1
|
Kisielewska K, Gudelska M, Kiezun M, Dobrzyn K, Zaobidna E, Rytelewska E, Kopij G, Wasilewska B, Smolinska N, Kaminski T. Expression of the apelin system in the porcine pituitary during the oestrous cycle and early pregnancy and the effect of apelin on LH and FSH secretion. Theriogenology 2024; 230:263-277. [PMID: 39357165 DOI: 10.1016/j.theriogenology.2024.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Reproductive success requires considerable energy investment. Research has shown that some adipokines, i.e. the hormones produced in adipose tissue, affect reproductive functions by influencing all structures of the hypothalamic-pituitary-ovarian axis. Apelin is a recently identified member of the adipokine family. To the best of the authors' knowledge, this is the first study to investigate the gene and protein expression of the apelin system (the apelin hormone and the apelin receptor, APJ) in the anterior (AP) and posterior (PP) pituitary lobes of the domestic pig during different phases of the oestrous cycle (days 2 to 3, 10 to 12, 14 to 16, and 17 to 19) and in early pregnancy (days 10 to 11, 12 to 13, 15 to 16, and 27 to 28). It was also assumed that apelin participates in the regulation of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion and influences Akt, MAPK/Erk1/2, and AMPK signalling pathways in the AP during the oestrous cycle. Apelin, APJ mRNAs and proteins were detected in both pituitary lobes. Apelin was identified in gonadotropes, somatotropes, lactotropes, and thyrotropes. The study also revealed that apelin and APJ mRNA/protein levels fluctuate during the oestrous cycle and early gestation. Apelin affects basal, GnRH- and/or insulin-stimulated gonadotropin secretion in some phases of the cycle, as well as the phosphorylation of Akt, MAPK/Erk1/2, and AMPK proteins in AP cells. These findings suggest that apelin may be produced locally in the pituitary and that this gland is receptive to apelin's action. The study also suggest that apelin may influence female reproductive functions by controlling the release of LH and FSH from AP cells, and that it affects Akt, MAPK/Erk1/2, and AMPK signalling pathways.
Collapse
Affiliation(s)
- Katarzyna Kisielewska
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082, Olsztyn, Poland.
| | - Marlena Gudelska
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082, Olsztyn, Poland.
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland.
| | - Kamil Dobrzyn
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland.
| | - Ewa Zaobidna
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland.
| | - Edyta Rytelewska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387, Krakow, Poland.
| | - Grzegorz Kopij
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland.
| | - Barbara Wasilewska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082, Olsztyn, Poland.
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland.
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland.
| |
Collapse
|
2
|
Mabrouk I, Song Y, Liu Q, Ma J, Zhou Y, Yu J, Hou J, Hu X, Li X, Xue G, Cao H, Ma X, Xu J, Wang J, Pan H, Hua G, Hu J, Sun Y. Novel insights into the mechanisms of seasonal cyclicity of testicles by proteomics and transcriptomics analyses in goose breeder lines. Poult Sci 2024; 103:104213. [PMID: 39190991 PMCID: PMC11396066 DOI: 10.1016/j.psj.2024.104213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/08/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
Spermatogenesis is a crucial indicator of geese reproduction performance and production. The testis is the main organ responsible for sperm production, and the egg-laying cycle in geese is a complex physiological process that demands precise orchestration of hormonal cues and cellular events within the testes, however, the seasonal changes in the transcriptomic and proteomic profiles of goose testicles remain unclear. To explore various aspects of the mechanisms of the seasonal cyclicity of testicles in different goose breeds, in this study, we used an integrative transcriptomic and proteomic approach to screen the key genes and proteins in the testes of 2 goose males, the Hungarian white goose and the Wanxi white goose, at 3 different periods of the laying cycle: beginning of laying cycle (BLC), peak of laying cycle (PLC), and end of laying cycle (ELC). The results showed that a total of 9,273 differentially expressed genes and 4,543 differentially expressed proteins were identified in the geese testicles among the comparison groups. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis suggested that the DEGs, in the comparison groups, were mainly enrichment in metabolic pathways, neuroactive ligand-receptor interaction, cyctokine-cyctokine receptor interaction, calcium signaling pathway, apelin signaling pathway, ether lipid metabolism, cysteine, and methionine metabolism. While the DEPs, in the 3 comparison groups, were mainly involved in the ribosome, metabolic pathways, carbon metabolism, proteasome, endocytosis, lysosome, regulation of actin cytoskeleton, oxidative phosphorylation, nucleocytoplasmic transport, and tight junction. The protein-protein interaction network analysis (PPI) indicated that selected DEPs, such as CHD1L, RAB18, FANCM, TAF5, TSC1/2, PHLDB2, DNAJA2, NCOA5, DEPTOR, TJP1, and RAPGEF2, were highly associated with male reproductive regulation. Further, the expression trends of 4 identified DEGs were validated by qRT-PCR. In conclusion, this work offers a new perspective on comprehending the molecular mechanisms and pathways involved in the seasonal cyclicity of testicles in the Hungarian white goose and the Wanxi white goose, as well as contributing to improving goose reproductive performance.
Collapse
Affiliation(s)
- Ichraf Mabrouk
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yupu Song
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Qiuyuan Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jingyun Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yuxuan Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jin Yu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jiahui Hou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xiangman Hu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xinyue Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Guizhen Xue
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Heng Cao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xiaoming Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jing Xu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jingbo Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hongxiao Pan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Guoqing Hua
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jingtao Hu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yongfeng Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Jilin Agricultural University, Ministry of Education, Changchun, 130118, China; Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
3
|
Zhou Y, Meng Z, Han Y, Yang X, Kuai J, Bao H. The effects of apelin-13 in a mouse model of post-traumatic stress disorder. Neuroreport 2024:00001756-990000000-00291. [PMID: 39423326 DOI: 10.1097/wnr.0000000000002104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
The objective is to investigate the effects of apelin-13 in models of post-traumatic stress disorder (PTSD). Mature male CD1 mice were subjected to the single prolonged stress method to induce PTSD-related behaviors. These behaviors were then evaluated using the elevated plus maze test, Morris water maze test, and open field test. Hippocampal neural cell death was assessed using propidium iodide labeling. The expression of hippocampal autophagy pathway-associated proteins was determined through immunoblotting analysis, and LC3 levels were also measured via quantitative real-time reverse transcription-PCR. The results demonstrate that administration of apelin-13 suppressed PTSD-induced hippocampal neural cell death and alleviated PTSD-related behaviors in mice. Additionally, PTSD led to an up-regulation of LC3 and FoxO3a, and down-regulation of P62, p-PI3K, p-Akt, and p-FoxO3a in the hippocampus. However, these changes were reversed by apelin-13 treatment. These findings support the hypothesis that apelin-13 prevents the development of PTSD-like behavior and inhibits autophagy of neuronal cells in a mouse model of PTSD. Apelin-13 may hold potential as a therapeutic agent for PTSD in clinical applications.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou
| | - Zijun Meng
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou
| | - Yuqing Han
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou
| | - Xiaofang Yang
- Department of Histology and Embryology, Fenyang College, Shanxi Medical University, Fenyang
| | - Jinxia Kuai
- Department of Science and Technology, Public Experimental Research Center, Xuzhou Medical University, Xuzhou, China
| | - Haijun Bao
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou
| |
Collapse
|
4
|
Mehri K, Hamidian G, Babri S, Farajdokht F, Zavvari Oskuye Z. Exercise and insulin glargine administration in mothers with diabetes during pregnancy ameliorate function of testis in offspring: Consequences on apelin-13 and its receptor. Life Sci 2024; 342:122517. [PMID: 38395385 DOI: 10.1016/j.lfs.2024.122517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/11/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
AIMS Despite the evidence exhibited that diabetes during gestation (DDG) is linked with reproductive dysfunction in offspring, the underlying cellular mechanisms involved are not precisely defined. This study was designed to assess the impact of voluntary exercise and insulin glargine on DDG-induced metabolic and reproductive disorders in male offspring. MAIN METHODS Fifty female Wistar rats (three weeks old) received a control diet (n = 10) or high-fat-high-sucrose diet (to induce DDG; n = 40) for six weeks before breeding. From the 7th day of pregnancy onwards, blood glucose over 140 mg/dL was characterized as DDG. Then, the DDG animals were randomly divided into four subgroups with/without voluntary exercise and/or insulin glargine. To evaluate insulin resistance, a glucose tolerance test was performed on the 15th day of pregnancy. After three weeks, male offspring were weaned, and fed a control diet until 12 weeks old. At the end of the experiment, the lipid profile, sex hormones, and apelin-13 in the serum, mRNA expression of apelin receptors (APJ) in the testis and sperm analysis were assessed. KEY FINDINGS Our results indicated that voluntary exercise and/or insulin glargine administration in mothers with DDG ameliorated lipid profile, and sex hormones alterations, reduced the serum level of apelin-13, as well as increased APJ expression in testis, and quality of sperm in offspring. SIGNIFICANCE Combined administration of voluntary exercise and insulin glargine during pregnancy by regulating of apelinergic system and inhibiting the metabolic and reproductive complications induced by DDG, can be considered as a suitable therapeutic strategy for improving sub-or in-fertility in the male offspring.
Collapse
Affiliation(s)
- Keyvan Mehri
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Hamidian
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Shirin Babri
- Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
5
|
Das M, Gurusubramanian G, Roy VK. Apelin receptor antagonist (ML221) treatment has a stimulatory effect on the testicular proliferation, antioxidants system and steroidogenesis in adult mice. Neuropeptides 2023; 101:102354. [PMID: 37379791 DOI: 10.1016/j.npep.2023.102354] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/04/2023] [Accepted: 06/18/2023] [Indexed: 06/30/2023]
Abstract
The expression of apelin and its receptor (APJ) has been shown in the hypothalamus-pituitary-testicular axis. It has also been suggested apelin and APJ are neuropeptide factors. The presence of apelin and APJ in the seminiferous tubules and interstitium might be predicted to act as a local regulator of testicular activity, although the function is not well known in the mice testis. In the present study, we have investigated the effects of APJ, antagonist, ML221 on the gonadotropin levels, testicular steroidogenesis, proliferation, apoptosis and antioxidant system. Our results showed that inhibition of APJ by ML221 increased the sperm concentration, circulating testosterone, FSH, LH levels and intra-testicular testosterone concentration. Furthermore, ML221 treatment stimulates the germ cell proliferation and antioxidant system in the testis. The expression of BCL2, AR was up-regulated whereas, the expression of BAX and active caspase3 was down-regulated after ML221 treatment. Immunohistocehmical analysis of AR also showed increase abundance in the spermatogonia, primary spermatocytes and Leydig cells of 150 μg/kg dose group. These findings suggest that in adult testis, the apelin system might have an inhibitory role in germ cell proliferation and a stimulatory role in apoptosis. It might also be suggested that the apelin system could be involved in the disposal mechanism for damaged germ cells during spermatogenesis via the down-regulation of AR.
