1
|
Fitzsimons LA, Staurengo-Ferrari L, Khomula EV, Bogen O, Araldi D, Bonet IJM, Green PG, Jordan EE, Sclafani F, Nowak CE, Moulton JK, Ganter GK, Levine JD, Tucker KL. The Nociceptor Primary Cilium Contributes to Mechanical Nociceptive Threshold and Inflammatory and Neuropathic Pain. J Neurosci 2024; 44:e1265242024. [PMID: 39349056 PMCID: PMC11580782 DOI: 10.1523/jneurosci.1265-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/16/2024] [Accepted: 09/20/2024] [Indexed: 10/02/2024] Open
Abstract
The primary cilium, a single microtubule-based organelle protruding from the cell surface and critical for neural development, also functions in adult neurons. While some dorsal root ganglion neurons elaborate a primary cilium, whether it is expressed by and functional in nociceptors is unknown. Recent studies have shown the role of Hedgehog, whose canonical signaling is primary cilium dependent, in nociceptor sensitization. We establish the presence of primary cilia in soma of rat nociceptors, where they contribute to mechanical threshold, prostaglandin E2 (PGE2)-induced hyperalgesia, and chemotherapy-induced neuropathic pain (CIPN). Intrathecal administration of siRNA targeting Ift88, a primary cilium-specific intraflagellar transport (IFT) protein required for ciliary integrity, resulted in attenuation of Ift88 mRNA and nociceptor primary cilia. Attenuation of primary cilia was associated with an increase in mechanical nociceptive threshold in vivo and decrease in nociceptor excitability in vitro, abrogation of hyperalgesia, and nociceptor sensitization induced by both a prototypical pronociceptive inflammatory mediator PGE2 and paclitaxel CIPN, in a sex-specific fashion. siRNA targeting Ift52, another IFT protein, and knockdown of NompB, the Drosophila Ift88 ortholog, also abrogated CIPN and reduced baseline mechanosensitivity, respectively, providing independent confirmation for primary cilia control of nociceptor function. Hedgehog-induced hyperalgesia is attenuated by Ift88 siRNA, supporting the role for primary cilia in Hedgehog-induced hyperalgesia. Attenuation of CIPN by cyclopamine (intradermal and intraganglion), which inhibits Hedgehog signaling, supports the role of Hedgehog in CIPN. Our findings support the role of the nociceptor primary cilium in control of mechanical nociceptive threshold and inflammatory and neuropathic pain, the latter Hedgehog-dependent.
Collapse
Affiliation(s)
- Lindsey A Fitzsimons
- Deparment of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
| | - Larissa Staurengo-Ferrari
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
| | - Eugen V Khomula
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
| | - Oliver Bogen
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
| | - Dionéia Araldi
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
| | - Ivan J M Bonet
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
| | - Paul G Green
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
- Department of Preventative and Restorative Dental Sciences, University of California San Francisco, San Francisco 94115
| | - Ethan E Jordan
- Deparment of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
| | - Finn Sclafani
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
- School of Biological Sciences, College of Arts and Sciences, University of New England, Biddeford, Maine 04005
| | - Connor E Nowak
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
- School of Biological Sciences, College of Arts and Sciences, University of New England, Biddeford, Maine 04005
| | - Julie K Moulton
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
- School of Biological Sciences, College of Arts and Sciences, University of New England, Biddeford, Maine 04005
| | - Geoffrey K Ganter
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
- School of Biological Sciences, College of Arts and Sciences, University of New England, Biddeford, Maine 04005
| | - Jon D Levine
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
- Department of Medicine, Division of Neuroscience, University of California San Francisco, San Francisco 94115
| | - Kerry L Tucker
- Deparment of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
| |
Collapse
|
2
|
Cummins ML, Wechsler S, Delmonte G, Schlesinger JJ. The emerging role of Panx1 as a potential therapeutic target for chronic pain. Mil Med Res 2024; 11:44. [PMID: 38970139 PMCID: PMC11229491 DOI: 10.1186/s40779-024-00549-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 06/29/2024] [Indexed: 07/07/2024] Open
Affiliation(s)
- Mabel L Cummins
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, 37212, USA.
