1
|
Pepper N, Zúñiga ML, Corliss HL. Use of poppers (nitrite inhalants) among young men who have sex with men with HIV: A clinic-based qualitative study. BMC Public Health 2024; 24:1741. [PMID: 38951768 PMCID: PMC11218135 DOI: 10.1186/s12889-024-19284-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
Nitrite inhalants (poppers) are associated with HIV transmission and commonly used among young men who have sex with men (YMSM), a group at increased risk for HIV. Significant research gaps exist in understanding the context in which YMSM use poppers. Qualitative interviews were conducted with 15 YMSM (22-31 years) with HIV to better understand the context in which poppers are used and their impacts on HIV care outcomes, such as care retention and antiretroviral adherence. The Social Ecological Model was applied to understand intrapersonal, interpersonal, community, and system level influences on popper use. Factors influencing popper use included: ubiquity of popper use in sexual settings, introduction to poppers by casual sexual partners, patient-HIV provider communication surrounding poppers, neighborhood, substance use and HIV care systems, and the legal status of poppers. Implications for clinical care, public health, policy, and future research are discussed.
Collapse
Affiliation(s)
- Nicole Pepper
- University of California San Diego, Pediatrics, San Diego, CA, USA.
| | | | - Heather L Corliss
- School of Public Health, San Diego State University, San Diego, CA, USA
| |
Collapse
|
2
|
Kostoff RN, Briggs MB, Kanduc D, Dewanjee S, Kandimalla R, Shoenfeld Y, Porter AL, Tsatsakis A. Modifiable contributing factors to COVID-19: A comprehensive review. Food Chem Toxicol 2023; 171:113511. [PMID: 36450305 PMCID: PMC9701571 DOI: 10.1016/j.fct.2022.113511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022]
Abstract
The devastating complications of coronavirus disease 2019 (COVID-19) result from an individual's dysfunctional immune response following the initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Multiple toxic stressors and behaviors contribute to underlying immune system dysfunction. SARS-CoV-2 exploits the dysfunctional immune system to trigger a chain of events ultimately leading to COVID-19. The current study identifies eighty immune system dysfunction-enabling toxic stressors and behaviors (hereafter called modifiable contributing factors (CFs)) that also link directly to COVID-19. Each CF is assigned to one of the five categories in the CF taxonomy shown in Section 3.3.: Lifestyle (e.g., diet, substance abuse); Iatrogenic (e.g., drugs, surgery); Biotoxins (e.g., micro-organisms, mycotoxins); Occupational/Environmental (e.g., heavy metals, pesticides); Psychosocial/Socioeconomic (e.g., chronic stress, lower education). The current study shows how each modifiable factor contributes to decreased immune system capability, increased inflammation and coagulation, and increased neural damage and neurodegeneration. It is unclear how real progress can be made in combatting COVID-19 and other similar diseases caused by viral variants without addressing and eliminating these modifiable CFs.
Collapse
Affiliation(s)
- Ronald Neil Kostoff
- Independent Consultant, Gainesville, VA, 20155, USA,Corresponding author. Independent Consultant, 13500 Tallyrand Way, Gainesville, VA, 20155, USA
| | | | - Darja Kanduc
- Dept. of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Via Orabona 4, Bari, 70125, Italy
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana, India
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, 5265601, Israel
| | - Alan L. Porter
- School of Public Policy, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003, Heraklion, Greece
| |
Collapse
|
3
|
Liu Y, Guo Z, Zhu R, Gou D, Jia PP, Pei DS. An insight into sex-specific neurotoxicity and molecular mechanisms of DEHP: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120673. [PMID: 36400143 DOI: 10.1016/j.envpol.2022.120673] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/03/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Di-2-Ethylhexyl Phthalate (DEHP) is often used as an additive in polyvinyl chloride (PVC) to give plastics flexibility, which makes DEHP widely used in food packaging, daily necessities, medical equipment, and other products. However, due to the unstable combination of DEHP and polymer, it will migrate to the environment in the materials and eventually contact the human body. It has been recorded that low-dose DEHP will increase neurotoxicity in the nervous system, and the human health effects of DEHP have been paid attention to because of the extensive exposure to DEHP and its high absorption during brain development. In this study, we review the evidence that DEHP exposure is associated with neurodevelopmental abnormalities and neurological diseases based on human epidemiological and animal behavioral studies. Besides, we also summarized the oxidative damage, apoptosis, and signal transduction disorder related to neurobehavioral abnormalities and nerve injury, and described the potential mechanisms of neurotoxicity caused by DEHP. Overall, we found exposure to DEHP during the critical developmental period will increase the risk of neurobehavioral abnormalities, depression, and autism spectrum disorders. This effect is sex-specific and will continue to adulthood and even have an intergenerational effect. However, the research results on the sex-dependence of DEHP neurotoxicity are inconsistent, and there is a lack of systematic mechanisms research as theoretical support. Future investigations need to be carried out in a large-scale population and model organisms to produce more consistent and convincing results. And we emphasize the importance of mechanism research, which can enhance the understanding of the environmental and human health risks of DEHP exposure.
