1
|
Zhang Y, Lin J, Dou H, Zhang H, Cao Y, Lei Y. Modulation of Fear Extinction by Non-Invasive Brain Stimulation: Systematic Review and Meta-Analysis. Psychophysiology 2025; 62:e14763. [PMID: 39905577 DOI: 10.1111/psyp.14763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/27/2024] [Accepted: 12/29/2024] [Indexed: 02/06/2025]
Abstract
Non-invasive brain stimulation (NIBS) is an emerging treatment for mental disorders that is painlessness and easy to administer. However, its effectiveness for modulating fear extinction requires further elucidation. We searched eight bibliographical databases and identified randomized controlled trials of NIBS and fear extinction in healthy populations. Outcomes were evaluated based on skin conductance responses (SCRs) under three experimental stimuli: threat condition stimulation (CS+), safe condition stimulation (CS-), and their discrimination (CS+ minus CS-). We applied a random-effects model to determine effect sizes (Hedge's g) post-stimulation and assessed article quality using Physiotherapy evidence database (PEDro) scale. Twenty-one studies meeting systematic review criteria were included in this analysis, incorporating 40 independent effect sizes and data from 11 studies (n = 632) in the meta-analysis. Compared with the control group, SCRs in CS+ and discrimination were significantly reducted in the intervention group. Fear extinction was more effective in the 24-h test than immediately after NIBS. In conclusion, NIBS enhanced fear extinction, and the time interval between stimulation and testing may serve as a moderating variable.
Collapse
Affiliation(s)
- Ye Zhang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Jingyuan Lin
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Haoran Dou
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Huoyin Zhang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Ying Cao
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Yi Lei
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| |
Collapse
|
2
|
Greenwell D, Nishio H, Feigh J, McCallion Q, Poston B, Riley ZA. The effects of bilateral M1 anodal tDCS on corticomotor excitability and acquisition the of a bimanual videogame skill. Neuroscience 2025; 568:231-239. [PMID: 39837365 DOI: 10.1016/j.neuroscience.2025.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/20/2024] [Accepted: 01/11/2025] [Indexed: 01/23/2025]
Abstract
Most activities of daily life involve some degree of coordinated, bimanual activity from the upper limbs. However, compared to single-handed movements, bimanual movements are processed, learned, and controlled from both hemispheres of the brain. Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that enhances motor learning by modulating the activity of movement-associated brain regions. While effective in simple, single-handed tasks, tDCS has shown mixed results in complex bimanual tasks. This study investigated the effects of bilateral M1 anodal tDCS (biM1 a-tDCS) on learning and cortical excitability during a customized, bimanual racing videogame task. Thirty-six right-handed adults completed three lab visits (∼48 h apart), practicing the task while receiving either biM1 a-tDCS or SHAM tDCS. Cortical excitability was measured with transcranial magnetic stimulation (TMS) and electromyography (EMG) before and after the first visit. Though all subjects demonstrated improvements over the course of the study, our analyses revealed significantly faster rates of learning on days 1 & 2, but not day 3, of practice in subjects receiving biM1 a-tDCS. Moreover, perhaps due to differences in baseline gaming experience and aptitude, this effect appeared to be stronger in female subjects. Interestingly, no significant differences in corticomotor excitability were observed between conditions. Though biM1 a-tDCS did not appear to impact corticomotor excitability, our results contribute to the growing body of evidence which seems to suggest that multifocal tDCS protocols may be superior to traditional, single-site tDCS for the enhancement of bimanual motor learning.
Collapse
Affiliation(s)
- Davin Greenwell
- School of Health and Human Sciences, Indiana University Indianapolis Indianapolis IN USA.
| | - Hayami Nishio
- Department of Human Physiology, University of Oregon Eugene OR USA
| | - Jacob Feigh
- School of Health and Human Sciences, Indiana University Indianapolis Indianapolis IN USA
| | - Quinn McCallion
- School of Health and Human Sciences, Indiana University Indianapolis Indianapolis IN USA
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas Las Vegas NV USA
| | - Zachary A Riley
- School of Health and Human Sciences, Indiana University Indianapolis Indianapolis IN USA
| |
Collapse
|
3
|
Fu B, Zhou X, Zhou X, Li X, Chen Z, Zhang Y, Du Q. Efficacy and Safety of Transcranial Magnetic Stimulation for Attention-Deficit Hyperactivity Disorder: A Systematic Review and Meta-Analysis. Brain Behav 2025; 15:e70246. [PMID: 39829146 PMCID: PMC11743978 DOI: 10.1002/brb3.70246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/25/2024] [Accepted: 12/14/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is a promising neuromodulation technique that has been widely used in neuropsychiatric disorders, but there was no evidence on its effect on the improvement attention-deficit hyperactivity disorder (ADHD). OBJECTIVE This systematic review and meta-analysis aimed to investigate the efficacy and safety of TMS in reducing ADHD symptoms. METHOD We systematically searched four databases (PubMed, Embase, Web of Science, and Cochrane Library databases) for randomized controlled/crossover trials on the efficacy and safety of TMS on ADHD symptom improvement compared to sham rTMS or non-TMS interventions, published until September 18, 2024. Extracted data from the included studies involved patient characteristics, intervention protocols, and main outcomes. The effect size of the TMS treatment was evaluated using the standardized mean difference (SMD) with a 95% confidence interval (CI), calculated with either a random effects model or fixed effects model depending on the level of heterogeneity. RESULT Eight studies (325 ADHD patients in total) were included in this systematic review and meta-analysis. According to the core symptoms, TMS significantly improved inattention (SMD = -0.94, 95% CI = -1.33 to -0.56, p < 0.001) and hyperactivity/impulsivity (SMD = -0.98, 95% CI = -1.27 to -0.69, p < 0.001) compared to non-TMS interventions after 3-6 weeks of intervention. During the 1-month follow-up, the TMS group still demonstrated a significant improvement in inattention symptoms compared to the non-TMS group (SMD = -0.67, 95% CI = -1.06 to 0.28, p < 0.001). The total symptoms in the TMS group only showed improvement in the 1-month follow-up compared to the non-TMS group. (SMD = -0.48, 95% CI = -0.82 to -0.14, p = 0.005). Only minor adverse events were reported in the included studies, comprising headache and scalp discomfort. CONCLUSION TMS significantly improved the inattention, hyperactivity/impulsivity, and total symptom scores in ADHD patients with minor adverse events. Future research should focus on the association between different brain regions and symptoms in ADHD patients, which is crucial for stimulation navigation in TMS interventions. The trial is registered in PROSPERO (PROSPERO registry number: CRD42023473853).
Collapse
Affiliation(s)
- Binbin Fu
- Department of Rehabilitation, Xinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Chongming Branch of Xinhua Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xiangyue Zhou
- Department of Rehabilitation, Xinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xuan Zhou
- Department of Rehabilitation, Xinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xin Li
- Department of Rehabilitation, Xinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhengquan Chen
- Department of Rehabilitation, Xinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yanbin Zhang
- Institute of Rehabilitation Engineering and TechnologyUniversity of Shanghai for Science and TechnologyShanghaiChina
| | - Qing Du
- Department of Rehabilitation, Xinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Chongming Branch of Xinhua Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
4
|
Shen F, Zhou H. Effects of non-invasive brain stimulation on emotion regulation in patients with attention deficit hyperactivity disorder: a systematic review. Front Psychiatry 2024; 15:1483753. [PMID: 39698210 PMCID: PMC11652829 DOI: 10.3389/fpsyt.2024.1483753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
Background and objective A growing body of research evidence suggests that many patients with attention deficit hyperactivity disorder (ADHD) have difficulties with emotion regulation. Non-invasive brain stimulation (NIBS), which mainly includes transcranial electrical stimulation (tES) and repetitive transcranial magnetic stimulation (rTMS), has been considered a potential new direction in the treatment of emotion dysregulation in ADHD patients. The key components of tES are transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS). However, there is no systematic evaluation exploring the effects of non-invasive brain stimulation on emotion regulation in ADHD patients. Therefore, this systematic review aimed to summarize the effects of NIBS on emotion regulation in ADHD patients. Methods This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We searched PubMed, Embase, Web of Science, and the Cochrane Library electronic databases up to 1 July 2024. We also hand-searched the reference lists of retrieved articles and reviews. Assessing risk of bias using the Cochrane Assessment Tool. Results Through database search, we obtained a total of 1134 studies, of which 5 met the inclusion criteria. Statistically significant improvements in emotion regulation in children with ADHD were observed in 1 study after treatment with tDCS. In the remaining 4 studies (2 with tDCS and 2 with rTMS), there were no statistically significant changes in emotion regulation in ADHD patients after treatment with either tDCS or rTMS. Conclusions The data from our preliminary study do not allow us to draw definitive conclusions that non-invasive brain stimulation improves emotion regulation in ADHD patients. This is because there is a paucity of literature on the effects of tES or rTMS on emotion regulation in ADHD patients and a limited number of randomized controlled trials. More high-quality multicenter randomized controlled trials exploring the efficacy of non-invasive brain stimulation on emotion regulation in ADHD patients are needed in the future to provide strong evidence for definitive conclusions before it can be considered as a potential treatment option. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42024569041.