Collapse
Affiliation(s)
- Milirani Das
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796 004, India
| | | | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796 004, India.
| |
Collapse
|
6
|
Moretti E, Signorini C, Corsaro R, Noto D, AntonioTripodi S, Menchiari A, Micheli L, Ponchia R, Collodel G. Apelin is found in human sperm and testis and is raised in inflammatory pathological conditions. Cytokine 2023; 169:156281. [PMID: 37352775 DOI: 10.1016/j.cyto.2023.156281] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/19/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Apelin/APJ receptor (R) is involved in many oxidative stress-induced pathological conditions. Since this system is not yet explored in male reproduction, we studied apelin/APJ-R in human semen and testis. Semen of 41 infertile patients with varicocele, genitourinary infections, unexplained infertility and 12 fertile men was analysed (WHO guidelines, 2021). Apelin was quantified by ELISA in seminal fluid and spermatozoa, interleukin (IL)-1β in seminal fluid. Apelin/APJ-R were immunolocalized in spermatozoa and testis. Apelin was present in spermatozoa and its levels were negatively correlated with normal sperm morphology% (r = -0.857; p < 0.001), and positively with IL-1β levels (r = 0.455; p < 0.001). Apelin and IL-1β concentrations were increased in patients' samples with varicocele (apelin p < 0.01; IL-1β p < 0.05) and infections (apelin p < 0.01; IL-1β p < 0.001). By logistic regression analysis, apelin (OR 1.310; p = 0.011) and IL-1β (OR 1.572; p = 0.005) were predictors of inflammatory diseases (varicocele, infections). Apelin and APJ-R immunofluorescence labels were weak in sperm tail of fertile men and intense along tail, cytoplasmic residues and post-acrosomal sheath of sperm from infertile men. In testis, apelin and APJ-R labels were evident in Leydig cells and weak inside the seminiferous tubule. Apelin/APJ-R system is present in human spermatozoa and testicular tissue and probably involved in human fertility.
Collapse
Affiliation(s)
- Elena Moretti
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Roberta Corsaro
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Daria Noto
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | | - Andrea Menchiari
- Department of Business and Law, University of Siena, Siena, Italy
| | - Lucia Micheli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Rosetta Ponchia
- Unit of Medically Assisted Reproduction, Siena University Hospital, 53100 Siena, Italy
| | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
7
|
Shokrollahi B, Zheng HY, Ma XY, Shang JH. The effects of apelin on IGF1/FSH-induced steroidogenesis, proliferation, Bax expression, and total antioxidant capacity in granulosa cells of buffalo ovarian follicles. Vet Res Commun 2023; 47:1523-1533. [PMID: 37036601 DOI: 10.1007/s11259-023-10107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/15/2023] [Indexed: 04/11/2023]
Abstract
Apelin (APLN) was believed to be an adipokine secreted from adipose tissue. However, studies demonstrate that it is a pleiotropic peptide and has several effects on the female reproductive system. In this study, We examined the effects of different doses of IGF1 and FSH in the presence of APLN-13 on the production of progesterone in buffalo ovary granulosa cells. Furthermore, different doses of APLN isoforms (APLN-13 and APLN-17) were tested on proliferation, Bax protein expression, and antioxidant capacity in the same cells. Granulosa cells of buffalo ovaries were cultured in the presence of different doses of IGF1 and FSH with or without APLN-13 (10-9 M) to evaluate its effect on the secretion of progesterone tested by ELISA assay. The WST-1 method was used to survey the effect of APLN on granulosa cell proliferation and cytotoxicity. In addition, the antioxidant capacity of the cells in the presence of APLN was assessed using the FRAP method. mRNA and Bax protein levels were measured in granulosa cells treated with APLN using real-time PCR and western blot techniques. APLN-13 (10-9) stimulated the effect of IGF1 on the production of progesterone, and its levels were affected by APLN-13 dose-dependently. However, it did not significantly stimulate the effect of FSH on the secretion of progesterone. APLN-13 (all doses) and APLN-17 (10-8 and 10-9 M) improved the proliferation of granulosa cells. Moreover, preincubation of the cells for an hour by APLN receptor antagonist (ML221, 10 µM) did not significantly affect the proliferation of cells induced by APLN. Neither APLN-13 nor APLN-17 were not cytotoxic for the cells compared to the control treatment. APLN-13 at the doses of 10-6 and 10-8 M substantially up and down-regulated Bax protein expression; however, such effects were not observed when the cells were preincubated with ML221. In addition, APLN-17 did not influence the expression amount of Bax. Furthermore, both APLN-13 and -17 improved the total antioxidant capacity of the ovarian granulosa cells, but such effects were not seen when the cells were preincubated with ML221. According to these results, APLN enhanced the steroidogenesis induced by IGF1 but did not affect the steroidogenesis induced by FSH. APLN also enhanced the cell proliferation and antioxidant capacity of buffalo ovaries follicular granulosa cells; however, its effect on Bax expression was different.
Collapse
Affiliation(s)
- Borhan Shokrollahi
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
- Department of Animal Science, Sanandaj Branch, Islamic Azad University, Sanandaj, Kurdistan, Iran
| | - Hai-Ying Zheng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Xiao-Ya Ma
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Jiang-Hua Shang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China.
| |
Collapse
|
8
|
Mehri K, Hamidian G, Zavvari Oskuye Z, Nayebirad S, Farajdokht F. The role of apelinergic system in metabolism and reproductive system in normal and pathological conditions: an overview. Front Endocrinol (Lausanne) 2023; 14:1193150. [PMID: 37424869 PMCID: PMC10324965 DOI: 10.3389/fendo.2023.1193150] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Lifestyle changes have made metabolic disorders as one of the major threats to life. Growing evidence demonstrates that obesity and diabetes disrupt the reproductive system by affecting the gonads and the hypothalamus-pituitary-gonadal (HPG) axis. Apelin, an adipocytokine, and its receptor (APJ) are broadly expressed in the hypothalamus nuclei, such as paraventricular and supraoptic, where gonadotropin-releasing hormone (GnRH) is released, and all three lobes of the pituitary, indicating that apelin is involved in the control of reproductive function. Moreover, apelin affects food intake, insulin sensitivity, fluid homeostasis, and glucose and lipid metabolisms. This review outlined the physiological effects of the apelinergic system, the relationship between apelin and metabolic disorders such as diabetes and obesity, as well as the effect of apelin on the reproductive system in both gender. The apelin-APJ system can be considered a potential therapeutic target in the management of obesity-associated metabolic dysfunction and reproductive disorders.
Collapse
Affiliation(s)
- Keyvan Mehri
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Hamidian
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | | | - Sepehr Nayebirad
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Gemici B, Birsen İ, İzgüt-Uysal VN. The Apelin-Apela Receptor APJ is Necessary for Formation and Healing of Ischemia Reperfusion-Induced Gastric Ulcer in Rats. Peptides 2023; 166:171027. [PMID: 37245722 DOI: 10.1016/j.peptides.2023.171027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/06/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
The apelinergic system, widely expressed and regulates hormone-enzyme secretion, motility, and protective mechanisms of the stomach. This system consists of the apelin receptor (APJ) and two peptides known as apela and apelin. The IR-induced experimental gastric ulcer model, is a well-known and commonly used one that induces hypoxia and causes the release of proinflammatory cytokines. Expressions of apelin and its receptor APJ are induced by hypoxia and inflammation in the gastrointestinal tract. Apelin has been shown to affect angiogenesis positively, considered the most critical component of the healing process. Although it is known that apelin and AJP expressions are induced by inflammatory stimuli and hypoxia, stimulate endothelial cell proliferation and have a role in regenerative angiogenesis, no information or has been found in the literature regarding the role of APJ in the formation and healing of gastric mucosal lesions induced by I/R. So, we conducted a study to clarify the role of APJ in formation and healing mechanisms of IR-induced gastric lesions. Male Wistar rats were divided into five groups; control, sham-operated, IR, APJ antagonist treated-IR group (F13A+IR), and the healing groups. F13A was intravenously given to the animals. Gastric lesion index, mucosal blood flow, PGE2, NOx, 4-HNE-MDA, HO activity, and protein expressions of VEGF and HO-1 were measured. F13A application before the IR increased the mucosal injury, F13A application following the ischemia delayed the mucosal healing during the reperfusion period. Consequently, blocking apelin receptors may worsen gastric injury due to the IR and delay mucosal healing.
Collapse
Affiliation(s)
- Burcu Gemici
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Turkey.
| | - İlknur Birsen
- Akdeniz University, Faculty of Science, Department of Chemistry, 07070 Antalya, Turkey
| | - V Nimet İzgüt-Uysal
- Akdeniz University, Faculty of Medicine, Department of Physiology, 07070 Antalya, Turkey
| |
Collapse
|
10
|
Bahar MR, Tekin S, Beytur A, Onalan EE, Ozyalin F, Colak C, Sandal S. Effects of intracerebroventricular MOTS-c infusion on thyroid hormones and uncoupling proteins. Biol Futur 2023:10.1007/s42977-023-00163-6. [PMID: 37067760 DOI: 10.1007/s42977-023-00163-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/06/2023] [Indexed: 04/18/2023]
Abstract
This study was conducted to determine the possible effects of intracerebroventricular MOTS-c infusion on thyroid hormones and uncoupling proteins (UCPs) in rats. Forty male Wistar Albino rats were divided into 4 groups with 10 animals in each group: control, sham, 10 and 100 µM MOTS-c. Hypothalamus, blood, muscle, adipose tissues samples were collected for thyrotropin-releasing hormone (TRH), UCP1 and UCP3 levels were determined by the RT-PCR and western blot analysis. Serum thyroid hormone levels were determined by the ELISA assays. MOTS-c infusion was found to increase food consumption but it did not cause any changes in the body weight. MOTS-c decreased serum TSH, T3, and T4 hormone levels. On the other hand, it was also found that MOTS-c administration increased UCP1 and UCP3 levels in peripheral tissues. The findings obtained in the study show that central MOTS-c infusion is a directly effective agent in energy metabolism.
Collapse
Affiliation(s)
- Mehmet Refik Bahar
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Suat Tekin
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey.
| | - Asiye Beytur
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Ebru Etem Onalan
- Department of Medical Biology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Fatma Ozyalin
- Laboratory and Veterinary Health Program, Akcadag Vocational School, Malatya Turgut Ozal University, Malatya, Turkey
| | - Cemil Colak
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Süleyman Sandal
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| |
Collapse
|
11
|
Gupta M, Korde JP, Bahiram KB, Sardar VM, Kurkure NV. Expression and localization of apelin and apelin receptor (APJ) in buffalo ovarian follicles and corpus luteum and the in-vitro effect of apelin on steroidogenesis and survival of granulosa cells. Theriogenology 2023; 197:240-251. [PMID: 36525863 DOI: 10.1016/j.theriogenology.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Apelin is an adipose tissue-derived hormone with many physiological functions, including the regulation of female reproduction. It acts through an orphan G protein-coupled receptor APJ/APLNR. The present study aimed to investigate the expression of apelin and its receptor APJ in the ovarian follicles and corpus luteum (CL) and the role of apelin on steroidogenesis and cell survival. Ovarian follicles were classified into four groups based on size and estradiol (E2) level in the follicular fluid as follows: (i) F1 (4-6 mm; <0.5 ng/mL) (ii) F2 (7-9 mm; 0.5-5 ng/mL) (iii) F3 (10-13 mm; 5-40 ng/mL) and (iv) F4 (dominant/pre-ovulatory follicle) (>13 mm; >180 ng/mL). The corpora lutea (CL) were categorized into early (CL1), mid (CL2), late luteal (CL3), and regressing (CL4) CL stages. Expression of apelin increased with follicle size, with significantly greatest in the dominant or pre-ovulatory follicle (P < 0.05). Expression of APJ was greater in large and dominant follicles than in small and medium follicles (P < 0.05). In CL, the mRNA and protein abundance of apelin and apelin receptor was greater during mid (CL2) and late luteal (CL3) stages as compared to early (CL1) and regressing (CL4) stages (P < 0.05). Both the factors were localized in granulosa and theca cells of follicles and small and large luteal cells of CL. The pattern of the intensity of immunofluorescence was similar to mRNA and protein expression. Granulosa cells were cultured in vitro and treated at 1, 10, and 10 ng/mL apelin-13 either alone or in the presence of the follicle-stimulating hormone (FSH) (30 ng/mL) or insulin-like growth factor-I (IGF-I) (10 ng/mL) for 48 h. The luteal cells were treated with apelin-13 at 1, 10, and 100 ng/mL doses for 48 h. Apelin treatment at 10 and 100 ng/ml significantly (P < 0.05) increased E2 secretion, cytochrome P450 aromatase or CYP19A1 expression in GC. In luteal cells, apelin at 10 ng/mL and 100 ng/mL significantly (P < 0.05) increased progesterone (P4) secretion and HSD3B1 expression. In GCs, apelin, either alone or in combination, increased PCNA expression and inhibited CASPASE3 expression suggesting its role in cell survival. In conclusion, this study provides novel evidence for the presence of apelin and receptor APJ in ovarian follicles and corpora lutea and the stimulatory effect on E2 and P4 production and promotes GC survival in buffalo, suggesting the role of apelin in follicular and luteal functions in buffalo.
