indistinguishable from schizophrenia (SCZ). Variation in DNA methylation may be closely implicated in the etiology and longitudinal development of psychiatric disorders. However, the relationship between psychotic symptoms, functional disability, and DNA methylation is still unclear. This study consists of three periods: discovery, validation, and follow-up. In the discovery stage, we employed genome-wide DNA methylation profiling (Illumina 450K) in peripheral blood mononuclear cells to test whether DNA methylation associates with psychotic symptoms and function state in representative SCZ and methamphetamine-induced psychotic disorder (MIP) patients. Then, we found seven differentially methylated regions/genes (DMRs, in UBA6, APOL3, KIF17, MLLT3, GRM8, CSNK1E, SETDB1) overlapping with genetic variants reported in previous studies of psychosis. In the validation stage, we compared the above-mentioned seven genes by MethLight qPCR method in Chinese Han males (N = 109 SCZ patients, N = 99 methamphetamine use disorder with MIP patients, N = 150 methamphetamine use disorder without MIP patients, N = 282 normal controls, age range: 18-50 years). GRM8 showed robustly altered methylation, which has passed rigorous filtration in subsequent validation, suggesting a remarkable contribution to SCZ and MIP. In addition, hypermethylation of GRM8 showed a significant association with the total scores of the Positive Negative Syndrome Scale and WHO disability assessment schedule II in both baseline and follow-up periods. Our findings suggest that increased CpG methylation in the promoter of GRM8 is a potential candidate epigenetic biomarker of psychotic symptoms in transdiagnostic samples of SCZ and MIP.
Collapse
Affiliation(s)
- Huixi Dong
- Mental Health Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Tao Luo
- Department of Psychology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Cheng Yang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mengqi Liu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yidong Shen
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Wei Hao
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Marques D, Vaziri N, Greenway SC, Bousman C. DNA methylation and histone modifications associated with antipsychotic treatment: a systematic review. Mol Psychiatry 2024:10.1038/s41380-024-02735-x. [PMID: 39227433 DOI: 10.1038/s41380-024-02735-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Antipsychotic medications are essential when treating schizophrenia spectrum and other psychotic disorders, but the efficacy and tolerability of these medications vary from person to person. This interindividual variation is likely mediated, at least in part, by epigenomic processes that have yet to be fully elucidated. Herein, we systematically identified and evaluated 65 studies that examine the influence of antipsychotic drugs on epigenomic changes, including global methylation (9 studies), genome-wide methylation (22 studies), candidate gene methylation (16 studies), and histone modification (18 studies). Our evaluation revealed that haloperidol was consistently associated with increased global hypermethylation, which corroborates with genome-wide analyses, mostly performed by methylation arrays. In contrast, clozapine seems to promote hypomethylation across the epigenome. Candidate-gene methylation studies reveal varying effects post-antipsychotic therapy. Some genes like Glra1 and Drd2 are frequently found to undergo hypermethylation, whereas other genes such as SLC6A4, DUSP6, and DTNBP1 are more likely to exhibit hypomethylation in promoter regions. In examining histone modifications, the literature suggests that clozapine changes histone methylation patterns in the prefrontal cortex, particularly elevating H3K4me3 at the Gad1 gene and affecting the transcription of genes like mGlu2 by modifying histone acetylation and interacting with HDAC2 enzymes. Risperidone and quetiapine, however, exhibit distinct impacts on histone marks across different brain regions and cell types, with risperidone reducing H3K27ac in the striatum and quetiapine modifying global H3K9me2 levels in the prefrontal cortex, suggesting antipsychotics demonstrate selective influence on histone modifications, which demonstrates a complex and targeted mode of action. While this review summarizes current knowledge, the intricate dynamics between antipsychotics and epigenetics clearly warrant more exhaustive exploration with the potential to redefine our understanding and treatment of psychiatric conditions. By deciphering the epigenetic changes associated with drug treatment and therapeutic outcomes, we can move closer to personalized medicine in psychiatry.