Collapse
Affiliation(s)
| | - Hui Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education (MOE), Chengdu, China
| |
Collapse
|
5
|
Nejati V, Khorrami AS, Vaziri ZS, Shahri F, Yazdchi M, Abdolmanafi V, Paydarfard S, Golshan A. The effectiveness of non-invasive brain stimulation in treatment of major depressive disorder (MDD): a systematic review and transfer analysis. J Neural Transm (Vienna) 2024:10.1007/s00702-024-02852-5. [PMID: 39585445 DOI: 10.1007/s00702-024-02852-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/20/2024] [Indexed: 11/26/2024]
Abstract
This study aimed to analyze the transferability of non-invasive brain stimulation (NIBS) interventions in individuals with major depressive disorder (MDD) based on the FIELD model (Function, Implementation, Ecology, Level, and Duration), encompassing function, implement, ecology, level, and duration. A systematic search of electronic databases yielded a total of 21 eligible studies, comprising 12 transcranial direct current stimulation (tDCS) and 9 transcranial magnetic stimulation (TMS) trials, involving 1029 individuals with MDD. The meta-analysis of effect sizes revealed positive transfer effects across all domains of the FIELD model, suggesting that NIBS interventions have potential efficacy in improving various facets of MDD. The subgroup analysis highlighted that bilateral dlPFC stimulation exhibited the highest effect size for transferability, indicating greater transferability for rTMS, a higher dose of stimulation, and the integration of additional interventions. Additionally, the study discusses the implications of bilateral dorsolateral prefrontal cortex (dlPFC) stimulation and the integration of complementary therapies for optimizing treatment efficacy.
Collapse
Affiliation(s)
- Vahid Nejati
- Department of Psychology, Shahid Beheshti University, Tehran, Iran.
| | | | - Zahra S Vaziri
- Department of Psychology, Shahid Beheshti University, Tehran, Iran
| | - Fatemeh Shahri
- Department of Psychology, Shahid Beheshti University, Tehran, Iran
| | - Maryam Yazdchi
- Department of Psychology, Shahid Beheshti University, Tehran, Iran
| | | | - Saeed Paydarfard
- Department of Psychology, Shahid Beheshti University, Tehran, Iran
| | - Aida Golshan
- Department of Psychology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
6
|
Zhang JJ, Bai Z, Mehler DM, Kwong PW, Lam TL, Fong KN. Modulating low-frequency oscillations in post-stroke brains using priming intermittent theta burst stimulation. Eur J Phys Rehabil Med 2024; 60:591-593. [PMID: 38864711 PMCID: PMC11403628 DOI: 10.23736/s1973-9087.24.08431-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Affiliation(s)
- Jack J Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China -
| | - Zhongfei Bai
- Department of Occupational Therapy, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, China
| | - David M Mehler
- RWTH Aachen University, Medical School, Department of Psychiatry, Psychotherapy and Psychosomatics, Aachen, Germany
- Institute for Translational Psychiatry, Department of Psychiatry, University of Münster, Münster, Germany
| | - Patrick W Kwong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Tommy L Lam
- University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Kenneth N Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
7
|
Yu H, Shu X, Zhou Y, Zhou S, Wang X. Intermittent theta burst stimulation combined with cognitive training improves cognitive dysfunction and physical dysfunction in patients with post-stroke cognitive impairment. Behav Brain Res 2024; 461:114809. [PMID: 38081516 DOI: 10.1016/j.bbr.2023.114809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/27/2023] [Accepted: 12/08/2023] [Indexed: 01/07/2024]
Abstract
OBJECTIVE Post-stroke cognitive impairment (PSCI) is a common complication of stroke. Intermittent theta burst stimulation (iTBS) can inducing motor learning. We observed the effects of combination of iTBS with cognitive training on physical/cognitive dysfunctions in PSCI patients. METHODS PSCI patients treated with basic treatment & cognitive training (Control group)/iTBS & cognitive training (iTBS group) were enrolled, with Mini-mental State Examination (MMSE)/Montreal Cognitive Assessment (MoCA)/Frontal Assessment Battery (FAB)/barthel index (BI)/Upper Limb Fugl-Meyer Assessment (U-FMA)/Action Research Arm Test (ARAT) scores compared. Gait spatiotemporal parameters/dynamic parameters were analyzed by 3D gait analysis. Correlations between MMSE/MoCA scores and gait parameters in PSCI patients after iTBS & cognitive training were analyzed by Spearman analysis. RESULTS Increased MMSE/MoCA/FAB/BI/U-FMA/ARAT scores, step speed, step frequency, stride length, step width, step length on the affected side, percentage of swing phase on the affected side, hip joint flexion angle on the affected side, knee joint flexion angle on the affected side, and ankle plantar flexion angle on the affected side and reduced gait period on the affected side and percentage of stance phase on the affected side were found in patients of both groups after treatment, with the effects in the iTBS group more profound. CONCLUSION iTBS & cognitive training obviously improved the cognitive function scores/upper limb function scores/gait parameters in PSCI patients versus cognitive training treatment. After combination therapy, the MMSE/MoCA scores of PSCI patients were significantly correlated with gait parameters. This provided more data support for iTBS & cognitive training application in the rehabilitation treatment of PSCI patients.
Collapse
Affiliation(s)
- Hong Yu
- Rahabilitation Assessment and Treatment Center, Zhejiang Rehabilitation Medical Center, Hangzhou, China
| | - Xinxin Shu
- Rahabilitation Assessment and Treatment Center, Zhejiang Rehabilitation Medical Center, Hangzhou, China.
| | - Yuda Zhou
- Rahabilitation Assessment and Treatment Center, Zhejiang Rehabilitation Medical Center, Hangzhou, China.
| | - Siwei Zhou
- Department of Geriatric Rehabilitation, Zhejiang Rehabilitation Medical Center, Hangzhou, China
| | - Xiaojun Wang
- Rahabilitation Assessment and Treatment Center, Zhejiang Rehabilitation Medical Center, Hangzhou, China
| |
Collapse
|
8
|
Grootjans Y, Byczynski G, Vanneste S. The use of non-invasive brain stimulation in auditory perceptual learning: A review. Hear Res 2023; 439:108881. [PMID: 37689034 DOI: 10.1016/j.heares.2023.108881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/08/2023] [Accepted: 08/25/2023] [Indexed: 09/11/2023]
Abstract
Auditory perceptual learning is an experience-dependent form of auditory learning that can improve substantially throughout adulthood with practice. A key mechanism associated with perceptual learning is synaptic plasticity. In the last decades, an increasingly better understanding has formed about the neural mechanisms related to auditory perceptual learning. Research in animal models found an association between the functional organization of the primary auditory cortex and frequency discrimination ability. Several studies observed an increase in the area of representation to be associated with improved frequency discrimination. Non-invasive brain stimulation techniques have been related to the promotion of plasticity. Despite its popularity in other fields, non-invasive brain stimulation has not been used much in auditory perceptual learning. The present review has discussed the application of non-invasive brain stimulation methods in auditory perceptual learning by discussing the mechanisms, current evidence and challenges, and future directions.
Collapse
Affiliation(s)
- Yvette Grootjans
- Lab for Clinical and Integrative Neuroscience, Trinity Institute for Neuroscience, School of Psychology, Trinity College Dublin, Ireland
| | - Gabriel Byczynski
- Lab for Clinical and Integrative Neuroscience, Trinity Institute for Neuroscience, School of Psychology, Trinity College Dublin, Ireland
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, Trinity Institute for Neuroscience, School of Psychology, Trinity College Dublin, Ireland; Global Brain Health Institute, Institute of Neuroscience, Trinity College Dublin, Ireland.
| |
Collapse
|
9
|
Xia Y, Wang M, Zhu Y. The Effect of Cerebellar rTMS on Modulating Motor Dysfunction in Neurological Disorders: a Systematic Review. CEREBELLUM (LONDON, ENGLAND) 2023; 22:954-972. [PMID: 36018543 DOI: 10.1007/s12311-022-01465-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
The effectiveness of cerebellar repetitive transcranial magnetic stimulation (rTMS) on motor dysfunction in patients with neurological disorders has received increasing attention because of its potential for neuromodulation. However, studies on the neuromodulatory effects, parameters, and safety of rTMS implementation in the cerebellum to alleviate motor dysfunction are limited. This systematic review aimed to evaluate the effectiveness and safety of cerebellar rTMS treatment for motor dysfunction caused by neurological disorders and to review popular stimulation parameters. Five electronic databases-Medline, Web of Science, Scopus, Cochrane Library, and Embase-were searched for relevant research published from inception to July 2022. All randomized controlled trials (RCTs) that reported the effects of cerebellar rTMS combined with behavioral rating scales on motor dysfunction were eligible for enrollment. Additionally, reference lists of the enrolled studies were manually checked. Among 1156 articles screened, 21 RCTs with 666 subjects were included. rTMS conducted on the cerebellum showed an improvement in stroke (spasticity, balance, and gait), cervical dystonia, Parkinson's disease (tremor), cerebellar ataxia, and essential tremor but not in multiple sclerosis. The 8-shaped coil with a diameter of 70 mm was determined as the most common therapeutic choice. None of the studies reported severe adverse events except mild side effects in three. Therefore, rTMS appears to be a promising and safe technique for the treatment of motor dysfunction, targeting the cerebellum to induce motor behavioral improvement. Further rigorous RCTs, including more samples and longer follow-up periods, are required to precisely explore the effective stimulation parameters and possible mechanisms.