Collapse
Affiliation(s)
- Mahesh Gupta
- Department of Veterinary Physiology, Nagpur Veterinary College, Nagpur, 440006, India.
| | - Jayant P Korde
- Department of Veterinary Physiology, Nagpur Veterinary College, Nagpur, 440006, India
| | - K B Bahiram
- Department of Veterinary Physiology, Nagpur Veterinary College, Nagpur, 440006, India
| | - V M Sardar
- Department of Veterinary Physiology, Nagpur Veterinary College, Nagpur, 440006, India
| | - Nitin V Kurkure
- Department of Veterinary Pathology, Nagpur Veterinary College, Nagpur, 440006, India
| |
Collapse
|
12
|
Targeting APLN/APJ restores blood-testis barrier and improves spermatogenesis in murine and human diabetic models. Nat Commun 2022; 13:7335. [PMID: 36443325 PMCID: PMC9705293 DOI: 10.1038/s41467-022-34990-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/14/2022] [Indexed: 11/29/2022] Open
Abstract
Type 2 diabetes mellitus is one of the most prevalent metabolic diseases presenting with systemic pathologies, including reproductive disorders in male diabetic patients. However, the molecular mechanisms that contributing to spermatogenesis dysfunction in diabetic patients have not yet been fully elucidated. Here, we perform STRT-seq to examine the transcriptome of diabetic patients' testes at single-cell resolution including all major cell types of the testis. Intriguingly, whereas spermatogenesis appears largely preserved, the gene expression profiles of Sertoli cells and the blood-testis barrier (BTB) structure are dramatically impaired. Among these deregulate pathways, the Apelin (APLN) peptide/Apelin-receptor (APJ) axis is hyper-activated in diabetic patients' testes. Mechanistically, APLN is produced locally by Sertoli cells upon high glucose treatment, which subsequently suppress the production of carnitine and repress the expression of cell adhesion genes in Sertoli cells. Together, these effects culminate in BTB structural dysfunction. Finally, using the small molecule APLN receptor antagonist, ML221, we show that blocking APLN/APJ significantly ameliorate the BTB damage and, importantly, improve functional spermatogenesis in diabetic db/db mice. We also translate and validate these findings in cultured human testes. Our findings identify the APLN/APJ axis as a promising therapeutic target to improve reproduction capacity in male diabetic patients.
Collapse
|
13
|
Presence and localization of apelin and its cognate receptor in canine testes using immunohistochemical and RT-PCR techniques. Vet Res Commun 2022; 47:929-935. [PMID: 36331787 DOI: 10.1007/s11259-022-10001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/10/2022] [Indexed: 11/06/2022]
Abstract
Apelin, a member of the adipokine family, is a novel endogenous peptide which regulates the male reproductive system of mammals by interacting with a specific receptor. Recent studies have highlighted that apelin may play a role in the regulation of reproduction by reducing testosterone production and inhibiting LH secretion. To the best of our knowledge, there is no available data on the presence of the apelin and its receptor in canine testes. Therefore, the aim of this study was to reveal the presence of apelin and evaluate its distribution in the canine testes using immunohistochemical and RT-PCR techniques. For this purpose, five fertile and healthy male dogs were subjected to elective orchiectomy. The immunohistochemical reaction revealed the presence of apelin and its receptor in the canine testes. Apelin was localized in spermatids and spermatozoa with a positive signal in the "acrosomal bodies". As regards the apelin receptor, a positive immunoreaction was detected in the cytoplasm of the cells localized near to the basal membrane of the seminiferous tubules and in the cytoplasm of Leydig cells. The RT-PCR analysis showed the presence of transcripts for apelin and apelin receptor in all of the samples under study. A 35kDa band confirmed apelin receptor protein expression in all of the samples analysed. In conclusion, the paracrine and endocrine role of apelin and its cognate receptor on male reproduction reported in humans and laboratory animals could also be hypothesized in dogs.
Collapse
|
14
|
Das M, Gurusubramanian G, Roy VK. Postnatal developmental expression of apelin receptor proteins and its role in juvenile mice testis. J Steroid Biochem Mol Biol 2022; 224:106178. [PMID: 36108814 DOI: 10.1016/j.jsbmb.2022.106178] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022]
Abstract
The expression of apelin system has been shown in the adult testis of rat and mice. It has also been emphasized that regulation of testicular activity in early stages is important to sustain normal testicular activity in adulthood. Since the expression of apelin receptor (APJ) has been shown in the adult testis, moreover, developmental expression of APJ and its role has not been explored yet. Thus, we have examined the testicular expression of APJ during postnatal stages with special reference to proliferation, apoptosis and hormone secretion in early postnatal stage. Postnatal analysis showed that circulating apelin was lowest at PND1 and maximum at PND42. Among testosterone, estrogen and androstenedione, only circulating testosterone showed a gradual increase from PND1 to PND42. Testicular expression of APJ was also developmenatly regulated from PND1 to PND42, revealing a positive correlation with circulating apelin, testosterone, and androstenedione. Immunohistochemical study showed that APJ was mainly confined to Leydig cells of early postnatal stages, whereas, seminiferous tubules at PND42 showed immunostaining in the round spermatids. APJ inhibition from PND14-PND20 by ML221 suppressed the testicular proliferation, increased apoptosis and increased estrogen secretion. However, expression of AR was down-regulated by ML221 treatment. Furthermore, ML221 decreased the abundance of p-Akt. In vitro study also showed that APJ antagonist, ML221 decreased AR expression. These results suggests that apelin signaling during early developmental stages might be required to stimulate the germ cell proliferation, and inhibition of apoptosis. Both in vivo and in vitro study have shown that expression of AR was regulated by apelin signaling. Since the first wave spermatogenesis involves proliferation and apoptosis, therefore, further study would be required to unravel the exact mechanism of apelin mediated regulation of testicular activity during early postnatal stages. In conclusion, the present results are an indicative of apelin mediated signaling during early postnatal stage for regulation of germ cell proliferation, apoptosis and AR expression.
Collapse
Affiliation(s)
- Milirani Das
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796 004, India
| | | | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796 004, India.
| |
Collapse
|
15
|
Abot A, Robert V, Fleurot R, Dardente H, Hellier V, Froment P, Duittoz A, Knauf C, Dufourny L. How does apelin affect LH levels? An investigation at the level of GnRH and KNDy neurons. Mol Cell Endocrinol 2022; 557:111752. [PMID: 35973528 DOI: 10.1016/j.mce.2022.111752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 11/19/2022]
Abstract
Hypothalamic control of reproduction relies on GnRH and kisspeptin (KP) secretions. KP neurons are sensitive to sex steroids and metabolic status and their distribution overlaps with neurons producing apelin, a metabolic hormone known to decrease LH secretion in rats. Here, we observed neuroanatomical contacts between apelin fibers and both KP and GnRH neurons in the hypothalamus of male rodents. Intracerebroventricular apelin infusion for 2 weeks in male mice did not decrease LH levels nor did it affect gene expression for KP, neurokinin B and dynorphin. Finally, increasing apelin concentrations did not modulate Ca2+ levels of cultured GnRH neurons, while 10 μM apelin infusion on forskolin pretreated GnRH neurons revoked a rhythmic activity in 18% of GnRH neurons. These results suggest that acute apelin effect on LH secretion does not involve modulation of gene expression in KP neurons but may affect the secretory activity of GnRH neurons.
Collapse
Affiliation(s)
- Anne Abot
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1220, Université Paul Sabatier, UPS, Institut de Recherche en Santé Digestive et Nutrition (IRSD), CHU Purpan, Place du Docteur Baylac, International Laboratory NeuroMicrobiota, CS 60039, 31024, Toulouse Cedex 3, France
| | - Vincent Robert
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Renaud Fleurot
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Hugues Dardente
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Vincent Hellier
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Pascal Froment
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Anne Duittoz
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Claude Knauf
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1220, Université Paul Sabatier, UPS, Institut de Recherche en Santé Digestive et Nutrition (IRSD), CHU Purpan, Place du Docteur Baylac, International Laboratory NeuroMicrobiota, CS 60039, 31024, Toulouse Cedex 3, France
| | - Laurence Dufourny
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France.
| |
Collapse
|
16
|
Effects of meteorin-like hormone on endocrine function of hypothalamo-hypophysial system and peripheral uncoupling proteins in rats. Mol Biol Rep 2022; 49:5919-5925. [PMID: 35332411 DOI: 10.1007/s11033-022-07374-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Meteorin-like hormone (Metrnl) is a peptide secreted from the adipose tissue and modulates the whole-body energy metabolism. Metrnl release into the circulation is influenced by obesity, cold exposure, and exercise. Thyroid hormones also exert many of their effects on metabolism through uncoupling proteins (UCPs). This study aimed to determine effect of Metrnl on hypothalamo-hypophysier-thyroid axis and energy metabolism and reveal the possible involvement of UCPs in this process. METHODS AND RESULTS Fourty male Sprague-Dawley rats were divided into 4 groups with 10 animals in each group: control, sham, 10 and 100 nM Metrnl. Hypothalamus, muscle, white adipose tissue (WAT) and brown adipose tissue (BAT) samples were collected to detect thyrotropin-releasing hormone (TRH), and UCP1 and UCP3 protein levels by western blot analysis. Serum thyroid-stimulating hormone (TSH), triiodothyronine (T3) and thyroxine (T4) hormone levels were determined by enzyme-linked immunosorbent assay. Central infusion of Metrnl caused significant increase in serum TSH, T3 and T4 levels compared to control (p < 0.05). After Metrnl treatment, there were significant increases in TRH in hypothalamus tissue, UCP1 in WAT and BAT; and UCP3 protein in the muscle tissue (p < 0.05). CONCLUSIONS The findings that Metrnl induced increases in the peripheral UCPs and hypothalamus-pituitary-thyroid axis hormones implicate a role for this hormone in body energy homeostasis through UCP-mediated mechanisms.
Collapse
|
17
|
García-Juárez M, Luna-Hernández A, Tapia-Hernández S, Montes-Narvaez O, Domínguez-Ordoñez R, Tecamachaltzi-Silvarán MB, Pfaus JG, González-Flores O. Apelin-13 facilitates lordosis behavior following infusions to the ventromedial hypothalamus or preoptic area in ovariectomized, estrogen-primed rats. Neurosci Lett 2022; 773:136518. [PMID: 35150776 DOI: 10.1016/j.neulet.2022.136518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/20/2022] [Accepted: 02/07/2022] [Indexed: 10/19/2022]
Abstract
In normal hormonal conditions, increased neuronal activity in the ventromedial hypothalamus (VMH) induces lordosis whereas activation of the preoptic area (POA) exerts an opposite effect. In the present work, we explored the effect of bilateral infusion of different doses of the apelin-13 (0.37, 0.75, 1.5, and 15 μg) in both brain areas on the expression of lordosis behavior. Lordosis quotient and lordosis reflex score were performed at 30, 120, and 240 min. Weak lordosis was observed following the 0.37 μg dose of apelin-13 at 30 min in the VMH of EB-primed rats; however, the rest of the doses induced significant lordosis relative to the control group. At 120 min, all doses induced lordosis behavior, while at 240 min, the highest dose of 15 μg did not induce significant differences. Interestingly, only the 0.75 μg infusion of apelin in the POA induced significant lordosis at 120 and 240 min. These results indicate that apelin-13 acts preferably in HVM and slightly in POA to initiate lordosis behavior in estrogen-primed rats.