Collapse
Affiliation(s)
- Diogo Marques
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nazanin Vaziri
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Steven C Greenway
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Chad Bousman
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
3
|
Du H, Ma J, Zhou W, Li M, Huai C, Shen L, Wu H, Zhao X, Zhang N, Gao S, Wang Q, He L, Wu X, Qin S, Zhao M. Methylome-wide association study of different responses to risperidone in schizophrenia. Front Pharmacol 2022; 13:1078464. [PMID: 36618913 PMCID: PMC9815458 DOI: 10.3389/fphar.2022.1078464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Accumulating evidence shows that DNA methylation plays a role in antipsychotic response. However, the mechanisms by which DNA methylation changes are associated with antipsychotic responses remain largely unknown. Methods: We performed a methylome-wide association study (MWAS) to evaluate the association between DNA methylation and the response to risperidone in schizophrenia. Genomic DNA methylation patterns were assessed using the Agilent Human DNA Methylation Microarray. Results: We identified numerous differentially methylated positions (DMPs) and regions (DMRs) associated with antipsychotic response. CYP46A1, SPATS2, and ATP6V1E1 had the most significant DMPs, with p values of 2.50 × 10-6, 3.53 × 10-6, and 5.71 × 10-6, respectively. The top-ranked DMR was located on chromosome 7, corresponding to the PTPRN2 gene with a Šidák-corrected p-value of 9.04 × 10-13. Additionally, a significant enrichment of synaptic function and neurotransmitters was found in the differentially methylated genes after gene ontology and pathway analysis. Conclusion: The identified DMP- and DMR-overlapping genes associated with antipsychotic response are related to synaptic function and neurotransmitters. These findings may improve understanding of the mechanisms underlying antipsychotic response and guide the choice of antipsychotic in schizophrenia.
Collapse
Affiliation(s)
- Huihui Du
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Jingsong Ma
- School o f Engineering, Westlake University, Hangzhou, Zhejiang, China,Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Wei Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Mo Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Cong Huai
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Lu Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xianglong Zhao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Na Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Songyin Gao
- Zhumadian Psychiatric Hospital, Zhumadian, China
| | - Qi Wang
- Hebei Mental Health Center, Hebei Sixth People’s Hospital, Baoding, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xuming Wu
- Nantong Fourth People’s Hospital, Nantong, China,*Correspondence: Xuming Wu, ; Shengying Qin, ; Mingzhe Zhao,
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders Ministry of Education, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Xuming Wu, ; Shengying Qin, ; Mingzhe Zhao,
| | - Mingzhe Zhao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders Ministry of Education, Shanghai Jiao Tong University, Shanghai, China,Affiliated Mental Health Center and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,*Correspondence: Xuming Wu, ; Shengying Qin, ; Mingzhe Zhao,
| |
Collapse
|
4
|
Staes N, White CM, Guevara EE, Eens M, Hopkins WD, Schapiro SJ, Stevens JM, Sherwood CC, Bradley BJ. Chimpanzee Extraversion scores vary with epigenetic modification of dopamine receptor gene D2 ( DRD2) and early rearing conditions. Epigenetics 2022; 17:1701-1714. [PMID: 35345970 PMCID: PMC9621015 DOI: 10.1080/15592294.2022.2058224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 02/17/2022] [Accepted: 03/22/2022] [Indexed: 11/03/2022] Open
Abstract
Chimpanzees have consistent individual differences in behaviour, also referred to as personality. Similar to human personality structure, five dimensions are commonly found in chimpanzee studies that show evidence for convergent and predictive validity (Dominance, Openness, Extraversion, Agreeableness, and Reactivity/Undependability). These dimensions are to some extent heritable, indicating a genetic component that explains part of the variation in personality scores, but are also influenced by environmental factors, such as the early social rearing background of the individuals. In this study, we investigated the role of epigenetic modification of the dopamine receptor D2 gene (DRD2) as a potential mechanism underlying personality variation in 51 captive chimpanzees. We used previously collected personality trait rating data and determined levels of DRD2 CpG methylation in peripheral blood samples for these same individuals. Results showed that DRD2 methylation is most strongly associated with Extraversion, and that varying methylation levels at specific DRD2 sites are associated with changes in Extraversion in nursery-reared, but not mother-reared, individuals. These results highlight the role of dopaminergic signalling in chimpanzee personality, and indicate that environmental factors, such as social experiences early in life, can have long-lasting behavioural effects, potentially through modification of the epigenome. These findings add to the growing evidence demonstrating the importance of the experience-dependent methylome for the development of complex social traits like personality.