Collapse
Affiliation(s)
- Yifei Xia
- School of Kinesiology, Shanghai University of Sport, Yangpu District, No. 200 Hengren Road, Shanghai, China
| | - Mingqi Wang
- School of Kinesiology, Shanghai University of Sport, Yangpu District, No. 200 Hengren Road, Shanghai, China
| | - Yulian Zhu
- School of Kinesiology, Shanghai University of Sport, Yangpu District, No. 200 Hengren Road, Shanghai, China.
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Jing'an District, No. 12 Wulumuqi road, Shanghai, 200040, China.
| |
Collapse
|
10
|
Millot S, Beis JM, Pierret J, Badin M, Sabau V, Bensoussan L, Paysant J, Ceyte H. Innovative Therapy Combining Neck Muscle Vibration and Transcranial Direct Current Stimulation in Association with Conventional Rehabilitation in Left Unilateral Spatial Neglect Patients: HEMISTIM Protocol for a Randomized Controlled Trial. Brain Sci 2023; 13:brainsci13040678. [PMID: 37190643 DOI: 10.3390/brainsci13040678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 05/17/2023] Open
Abstract
Unilateral spatial neglect (USN) rehabilitation requires the development of new methods that can be easily integrated into conventional practice. The aim of the HEMISTIM protocol is to assess immediate and long-term recovery induced by an innovative association of left-side neck-muscle vibration (NMV) and anodal transcranial Direct Current Stimulation (tDCS) on the ipsilesional posterior parietal cortex during occupational therapy sessions in patients with left USN. Participants will be randomly assigned to four groups: control, Left-NMV, Left-NMV + sham-tDCS or Left-NMV + anodal-tDCS. NMV and tDCS will be applied during the first 15 min of occupational therapy sessions, three days a week for three weeks. USN will be assessed at baseline, just at the end of the first experimental session, after the first and third weeks of the protocol and three weeks after its ending. Our primary outcome will be the evolution of the functional Catherine Bergego Scale score. Secondary outcome measures include five tests that investigate different neuropsychological aspects of USN. Left NMV, by activating multisensory integration neuronal networks, might enhance effects obtained by conventional therapy since post-effects were shown when it was combined with upper limb movements. We expect to reinforce lasting intermodal recalibration through LTP-like plasticity induced by anodal tDCS.
Collapse
Affiliation(s)
- Sarah Millot
- UGECAM Nord-Est, Institut Régional de Médecine Physique et de Réadaptation, Centre de Médecine Physique et de Réadaptation, Lay Saint-Christophe, France
- Université de Lorraine, DevAH, Nancy, France
| | - Jean-Marie Beis
- UGECAM Nord-Est, Institut Régional de Médecine Physique et de Réadaptation, Centre de Médecine Physique et de Réadaptation, Lay Saint-Christophe, France
- Université de Lorraine, DevAH, Nancy, France
| | - Jonathan Pierret
- UGECAM Nord-Est, Institut Régional de Médecine Physique et de Réadaptation, Centre de Médecine Physique et de Réadaptation, Lay Saint-Christophe, France
- Université de Lorraine, DevAH, Nancy, France
| | - Marina Badin
- UGECAM Nord-Est, Institut Régional de Médecine Physique et de Réadaptation, Centre de Médecine Physique et de Réadaptation, Lay Saint-Christophe, France
| | - Verginia Sabau
- UGECAM PACA-Corse, Centre Helio Marin, Vallauris, France
| | - Laurent Bensoussan
- Aix Marseille Univ, CNRS, INT, Marseille, France
- UGECAM PACA, Institut Universitaire de Réadaptation de Valmante Sud, Marseille, France
| | - Jean Paysant
- UGECAM Nord-Est, Institut Régional de Médecine Physique et de Réadaptation, Centre de Médecine Physique et de Réadaptation, Lay Saint-Christophe, France
- Université de Lorraine, DevAH, Nancy, France
| | | |
Collapse
|
11
|
Peng L, Tian L, Wang T, Wang Q, Li N, Zhou H. Effects of non-invasive brain stimulation (NIBS) for executive function on subjects with ADHD: a protocol for a systematic review and meta-analysis. BMJ Open 2023; 13:e069004. [PMID: 36878663 PMCID: PMC9990641 DOI: 10.1136/bmjopen-2022-069004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
INTRODUCTION Attention-deficit/hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder with a high risk of multiple mental health and social difficulties. Executive function domains are associated with distinct ADHD symptom burdens. Non-invasive brain stimulation (NIBS) mainly includes repetitive transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), which is a promising technique, but its impact on the executive function of ADHD is uncertain. Therefore, the aim of this systematic review and meta-analysis is to derive solid and updated estimates on the effect of NIBS on executive function in children/adults with ADHD. METHODS AND ANALYSIS A systematic search will be performed through EMBASE, MEDLINE, PsycINFO and Web of Science databases from inception until 22 August 2022. Handsearching of grey literature and the reference lists of selected articles will also be conducted. Empirical studies assessing the effect of NIBS (TMS or tDCS) on executive function in children or adults with ADHD will be included. Two investigators will independently perform literature identification, data extraction and risk of bias assessment. Relevant data will be pooled by a fixed-effects or random-effects model according to I2 statistic. Sensitivity analysis will be performed to test the robustness of the pooled estimates. Subgroup analyses will be conducted to investigate the potential heterogeneity. This protocol will generate a systematic review and meta-analysis that comprehensively synthesises the evidence on the NIBS treatment of executive function deficit of ADHD.Ethics approval is not required as this is a protocol for a systematic review of published literature. The results will be submitted to a peer-reviewed journal or a conference. PROSPERO REGISTRATION NUMBER CRD42022356476.
Collapse
Affiliation(s)
- Lihong Peng
- Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liyan Tian
- Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tiantian Wang
- Rehabilitation Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiu Wang
- Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Na Li
- Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hui Zhou
- Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Soto-León V, Díez-Rodríguez E, Herrera-Pérez S, Rosa JM, Aguilar J, Hernando A, Bravo-Sánchez C, López-González V, Pérez-Borrego Y, Bestmann S, Oliviero A. Effects of transcranial static magnetic field stimulation over the left dorsolateral prefrontal cortex on random number generation. Clin Neurophysiol 2023; 149:18-24. [PMID: 36867915 DOI: 10.1016/j.clinph.2023.02.163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/22/2023]
Abstract
OBJECTIVE Focal application of transcranial static magnetic field stimulation (tSMS) is a neuromodulation technique, with predominantly inhibitory effects when applied to the motor, somatosensory or visual cortex. Whether this approach can also transiently interact with dorsolateral prefrontal cortex (DLPFC) function remains unclear. The suppression of habitual or competitive responses is one of the core executive functions linked to DLPFC function. This study aimed to assess the impact of tSMS on the prefrontal contributions to inhibitory control and response selection by means of a RNG task. METHODS We applied 20 min of tSMS over the left DLPFC of healthy subjects, using a real/sham cross-over design, during performance of a RNG task. We used an index of randomness calculated with the measures of entropy and correlation to assess the impact of stimulation on DLPFC function. RESULTS The randomness index of the sequences generated during the tSMS intervention was significantly higher compared to those produced in the sham condition. CONCLUSIONS Our results indicate that application of tSMS transiently modulates specific functional brain networks in DLPFC, which indicate a potential use of tSMS for treatment of neuropsychiatric disorders. SIGNIFICANCE This study provides evidence for the capacity of tSMS for modulating DLPFC function.