Collapse
Affiliation(s)
- Marcos García-Juárez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México
| | - Ailyn Luna-Hernández
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México; Maestría en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Sandra Tapia-Hernández
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México; Maestría en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Omar Montes-Narvaez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México; Doctorado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Raymundo Domínguez-Ordoñez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México
| | | | - James G Pfaus
- Department of Psychology and Life Sciences, Charles University, Prague, and Czech National Institute of Mental Health, Klecany, Czech Republic
| | - Oscar González-Flores
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México.
| |
Collapse
|
18
|
Shokrollahi B, Zheng HY, Li LY, Tang LP, Ma XY, Lu XR, Duan AQ, Zhang Y, Tan XH, Huang CX, Xu YY, Shang JH. Apelin and Apelin Receptor in Follicular Granulosa Cells of Buffalo Ovaries: Expression and Regulation of Steroidogenesis. Front Endocrinol (Lausanne) 2022; 13:844360. [PMID: 35355567 PMCID: PMC8960050 DOI: 10.3389/fendo.2022.844360] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/31/2022] [Indexed: 12/15/2022] Open
Abstract
Apelin (APLN), as a ligand for APJ (an orphan G-protein-coupled receptor), is an adipokine with pleiotropic effects in many physiological processes of the body. It has an important role in the control of reproduction particularly in females (mainly in control of ovarian function). This study was carried out to investigate the mRNA and protein amounts of APLN/APJ in granulose cells (GCs) of ovarian follicles with small (SF), medium (MF), and large (LF) sizes of buffalo (Bubalus bubalis) and the effect of IGF1 and follicle-stimulating hormone (FSH) on the expression levels of APLN/APJ. In addition, we evaluated the effect of various doses of APLN (isoforms -13 and -17) singly or in combination with IGF1 and FSH on estradiol (E2) and progesterone (P4) secretion in GCs. The mRNA and protein abundance of APLN was the highest in GCs of LF while the APJ expression enhanced with follicle enlargement in GCs (p-value <0.01). IGF1 and FSH elevated the mRNA and protein amounts of APLN and FSH, and IGF1 increased the expression of APJ in buffalo GCs (p-value <0.01). Both isoforms of APLN (-13/-17) singly or in the presence of IGF1 or FSH increased the secretion of E2 and P4 with or without preincubation of cells with APJ antagonist (ML221 10 µM), although we had some variation in the effects. Concurrently, APLN-13/-17 significantly increased the mRNA and protein expression of CYP19A1 and StAR (p-value <0.01). ML221 substantially diminished the secretion of E2 and P4 and also the expression of CY19A1 and StAR in buffalo GCs (p-value <0.01). We also revealed that APLN-13/-17 (10-9 M), singly or in response to IGF1 and FSH, increased the production of E2 and P4 in different times of stimulation. In conclusion, APLN may play a crucial role in steroidogenesis and follicular development in ovarian GCs of buffalo.
Collapse
Affiliation(s)
- Borhan Shokrollahi
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
- Department of Animal Science, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Hai-Ying Zheng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Ling-Yu Li
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Li-Ping Tang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Xiao-Ya Ma
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Xing-Rong Lu
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - An-Qin Duan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Yu Zhang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Xiao-Hui Tan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Chen-Xi Huang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Yuan-Yuan Xu
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Jiang-Hua Shang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
- *Correspondence: Jiang-Hua Shang,
| |
Collapse
|
19
|
Demir I, Tekin S, Vardi N, Sandal S. Intracerebroventricular salusin-β infusion to rats increases hypothalamus-pituitary-testicular axis hormones. Gen Comp Endocrinol 2021; 310:113820. [PMID: 34015344 DOI: 10.1016/j.ygcen.2021.113820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 05/13/2021] [Indexed: 12/15/2022]
Abstract
Salusin-β (Sal-β), which originates from preprosalusin, is a multifunctional hormone with a peptide structure. Sal-β exists in the hypothalamus and can stimulate the pituitary gland. The present study was conducted to determine the effects of Sal-β on hormones that play roles in the male reproductive system. Forty male Wistar Albino rats were used in the study. No infusions were performed on the control group, and infusions were applied to the infusion groups (artificial cerebrospinal fluid to the sham group, 2 and 20 nM Sal-β to the experimental group) through intracerebroventricular infusion for 7 days at 10 μl/hour rate. The animals were decapitated after 7 days of infusion; and the hypothalamus, testicles, and blood tissue samples were collected. The gonadotropin-releasing hormone (GnRH) mRNA levels were determined from the hypothalamus tissues by using the Real Time-PCR Method, and the serum luteinizing hormone (LH), follicle-stimulating hormone (FSH) and testosterone levels were determined using the ELISA method. Also, Hematoxylin-Eosin Staining Method was used for histopathological evaluations in the testicle tissues. As a result, Sal-β infusion increased GnRH mRNA levels in hypothalamus tissues (p < 0.05) besides, serum LH, FSH, and testosterone levels of the rats were higher at significant levels following Sal-β infusion compared to the control and sham group (p < 0.05). In the histological examination of the testicle tissues, Sal-β application was found to decrease the seminiferous tubule diameter and germinal epithelial thickness (p < 0.05). This evidence is the first, indicating that Sal-β, which is administered to male rats with central infusion, stimulates hypothalamus and pituitary tissues, and causes increased secretion of male reproductive hormones.
Collapse
Affiliation(s)
- Ilker Demir
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya 44280, Turkey.
| | - Suat Tekin
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya 44280, Turkey.
| | - Nigar Vardi
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya 44280, Turkey.
| | - Suleyman Sandal
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya 44280, Turkey.
| |
Collapse
|
20
|
Effect of Omega-3 or Omega-6 Dietary Supplementation on Testicular Steroidogenesis, Adipokine Network, Cytokines, and Oxidative Stress in Adult Male Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5570331. [PMID: 34257810 PMCID: PMC8260291 DOI: 10.1155/2021/5570331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/15/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022]
Abstract
This study was undertaken to elucidate the effect of omega-3 and omega-6 supplementation on the levels of different adipokines and cytokines, as well as the antioxidant system, in relation to male reproductive hormones and testicular functions. Adult male Sprague-Dawley rats were daily gavaged with either physiological saline (control group), sunflower oil (omega 6 group; 1 mL/kg body weight), or fish oil (omega-3 group; 1000 mg/kg body weight) for 12 weeks. The administration of omega-3 or omega-6 resulted in decreased serum concentrations of kisspeptin 1, gonadotropin-releasing hormone, luteinizing hormone, follicle-stimulating hormone, and testosterone. In addition, it downregulated the mRNA expression levels of steroidogenic genes. The intratesticular levels of apelin, adiponectin, and irisin were elevated while chemerin, leptin, resistin, vaspin, and visfatin were declined following the administration of either omega-3 or omega-6. The testicular concentration of interleukin 10 was increased while interleukin 1 beta, interleukin 6, tumor necrosis factor α, and nuclear factor kappa B were decreased after consumption of omega-3 or omega-6. In the testes, the levels of superoxide dismutase, catalase, glutathione peroxidase 1, and the total antioxidant capacity were improved. In conclusion, the administration of omega-3 or omega-6 adversely affects the process of steroidogenesis but improves the antioxidant and anti-inflammatory status of the reproductive system via modulating the levels of testicular adipokines.
Collapse
|
21
|
Differential Regulation of Gonadotropins as Revealed by Transcriptomes of Distinct LH and FSH Cells of Fish Pituitary. Int J Mol Sci 2021; 22:ijms22126478. [PMID: 34204216 PMCID: PMC8234412 DOI: 10.3390/ijms22126478] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 02/08/2023] Open
Abstract
From mammals to fish, reproduction is driven by luteinizing hormone (LH) and follicle-stimulating hormone (FSH) temporally secreted from the pituitary gland. Teleost fish are an excellent model for addressing the unique regulation and function of each gonadotropin cell since, unlike mammals, they synthesize and secrete LH and FSH from distinct cells. Only very distant vertebrate classes (such as fish and birds) demonstrate the mono-hormonal strategy, suggesting a potential convergent evolution. Cell-specific transcriptome analysis of double-labeled transgenic tilapia expressing GFP and RFP in LH or FSH cells, respectively, yielded genes specifically enriched in each cell type, revealing differences in hormone regulation, receptor expression, cell signaling, and electrical properties. Each cell type expresses a unique GPCR signature that reveals the direct regulation of metabolic and homeostatic hormones. Comparing these novel transcriptomes to that of rat gonadotrophs revealed conserved genes that might specifically contribute to each gonadotropin activity in mammals, suggesting conserved mechanisms controlling the differential regulation of gonadotropins in vertebrates.
Collapse
|
22
|
Das M, Annie L, Derkach KV, Shpakov AO, Gurusubramanian G, Roy VK. Expression and localization of apelin and its receptor in the testes of diabetic mice and its possible role in steroidogenesis. Cytokine 2021; 144:155554. [PMID: 33962842 DOI: 10.1016/j.cyto.2021.155554] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 01/23/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is a metabolic disorder with severe hyperglycemia, one of the complications of which is testicular dysfunctions, androgen deficiency and decreased male fertility. In the diabetic testes, the expression and signaling pathways of leptin and a number of other adipokines are significantly changed. However, there is no information on the localization and expression of adipokine, apelin and its receptor (APJ) in the diabetic testes, although there is information on the involvement of apelin in the regulation of reproductive functions. The aim of this study was to investigate the expression and localization of apelin and APJ in the testes of mice with streptozotocin-induced T1DM and to estimate the effects of agonist (apelin-13) and antagonist (ML221) of APJ on the testosterone production by diabetic testis explants in the in vitro conditions. We first detected the expression of apelin and its receptor in the mouse testes, and showed an increased intratesticular expression of apelin and APJ along with the reduced testosterone secretion in T1DM. Using imunohistochemical approach, we showed that apelin and APJ are localized in the Leydig and germ cells, and in diabetes, the amount of these proteins was significantly higher than in the control mice. The diabetic testes had a decrease in germ cell proliferation (the reduced PCNA and GCNA levels) and an increase in apoptosis (the increased active caspase-3 and decreased BCL2 levels). These results suggest an involvement of apelin and APJ in T1DM-induced testicular pathogenesis. Treatment of the cultured testis explants with ML221 significantly increased the testosterone secretion, whereas apelin-13 was ineffective. Thus, hyperapelinemia in the testes can significantly contribute to testicular pathogenesis in T1DM, and pharmacological inhibition of apelin receptors can improve testicular steroidogenesis.