Collapse
Affiliation(s)
- Nicky Staes
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC, USA
- Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
- Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| | - Cassandra M. White
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC, USA
| | - Elaine E Guevara
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC, USA
| | - Marcel Eens
- Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - William D. Hopkins
- Michale E. Keeling Center for Comparative Medicine and Research, the University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
- Neuroscience Institute and Language Research Center, Georgia State University, Atlanta, GAUSA
- Ape Cognition and Conservation Initiative, Des Moines, IA, USA
| | - Steven J. Schapiro
- Michale E. Keeling Center for Comparative Medicine and Research, the University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Jeroen M.G. Stevens
- Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
- Salto Agro- and Biotechnology, Odisee University College, Sint-Niklaas, Belgium
| | - Chet C. Sherwood
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC, USA
| | - Brenda J Bradley
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC, USA
| |
Collapse
|
5
|
Hu M, Xia Y, Zong X, Sweeney JA, Bishop JR, Liao Y, Giase G, Li B, Rubin LH, Wang Y, Li Z, He Y, Chen X, Liu C, Chen C, Tang J. Risperidone-induced changes in DNA methylation in peripheral blood from first-episode schizophrenia patients parallel changes in neuroimaging and cognitive phenotypes. Psychiatry Res 2022; 317:114789. [PMID: 36075150 DOI: 10.1016/j.psychres.2022.114789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Second generation antipsychotics such as risperidone are first-line pharmacotherapy treatment choices for schizophrenia. However, our ability to reliably predict and monitor treatment reaction is impeded by the lack of relevant biomarkers. As a biomarker for the susceptibility of schizophrenia and clozapine treatment response, DNA methylation (DNAm) has been studied, but the impact of antipsychotics on DNAm has not been explored in drug-naïve patients. OBJECTIVE The aim of the present study was to examine changes of DNAm after short-term antipsychotic therapy in first-episode drug-naïve schizophrenia (FES) to identify the beneficial and adverse effect of risperidone on DNAm and their relation to treatment outcome. METHODS Thirty-eight never treated schizophrenia patients and 38 demographically matched individuals (healthy controls) were assessed at baseline and at 8-week follow-up with symptom ratings, and cognitive and functional imaging procedures, at which time a blood draw for DNAm studies was performed. During the 8-week period, patients received treatment with risperidone monotherapy. An independent data set was used as replication. RESULTS We identified brain related pathways enriched in 4,888 FES-associated CpG sites relative to controls. Risperidone administration in patients altered DNAm in 5,979 CpG sites relative to baseline. Significant group differences in DNAm at follow-up were seen in FES patients at 6,760 CpG sites versus healthy controls. Through comparison of effect size, we found 87.54% out of the risperidone-associated changes in DNAm showed possible beneficial effect, while only 12.46% showed potential adverse effect. There were 580 DNAm sites in which changes shifted methylation levels to be indistinguishable from controls after risperidone treatment. The DNAm changes of some sites that normalized after treatment were correlated with treatment-related changes in symptom severity, spontaneous neurophysiological activity, and cognition. We replicated our results in an independent data set. CONCLUSION The normalizing effect of risperidone monotherapy on gene DNAm, and its correlation with clinically relevant phenotypes, indicates that risperidone therapy is associated with DNAm changes that are related to changes in brain physiology, cognition and symptom severity.
Collapse
Affiliation(s)
- Maolin Hu
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yan Xia
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, United States; Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Xiaofen Zong
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States; Huaxi MR Research Center, Department of Radiology, Sichuan University, Chengdu, China
| | - Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology and Department of Psychiatry, University of Minnesota, Minneapolis, MN, United States
| | - Yanhui Liao
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Gina Giase
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Bingshan Li
- Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Leah H Rubin
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yunpeng Wang
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, 0317 Oslo, Norway
| | - Zongchang Li
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Ying He
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaogang Chen
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Mental Health Institute, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center on Mental Disorders, Changsha, Hunan, China; National Technology Institute on Mental Disorders, Changsha, Hunan, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China.
| | - Chunyu Liu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China; Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, United States.
| | - Chao Chen
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan, China.
| | - Jinsong Tang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China; Key Laboratory of Medical Neurobiology of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
6
|
Du J, Nakachi Y, Fujii A, Fujii S, Bundo M, Iwamoto K. Antipsychotics function as epigenetic age regulators in human neuroblastoma cells. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:69. [PMID: 36038613 PMCID: PMC9424249 DOI: 10.1038/s41537-022-00277-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/12/2022] [Indexed: 11/12/2022]
Abstract
Recent epigenetic age studies suggested accelerated aging in schizophrenia. Although antipsychotics may modulate epigenetic age, direct estimation of their roles was impeded when tissues derived from patients were used for analysis. By using a cellular model, we found that antipsychotics generally worked as epigenetic age regulators in vitro.