Collapse
Affiliation(s)
- Vanesa Soto-León
- FENNSI Group, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla la Mancha, Toledo, Spain.
| | - Eva Díez-Rodríguez
- FENNSI Group, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla la Mancha, Toledo, Spain
| | - Salvador Herrera-Pérez
- Experimental Neurophysiology and Neuronal Circuits Group, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla la Mancha, Toledo, Spain
| | - Juliana M Rosa
- Experimental Neurophysiology and Neuronal Circuits Group, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla la Mancha, Toledo, Spain
| | - Juan Aguilar
- Experimental Neurophysiology and Neuronal Circuits Group, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla la Mancha, Toledo, Spain
| | - Antonio Hernando
- Instituto Magnetismo Aplicado, Laboratorio Salvador Velayos, Universidad Complutense de Madrid-Consejo Superior Investigación Científica-Administrador Infraestructuras Ferroviarias, Madrid, Spain; Instituto Madrileño de Estudios Avanzados en Nanociencia, Madrid, Spain; Donostia International Physics Centre, San Sebastián, Spain; Universidad Antonio de Nebrija, Madrid, Spain
| | - Carlota Bravo-Sánchez
- FENNSI Group, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla la Mancha, Toledo, Spain
| | - Verónica López-González
- FENNSI Group, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla la Mancha, Toledo, Spain
| | - Yolanda Pérez-Borrego
- FENNSI Group, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla la Mancha, Toledo, Spain
| | - Sven Bestmann
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College London, UK
| | - Antonio Oliviero
- FENNSI Group, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla la Mancha, Toledo, Spain; Hospital Los Madroños, Brunete, Madrid, Spain
| |
Collapse
|
13
|
Ayanampudi V, Kumar V, Krishnan A, Walker MP, Ivry RB, Knight RT, Gurumoorthy R. Personalized transcranial alternating current stimulation improves sleep quality: Initial findings. Front Hum Neurosci 2023; 16:1066453. [PMID: 36704097 PMCID: PMC9872012 DOI: 10.3389/fnhum.2022.1066453] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Insufficient sleep is a major health issue. Inadequate sleep is associated with an array of poor health outcomes, including cardiovascular disease, diabetes, obesity, certain forms of cancer, Alzheimer's disease, depression, anxiety, and suicidality. Given concerns with typical sedative hypnotic drugs for treating sleep difficulties, there is a compelling need for alternative interventions. Here, we report results of a non-invasive electrical brain stimulation approach to optimizing sleep involving transcranial alternating current stimulation (tACS). A total of 25 participants (mean age: 46.3, S.D. ± 12.4, 15 females) were recruited for a null-stimulation controlled (Control condition), within subjects, randomized crossed design, that included two variants of an active condition involving 15 min pre-sleep tACS stimulation. To evaluate the impact on sleep quality, the two active tACS stimulation conditions were designed to modulate sleep-dependent neural activity in the theta/alpha frequency bands, with both stimulation types applied to all subjects in separate sessions. The first tACS condition used a fixed stimulation pattern across all participants, a pattern composed of stimulation at 5 and 10 Hz. The second tACS condition used a personalized stimulation approach with the stimulation frequencies determined by each individual's peak EEG frequencies in the 4-6 Hz and 9-11 Hz bands. Personalized tACS stimulation increased sleep quantity (duration) by 22 min compared to a Control condition (p = 0.04), and 19 min compared to Fixed tACS stimulation (p = 0.03). Fixed stimulation did not significantly increase sleep duration compared to Control (mean: 3 min; p = 0.75). For sleep onset, the Personalized tACS stimulation resulted in reducing the onset by 28% compared to the Fixed tACS stimulation (6 min faster, p = 0.02). For a Poor Sleep sub-group (n = 13) categorized with Clinical Insomnia and a high insomnia severity, Personalized tACS stimulation improved sleep duration by 33 min compared to Fixed stimulation (p = 0.02), and 30 min compared to Control condition (p < 0.1). Together, these results suggest that Personalized stimulation improves sleep quantity and time taken to fall asleep relative to Control and Fixed stimulation providing motivation for larger-scale trials for Personalized tACS as a sleep therapeutic, including for those with insomnia.
Collapse
Affiliation(s)
| | - V. Kumar
- StimScience Inc., Berkeley, CA, United States
| | - A. Krishnan
- StimScience Inc., Berkeley, CA, United States
| | - M. P. Walker
- Department of Psychology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - R. B. Ivry
- Department of Psychology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - R. T. Knight
- Department of Psychology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - R. Gurumoorthy
- StimScience Inc., Berkeley, CA, United States,*Correspondence: R. Gurumoorthy,
| |
Collapse
|
14
|
Greenwald MK, Ghosh S, Winston JR. A randomized, sham-controlled, quintuple-blinded trial to evaluate the NET device as an alternative to medication for promoting opioid abstinence. Contemp Clin Trials Commun 2022; 30:101018. [PMID: 36303593 PMCID: PMC9593273 DOI: 10.1016/j.conctc.2022.101018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/04/2022] [Accepted: 10/17/2022] [Indexed: 11/25/2022] Open
Abstract
Background There is an unmet need for non-medication approaches to illicit opioid discontinuation and relapse prevention. The NET (NeuroElectric Therapy) Device is a non-invasive, battery-operated, portable, re-useable device designed to deliver bilateral transcranial transcutaneous alternating current electrical stimulation, and is intended to treat opioid use disorder (OUD) without medication. The device is a CE-marked Class IIa, non-significant risk, investigational medical device. Objective This prospective trial (NRC021) tests the hypothesis that the NET Device provides safe and effective neurostimulation treatment for persons with OUD who express a desire to be opioid abstinent without medications for opioid use disorder (MOUD). Methods NRC021 is a randomized, parallel-group, sham-controlled, quintuple-blinded, single-site study. Persons with OUD entering a residential treatment facility for opioid detoxification are assigned to active or sham treatment (n = 50/group). Group assignment is stratified on presence of any current non-opioid substance use disorder and by sex. The biostatistician maintains the blinding so that the study sponsor, principal investigator, research assistants, treatment staff, and participants remain blinded. Following discharge from the inpatient facility, participants are assessed once weekly over 12 weeks for substance use (using timeline followback interview and video assessment of observed oral fluid sample provision and testing). The primary efficacy endpoint is each participant's overall percentage of weekly abstinence from illicit opioid use without use of MOUD. The secondary efficacy endpoint is each participant's percentage of non-opioid drug-free weeks. Safety outcomes are also measured. Conclusion NRC021 is designed to assess the efficacy of a novel non-medication treatment for OUD. Clinical trial registration ClinicalTrials.gov with the identifier NCT04916600.
Collapse
Affiliation(s)
- Mark K. Greenwald
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA,Corresponding author. Department of Psychiatry and Behavioral Neurosciences, Tolan Park Medical Building, 3901 Chrysler Service Drive, Suite 2A, Detroit, MI, 48201, USA.
| | - Samiran Ghosh
- Department of Biostatistics and Data Science, University of Texas School of Public Health, Houston, TX, USA
| | | |
Collapse
|
15
|
Lanza G, Fisicaro F, Dubbioso R, Ranieri F, Chistyakov AV, Cantone M, Pennisi M, Grasso AA, Bella R, Di Lazzaro V. A comprehensive review of transcranial magnetic stimulation in secondary dementia. Front Aging Neurosci 2022; 14:995000. [PMID: 36225892 PMCID: PMC9549917 DOI: 10.3389/fnagi.2022.995000] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Although primary degenerative diseases are the main cause of dementia, a non-negligible proportion of patients is affected by a secondary and potentially treatable cognitive disorder. Therefore, diagnostic tools able to early identify and monitor them and to predict the response to treatment are needed. Transcranial magnetic stimulation (TMS) is a non-invasive neurophysiological technique capable of evaluating in vivo and in “real time” the motor areas, the cortico-spinal tract, and the neurotransmission pathways in several neurological and neuropsychiatric disorders, including cognitive impairment and dementia. While consistent evidence has been accumulated for Alzheimer’s disease, other degenerative cognitive disorders, and vascular dementia, to date a comprehensive review of TMS studies available in other secondary dementias is lacking. These conditions include, among others, normal-pressure hydrocephalus, multiple sclerosis, celiac disease and other immunologically mediated diseases, as well as a number of inflammatory, infective, metabolic, toxic, nutritional, endocrine, sleep-related, and rare genetic disorders. Overall, we observed that, while in degenerative dementia neurophysiological alterations might mirror specific, and possibly primary, neuropathological changes (and hence be used as early biomarkers), this pathogenic link appears to be weaker for most secondary forms of dementia, in which neurotransmitter dysfunction is more likely related to a systemic or diffuse neural damage. In these cases, therefore, an effort toward the understanding of pathological mechanisms of cognitive impairment should be made, also by investigating the relationship between functional alterations of brain circuits and the specific mechanisms of neuronal damage triggered by the causative disease. Neurophysiologically, although no distinctive TMS pattern can be identified that might be used to predict the occurrence or progression of cognitive decline in a specific condition, some TMS-associated measures of cortical function and plasticity (such as the short-latency afferent inhibition, the short-interval intracortical inhibition, and the cortical silent period) might add useful information in most of secondary dementia, especially in combination with suggestive clinical features and other diagnostic tests. The possibility to detect dysfunctional cortical circuits, to monitor the disease course, to probe the response to treatment, and to design novel neuromodulatory interventions in secondary dementia still represents a gap in the literature that needs to be explored.