Collapse
Affiliation(s)
- Milirani Das
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796 004, India
| | | | - Kira V Derkach
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexander O Shpakov
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | | | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796 004, India.
| |
Collapse
|
23
|
Adiponectin/AdipoRs signaling as a key player in testicular aging and associated metabolic disorders. VITAMINS AND HORMONES 2021; 115:611-634. [PMID: 33706964 DOI: 10.1016/bs.vh.2020.12.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aging undergoes serious worsening of peripheral organs and vital physiological processes including reproductive performances. Altered white adipose tissue and adipocyte functioning during aging results in ectopic lipid storage/obesity or metabolic derangements, leading to insulin resistance state. Eventually, accelerating cellular senescence thereby enhancing the high risk of age-associated metabolic alterations. Such alterations may cause derangement of numerous physiologically active obesity hormones, known as "adipokines." Specifically, adiponectin exhibits insulin sensitizing action causing anti-aging and anti-obesity effects via activation of adiponectin receptors (AdipoRs). The male reproductive physiology from reproductive mature stage to advanced senescent stage undergoes insidious detrimental changes. The mechanisms by which testicular functions decline with aging remain largely speculative. Adiponectin has also recently been shown to regulate metabolism and longevity signaling thus prolonging lifespan. Therefore, the strategy for activating adiponectin/AdipoRs signaling pathways are expected to provide a solid basis for the prevention and treatment of aging and obesity-associated reproductive dysfunctions, as well as for ensuring healthy reproductive longevity in humans.
Collapse
|
24
|
Aplnr knockout mice display sex-specific changes in conditioned fear. Behav Brain Res 2020; 400:113059. [PMID: 33309737 DOI: 10.1016/j.bbr.2020.113059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 11/23/2022]
Abstract
The G-protein-coupled receptor APLNR and its ligands apelin and ELABELA/TODDLER/apela comprise the apelinergic system, a signaling pathway that is critical during development and physiological homeostasis. Targeted regulation of the receptor has been proposed to treat several important diseases including heart failure, pulmonary arterial hypertension and metabolic syndrome. The apelinergic system is widely expressed within the central nervous system (CNS). However, the role of this system in the CNS has not been completely elucidated. Utilizing an Aplnr knockout mouse model, we report here results from tests of sensory ability, locomotion, reward preference, social preference, learning and memory, and anxiety. We find that knockout of Aplnr leads to significant effects on acoustic startle response and sex-specific effects on conditioned fear responses without significant changes in baseline anxiety. In particular, male Aplnr knockout mice display enhanced context- and cue-dependent fear responses. Our results complement previous reports that exogenous Apelin administration reduced conditioned fear and freezing responses in rodent models, and future studies will explore the therapeutic benefit of APLNR-targeted drugs in rodent models of PTSD.
Collapse
|
25
|
Thermodynamic assessment of allocation of energy and exergy of the nutrients for the life processes during pregnancy. Br J Nutr 2020; 124:742-753. [PMID: 32381134 DOI: 10.1017/s0007114520001646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Thermodynamic analyses are performed to quantify allocation of the nutritional energy and exergy to most of the life processes by pregnant mice. In these analyses, 'internal work performance' is calculated for the first time in the literature for metabolism during pregnancy and found substantially higher than the 'external work performance'. Variation of the daily entropy generation rates and the daily internal work performance rates during the course of pregnancy showed a highly similar phasic behaviour. With the progression of the pregnancy, external work performance decreased and second law efficiency increased significantly. On the 13th day of pregnancy, net energy extracted from the food at the cellular energy metabolism subsystem was 15·0 kJ; approximately 3 kJ of it was employed for daily internal work performance, 0·8 kJ was allocated to daily external work performance and 0·8 kJ was stored in the adipose tissue without entering into the cellular energy metabolism subsystem. Heat generation in association with internal and external work performance was 9·1 and 2·2 kJ, respectively. Energy, pertinent to the first law, and exergy (useful energy), pertinent to the second law, balances are described graphically, and comparison of these plots showed that the total exergy of the nutrients allocated to internal and external work performance and heat generation is substantially smaller in magnitude when compared with those of energy balance.
Collapse
|
26
|
Şişli HB, Hayal TB, Şenkal S, Kıratlı B, Sağraç D, Seçkin S, Özpolat M, Şahin F, Yılmaz B, Doğan A. Apelin Receptor Signaling Protects GT1-7 GnRH Neurons Against Oxidative Stress In Vitro. Cell Mol Neurobiol 2020; 42:753-775. [PMID: 32989586 DOI: 10.1007/s10571-020-00968-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/22/2020] [Indexed: 12/25/2022]
Abstract
Hypothalamic-pituitary-adrenal (HPA) axis regulates stress response in the body and abnormal increase in oxidative stress contributes to the various disease pathogenesis. Although hypothalamic distribution of Apelin receptor (APLNR) has been studied, the potential regulatory role in hormone releasing function of hypothalamus in response to stress is not well elucidated yet. To determine whether APLNR is involved in the protection of the hypothalamus against oxidative stress, gonadotropin-releasing hormone (GnRH) cells were used as an in vitro model system. GT1-7 mouse hypothalamic neuronal cell line was subjected to H2O2 and hypoxia induced oxidative stress under various circumstances including APLNR overexpression, knockdown and knockout. Overexpression and activation of APLNR in GnRH producing neurons caused an increase in cell proliferation under oxidative stress. In addition, blockage of APLNR function by siRNA reduced GnRH release. Activation of APLNR initiated AKT kinase pathway as a proliferative response against hypoxic culture conditions and blocked apoptosis. Although expression and activation of APLNR have not been related to GnRH neuron differentiation during development, positive contribution of activated APLNR signaling to GnRH release in mouse embryonic stem cell derived GnRH neurons was observed in the present study. Sustained overexpression and complete deletion of APLNR in mouse embryonic stem cell derived GnRH neurons reduced GnRH release in vitro. The present findings suggest that expression and activation of APLNR in GnRH releasing GT1-7 neurons might induce a protective mechanism against oxidative stress induced cell death and APLNR signaling may play a role in GnRH neurons.
Collapse
Affiliation(s)
- Hatice Burcu Şişli
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Taha Bartu Hayal
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Selinay Şenkal
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Binnur Kıratlı
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Derya Sağraç
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Selin Seçkin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Murat Özpolat
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Bayram Yılmaz
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Ayşegül Doğan
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
27
|
Liu Q, Jiang J, Shi Y, Mo Z, Li M. Apelin/Apelin receptor: A new therapeutic target in Polycystic Ovary Syndrome. Life Sci 2020; 260:118310. [PMID: 32835696 DOI: 10.1016/j.lfs.2020.118310] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022]
Abstract
Polycystic ovary syndrome (PCOS) is an endocrinopathy, and it accounts for 75% of non-ovulatory infertile in women of childbearing age. It is clear that obesity, insulin resistance, dyslipidaemia coexist in PCOS. Apelin, as an endogenous ligand of the previously orphan receptor, is an adipokine that secreted by adipose tissue. Apelin and apelin receptors are expressed in many tissues and organ to regulate their physiological functions. Studies have shown that Apelin/apelin-receptor also expressed in ovary such as follicles, granulosa cells. Furthermore, Apelin/apelin-receptor play roles in vascular establishment and hormone metabolism in ovary. These indicate that the Apelin/apelin-receptor play an important role in the development of follicle. Apelin/apelin-receptor are increased in ovary of PCOS, which are associated with abnormal ovarian hormones and function. These are important causes of menstrual cycle disorders and anovulation. Moreover, apelin now appears clearly as a new player in energy metabolism. Apelin can regulate glucose and lipid metabolism but also modulate insulin secretion. And plasma apelin concentrations are elevated in obesity and type 2 diabetes patients. Interestedly, obesity and type 2 diabetes are also companied with polycystic ovary syndrome patients. We speculate apelin/apelin-receptor may play a vital role in pathogenesis of polycystic ovary syndrome, but the underlying mechanisms remain under exploration. Here, we review apelin/apelin-receptor, as a new therapeutic target, have effects on ovarian function and energy metabolism in polycystic ovary syndrome.
Collapse
Affiliation(s)
- Qi Liu
- School of Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 418000, Hunan, China
| | - Jin Jiang
- Guangzhou Blood Center, Guangzhou 510095, Guangdong, China
| | - Yulan Shi
- Department of Pediatrics in The Second Affiliated Hospital of Shaoyang University, Shanoyang 422000, Hunan, China
| | - Zhongcheng Mo
- Institute of Basic Medical Science, Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Ming Li
- School of Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 418000, Hunan, China; Institute of Basic Medical Science, Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541199, Guangxi, China.
| |
Collapse
|
28
|
Brzoskwinia M, Pardyak L, Rak A, Kaminska A, Hejmej A, Marek S, Kotula-Balak M, Bilinska B. Flutamide Alters the Expression of Chemerin, Apelin, and Vaspin and Their Respective Receptors in the Testes of Adult Rats. Int J Mol Sci 2020; 21:E4439. [PMID: 32580404 PMCID: PMC7378763 DOI: 10.3390/ijms21124439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/01/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Adipokines influence energy metabolism and have effects on male reproduction, including spermatogenesis and/or Sertoli cell maturation; however, the relationship between these active proteins and androgens in testicular cells is limited. Here, we studied the impact of short-term exposure to flutamide (an anti-androgen that blocks androgen receptors) on the expression of chemerin, apelin, vaspin and their receptors (CCRL2, CMKLR1, GPR1, APLNR, GRP78, respectively) in adult rat testes. Moreover, the levels of expression of lipid metabolism-modulating proteins (PLIN1, perilipin1; TSPO, translocator protein) and intercellular adherens junction proteins (nectin-2 and afadin) were determined in testicular cells. Plasma levels of adipokines, testosterone and cholesterol were also evaluated. Gene expression techniques used included the quantitative real-time polymerase chain reaction (qRT-PCR), Western blot (WB) and immunohistochemistry (IHC). The androgen-mediated effects observed post-flutamide treatment were found at the gonadal level as chemerin, apelin, and vaspin gene expression alterations at mRNA and protein levels were detected, whereas the cellular targets for these adipokines were recognised by localisation of respective receptors in testicular cells. Plasma concentrations of all adipokines were unchanged, whereas plasma cholesterol content and testosterone level increased after flutamide exposure. Differential distribution of adipokine receptors indicates potential para- or autocrine action of the adipokines within the rat testes. Additionally, changes in the expression of PLIN1 and TSPO, involved in the initial step of testosterone synthesis in Leydig cells, suggest that testicular cells represent a target of flutamide action. Increase in the gene expression of PLIN1 and TSPO and higher total plasma cholesterol content indicates enhanced availability of cholesterol in Leydig cells as a result of androgen-mediated effects of flutamide. Alterations in adherens junction protein expression in the testis confirm the flutamide efficacy in disruption of androgen signalling and presumably lead to impaired para- and autocrine communication, important for proper functioning of adipokines.
Collapse
Affiliation(s)
- Malgorzata Brzoskwinia
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland; (M.B.); (L.P.); (A.K.); (A.H.); (S.M.)
| | - Laura Pardyak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland; (M.B.); (L.P.); (A.K.); (A.H.); (S.M.)