Collapse
Affiliation(s)
- Jianbin Du
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yutaka Nakachi
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ayaka Fujii
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shinya Fujii
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Miki Bundo
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Kazuya Iwamoto
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
7
|
Rami FZ, Nguyen TB, Oh YE, Karamikheirabad M, Le TH, Chung YC. Risperidone Induced DNA Methylation Changes in Dopamine Receptor and Stathmin Genes in Mice Exposed to Social Defeat Stress. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2022; 20:373-388. [PMID: 35466108 PMCID: PMC9048015 DOI: 10.9758/cpn.2022.20.2.373] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022]
Abstract
Objective Methods Results Conclusion
Collapse
Affiliation(s)
- Fatima Zahra Rami
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Thong Ba Nguyen
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Young-Eun Oh
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Maryam Karamikheirabad
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Thi-Hung Le
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Young-Chul Chung
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| |
Collapse
|
8
|
Present and future antipsychotic drugs: a systematic review of the putative mechanisms of action for efficacy and a critical appraisal under a translational perspective. Pharmacol Res 2022; 176:106078. [PMID: 35026403 DOI: 10.1016/j.phrs.2022.106078] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 01/10/2023]
Abstract
Antipsychotics represent the mainstay of schizophrenia pharmacological therapy, and their role has been expanded in the last years to mood disorders treatment. Although introduced in 1952, many years of research were required before an accurate picture of how antipsychotics work began to emerge. Despite the well-recognized characterization of antipsychotics in typical and atypical based on their liability to induce motor adverse events, their main action at dopamine D2R to elicit the "anti-psychotic" effect, as well as the multimodal action at other classes of receptors, their effects on intracellular mechanisms starting with receptor occupancy is still not completely understood. Significant lines of evidence converge on the impact of these compounds on multiple molecular signaling pathways implicated in the regulation of early genes and growth factors, dendritic spine shape, brain inflammation, and immune response, tuning overall the function and architecture of the synapse. Here we present, based on PRISMA approach, a comprehensive and systematic review of the above mechanisms under a translational perspective to disentangle those intracellular actions and signaling that may underline clinically relevant effects and represent potential targets for further innovative strategies in antipsychotic therapy.
Collapse
|
9
|
Du J, Nakachi Y, Kiyono T, Fujii S, Kasai K, Bundo M, Iwamoto K. Comprehensive DNA Methylation Analysis of Human Neuroblastoma Cells Treated With Haloperidol and Risperidone. Front Mol Neurosci 2021; 14:792874. [PMID: 34938161 PMCID: PMC8687450 DOI: 10.3389/fnmol.2021.792874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Accumulating evidence suggests that the epigenetic alterations induced by antipsychotics contribute to the therapeutic efficacy. However, global and site-specific epigenetic changes by antipsychotics and those shared by different classes of antipsychotics remain poorly understood. We conducted a comprehensive DNA methylation analysis of human neuroblastoma cells cultured with antipsychotics. The cells were cultured with low and high concentrations of haloperidol or risperidone for 8 days. DNA methylation assay was performed with the Illumina HumanMethylation450 BeadChip. We found that both haloperidol and risperidone tended to cause hypermethylation changes and showed similar DNA methylation changes closely related to neuronal functions. A total of 294 differentially methylated probes (DMPs), including 197 hypermethylated and 97 hypomethylated DMPs, were identified with both haloperidol and risperidone treatment. Gene ontology analysis of the hypermethylated probe-associated genes showed enrichment of genes related to the regulation of neurotransmitter receptor activity and lipoprotein lipase activity. Pathway analysis identified that among the DMP-associated genes, SHANK1 and SHANK2 were the major genes in the neuropsychiatric disorder-related pathways. Our data would be valuable for understanding the mechanisms of action of antipsychotics from an epigenetic viewpoint.