Collapse
Affiliation(s)
- Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
- *Correspondence: Giuseppe Lanza,
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, Naples, Italy
| | - Federico Ranieri
- Unit of Neurology, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Mariagiovanna Cantone
- Neurology Unit, Policlinico University Hospital “G. Rodolico – San Marco”, Catania, Italy
- Neurology Unit, Sant’Elia Hospital, ASP Caltanissetta, Caltanissetta, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Alfio Antonio Grasso
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology and Neurobiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| |
Collapse
|
16
|
Verwey WB, Glinski B, Kuo MF, Salehinejad MA, Nitsche MA. Consolidation of motor sequence learning eliminates susceptibility of SMAproper to TMS: a combined rTMS and cTBS study. Exp Brain Res 2022; 240:1743-1755. [PMID: 35389072 PMCID: PMC8988106 DOI: 10.1007/s00221-022-06358-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/23/2022] [Indexed: 11/30/2022]
Abstract
Earlier research suggested that after 210 practice trials, the supplementary motor area (SMA) is involved in executing all responses of familiar 6-key sequences in a discrete sequence production (DSP) task (Verwey, Lammens, and van Honk, 2002). This was indicated by slowing of each response 20 and 25 min after the SMA had been stimulated for 20 min using repetitive transcranial magnetic stimulation (rTMS). The present study used a similar approach to assess the effects of TMS to the more posterior SMAproper at the end of practice and also 24 h later. As expected stimulation of SMAproper with 20 min of 1 Hz rTMS and 40 s of continuous theta burst stimulation (cTBS) immediately after practice slowed sequence execution relative to a sham TMS condition, but stimulation on the day following practice did not cause slowing. This indicates that offline consolidation makes learning robust against stimulation of SMAproper. Execution of all responses in the sequence was disrupted 0, 20, and 40 min after rTMS, but after cTBS, this occurred only after 40 min. The results suggest that it is implicit sequence knowledge that is processed by the SMAproper and that consolidates.
Collapse
Affiliation(s)
- Willem B Verwey
- Faculty of Behavioural, Management and Social Sciences, Department of Learning, Data-Analytics and Technology, Cognition, Data and Education Section, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands.
- Department of Kinesiology, Non-Invasive Brain Stimulation Laboratory, Texas A&M University, College Station, TX, USA.
| | - Benedikt Glinski
- Faculty of Behavioural, Management and Social Sciences, Department of Learning, Data-Analytics and Technology, Cognition, Data and Education Section, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Min-Fang Kuo
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Mohammad Ali Salehinejad
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| |
Collapse
|
17
|
Current Status of Neuromodulation-Induced Cortical Prehabilitation and Considerations for Treatment Pathways in Lower-Grade Glioma Surgery. LIFE (BASEL, SWITZERLAND) 2022; 12:life12040466. [PMID: 35454957 PMCID: PMC9024440 DOI: 10.3390/life12040466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/19/2022] [Accepted: 03/19/2022] [Indexed: 12/15/2022]
Abstract
The infiltrative character of supratentorial lower grade glioma makes it possible for eloquent neural pathways to remain within tumoural tissue, which renders complete surgical resection challenging. Neuromodulation-Induced Cortical Prehabilitation (NICP) is intended to reduce the likelihood of premeditated neurologic sequelae that otherwise would have resulted in extensive rehabilitation or permanent injury following surgery. This review aims to conceptualise current approaches involving Repetitive Transcranial Magnetic Stimulation (rTMS-NICP) and extraoperative Direct Cortical Stimulation (eDCS-NICP) for the purposes of inducing cortical reorganisation prior to surgery, with considerations derived from psychiatric, rehabilitative and electrophysiologic findings related to previous reports of prehabilitation. Despite the promise of reduced risk and incidence of neurologic injury in glioma surgery, the current data indicates a broad but compelling possibility of effective cortical prehabilitation relating to perisylvian cortex, though it remains an under-explored investigational tool. Preliminary findings may prove sufficient for the continued investigation of prehabilitation in small-volume lower-grade tumour or epilepsy patients. However, considering the very low number of peer-reviewed case reports, optimal stimulation parameters and duration of therapy necessary to catalyse functional reorganisation remain equivocal. The non-invasive nature and low risk profile of rTMS-NICP may permit larger sample sizes and control groups until such time that eDCS-NICP protocols can be further elucidated.
Collapse
|
18
|
EEG-explained cortical correlates of transfemoral amputees during balancing with vibrotactile feedback: A pilot study. Med Eng Phys 2022; 101:103772. [DOI: 10.1016/j.medengphy.2022.103772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/24/2021] [Accepted: 02/08/2022] [Indexed: 11/21/2022]
|
19
|
EEG based cortical investigation for the limit of stability analysis in transfemoral amputees: A comparison with able-bodied individuals. Biocybern Biomed Eng 2022. [DOI: 10.1016/j.bbe.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Tereshin AE, Kiryanova VV, Reshetnik DA, Karyagina MV, Konstantinov KV, Lapin SV, Moshnikova AN. [The effect of non-invasive brain stimulation on neuroplasticity in the early recovery period after ischemic stroke]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOI FIZICHESKOI KULTURY 2022; 99:5-12. [PMID: 36279371 DOI: 10.17116/kurort2022990515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
UNLABELLED The post-stroke cognitive impairment syndrome (PSCI) develops in 10-80% cases of ischemic stroke and leads to a significant patients' quality of life impairment. The standard program of cognitive rehabilitation includes nootropic agents therapy and neuro-cognitive training. The additional various methods of non-invasive brain stimulation (NIBS) application can improve the results of PSCI rehabilitation. PURPOSE OF THE STUDY Studying the different variants of NIBS influence on synaptic neuroplasticity in the early recovery period after ischemic stroke. MATERIAL AND METHODS The rehabilitation of 62 patients with PSCI syndrome after ischemic stroke outcomes were studied. The patients were assigned to 5 groups. Patients from the control group underwent standardized nootropic therapy and course sessions with a neuropsychologist. The rest of the patients were divided into 4 groups, in which, in addition to the basic program of cognitive rehabilitation, different options for the course use of NIBS were used: photochromotherapy (PCT) with narrow-band optical radiation (NOR) with a wavelength of 530 nm (green light); rhythmic transcranial magnetic stimulation (rTMS) with a low-intensity high-frequency running pulsed magnetic field; infrared radiation with a wavelength of 1-56 microns, modulated by terahertz frequencies (IRMT); bioacoustic correction (BAC). We analyzed the dynamics of changes in scores of MMSE scales, FAB, Roshchina. In order to assess the effect of NIBS on neuroplasticity, the concentrations of BDNF and antibodies to the NR2 fragment of the NMDA receptor were evaluated before and after the completion of the rehabilitation course. RESULTS Concentration values of antibodies to the NR2 subunit of the NMDA receptor in all groups remained consistently above the norm (more than 2 ng/ml) throughout the entire course of rehabilitation. Differences between groups in the dynamics of BDNF concentration in the peripheral blood were revealed. There was a significant (p<0.05) decrease in its concentration by almost 2 times by the end of rehabilitation course in control group. In the rTMS and IRMT groups, a decrease in the BDNF concentration was also recorded in dynamics, which, however, did not reach a significant level. There was no decrease in BDNF levels in the BAC group. There was an increase of this level in the PCT group. CONCLUSION The use of different types of NIBS in the program of cognitive rehabilitation of patients with PSCI syndrome contributes to an increase in the rehabilitation potential due to the activation of neurotrophin-mediated synaptic neuroplasticity. Green light PCT and BAC have the greatest effect on increasing neuroplasticity after ischemic stroke.
Collapse
Affiliation(s)
- A E Tereshin
- North-Western State Medical University named after I.I. Mechnikov, St. Petersburg, Russia
| | - V V Kiryanova
- North-Western State Medical University named after I.I. Mechnikov, St. Petersburg, Russia
| | - D A Reshetnik
- St. Petersburg SBHI «Nikolaevskaya hospital», St. Petersburg, Russia
| | - M V Karyagina
- St. Petersburg SBHI «Nikolaevskaya hospital», St. Petersburg, Russia
| | - K V Konstantinov
- Research Association «Clinic of Bioacoustic Correction», St. Petersburg, Russia
| | - S V Lapin
- Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| | - A N Moshnikova
- Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| |
Collapse
|
21
|
Theta Burst Magnetic Stimulation Improves Parkinson’s-Related Cognitive Impairment: A Randomised Controlled Study. Neurorehabil Neural Repair 2021. [DOI: 10.1177/15459683211041311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background. Evidence remains mixed as to the effectiveness of repetitive transcranial magnetic stimulation (rTMS) in treating mild cognitive impairment (MCI) in patients with Parkinson’s disease (PD). Objective. In this study, we examined the short- and long-term effects of patterned rTMS. Methods. We randomly assigned 35 patients with PD with MCI to two groups. One group received intermittent theta burst stimulation (iTBS; n = 20), and the other received its sham counterpart (n = 15). The stimulations were applied over the left dorsolateral prefrontal cortex for 10 consecutive weekdays. Measurements based on the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and Montreal Cognitive Assessment (MoCA) were conducted at three time points: at baseline, immediately after the last intervention and at 3-month follow-up. Each patient received a 99mTc-TRODAT-1 single-photon emission computed tomography (SPECT) brain scan at baseline. Results. The iTBS group exhibited significantly greater improvement than the sham group did in total RBANS and MoCA scores ( p < .001 for both) immediately after intervention and at the 3-month follow-up. Radiotracer uptake in the bilateral basal ganglion in baseline SPECT was positively correlated with response to iTBS conditioning with respect to improvements in MoCA scores ( p = .021). Conclusion. This randomised controlled trial provides evidence that a consecutive iTBS protocol can achieve a persistent and wide-ranging therapeutic effect in patients with PD with MCI.