Collapse
Affiliation(s)
- Yiyun Liu
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ruihong Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Dongzhi Gou
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Qin T, Xue JF, Zu L. Structural effect on electron impact decomposition of 1,3- and 1,4-cyclohexane dinitrites. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2102024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Tai Qin
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jun-fei Xue
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lily Zu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
5
|
Mallmann ASV, Chaves RDC, de Oliveira NF, Oliveira ICM, Capibaribe VCC, Valentim JT, da Silva DMA, Sartori DP, Rodrigues GC, Filho AJMC, Riello GB, Fonteles MMDF, Vasconcelos SMM, Macedo D, Gutierrez SJC, Filho JMB, de Carvalho AMR, de Sousa FCF. Is Riparin III a promising drug in the treatment for depression? Eur J Pharm Sci 2021; 162:105824. [PMID: 33798709 DOI: 10.1016/j.ejps.2021.105824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
Stress is crucially related to the pathophysiology of mood disorders, including depression. Since the effectiveness and number of the current pharmacological options still presents significant limitations, research on new substances is paramount. In rodents, several findings have indicated that corticosterone administration induces the manifestation of behavioral and neurochemical aspects of depression. Recently, riparin III has shown antidepressant-like properties in trials performed on animal models. Thus, our goal was to investigate the effects of riparin III on behavioral tests, monoamines levels, oxidative stress and cytokines levels in chronic corticosterone-induced model of depression. To do this, female swiss mice were treated with subcutaneous administration of corticosterone for 22 days. In addition, for the last 10 days, riparin III or fluvoxamine were also administered per os in specific test groups. Control groups received subcutaneous saline injections or distilled water per os. At the end of the timeline, the animals were killed and their hippocampi, prefrontal cortex, and striatum dissected for neurochemical analysis. Brain changes following corticosterone administration were confirmed, and riparin III could reversed the most abnormal behavioral and neurochemical corticosterone-induced alterations. These results suggest the potential antioxidant, anti-inflammatory and antidepressant effects of riparin III after a chronic stress exposure.