Collapse
Affiliation(s)
- Jianbin Du
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yutaka Nakachi
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomoki Kiyono
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinya Fujii
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,The International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan.,University of Tokyo Center for Integrative Science of Human Behavior (CiSHuB), Tokyo, Japan
| | - Miki Bundo
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuya Iwamoto
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
10
|
Srivastava A, Dada O, Qian J, Al-Chalabi N, Fatemi AB, Gerretsen P, Graff A, De Luca V. Epigenetics of Schizophrenia. Psychiatry Res 2021; 305:114218. [PMID: 34638051 DOI: 10.1016/j.psychres.2021.114218] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/07/2021] [Accepted: 09/20/2021] [Indexed: 12/31/2022]
Abstract
Schizophrenia (SCZ) is a chronic psychotic disorder that contributes significantly to disability, affecting behavior, thought, and cognition. It has long been known that there is a heritable component to schizophrenia; studies in both the pre-genomic and post-genomic era, however, have failed to elucidate fully the genetic basis for this complex disease. Epigenetic processes - broadly, those which contribute to changes in gene expression without altering the genetic code itself - may help to understand better the mechanisms leading to development of SCZ. The objective of this review is to synthesize current knowledge of the epigenetic mechanisms involved in schizophrenia. Specifically, DNA methylation studies in both peripheral and post-mortem brain samples in SCZ are reviewed, as are epigenetic mechanisms including histone modification. The promising role of non-coding RNA including micro-RNA (miRNA) and its role as a potential diagnostic and therapeutic biomarker is outlined, as are epigenetic age acceleration and telomere shortening. Finally, we discuss limitations in current knowledge and propose future research directions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ariel Graff
- Department of Psychiatry, University of Toronto
| | | |
Collapse
|
11
|
Analysis of methylation and -141C Ins/Del polymorphisms of the dopamine receptor D2 gene in patients with schizophrenia. Psychiatry Res 2019; 278:135-140. [PMID: 31176829 DOI: 10.1016/j.psychres.2019.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/28/2019] [Accepted: 06/01/2019] [Indexed: 12/20/2022]
Abstract
The gene for dopamine receptor D2 (DRD2) is associated with schizophrenia (SCZ). Epigenetic changes may be related to SCZ pathology. The -141C Ins/Del polymorphism in DRD2 (rs1799732) is functional and associated with SCZ. Fifty SCZ patients and 50 control subjects were newly recruited and analyzed in addition to 50 previously reported SCZ samples and 50 previously reported control samples. Genomic DNA from peripheral leukocytes was analyzed. We replicated analysis of DNA methylation rates at seven CpG sites (CpG 1-1 to 1-7) and also analyzed five additional sites (CpG 2-1 to 2-5) in the upstream region of DRD2. We also performed genotyping of -141C IIns/Del and analyzed the effects of -141C Ins/Del on methylation of DRD2. Methylation rates were significantly lower in SCZ patients compared to control subjects, respectively. In control subjects, the methylation rates were significantly lower in individuals with the Ins/Ins genotype than in Del allele carriers. We replicated hypomethylation of the DRD2 promoter region in SCZ patients compared to age-matched control subjects. The -141C Ins/Del polymorphism affected the methylation rates in regions of DRD2. Hypomethylation and the -141C Ins/Del polymorphism of DRD2 may be biomarkers for SCZ.
Collapse
|
12
|
Miura I, Kunii Y, Hino M, Hoshino H, Matsumoto J, Kanno-Nozaki K, Horikoshi S, Kaneko H, Bundo M, Iwamoto K, Yabe H. DNA methylation of ANKK1 and response to aripiprazole in patients with acute schizophrenia: A preliminary study. J Psychiatr Res 2018; 100:84-87. [PMID: 29499474 DOI: 10.1016/j.jpsychires.2018.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/17/2018] [Accepted: 02/22/2018] [Indexed: 11/19/2022]
Abstract
Epigenetic modification including DNA methylation may affect pathophysiology and the response to antipsychotic drugs in patients with schizophrenia. The objective of the present study was to investigate the effect of the DNA methylation of ANKK1 (ankyrin repeat and kinase domain containing 1) on the response to aripiprazole and plasma levels of monoamine metabolites in antipsychotic-free acute schizophrenia patients. The subjects were 34 Japanese patients with schizophrenia who had been treated with aripiprazole for 6 weeks. Comprehensive DNA methylation of ANKK1 was determined using a next-generation sequencer. DNA methylation levels at CpG site 387 of ANKK1 were higher in responders to treatment with aripiprazole and correlated with the changes in Positive and Negative Syndrome Scale scores, although the associations did not remain significant after Bonferroni correction. In responders, methylation at all CpG sites was significantly correlated with plasma levels of homovanillic acid (r = 0.587, p = 0.035) and 3-methoxy-4hydroxyphenylglycol (r = 0.684, p = 0.010) at baseline. Despite our non-significant results after multiple correction, our preliminary findings suggest that methylation levels at CpG site 387 of ANKK1 may be associated with treatment response to aripiprazole. Furthermore, methylation of ANKK1 may affect dopaminergic neural transmission in the treatment of schizophrenia, and may influence treatment response. Caution is needed in interpreting these findings because of the small sample size, and further studies are needed to confirm and expand our preliminary results.