Collapse
|
22
|
Yaqub MA, Hong KS, Zafar A, Kim CS. Control of Transcranial Direct Current Stimulation Duration by Assessing Functional Connectivity of Near-Infrared Spectroscopy Signals. Int J Neural Syst 2021; 32:2150050. [PMID: 34609264 DOI: 10.1142/s0129065721500507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transcranial direct current stimulation (tDCS) has been shown to create neuroplasticity in healthy and diseased populations. The control of stimulation duration by providing real-time brain state feedback using neuroimaging is a topic of great interest. This study presents the feasibility of a closed-loop modulation for the targeted functional network in the prefrontal cortex. We hypothesize that we cannot improve the brain state further after reaching a specific state during a stimulation therapy session. A high-definition tDCS of 1[Formula: see text]mA arranged in a ring configuration was applied at the targeted right prefrontal cortex of 15 healthy male subjects for 10[Formula: see text]min. Functional near-infrared spectroscopy was used to monitor hemoglobin chromophores during the stimulation period continuously. The correlation matrices obtained from filtered oxyhemoglobin were binarized to form subnetworks of short- and long-range connections. The connectivity in all subnetworks was analyzed individually using a new quantification measure of connectivity percentage based on the correlation matrix. The short-range network in the stimulated hemisphere showed increased connectivity in the initial stimulation phase. However, the increase in connection density reduced significantly after 6[Formula: see text]min of stimulation. The short-range network of the left hemisphere and the long-range network gradually increased throughout the stimulation period. The connectivity percentage measure showed a similar response with network theory parameters. The connectivity percentage and network theory metrics represent the brain state during the stimulation therapy. The results from the network theory metrics, including degree centrality, efficiency, and connection density, support our hypothesis and provide a guideline for feedback on the brain state. The proposed neuro-feedback scheme is feasible to control the stimulation duration to avoid overdosage.
Collapse
Affiliation(s)
- M Atif Yaqub
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea
| | - Amad Zafar
- Department of Electrical Engineering, University of Lahore, Sihala Zone V, Islamabad, Pakistan
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea
| |
Collapse
|
23
|
He W, Wang JC, Tsai PY. Theta Burst Magnetic Stimulation Improves Parkinson's-Related Cognitive Impairment: A Randomised Controlled Study. Neurorehabil Neural Repair 2021; 35:986-995. [PMID: 34467796 DOI: 10.1177/1545968321104131] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background. Evidence remains mixed as to the effectiveness of repetitive transcranial magnetic stimulation (rTMS) in treating mild cognitive impairment (MCI) in patients with Parkinson's disease (PD). Objective. In this study, we examined the short- and long-term effects of patterned rTMS. Methods. We randomly assigned 35 patients with PD with MCI to two groups. One group received intermittent theta burst stimulation (iTBS; n = 20), and the other received its sham counterpart (n = 15). The stimulations were applied over the left dorsolateral prefrontal cortex for 10 consecutive weekdays. Measurements based on the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and Montreal Cognitive Assessment (MoCA) were conducted at three time points: at baseline, immediately after the last intervention and at 3-month follow-up. Each patient received a 99mTc-TRODAT-1 single-photon emission computed tomography (SPECT) brain scan at baseline. Results. The iTBS group exhibited significantly greater improvement than the sham group did in total RBANS and MoCA scores (p < .001 for both) immediately after intervention and at the 3-month follow-up. Radiotracer uptake in the bilateral basal ganglion in baseline SPECT was positively correlated with response to iTBS conditioning with respect to improvements in MoCA scores (p = .021). Conclusion. This randomised controlled trial provides evidence that a consecutive iTBS protocol can achieve a persistent and wide-ranging therapeutic effect in patients with PD with MCI.
Collapse
Affiliation(s)
- Weijia He
- Department of Medicine and Therapeutics, Faculty of Medicine, Division of Neurology, 71024The Chinese University of Hong Kong, Hong Kong, Hong Kong.,Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jia-Chi Wang
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan.,National Yang-Ming Chiao-Tung University, School of Medicine, Taipei, Taiwan
| | - Po-Yi Tsai
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan.,National Yang-Ming Chiao-Tung University, School of Medicine, Taipei, Taiwan
| |
Collapse
|
24
|
Bandeira ID, Lins-Silva DH, Barouh JL, Faria-Guimarães D, Dorea-Bandeira I, Souza LS, Alves GS, Brunoni AR, Nitsche M, Fregni F, Lucena R. Neuroplasticity and non-invasive brain stimulation in the developing brain. PROGRESS IN BRAIN RESEARCH 2021; 264:57-89. [PMID: 34167665 DOI: 10.1016/bs.pbr.2021.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The brain is a dynamic organ whose growth and organization varies according to each subject's life experiences. Through adaptations in gene expression and the release of neurotrophins and neurotransmitters, these experiences induce a process of cellular realignment and neural network reorganization, which consolidate what is called neuroplasticity. However, despite the brain's resilience and dynamism, neuroplasticity is maximized during the first years of life, when the developing brain is more sensitive to structural reorganization and the repair of damaged neurons. This review presents an overview of non-invasive brain stimulation (NIBS) techniques that have increasingly been a focus for experimental research and the development of therapeutic methods involving neuroplasticity, especially Transcranial Magnetic Stimulation (TMS) and Transcranial Direct Current Stimulation (tDCS). Due to its safety risk profile and extensive tolerability, several trials have demonstrated the benefits of NIBS as a feasible experimental alternative for the treatment of brain and mind disorders in children and adolescents. However, little is known about the late impact of neuroplasticity-inducing tools on the developing brain, and there are concerns about aberrant plasticity. There are also ethical considerations when performing interventions in the pediatric population. This article will therefore review these aspects and also obstacles related to the premature application of NIBS, given the limited evidence available concerning the extent to which these methods interfere with the developing brain.
Collapse
Affiliation(s)
- Igor D Bandeira
- Laboratory of Neuropsychopharmacology, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil.
| | - Daniel H Lins-Silva
- Laboratory of Neuropsychopharmacology, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Judah L Barouh
- Laboratory of Neuropsychopharmacology, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Daniela Faria-Guimarães
- Laboratory of Neuropsychopharmacology, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Ingrid Dorea-Bandeira
- Laboratory of Neuropsychopharmacology, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Lucca S Souza
- Laboratory of Neuropsychopharmacology, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Gustavo S Alves
- Laboratory of Neuropsychopharmacology, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - André R Brunoni
- Service of Interdisciplinary Neuromodulation, Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Michael Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany; Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard University, Charlestown, MA, United States
| | - Rita Lucena
- Department of Neuroscience and Mental Health, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
25
|
Early Repetitive Transcranial Magnetic Stimulation Exerts Neuroprotective Effects and Improves Motor Functions in Hemiparkinsonian Rats. Neural Plast 2021; 2021:1763533. [PMID: 34987572 PMCID: PMC8723880 DOI: 10.1155/2021/1763533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/31/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a popular noninvasive technique for modulating motor cortical plasticity and has therapeutic potential for the treatment of Parkinson's disease (PD). However, the therapeutic benefits and related mechanisms of rTMS in PD are still uncertain. Accordingly, preclinical animal research is helpful for enabling translational research to explore an effective therapeutic strategy and for better understanding the underlying mechanisms. Therefore, the current study was designed to identify the therapeutic effects of rTMS on hemiparkinsonian rats. A hemiparkinsonian rat model, induced by unilateral injection of 6-hydroxydopamine (6-OHDA), was applied to evaluate the therapeutic potential of rTMS in motor functions and neuroprotective effect of dopaminergic neurons. Following early and long-term rTMS intervention with an intermittent theta burst stimulation (iTBS) paradigm (starting 24 h post-6-OHDA lesion, 1 session/day, 7 days/week, for a total of 4 weeks) in awake hemiparkinsonian rats, the effects of rTMS on the performance in detailed functional behavioral tests, including video-based gait analysis, the bar test for akinesia, apomorphine-induced rotational analysis, and tests of the degeneration level of dopaminergic neurons, were identified. We found that four weeks of rTMS intervention significantly reduced the aggravation of PD-related symptoms post-6-OHDA lesion. Immunohistochemically, the results showed that tyrosine hydroxylase- (TH-) positive neurons in the substantia nigra pars compacta (SNpc) and fibers in the striatum were significantly preserved in the rTMS treatment group. These findings suggest that early and long-term rTMS with the iTBS paradigm exerts neuroprotective effects and mitigates motor impairments in a hemiparkinsonian rat model. These results further highlight the potential therapeutic effects of rTMS and confirm that long-term rTMS treatment might have clinical relevance and usefulness as an additional treatment approach in individuals with PD.