Collapse
Affiliation(s)
- Auriana Serra Vasconcelos Mallmann
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Raquell de Castro Chaves
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Natália Ferreira de Oliveira
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Iris Cristina Maia Oliveira
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Victor Celso Cavalcanti Capibaribe
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - José Tiago Valentim
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Daniel Moreira Alves da Silva
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Danusio Pinheiro Sartori
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Gabriel Carvalho Rodrigues
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Adriano José Maia Chaves Filho
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Giovana Barbosa Riello
- Multi-User Facility, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Marta Maria de França Fonteles
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Departament of Pharmacy, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Silvânia Maria Mendes Vasconcelos
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Danielle Macedo
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - José Maria Barbosa Filho
- Laboratory of Pharmaceutics Technology, Federal University of Paraíba, Joao Pessoa, Paraiba, Brazil
| | - Alyne Mara Rodrigues de Carvalho
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Francisca Cléa Florenço de Sousa
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
6
|
Chen P, Chen F, Zhou BH. Leonurine ameliorates D-galactose-induced aging in mice through activation of the Nrf2 signalling pathway. Aging (Albany NY) 2019; 11:7339-7356. [PMID: 31527304 PMCID: PMC6782004 DOI: 10.18632/aging.101733] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/17/2018] [Indexed: 04/23/2023]
Abstract
Aging is a complex physiological phenomenon associated with oxidative stress damage. The objective of this study was to investigate the potential effects of leonurine on D-galactose-induced aging in mice and its possible mechanisms. In this study, we first tested the antioxidant activity of leonurine in vitro. A subcutaneous injection of D-galactose in mice for 8 weeks was used to establish the aging model to evaluate the protective effects of leonurine. The results showed that treatment with 150 mg·kg-1 leonurine could improve the mental condition, organic index, and behavioural impairment; significantly increase the activities of antioxidative enzymes including SOD, CAT, and T-AOC; and ameliorate the advanced glycation end product (AGE) level and histopathological injury. Furthermore, the Western blotting data revealed that leonurine supplementation noticeably modulated the suppression of the Nrf2 pathway and upregulated the downstream expression of HO-1 and NOQ1 in aging mice. Additionally, leonurine treatment activated Nrf2 nuclear translocation in both aging mice and normal young mice, and the expression levels of Nrf2 in normal young mice was higher than those in naturally aging mice. In conclusion, our findings suggest that leonurine is a promising agent for attenuating the aging process, and the underlying molecular mechanisms depend on activating the Nrf2 pathway.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fuchao Chen
- Department of Pharmacy, Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei 442008, P.R. China
| | - Ben-hong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
7
|
A review on the abuse of three NPS (synthetic cannabinoids, kratom, poppers) among youths in Asia. Forensic Sci Int 2018; 292:45-49. [DOI: 10.1016/j.forsciint.2018.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 01/24/2023]
|
8
|
The semi-synthetic molecule [4″,5″] dihydro-obovatin isolated from Tephrosia Toxicaria pers reduces zymosan-induced temporomandibular joint inflammatory hypernociception in rats. Med Chem Res 2018. [DOI: 10.1007/s00044-017-2123-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Search strategy selection in the Morris water maze indicates allocentric map formation during learning that underpins spatial memory formation. Neurobiol Learn Mem 2017; 139:37-49. [DOI: 10.1016/j.nlm.2016.12.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/15/2016] [Accepted: 12/12/2016] [Indexed: 01/21/2023]
|
10
|
Jeon SY, Kim YJ, Kim YH, Shin J, Yun J, Han K, Park HK, Kim HS, Cha HJ. Abuse potential and dopaminergic effect of alkyl nitrites. Neurosci Lett 2016; 629:68-72. [PMID: 27369324 DOI: 10.1016/j.neulet.2016.06.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/20/2016] [Accepted: 06/27/2016] [Indexed: 11/16/2022]
Abstract
The abuse of alkyl nitrites is common among adolescents and young adults worldwide. However, the information regarding the effects of alkyl nitrites on the central nervous system and the associated psychological abuse potential is scarce. The abuse potential of 3 representative alkyl nitrites - isobutyl nitrite, isoamyl nitrite, and butyl nitrite - was evaluated in mice using conditioned place preference tests with an unbiased method. The dopamine levels released by synaptosomes extracted from the striatal region were measured using high performance liquid chromatography. Mice treated with the test substances (50mg/kg, i.p.) exhibited a significantly increased drug-paired place preference. Moreover, greater levels of dopamine were released by striatal region synaptosomes in response to isobutyl nitrite treatment in mice. Thus, our findings suggest that alkyl nitrites could lead to psychological dependence and dopaminergic effects. Furthermore, these results provide scientific evidence to support the regulation of alkyl nitrites as psychoactive substances in the future.
Collapse
Affiliation(s)
- Seo Young Jeon
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi 28159, Republic of Korea
| | - Yun Ji Kim
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi 28159, Republic of Korea
| | - Young-Hoon Kim
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi 28159, Republic of Korea
| | - Jisoon Shin
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi 28159, Republic of Korea
| | - Jaesuk Yun
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi 28159, Republic of Korea
| | - Kyoungmoon Han
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi 28159, Republic of Korea
| | - Hye-Kyung Park
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi 28159, Republic of Korea
| | - Hyung Soo Kim
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi 28159, Republic of Korea
| | - Hye Jin Cha
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi 28159, Republic of Korea.
| |
Collapse
|