Collapse
Affiliation(s)
- Itaru Miura
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan.
| | - Yasuto Kunii
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Mizuki Hino
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiroshi Hoshino
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Junya Matsumoto
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Keiko Kanno-Nozaki
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Sho Horikoshi
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Haruka Kaneko
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Miki Bundo
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuya Iwamoto
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
13
|
Ovenden ES, McGregor NW, Emsley RA, Warnich L. DNA methylation and antipsychotic treatment mechanisms in schizophrenia: Progress and future directions. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:38-49. [PMID: 29017764 DOI: 10.1016/j.pnpbp.2017.10.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/01/2017] [Accepted: 10/04/2017] [Indexed: 12/15/2022]
Abstract
Antipsychotic response in schizophrenia is a complex, multifactorial trait influenced by pharmacogenetic factors. With genetic studies thus far providing little biological insight or clinical utility, the field of pharmacoepigenomics has emerged to tackle the so-called "missing heritability" of drug response in disease. Research on psychiatric disorders has only recently started to assess the link between epigenetic alterations and treatment outcomes. DNA methylation, the best characterised epigenetic mechanism to date, is discussed here in the context of schizophrenia and antipsychotic treatment outcomes. The majority of published studies have assessed the influence of antipsychotics on methylation levels in specific neurotransmitter-associated candidate genes or at the genome-wide level. While these studies illustrate the epigenetic modifications associated with antipsychotics, very few have assessed clinical outcomes and the potential of differential DNA methylation profiles as predictors of antipsychotic response. Results from other psychiatric disorder studies, such as depression and bipolar disorder, provide insight into what may be achieved by schizophrenia pharmacoepigenomics. Other aspects that should be addressed in future research include methodological challenges, such as tissue specificity, and the influence of genetic variation on differential methylation patterns.
Collapse
Affiliation(s)
- Ellen S Ovenden
- Department of Genetics, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Nathaniel W McGregor
- Department of Genetics, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Robin A Emsley
- Department of Psychiatry, Stellenbosch University, Tygerberg 7505, South Africa
| | - Louise Warnich
- Department of Genetics, Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
14
|
Effect of Clozapine on DNA Methylation in Peripheral Leukocytes from Patients with Treatment-Resistant Schizophrenia. Int J Mol Sci 2017; 18:ijms18030632. [PMID: 28335437 PMCID: PMC5372645 DOI: 10.3390/ijms18030632] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 02/06/2023] Open
Abstract
Clozapine is an atypical antipsychotic, that is established as the treatment of choice for treatment-resistant schizophrenia (SCZ). To date, no study investigating comprehensive DNA methylation changes in SCZ patients treated with chronic clozapine has been reported. The purpose of the present study is to reveal the effects of clozapine on DNA methylation in treatment-resistant SCZ. We conducted a genome-wide DNA methylation profiling in peripheral leukocytes (485,764 CpG dinucleotides) from treatment-resistant SCZ patients treated with clozapine (n = 21) in a longitudinal study. Significant changes in DNA methylation were observed at 29,134 sites after one year of treatment with clozapine, and these genes were enriched for “cell substrate adhesion” and “cell matrix adhesion” gene ontology (GO) terms. Furthermore, DNA methylation changes in the CREBBP (CREB binding protein) gene were significantly correlated with the clinical improvements. Our findings provide insights into the action of clozapine in treatment-resistant SCZ.