Collapse
|
26
|
Evaluation and Treatment of Vascular Cognitive Impairment by Transcranial Magnetic Stimulation. Neural Plast 2020. [PMID: 33193753 DOI: 10.1155/2020/8820881.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The exact relationship between cognitive functioning, cortical excitability, and synaptic plasticity in dementia is not completely understood. Vascular cognitive impairment (VCI) is deemed to be the most common cognitive disorder in the elderly since it encompasses any degree of vascular-based cognitive decline. In different cognitive disorders, including VCI, transcranial magnetic stimulation (TMS) can be exploited as a noninvasive tool able to evaluate in vivo the cortical excitability, the propension to undergo neural plastic phenomena, and the underlying transmission pathways. Overall, TMS in VCI revealed enhanced cortical excitability and synaptic plasticity that seem to correlate with the disease process and progression. In some patients, such plasticity may be considered as an adaptive response to disease progression, thus allowing the preservation of motor programming and execution. Recent findings also point out the possibility to employ TMS to predict cognitive deterioration in the so-called "brains at risk" for dementia, which may be those patients who benefit more of disease-modifying drugs and rehabilitative or neuromodulatory approaches, such as those based on repetitive TMS (rTMS). Finally, TMS can be exploited to select the responders to specific drugs in the attempt to maximize the response and to restore maladaptive plasticity. While no single TMS index owns enough specificity, a panel of TMS-derived measures can support VCI diagnosis and identify early markers of progression into dementia. This work reviews all TMS and rTMS studies on VCI. The aim is to evaluate how cortical excitability, plasticity, and connectivity interact in the pathophysiology of the impairment and to provide a translational perspective towards novel treatments of these patients. Current pitfalls and limitations of both studies and techniques are also discussed, together with possible solutions and future research agenda.
Collapse
|
27
|
Serrano-Castro PJ, Ros-López B, Fernández-Sánchez VE, García-Casares N, Muñoz-Becerra L, Cabezudo-Garcia P, Aguilar-Castillo MJ, Vidal-Denis M, Cruz-Andreotti E, Postigo-Pozo MJ, Estivill-Torrús G, Ibañez-Botella G. Neuroplasticity and Epilepsy Surgery in Brain Eloquent Areas: Case Report. Front Neurol 2020; 11:698. [PMID: 32849188 PMCID: PMC7403440 DOI: 10.3389/fneur.2020.00698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 06/09/2020] [Indexed: 02/05/2023] Open
Abstract
Introduction: Neuronal plasticity includes changes in any component of the central nervous system in response to intrinsic or extrinsic stimuli. Brain functions that depend on the epileptogenic cortex pose a challenge in epilepsy surgery because many patients are excluded from pre-surgical evaluation for fear of the possible sequelae. Some of these patients may be rescued by enhancing neuronal plasticity with brain neuromodulation techniques. Case Report: We describe a 6-year-old child with refractory focal motor seizures symptomatic to a neuroepithelial dysembryoblastic tumor in the left temporo-parietal region. He underwent limited resection of the lesion in order to avoid sequelae in his language function. A functional study at age of 17 years revealed an overlap of Wernicke's area with the tumor and areas of incipient language reorganization in the contralateral hemisphere. An invasive neuromodulation procedure was designed to enhance neuroplasticity. After craniotomy, he underwent language training and simultaneous electrical inhibition of language using an electrode grid placed over the lesion. The intensity of the language inhibitory stimulus was increased every day to force the use of accessory language areas in the right hemisphere by neuroplasticity. Results: The language of the patient improved for six consecutive days until he was able to speak and understand while undergoing maximum electrical inhibition. The tumor was resected using a cortical mapping guide. Discussion: Application of direct cortical stimulation techniques and language pre-habilitation before epilepsy surgery can be useful to rescue patients excluded from resective surgery, especially young patients with long-term lesions.
Collapse
Affiliation(s)
- Pedro Jesus Serrano-Castro
- Neuroscience Unit, Regional University Hospital of Malaga, Málaga, Spain.,Biomedical Research Institute of Malaga, University of Málaga, Málaga, Spain
| | | | - Victoria Eugenia Fernández-Sánchez
- Neuroscience Unit, Regional University Hospital of Malaga, Málaga, Spain.,Biomedical Research Institute of Malaga, University of Málaga, Málaga, Spain
| | - Natalia García-Casares
- Biomedical Research Institute of Malaga, University of Málaga, Málaga, Spain.,Department of Medicine, University of Malaga, Málaga, Spain
| | - Luis Muñoz-Becerra
- Biomedical Research Institute of Malaga, University of Málaga, Málaga, Spain
| | - Pablo Cabezudo-Garcia
- Neuroscience Unit, Regional University Hospital of Malaga, Málaga, Spain.,Biomedical Research Institute of Malaga, University of Málaga, Málaga, Spain
| | | | - Maria Vidal-Denis
- Neuroscience Unit, Regional University Hospital of Malaga, Málaga, Spain
| | | | | | | | | |
Collapse
|
28
|
Aftanas LI, Brack IV, Kulikova KI, Filimonova EA, Dzemidovich SS, Piradov MA, Suponeva NA, Poidasheva AG. [Clinical and neurophysiological effects of dual-target high-frequency rTMS over the primary motor and prefrontal cortex in Parkinson's disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:29-36. [PMID: 32621465 DOI: 10.17116/jnevro202012005129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To evaluate therapeutic effects of navigational dual-target high-frequency rTMS over the primary motor (M1, bilateral) and the left dorsolateral prefrontal cortex (DLPFC) on clinical dynamics of Parkinson's disease (PD) symptoms in a parallel placebo-controlled study. MATERIAL AND METHODS The study included 46 patients randomized into equal therapeutic and placebo rTMS groups. Navigational therapeutic and placebo10 Hz rTMS was applied over the M1 and DLPFC areas (20 daily sessions, for 3 weeks). Assessment of the dynamics of clinical symptoms was performed using the MDS UPDRS scale (Parts I-IV) before the first session, immediately after 20 sessions, and 4-6 weeks after the rTMS course. Non-motor and mental symptoms were assessed using the Hamilton Depression Rating Scale (HDRS-17), Beck depression inventory (BDI-II), Depression, Anxiety and Stress (DASS-21) scales and the Mini Mental State Examination (MMSE). RESULTS Significant therapeutic effects of rTMS compared to placebo were established: a greater decrease in overall score on the MDS-UPDRS scale (parts I-IV), a decrease in the severity of non-motor (part I) and motor symptoms (part III, with a large therapeutic effect for the symptoms of rigidity, bradykinesia and postural instability), as well as the severity of motor complications of dopamine replacement therapy (part IV). The effects of rTMS on motor symptoms persisted 4 weeks after the end of the stimulation course. It is also important to note significant positive dynamics in both rTMS and placebo groups in the form of comparable reduction in the severity of everyday motor symptoms (MDS-UPDRS part II), improvement of the total scores on MMSE, HDRS, BDI-II, DASS-21. CONCLUSIONS The dual-target high-frequency rTMS over the primary motor cortex (bilateral) and the left dorsolateral prefrontal cortex has positive therapeutic effects on the motor and affective symptoms of Parkinson's disease, which are significantly stronger than that of the placebo stimulation.