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland;
| | - Alicja Kaminska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland; (M.B.); (L.P.); (A.K.); (A.H.); (S.M.)
| | - Anna Hejmej
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland; (M.B.); (L.P.); (A.K.); (A.H.); (S.M.)
| | - Sylwia Marek
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland; (M.B.); (L.P.); (A.K.); (A.H.); (S.M.)
| | - Malgorzata Kotula-Balak
- University Centre of Veterinary Medicine, University of Agriculture in Krakow, 30-059 Krakow, Poland;
| | - Barbara Bilinska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland; (M.B.); (L.P.); (A.K.); (A.H.); (S.M.)
| |
Collapse
|
29
|
Xu W, Li T, Gao L, Zheng J, Yan J, Zhang J, Shao A. Apelin-13/APJ system attenuates early brain injury via suppression of endoplasmic reticulum stress-associated TXNIP/NLRP3 inflammasome activation and oxidative stress in a AMPK-dependent manner after subarachnoid hemorrhage in rats. J Neuroinflammation 2019; 16:247. [PMID: 31791369 PMCID: PMC6889224 DOI: 10.1186/s12974-019-1620-3] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022] Open
Abstract
Background Neuroinflammation and oxidative stress play important roles in early brain injury following subarachnoid hemorrhage (SAH). This study is the first to show that activation of apelin receptor (APJ) by apelin-13 could reduce endoplasmic reticulum (ER)-stress-associated inflammation and oxidative stress after SAH. Methods Apelin-13, apelin siRNA, APJ siRNA, and adenosine monophosphate-activated protein kinase (AMPK) inhibitor-dorsomorphin were used to investigate if the activation of APJ could provide neuroprotective effects after SAH. Brain water content, neurological functions, blood-brain barrier (BBB) integrity, and inflammatory molecules were evaluated at 24 h after SAH. Western blotting and immunofluorescence staining were applied to assess the expression of target proteins. Results The results showed that endogenous apelin, APJ, and p-AMPK levels were significantly increased and peaked in the brain 24 h after SAH. In addition, administration of exogenous apelin-13 significantly alleviated neurological functions, attenuated brain edema, preserved BBB integrity, and also improved long-term spatial learning and memory abilities after SAH. The underlying mechanism of the neuroprotective effects of apelin-13 is that it suppresses microglia activation, prevents ER stress from overactivation, and reduces the levels of thioredoxin-interacting protein (TXNIP), NOD-like receptor pyrin domain-containing 3 protein (NLRP3), Bip, cleaved caspase-1, IL-1β, TNFα, myeloperoxidase (MPO), and reactive oxygen species (ROS). Furthermore, the use of APJ siRNA and dorsomorphin abolished the neuroprotective effects of apelin-13 on neuroinflammation and oxidative stress. Conclusions Exogenous apelin-13 binding to APJ attenuates early brain injury by reducing ER stress-mediated oxidative stress and neuroinflammation, which is at least partly mediated by the AMPK/TXNIP/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, 310009, Zhejiang, China
| | - Tao Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, 310009, Zhejiang, China
| | - Liansheng Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, 310009, Zhejiang, China
| | - Jingwei Zheng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, 310009, Zhejiang, China
| | - Jun Yan
- Department of Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, 310009, Zhejiang, China. .,Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China. .,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
30
|
Yang N, Li T, Cheng J, Tuo Q, Shen J. Role of apelin/APJ system in hypothalamic-pituitary axis. Clin Chim Acta 2019; 499:149-153. [DOI: 10.1016/j.cca.2019.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/12/2022]
|
31
|
Akkan SS, İzgüt-Uysal VN, Çakır T, Özbey Ö, Üstünel İ. The effect of experimental varicocele on the apelin and APJ expressions in rat testis tissue. Tissue Cell 2019; 63:101318. [PMID: 32223946 DOI: 10.1016/j.tice.2019.101318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/07/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023]
Abstract
Varicocele, which is one of the causes of infertility in men, can be defined as the expansion of spermatic cord veins. The presence of apelin and apelin receptor (APJ) in many tissues and the effects of apelin have been reported in several studies. There is no study showing apelin and APJ protein expressions in normal and varicocele-induced testicular tissues. In this study, we aimed to demonstrate varicocele-induced changes in apelin and APJ expressions in testicular tissue by immunohistochemical and western blotting techniques. In our study, Wistar male rats were randomly divided into three groups as control, varicocele, and sham. While the control group rats were not subjected to any treatment, the unilateral varicocele model was created under anesthesia in the varicocele group. In the sham group, the left abdominal region was opened and closed to exclude the effect of the surgical procedure. At the 13th postoperative week, the left testes were obtained under anesthesia in all groups, and the immunohistochemistry and Western blotting techniques were used to detect apelin and APJ expressions. In our study; apelin and APJ were significantly expressed in control group's testicular tissue; apelin in testicular tissues of varicocele groups increased compared to the control group, whereas APJ expression decreased. In conclusion, the presence of apelin/APJ system in normal testis and the increased expression of apelin in varicocele-induced testicular tissue suggested that apelin may have a role in the varicocele etiopathogenesis.
Collapse
Affiliation(s)
- Simla Su Akkan
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | | | - Tuğrul Çakır
- Department of General Surgery, Antalya Training and Research Hospital, Antalya, Turkey
| | - Özlem Özbey
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - İsmail Üstünel
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey.
| |
Collapse
|
32
|
Zheng W, Wang J, Xie L, Xie H, Chen C, Zhang C, Lin D, Cai L. An injectable thermosensitive hydrogel for sustained release of apelin-13 to enhance flap survival in rat random skin flap. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:106. [PMID: 31502009 DOI: 10.1007/s10856-019-6306-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
With the advantage of handy process, random pattern skin flaps are generally applied in limb reconstruction and wound repair. Apelin-13 is a discovered endogenous peptide, that has been shown to have potent multiple biological functions. Recently, thermosensitive gel-forming systems have gained increasing attention as wound dressings due to their advantages. In the present study, an apelin-13-loaded chitosan (CH)/β-sodium glycerophosphate (β-GP) hydrogel was developed for promoting random skin flap survival. Random skin flaps were created in 60 rats after which the animals were categorized to a control hydrogel group and an apelin-13 hydrogel group. The water content of the flap as well as the survival area were then measured 7 days post-surgery. Hematoxylin and eosin staining was used to evaluate the flap angiogenesis. Cell differentiation 34 (CD34) and vascular endothelial growth factor (VEGF) levels were detected by immunohistochemistry and Western blotting. Tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were assessed by enzyme linked immunosorbent assays (ELISAs). Oxidative stress was estimated via the activity of tissue malondialdehyde (MDA) and superoxide dismutase (SOD). Our results showed that CH/β-GP/apelin-13 hydrogel could not only reduce the tissue edema, but also improve the survival area of flap. CH/β-GP/apelin-13 hydrogel also upregulated levels of VEGF protein and increased mean vessel densities. Furthermore, CH/β-GP/apelin-13 hydrogel was shown to significantly inhibit the expression of TNF-α and IL-6, along with increasing the activity of SOD and suppressing the MDA content. Taken together, these results indicate that this CH/β-GP/apelin-13 hydrogel may be a potential therapeutic way for random pattern skin flap.
Collapse
Affiliation(s)
- Wenhao Zheng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Jinwu Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Linzhen Xie
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Huanguang Xie
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Chunhui Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Chuanxu Zhang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Dingsheng Lin
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Leyi Cai
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, China.
| |
Collapse
|
33
|
Estienne A, Bongrani A, Reverchon M, Ramé C, Ducluzeau PH, Froment P, Dupont J. Involvement of Novel Adipokines, Chemerin, Visfatin, Resistin and Apelin in Reproductive Functions in Normal and Pathological Conditions in Humans and Animal Models. Int J Mol Sci 2019; 20:ijms20184431. [PMID: 31505789 PMCID: PMC6769682 DOI: 10.3390/ijms20184431] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 12/23/2022] Open
Abstract
It is well known that adipokines are endocrine factors that are mainly secreted by white adipose tissue. Their central role in energy metabolism is currently accepted. More recently, their involvement in fertility regulation and the development of some reproductive disorders has been suggested. Data concerning the role of leptin and adiponectin, the two most studied adipokines, in the control of the reproductive axis are consistent. In recent years, interest has grown about some novel adipokines, chemerin, visfatin, resistin and apelin, which have been found to be strongly associated with obesity and insulin-resistance. Here, we will review their expression and role in male and female reproduction in humans and animal models. According to accumulating evidence, they could regulate the secretion of GnRH (Gonadotropin-Releasing Hormone), gonadotropins and steroids. Furthermore, their expression and that of their receptors (if known), has been demonstrated in the human and animal hypothalamo-pituitary-gonadal axis. Like leptin and adiponectin, these novel adipokines could thus represent metabolic sensors that are able to regulate reproductive functions according to energy balance changes. Therefore, after investigating their role in normal fertility, we will also discuss their possible involvement in some reproductive troubles known to be associated with features of metabolic syndrome, such as polycystic ovary syndrome, gestational diabetes mellitus, preeclampsia and intra-uterine growth retardation in women, and sperm abnormalities and testicular pathologies in men.
Collapse
Affiliation(s)
- Anthony Estienne
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Alice Bongrani
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Maxime Reverchon
- SYSAAF-Syndicat des Sélectionneurs Avicoles et Aquacoles Français, Centre INRA Val de Loire, F-37380 Nouzilly, France
| | - Christelle Ramé
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Pierre-Henri Ducluzeau
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
- Internal Medicine Department, Unit of Endocrinology, CHRU Tours, F-37044 Tours, France
| | - Pascal Froment
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Joëlle Dupont
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- Université François Rabelais de Tours F-37041 Tours, France.
- IFCE, F-37380 Nouzilly, France.
| |
Collapse
|
34
|
The Role of Apelin in the Functioning of the Reproductive System. ACTA BIOMEDICA SCIENTIFICA 2019. [DOI: 10.29413/abs.2019-4.3.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Adipokine apelin through the apelin receptors activates a wide range of signaling cascades in the target cells and controls their growth, differentiation, apoptosis, and energy metabolism. In the recent years, the evidence has been obtained that all components of the hypothalamic-pituitary-gonad axis, in which apelin and its receptor are expressed, are targets of apelin. In the hypothalamus, apelin modulates the activity of the melanocortin and ghrelin systems and indirectly affects the production of gonadoliberin. In the ovaries, it controls the growth and maturation of the follicles, stimulates the angiogenesis, and affects the basal and stimulated by the other factors steroidogenic activity in follicular cells. The changes in the apelin signaling system are closely associated with dysfunctions of the female reproductive system, such as polycystic ovary syndrome, endometriosis, and cancer. Information on the regulation of the male reproductive system by apelin is limited to animal studies showing the effect of apelin on the hypothalamic components of the gonad axis. The participation of apelin in the regulation of the reproductive system opens up the broad opportunities for the development of new approaches for the correction of abnormalities in this system and for the treatment of infertility.
Collapse
|
35
|
Mehri K, Banan Khojasteh SM, Seyed Mahdi BK, Fereshteh F, Zavvari Oskuye Z, Ebrahimi H, Diba R, Bayandor P, Hosseindoost M, Babri S. Effect of troxerutin on apelin-13, apelin receptors (APJ), and ovarian histological changes in the offspring of high-fat diet fed rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:637-642. [PMID: 31231491 PMCID: PMC6570758 DOI: 10.22038/ijbms.2019.34158.8123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/08/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Maternal high-fat diet (HFD) consumption has been linked to metabolic disorders and reproductive dysfunctions in offspring. Troxerutin (TRO) has anti-hyperlipidemic, anti-oxidant, and anti-inflammatory effects. This study examined the effects of TRO on apelin-13, its receptors mRNA and ovarian histological changes in the offspring of HFD fed rats. MATERIALS AND METHODS Female Wistar rats were randomly divided into control diet (CD) or HFD groups and received these diets for eight weeks. After mating, dams were assigned into four subgroups: CD, CD + TRO, HFD, and HFD + TRO, and received their respective diets until the end of lactation. Troxerutin (150 mg/kg/day) was gavaged in the CD + TRO and HFD + TRO groups during pregnancy. On the postnatal day (PND) 21 all female offspring were separated and fed CD until PND 90. On PND 90 animals were sacrificed and ovarian tissue samples were collected for further evaluation. RESULTS Results showed that HFD significantly decreased serum apelin-13 in the female offspring of the HFD dams, which was significantly reversed by TRO. Moreover, real-time polymerase chain reaction (PCR) analysis revealed that TRO treatment significantly decreased the ovarian mRNA expression of the apelin-13 receptor in the troxerutin-received offspring. Furthermore, histological examination revealed that TRO increased the number of atretic follicles in the ovaries of HFD+TRO offspring. CONCLUSION Maternal high fat feeding compromises ovarian health including follicular growth and development in the adult offspring and troxerutin treatment improved negative effects of maternal HFD on the apelin-13 level and ovarian development of offspring.