Collapse
|
15
|
Castellani CA, Melka MG, Diehl EJ, Laufer BI, O'Reilly RL, Singh SM. DNA methylation in psychosis: insights into etiology and treatment. Epigenomics 2015; 7:67-74. [PMID: 25687467 DOI: 10.2217/epi.14.66] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Evidence for involvement of DNA methylation in psychosis forms the focus of this perspective. Of interest are results from two independent sets of experiments including rats treated with antipsychotic drugs and monozygotic twins discordant for schizophrenia. The results show that DNA methylation is increased in rats treated with antipsychotic drugs, reflecting the global effect of the drugs. Some of these changes are also seen in affected schizophrenic twins that were treated with antipsychotics. The genes and pathways identified in the unrelated experiments are relevant to neurodevelopment and psychiatric disorders. The common cause is hypothesized to be aberrations resulting from medication use. However, this needs to be established by future studies that address the origin of methylation changes in psychosis.
Collapse
|
16
|
Abdolmaleky HM, Zhou JR, Thiagalingam S. An update on the epigenetics of psychotic diseases and autism. Epigenomics 2015; 7:427-49. [DOI: 10.2217/epi.14.85] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The examination of potential roles of epigenetic alterations in the pathogenesis of psychotic diseases have become an essential alternative in recent years as genetic studies alone are yet to uncover major gene(s) for psychosis. Here, we describe the current state of knowledge from the gene-specific and genome-wide studies of postmortem brain and blood cells indicating that aberrant DNA methylation, histone modifications and dysregulation of micro-RNAs are linked to the pathogenesis of mental diseases. There is also strong evidence supporting that all classes of psychiatric drugs modulate diverse features of the epigenome. While comprehensive environmental and genetic/epigenetic studies are uncovering the origins, and the key genes/pathways affected in psychotic diseases, characterizing the epigenetic effects of psychiatric drugs may help to design novel therapies in psychiatry.
Collapse
Affiliation(s)
- Hamid Mostafavi Abdolmaleky
- Departments of Medicine (Biomedical Genetics Section), Genetics & Genomics, Boston University School of Medicine, Boston, MA 02118, USA
- Nutrition/Metabolism Laboratory at Beth Israel Deaconess Medical Center, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Jin-Rong Zhou
- Nutrition/Metabolism Laboratory at Beth Israel Deaconess Medical Center, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Sam Thiagalingam
- Departments of Medicine (Biomedical Genetics Section), Genetics & Genomics, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
17
|
Kinoshita M, Numata S, Tajima A, Ohi K, Hashimoto R, Shimodera S, Imoto I, Takeda M, Ohmori T. Aberrant DNA methylation of blood in schizophrenia by adjusting for estimated cellular proportions. Neuromolecular Med 2014; 16:697-703. [PMID: 25052007 DOI: 10.1007/s12017-014-8319-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 07/08/2014] [Indexed: 01/14/2023]
Abstract
DNA methylation, which is the transference of a methyl group to the 5'-carbon position of the cytosine in a CpG dinucleotide, is one of the major mechanisms of epigenetic modifications. A number of studies have demonstrated altered DNA methylation of peripheral blood cells in schizophrenia (SCZ) in previous studies. However, most of these studies have been limited to the analysis of the CpG sites in CpG islands in gene promoter regions, and cell-type proportions of peripheral leukocytes, which may be one of the potential confounding factors for DNA methylation, have not been adjusted in these studies. In this study, we performed a genome-wide DNA methylation profiling of the peripheral leukocytes from patients with SCZ and from non-psychiatric controls (N = 105; 63 SCZ and 42 control subjects) using a quantitative high-resolution DNA methylation microarray which covered across the whole gene region (485,764 CpG dinucleotides). In the DNA methylation data analysis, we first estimated the cell-type proportions of each sample with a published algorithm. Next, we performed a surrogate variable analysis to identify potential confounding factors in our microarray data. Finally, we conducted a multiple linear regression analysis in consideration of these factors, including estimated cell-type proportions, and identified aberrant DNA methylation in SCZ at 2,552 CpG loci at a 5% false discovery rate correction. Our results suggest that altered DNA methylation may be involved in the pathophysiology of SCZ, and cell heterogeneity adjustments may be necessary for DNA methylation analysis.
Collapse
Affiliation(s)
- Makoto Kinoshita
- Department of Psychiatry, Course of Integrated Brain Sciences, Medical Informatics, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-8-15, Kuramoto-cho, Tokushima, 770-8503, Japan,
| | | | | | | | | | | | | | | | | |
Collapse
|