Collapse
Affiliation(s)
- L I Aftanas
- Research Institute of Physiology and Fundamental Medicine, Novosibirsk, Russia.,Novosibirsk State University, Department of Neurosciences, Novosibirsk, Russia
| | - I V Brack
- Research Institute of Physiology and Fundamental Medicine, Novosibirsk, Russia
| | - K I Kulikova
- Research Institute of Physiology and Fundamental Medicine, Novosibirsk, Russia
| | - E A Filimonova
- Research Institute of Physiology and Fundamental Medicine, Novosibirsk, Russia
| | - S S Dzemidovich
- Research Institute of Physiology and Fundamental Medicine, Novosibirsk, Russia
| | - M A Piradov
- Research Center of Neurology, Moscow, Russia
| | | | | |
Collapse
|
29
|
Bikson M, Hanlon CA, Woods AJ, Gillick BT, Charvet L, Lamm C, Madeo G, Holczer A, Almeida J, Antal A, Ay MR, Baeken C, Blumberger DM, Campanella S, Camprodon JA, Christiansen L, Loo C, Crinion JT, Fitzgerald P, Gallimberti L, Ghobadi-Azbari P, Ghodratitoostani I, Grabner RH, Hartwigsen G, Hirata A, Kirton A, Knotkova H, Krupitsky E, Marangolo P, Nakamura-Palacios EM, Potok W, Praharaj SK, Ruff CC, Schlaug G, Siebner HR, Stagg CJ, Thielscher A, Wenderoth N, Yuan TF, Zhang X, Ekhtiari H. Guidelines for TMS/tES clinical services and research through the COVID-19 pandemic. Brain Stimul 2020; 13:1124-1149. [PMID: 32413554 PMCID: PMC7217075 DOI: 10.1016/j.brs.2020.05.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The COVID-19 pandemic has broadly disrupted biomedical treatment and research including non-invasive brain stimulation (NIBS). Moreover, the rapid onset of societal disruption and evolving regulatory restrictions may not have allowed for systematic planning of how clinical and research work may continue throughout the pandemic or be restarted as restrictions are abated. The urgency to provide and develop NIBS as an intervention for diverse neurological and mental health indications, and as a catalyst of fundamental brain research, is not dampened by the parallel efforts to address the most life-threatening aspects of COVID-19; rather in many cases the need for NIBS is heightened including the potential to mitigate mental health consequences related to COVID-19. OBJECTIVE To facilitate the re-establishment of access to NIBS clinical services and research operations during the current COVID-19 pandemic and possible future outbreaks, we develop and discuss a framework for balancing the importance of NIBS operations with safety considerations, while addressing the needs of all stakeholders. We focus on Transcranial Magnetic Stimulation (TMS) and low intensity transcranial Electrical Stimulation (tES) - including transcranial Direct Current Stimulation (tDCS) and transcranial Alternating Current Stimulation (tACS). METHODS The present consensus paper provides guidelines and good practices for managing and reopening NIBS clinics and laboratories through the immediate and ongoing stages of COVID-19. The document reflects the analysis of experts with domain-relevant expertise spanning NIBS technology, clinical services, and basic and clinical research - with an international perspective. We outline regulatory aspects, human resources, NIBS optimization, as well as accommodations for specific demographics. RESULTS A model based on three phases (early COVID-19 impact, current practices, and future preparation) with an 11-step checklist (spanning removing or streamlining in-person protocols, incorporating telemedicine, and addressing COVID-19-associated adverse events) is proposed. Recommendations on implementing social distancing and sterilization of NIBS related equipment, specific considerations of COVID-19 positive populations including mental health comorbidities, as well as considerations regarding regulatory and human resource in the era of COVID-19 are outlined. We discuss COVID-19 considerations specifically for clinical (sub-)populations including pediatric, stroke, addiction, and the elderly. Numerous case-examples across the world are described. CONCLUSION There is an evident, and in cases urgent, need to maintain NIBS operations through the COVID-19 pandemic, including anticipating future pandemic waves and addressing effects of COVID-19 on brain and mind. The proposed robust and structured strategy aims to address the current and anticipated future challenges while maintaining scientific rigor and managing risk.
Collapse
Affiliation(s)
- Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY, USA
| | - Colleen A Hanlon
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Bernadette T Gillick
- Department of Rehabilitation Medicine, School of Medicine, University of Minnesota, MN, Minneapolis, USA
| | - Leigh Charvet
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Claus Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | | | - Adrienn Holczer
- Department of Neurology, Albert Szent-Györgyi Health Center, Faculty of Medicine, University of Szeged, Hungary
| | - Jorge Almeida
- Proaction Lab, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal; CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal
| | - Andrea Antal
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany; Institute of Medical Psychology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Mohammad Reza Ay
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Chris Baeken
- Faculty of Medicine and Health Sciences, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium; Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Salvatore Campanella
- Laboratoire de Psychologie Médicale et D'Addiction, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Place Vangehuchten, B-1020, Brussels, Belgium
| | - Joan A Camprodon
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lasse Christiansen
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Colleen Loo
- School of Psychiatry & Black Dog Institute, University of New South Wales, Sydney, Australia
| | - Jennifer T Crinion
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Paul Fitzgerald
- Epworth Centre for Innovation in Mental Health, Epworth HealthCare and Department of Psychiatry, Monash University, Camberwell, Victoria, Australia
| | | | - Peyman Ghobadi-Azbari
- Department of Biomedical Engineering, Shahed University, Tehran, Iran; Iranian National Center for Addiction Studies (INCAS), Tehran, Iran
| | - Iman Ghodratitoostani
- Neurocognitive Engineering Laboratory (NEL), Center for Mathematical Sciences Applied to Industry, Institute of Mathematical and Computer Sciences, University of Sao Paulo, Brazil
| | - Roland H Grabner
- Educational Neuroscience, Institute of Psychology, University of Graz, Austria
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Akimasa Hirata
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Adam Kirton
- Departments of Pediatrics and Clinical Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Helena Knotkova
- MJHS Institute for Innovation in Palliative Care, New York, NY, USA; Department of Family and Social Medicine, Albert Einstein College of Medicine, The Bronx, NY, USA
| | - Evgeny Krupitsky
- First Pavlov State Medical University, V. M. Bekhterev National Research Medical Center for Psychiatry and Neurology, St. Petersburg, Russia
| | - Paola Marangolo
- Department of Humanities Studies, University Federico II, Naples, Italy; Aphasia Research Lab, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Weronika Potok
- Neural Control of Movement Lab, Department of Health Science and Technology, ETH Zurich, Switzerland
| | - Samir K Praharaj
- Department of Psychiatry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Christian C Ruff
- Zurich Center for Neuroeconomics (ZNE), Department of Economics, University of Zurich, Zurich, Switzerland
| | - Gottfried Schlaug
- Neuroimaging-Neuromodulation and Stroke Recovery Laboratory, Department of Neurology, Beth Israel Deaconess Medical Center and Baystate Medical Center, UMass Medical School, MA, USA
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Institute of Clinical Medicine, Faculty of Health Sciences and Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte J Stagg
- Wellcome Centre for Integrative Neuroimaging and MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Nicole Wenderoth
- Neural Control of Movement Lab, Department of Health Science and Technology, ETH Zurich, Switzerland
| | - Ti-Fei Yuan
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaochu Zhang
- CAS Key Laboratory of Brain Function and Disease and School of Life Sciences, Division of Life Science and Medicine, University of Science & Technology of China, Hefei, China
| | | |
Collapse
|
30
|
Cantone M, Lanza G, Fisicaro F, Pennisi M, Bella R, Di Lazzaro V, Di Pino G. Evaluation and Treatment of Vascular Cognitive Impairment by Transcranial Magnetic Stimulation. Neural Plast 2020; 2020:8820881. [PMID: 33193753 PMCID: PMC7641667 DOI: 10.1155/2020/8820881] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
The exact relationship between cognitive functioning, cortical excitability, and synaptic plasticity in dementia is not completely understood. Vascular cognitive impairment (VCI) is deemed to be the most common cognitive disorder in the elderly since it encompasses any degree of vascular-based cognitive decline. In different cognitive disorders, including VCI, transcranial magnetic stimulation (TMS) can be exploited as a noninvasive tool able to evaluate in vivo the cortical excitability, the propension to undergo neural plastic phenomena, and the underlying transmission pathways. Overall, TMS in VCI revealed enhanced cortical excitability and synaptic plasticity that seem to correlate with the disease process and progression. In some patients, such plasticity may be considered as an adaptive response to disease progression, thus allowing the preservation of motor programming and execution. Recent findings also point out the possibility to employ TMS to predict cognitive deterioration in the so-called "brains at risk" for dementia, which may be those patients who benefit more of disease-modifying drugs and rehabilitative or neuromodulatory approaches, such as those based on repetitive TMS (rTMS). Finally, TMS can be exploited to select the responders to specific drugs in the attempt to maximize the response and to restore maladaptive plasticity. While no single TMS index owns enough specificity, a panel of TMS-derived measures can support VCI diagnosis and identify early markers of progression into dementia. This work reviews all TMS and rTMS studies on VCI. The aim is to evaluate how cortical excitability, plasticity, and connectivity interact in the pathophysiology of the impairment and to provide a translational perspective towards novel treatments of these patients. Current pitfalls and limitations of both studies and techniques are also discussed, together with possible solutions and future research agenda.
Collapse
Affiliation(s)
- Mariagiovanna Cantone
- 1Department of Neurology, Sant'Elia Hospital, ASP Caltanissetta, Caltanissetta 93100, Italy
| | - Giuseppe Lanza
- 2Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania 95123, Italy
- 3Department of Neurology IC, Oasi Research Institute–IRCCS, Troina 94108, Italy
| | - Francesco Fisicaro
- 4Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
| | - Manuela Pennisi
- 4Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
| | - Rita Bella
- 5Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania 95123, Italy
| | - Vincenzo Di Lazzaro
- 6Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome 00128, Italy
| | - Giovanni Di Pino
- 7Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Università Campus Bio-Medico di Roma, Rome 00128, Italy
| |
Collapse
|