Collapse
Affiliation(s)
- Keyvan Mehri
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Fereshteh Fereshteh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hadi Ebrahimi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghaye Diba
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Bayandor
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hosseindoost
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Babri
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
36
|
Yilmaz U, Tekin S, Demir M, Cigremis Y, Sandal S. Effects of central FGF21 infusion on the hypothalamus-pituitary-thyroid axis and energy metabolism in rats. J Physiol Sci 2018; 68:781-788. [PMID: 29417398 PMCID: PMC10717191 DOI: 10.1007/s12576-018-0595-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/18/2018] [Indexed: 12/11/2022]
Abstract
The aim of this study was to evaluate the impact of intracerebroventricular chronic fibroblast growth factor 21 (FGF21) infusion on hypothalamic-pituitary-thyroid (HPT) axis, energy metabolism, food intake and body weight. Thirty male Wistar albino rats were used and divided into three groups including control, sham (vehicle) and FGF21 infused groups (n = 10). Intracerebroventricularly, FGF21 and vehicle groups were infused for 7 days with FGF21 (0.72 µg/day) and artificial cerebrospinal fluid, respectively. During the experimental period, changes in food intake and body weight were recorded daily. Serum thyroid stimulating hormone (TSH), Triiodothyronine (T3) and thyroxine (T4) levels were measured using ELISA. TRH and uncoupling protein 1 (UCP1) gene expressions were analyzed by using RT-PCR in hypothalamus and adipose tissues, respectively. Chronic infusion of FGF21 significantly increased serum TSH (p < 0.05), T3 (p < 0.05) and T4 (p < 0.001) levels. Additionally, hypothalamic TRH (p < 0.05) and UCP1 gene expressions (p < 0.05) in white adipose tissue were found to be higher than in the vehicle and control groups. While FGF21 infusion did not cause a significant change in food consumption, it caused a reduction in the body weight of rats (p < 0.05). Our findings indicate that FGF21 may have an effect on energy metabolism via the HPT axis.
Collapse
Affiliation(s)
- Umit Yilmaz
- Department of Physiology, Faculty of Medicine, Inonu University, 44280, Malatya, Turkey
| | - Suat Tekin
- Department of Physiology, Faculty of Medicine, Inonu University, 44280, Malatya, Turkey
| | - Mehmet Demir
- Department of Physiology, Faculty of Medicine, Inonu University, 44280, Malatya, Turkey
| | - Yilmaz Cigremis
- Department of Medical Biology and Genetics, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Suleyman Sandal
- Department of Physiology, Faculty of Medicine, Inonu University, 44280, Malatya, Turkey.
| |
Collapse
|
37
|
Tekin S, Beytur A, Erden Y, Beytur A, Cigremis Y, Vardi N, Turkoz Y, Tekedereli I, Sandal S. Effects of intracerebroventricular administration of irisin on the hypothalamus–pituitary–gonadal axis in male rats. J Cell Physiol 2018; 234:8815-8824. [DOI: 10.1002/jcp.27541] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/13/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Suat Tekin
- Department of Physiology Faculty of Medicine, Inonu University Malatya Turkey
| | - Ali Beytur
- Department of Urology Faculty of Medicine, Inonu University Malatya Turkey
| | - Yavuz Erden
- Department of Molecular Biology and Genetics Faculty of Science, Bartin University Bartin Turkey
| | - Asiye Beytur
- Department of Physiology Faculty of Medicine, Inonu University Malatya Turkey
| | - Yilmaz Cigremis
- Department of Medical Biology and Genetics Faculty of Medicine, Inonu University Malatya Turkey
| | - Nigar Vardi
- Department of Histology and Embryology Faculty of Medicine, Inonu University Malatya Turkey
| | - Yusuf Turkoz
- Department of Medical Biochemistry Faculty of Medicine, Inonu University Malatya Turkey
| | - Ibrahim Tekedereli
- Department of Medical Biology and Genetics Faculty of Medicine, Inonu University Malatya Turkey
| | - Suleyman Sandal
- Department of Physiology Faculty of Medicine, Inonu University Malatya Turkey
| |
Collapse
|
38
|
Xu W, Gao L, Li T, Zheng J, Shao A, Zhang J. Apelin-13 Alleviates Early Brain Injury after Subarachnoid Hemorrhage via Suppression of Endoplasmic Reticulum Stress-mediated Apoptosis and Blood-Brain Barrier Disruption: Possible Involvement of ATF6/CHOP Pathway. Neuroscience 2018; 388:284-296. [PMID: 30036660 DOI: 10.1016/j.neuroscience.2018.07.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/04/2018] [Accepted: 07/12/2018] [Indexed: 02/06/2023]
Abstract
Neuronal apoptosis plays important roles in the early brain injury after subarachnoid hemorrhage (SAH). This study first showed that inhibition of activating transcription factor 6 (ATF6) by apelin-13 could reduce endoplasmic reticulum (ER)-stress-mediated apoptosis and blood-brain-barrier (BBB) disruption after SAH. We chose apelin-13, ATF6 and CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) siRNAs to verify the hypothesis. Brain water content, neurological behavior and Evans Blue (EB) were assessed at 24 h after SAH. Western blot analysis and reverse transcription-polymerase chain reaction (RT-PCR) were applied to evaluate the expression of targets in both protein and mRNA levels. Neuronal apoptosis was assessed with Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) and caspase-3 staining. The results showed that the levels of ATF6, and its downstream protein, CHOP were upregulated and reached the peak at 24 h after SAH. ATF6 was highly expressed in neurons. The administration of apelin-13 could significantly reduce the mRNA and protein levels of ATF6, and its downstream targets, CHOP and caspase-3, but increase the Bcl-2/Bax ratio, Claudin-5, Occludin and ZO-1. What's more, the administration of apelin-13 could reduce brain edema, ameliorate BBB disruption and improve neurological functions. However, the CHOP siRNA could significantly reverse the pro-apoptotic effect induced by the increased ATF6 level after SAH. Apelin-13 could exert its neuroprotective effects via suppression of ATF6/CHOP arm of ER-stress-response pathway in the early brain injury after SAH.
Collapse
Affiliation(s)
- Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liansheng Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingwei Zheng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China; Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
39
|
Review: The effect of nutrition on timing of pubertal onset and subsequent fertility in the bull. Animal 2018; 12:s36-s44. [PMID: 29554994 DOI: 10.1017/s1751731118000514] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The advent of genomic selection has led to increased interest within the cattle breeding industry to market semen from young bulls as early as possible. However, both the quantity and quality of such semen is dictated by the age at which these animals reach puberty. Enhancing early life plane of nutrition of the bull stimulates a complex biochemical interplay involving metabolic and neuroendocrine signalling and culminating in enhanced testicular growth and development and earlier onset of sexual maturation. Recent evidence suggests that an enhanced plane of nutrition leads to an advancement of testicular development in bulls at 18 weeks of age. However, as of yet, much of the neuronal mechanisms regulating these developmental processes remain to be elucidated in the bull. While early life nutrition clearly affects the sexual maturation process in bulls, there is little evidence for latent effects on semen traits post-puberty. Equally the influence of prevailing nutritional status on the fertility of mature bulls is unclear though management practices that result in clinical or even subclinical metabolic disease can undoubtedly impact upon normal sexual function. Dietary supplements enriched with various polyunsaturated fatty acids or fortified with trace elements do not consistently affect reproductive function in the bull, certainly where animals are already adequately nourished. Further insight on how nutrition mediates the biochemical interaction between neuroendocrine and testicular processes will facilitate optimisation of nutritional regimens to optimise sexual maturation and subsequent semen production in bulls.
Collapse
|
40
|
Różycka M, Kurowska P, Grzesiak M, Kotula-Balak M, Tworzydło W, Rame C, Gregoraszczuk E, Dupont J, Rak A. Apelin and apelin receptor at different stages of corpus luteum development and effect of apelin on progesterone secretion and 3β-hydroxysteroid dehydrogenase (3β-HSD) in pigs. Anim Reprod Sci 2018; 192:251-260. [PMID: 29576467 DOI: 10.1016/j.anireprosci.2018.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/06/2018] [Accepted: 03/19/2018] [Indexed: 01/01/2023]
Abstract
Recent studies have suggested that apelin has a role in controlling female reproduction. The aims of the present study were, firstly, to investigate the gene expression (mRNA and protein) and immunolocalization of apelin and its receptor APJ in corpora lutea (CL) of pigs collected during the early (CL1), middle (CL2) and late (CL3) luteal phase. Using real time PCR and immunoblotting techniques, it was observed that apelin gene expression was similar in CL1 and CL2, and less in CL3, while relative abundance APJ mRNA and abundance of the protein were similar in CL1 and CL3 and greater in CL2. There was apelin staining in the cytoplasm of both small (SC) and large (LC) luteal cells with the greatest intensity in CL2. In the cytoplasm of CL1, only a few SC cells stained for APJ; in CL2, APJ was located in the cell membrane of LC and in the cytoplasm of SC; and in CL3 was located in the membrane with moderate cytoplasmic APJ staining. Intense APJ staining was noted in epithelium of blood vessels of CL2-3. Secondly, there was an effect of apelin on progesterone (P4) secretion in CL2 and on the molecular mechanisms of these cells. Stimulatory effects of apelin on P4 secretion, 3β-hydroxysteroid dehydrogenase (HSD) activity and protein abundance were observed and this was inhibited in response to APJ and adenosine 5'-monophosphate-activated protein kinase (AMPKα) kinase blockers. In conclusion, the presence of apelin/APJ in the CL of pigs and stimulatory effects of apelin on P4 secretion and 3β-HSD levels suggest potential auto/paracrine regulation by apelin in the luteal phase of the estrous cycle. Moreover, the involvement of APJ and AMPKα kinase in apelin activity in CL was confirmed.
Collapse
Affiliation(s)
- Marta Różycka
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Patrycja Kurowska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Małgorzata Grzesiak
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, 30-059 Krakow, Poland
| | - Małgorzata Kotula-Balak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Wacław Tworzydło
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Christelle Rame
- INRA, Unité Physiologie de la Reproduction et des Comportements, 37-380 Nouzilly, France
| | - Ewa Gregoraszczuk
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Joelle Dupont
- INRA, Unité Physiologie de la Reproduction et des Comportements, 37-380 Nouzilly, France
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland.
| |
Collapse
|
41
|
Kurowska P, Barbe A, Różycka M, Chmielińska J, Dupont J, Rak A. Apelin in Reproductive Physiology and Pathology of Different Species: A Critical Review. Int J Endocrinol 2018; 2018:9170480. [PMID: 29977292 PMCID: PMC6011052 DOI: 10.1155/2018/9170480] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/02/2018] [Indexed: 02/08/2023] Open
Abstract
Apelin has been isolated from the bovine stomach extracts as an endogenous ligand of the previously orphan receptor APJ. Expression of the apelinergic system (apelin and APJ) was described in many organs where pleiotropic effects like regulation of food intake, body weight, or cardiovascular and immune function were described. Recent studies have shown that apelin also plays an important role in the regulation of female and male reproduction. Some data showed that the gene and protein of apelin/APJ are expressed in the hypothalamic-pituitary-gonad (HPG) axis tissue. Thus, apelin is synthesized locally in the hypothalamus, pituitary, ovaries, and testis of many species and has autocrine and/or paracrine effects. Most research indicates that apelin has an inhibitory effect on gonadotropin secretion and participates in the direct regulation of steroidogenesis, cell proliferation, and apoptosis in gonads. The article summarizes also results of a series of recent studies on the effect of apelin on reproduction pathology, like polycystic ovarian syndrome, endometriosis, and ovarian cancer. Many of these pathologies are still in critical need of therapeutic intervention, and recent studies have found that apelin can be targets in reproductive pathological states.
Collapse
Affiliation(s)
- Patrycja Kurowska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Alix Barbe
- INRA, Unité Physiologie de la Reproduction et des Comportements, 37-380 Nouzilly, France
| | - Marta Różycka
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Justyna Chmielińska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Joelle Dupont
- INRA, Unité Physiologie de la Reproduction et des Comportements, 37-380 Nouzilly, France
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| |
Collapse
|
42
|
Erden Y, Tekin S, Tekin C, Ozyalin F, Yilmaz U, Onalan EE, Cigremis Y, Colak C, Sandal S. Effect of Intracerebroventricular Administration of Apelin-13 on the Hypothalamus–Pituitary–Thyroid Axis and Peripheral Uncoupling Proteins. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9638-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
Rak A, Drwal E, Rame C, Knapczyk-Stwora K, Słomczyńska M, Dupont J, Gregoraszczuk E. Expression of apelin and apelin receptor (APJ) in porcine ovarian follicles and in vitro effect of apelin on steroidogenesis and proliferation through APJ activation and different signaling pathways. Theriogenology 2017; 96:126-135. [DOI: 10.1016/j.theriogenology.2017.04.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 10/19/2022]
|
44
|
The effects of intracerebroventricular infusion of irisin on feeding behaviour in rats. Neurosci Lett 2017; 645:25-32. [DOI: 10.1016/j.neulet.2017.02.066] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/10/2017] [Accepted: 02/24/2017] [Indexed: 02/06/2023]
|
45
|
Roche J, Ramé C, Reverchon M, Mellouk N, Rak A, Froment P, Dupont J. Apelin (APLN) regulates progesterone secretion and oocyte maturation in bovine ovarian cells. Reproduction 2017; 153:589-603. [PMID: 28250234 DOI: 10.1530/rep-16-0677] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 02/14/2017] [Accepted: 02/28/2017] [Indexed: 11/08/2022]
Abstract
APLN and its G-protein coupled receptor APLNR are expressed in the bovine ovary. However their role in granulosa cells and oocytes is unknown. Here, we studied their expression in bovine ovarian cells and investigated their regulation in cultured luteinizing granulosa cells in response to IGF1 and FSH. We determined the effect and the molecular mechanism of APLN (isoforms 17 and 13) on bovine granulosa cell progesterone secretion and on oocyte maturation. By RT-qPCR and immunoblot, we showed that the expression of both APLN and APLNR in granulosa and oocytes significantly increased with ovarian follicles size whereas it was similar in theca interstitial cells. In vitro, in unstimulated luteinizing bovine granulosa cells and in response to IGF1 (10-8 M) but not to FSH (10-8 M), we observed that APLN (-17 and -13) (10-9 M) increased progesterone production; this was abolished in response to the APLNR antagonist ML221. These latter effects were dependent on the MAPK ERK1/2 kinase. Furthermore, we showed that APLN (-17 and -13) (10-9 M) increased cell proliferation through AKT signaling. Conversely, the addition of APLN-13 and APLN-17 to in vitro maturation medium containing IGF1 (10-8 M) but not FSH (10-8 M) arrested most oocytes at the germinal vesicle stage, which was associated with a decrease in progesterone secretion, an inhibition in MAPK ERK1/2 phosphorylation and an increase in PRKA phosphorylation in oocytes. Thus, APLN can increase progesterone secretion and cell proliferation in bovine luteinizing granulosa cells in vitro, while it blocks meiotic progression at the germinal vesicle stage during bovine oocyte in vitro maturation.
Collapse
Affiliation(s)
- J Roche
- INRAUMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRSUMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Université François Rabelais de ToursTours, France
| | - C Ramé
- INRAUMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRSUMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Université François Rabelais de ToursTours, France
| | - M Reverchon
- INRAUMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRSUMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Université François Rabelais de ToursTours, France
| | - N Mellouk
- INRAUMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRSUMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Université François Rabelais de ToursTours, France
| | - A Rak
- Department of Physiology and Toxicology of ReproductionInstitute of Zoology, Jagiellonian University of Krakow, Krakow, Poland
| | - P Froment
- INRAUMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRSUMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Université François Rabelais de ToursTours, France
| | - J Dupont
- INRAUMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France .,CNRSUMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Université François Rabelais de ToursTours, France
| |
Collapse
|
46
|
Tekin S, Erden Y, Sandal S, Etem Onalan E, Ozyalin F, Ozen H, Yilmaz B. Effects of apelin on reproductive functions: relationship with feeding behavior and energy metabolism. Arch Physiol Biochem 2017; 123:9-15. [PMID: 27494693 DOI: 10.1080/13813455.2016.1211709] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Apelin is an adipose tissue derived peptidergic hormone. In this study, 40 male Sprague-Dawley rats were used (four groups; n = 10). Apelin-13 at three different dosages (1, 5 and 50 μg/kg) was given intraperitoneally while the control group received vehicle the same route for a period of 14 days. In results, apelin-13 caused significant decreases in serum testosterone, luteinizing hormone and follicle-stimulating hormone levels (p < 0.05). Administration of apelin-13 significantly increased body weights, food intake, serum low-density lipoprotein and total cholesterol levels (p < 0.05), but caused significant decreases in high-density lipoprotein levels (p < 0.05). Serum glucose and triglyceride levels were not significantly altered by apelin-13 administration. Significant decreases in both uncoupling protein (UCP)-1 levels in the white and brown adipose tissues and UCP-3 levels in the biceps muscle (p < 0.05) were noted. The findings of the study suggest that apelin-13 may not only lead to obesity by increasing body weight but also cause infertility by suppressing reproductive hormones.
Collapse
MESH Headings
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Animals
- Dose-Response Relationship, Drug
- Energy Intake/drug effects
- Energy Metabolism/drug effects
- Feeding Behavior/drug effects
- Gonadotropins, Pituitary/antagonists & inhibitors
- Gonadotropins, Pituitary/blood
- Hypercholesterolemia/blood
- Hypercholesterolemia/chemically induced
- Hypercholesterolemia/metabolism
- Infertility, Male/blood
- Infertility, Male/chemically induced
- Infertility, Male/metabolism
- Injections, Intraperitoneal
- Intercellular Signaling Peptides and Proteins/toxicity
- Male
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Overweight/blood
- Overweight/chemically induced
- Overweight/metabolism
- Random Allocation
- Rats, Sprague-Dawley
- Testosterone/antagonists & inhibitors
- Testosterone/blood
- Toxicity Tests, Chronic
- Uncoupling Protein 1/antagonists & inhibitors
- Uncoupling Protein 1/genetics
- Uncoupling Protein 1/metabolism
- Uncoupling Protein 3/antagonists & inhibitors
- Uncoupling Protein 3/genetics
- Uncoupling Protein 3/metabolism
- Weight Gain/drug effects
Collapse
Affiliation(s)
- Suat Tekin
- a Department of Physiology , Faculty of Medicine, Inonu University , Malatya , Turkey
| | - Yavuz Erden
- b Department of Molecular Biology and Genetics , Faculty of Science, Bartin University , Bartin , Turkey
| | - Suleyman Sandal
- a Department of Physiology , Faculty of Medicine, Inonu University , Malatya , Turkey
| | - Ebru Etem Onalan
- c Department of Medical Biology , Faculty of Medicine, Firat University , Elazig , Turkey
| | - Fatma Ozyalin
- d Department of Biochemistry , Faculty of Medicine, Inonu University , Malatya , Turkey
| | - Hasan Ozen
- e Department of Pathology , Faculty of Veterinary Medicine, Kafkas University , Kars , Turkey
| | - Bayram Yilmaz
- f Department of Physiology , Faculty of Medicine, Yeditepe University , Istanbul , Turkey
| |
Collapse
|
47
|
Bao H, Yang X, Huang Y, Qiu H, Huang G, Xiao H, Kuai J. The neuroprotective effect of apelin-13 in a mouse model of intracerebral hemorrhage. Neurosci Lett 2016; 628:219-24. [PMID: 27343409 DOI: 10.1016/j.neulet.2016.06.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 10/21/2022]
Abstract
Adipocytokine apelin-13 is a peptide which could reportedly protect the brain against ischemic reperfusion injury and traumatic brain injury (TBI). Whether apelin-13 has any roles to play in intracerebral hemorrhage (ICH) has not been clarified. We aimed to investigate the roles of apelin-13 in ICH and effects on ICH-induced apoptosis. Firstly, CD-1 mice were subjected to infusion of Type IV collagenase (to induce ICH) or saline (for shams) into the left striatum. ICH animals received intracerebroventricular administration of vehicle, apelin-13 (50μg dissolved in 5μl saline) immediately after ICH. The motor function and the cerebral water content (CWC) as well as blood brain barrier (BBB) disruption were measured, coupled with determination of ICH-induced neural cell death by Terminal-deoxynucleoitidyl Transferase Mediated Nick End Labeling (TUNEL). The apoptosis-associated proteins caspase-3 and Bcl-2 as well as the brain edema-associated proteins aquaporin-4 (AQP4) and MMP-9 were all assessed with western blotting. The results showed that apelin-13 decreased CWC and reduced Evans blue leakage into injured hemispheres, with the motor function significantly improved. Additionally, apelin-13 also acutely decreased the number of ICH-induced TUNEL-positive (TUNEL(+)) cells at 48h after ICH. The expressions of AQP4, MMP-9, caspse-3 and Bcl-2 were all downregulated by apelin-13 at 24h and 48h after ICH. All these results revealed that apelin-13 attenuated brain edema and reduced cellular death by suppressing apoptosis after ICH in mice.
Collapse
Affiliation(s)
- Haijun Bao
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
| | - Xiaofang Yang
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
| | - YuXiu Huang
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
| | - Haiyang Qiu
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
| | - Genping Huang
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
| | - Hua Xiao
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
| | - Jinxia Kuai
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
48
|
Yang Y, Lv SY, Ye W, Zhang L. Apelin/APJ system and cancer. Clin Chim Acta 2016; 457:112-6. [PMID: 27083318 DOI: 10.1016/j.cca.2016.04.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 04/02/2016] [Accepted: 04/03/2016] [Indexed: 12/29/2022]
Abstract
Apelin is an endogenous ligand of the apelin receptor (APJ), a seven-transmembrane G protein-coupled receptor. Apelin/APJ system has a wide tissue distribution in the brain as well as in peripheral organs including heart, lung, vessels, and adipose tissue. Apelin/APJ was involved in regulating cardiac and vascular function, heart development, and vascular smooth muscle cell proliferation. In this article, we summarize the role of apelin/APJ system on lung cancer, gastroesophageal and colonic cancer, hepatocellular carcinoma, prostate cancer, endometrial cancer, oral squamous cell carcinoma, brain cancer, and tumor neoangiogenesis. Apelin/APJ may be a potential anticancer therapeutic target.
Collapse
Affiliation(s)
- Yanjie Yang
- School of Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Shuang-Yu Lv
- School of Medicine, Henan University, Kaifeng, Henan 475004, China.
| | - Wenling Ye
- School of Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Liang Zhang
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832000, China
| |
Collapse
|
49
|
Effects of central irisin administration on the uncoupling proteins in rat brain. Neurosci Lett 2016; 618:6-13. [DOI: 10.1016/j.neulet.2016.02.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/17/2016] [Accepted: 02/25/2016] [Indexed: 01/28/2023]
|