| | - Skylar Wechsler
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, 37212, USA
| | - Grace Delmonte
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, 37212, USA
| | - Joseph J Schlesinger
- Department of Anesthesiology, Division of Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, 37212, USA
| |
Collapse
|
3
|
Abd-Elsayed A, Vardhan S, Aggarwal A, Vardhan M, Diwan SA. Mechanisms of Action of Dorsal Root Ganglion Stimulation. Int J Mol Sci 2024; 25:3591. [PMID: 38612402 PMCID: PMC11011701 DOI: 10.3390/ijms25073591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
The dorsal root ganglion (DRG) serves as a pivotal site for managing chronic pain through dorsal root ganglion stimulation (DRG-S). In recent years, the DRG-S has emerged as an attractive modality in the armamentarium of neuromodulation therapy due to its accessibility and efficacy in alleviating chronic pain refractory to conventional treatments. Despite its therapeutic advantages, the precise mechanisms underlying DRG-S-induced analgesia remain elusive, attributed in part to the diverse sensory neuron population within the DRG and its modulation of both peripheral and central sensory processing pathways. Emerging evidence suggests that DRG-S may alleviate pain by several mechanisms, including the reduction of nociceptive signals at the T-junction of sensory neurons, modulation of pain gating pathways within the dorsal horn, and regulation of neuronal excitability within the DRG itself. However, elucidating the full extent of DRG-S mechanisms necessitates further exploration, particularly regarding its supraspinal effects and its interactions with cognitive and affective networks. Understanding these mechanisms is crucial for optimizing neurostimulation technologies and improving clinical outcomes of DRG-S for chronic pain management. This review provides a comprehensive overview of the DRG anatomy, mechanisms of action of the DRG-S, and its significance in neuromodulation therapy for chronic pain.
Collapse
Affiliation(s)
- Alaa Abd-Elsayed
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA
| | - Swarnima Vardhan
- Department of Internal Medicine, Yale New Haven Health, Bridgeport Hospital, Bridgeport, CT 06605, USA; (S.V.); (A.A.)
- Advanced Spine on Park Avenue, New York, NY 10461, USA;
| | - Abhinav Aggarwal
- Department of Internal Medicine, Yale New Haven Health, Bridgeport Hospital, Bridgeport, CT 06605, USA; (S.V.); (A.A.)
| | - Madhurima Vardhan
- Argonne Leadership Computing Facility, Argonne National Laboratory, Lemont, IL 60439, USA;
| | | |
Collapse
|
4
|
Chen Y, Hu J, Qi F, Kang Y, Zhang T, Wang L. Acute pulpitis promotes purinergic signaling to induce pain in rats via P38MAPK/NF-κB signaling pathway. Mol Pain 2024; 20:17448069241234451. [PMID: 38325814 PMCID: PMC10868473 DOI: 10.1177/17448069241234451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/01/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024] Open
Abstract
Toothache is one of the most common types of pain, but the mechanisms underlying pulpitis-induced pain remain unknown. The ionotropic purinergic receptor family (P2X) is reported to mediate nociception in the nervous system. This study aims to investigate the involvement of P2X3 in the sensitisation of the trigeminal ganglion (TG) and the inflammation caused by acute pulpitis. An acute tooth inflammation model was established by applying LPS to the pulp of SD rats. We found that the increased expression of P2X3 was induced by acute pulpitis. A selective P2X3 inhibitor (A-317491) reduced pain-like behavior in the maxillofacial region of rats and depressed the activation of neurons in the trigeminal ganglion induced by pulpitis. The upregulated MAPK signaling (p-p38, p-ERK1/2) expression in the ipsilateral TG induced by pulpitis could also be depressed by the application of the P2X3 inhibitor. Furthermore, the expression of markers of inflammatory processes, such as NF-κB, TNF-α and IL-1β, could be induced by acute pulpitis and deduced by the intraperitoneal injection of P2X3 antagonists. Our findings demonstrate that purinergic P2X3 receptor signaling in TG neurons contributes to pulpitis-induced pain in rats and that P2X3 signaling may be a potential therapeutic target for tooth pain.
Collapse
Affiliation(s)
- Yangxi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Emergency and General Dentistry, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jun Hu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Emergency and General Dentistry, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Fang Qi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Anesthesiology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yiqun Kang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Anesthesiology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Tiejun Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Anesthesiology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Li Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Anesthesiology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Navia-Pelaez JM, Lemes JBP, Gonzalez L, Delay L, dos Santos Aggum Capettini L, Lu JW, Dos Santos GG, Gregus AM, Dougherty PM, Yaksh TL, Miller YI. AIBP regulates TRPV1 activation in chemotherapy-induced peripheral neuropathy by controlling lipid raft dynamics and proximity to TLR4 in dorsal root ganglion neurons. Pain 2023; 164:e274-e285. [PMID: 36719418 PMCID: PMC10182209 DOI: 10.1097/j.pain.0000000000002834] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/21/2022] [Indexed: 02/01/2023]
Abstract
ABSTRACT Nociceptive afferent signaling evoked by inflammation and nerve injury is mediated by the opening of ligand-gated and voltage-gated receptors or channels localized to cholesterol-rich lipid raft membrane domains. Dorsal root ganglion (DRG) nociceptors express high levels of toll-like receptor 4 (TLR4), which also localize to lipid rafts. Genetic deletion or pharmacologic blocking of TLR4 diminishes pain associated with chemotherapy-induced peripheral neuropathy (CIPN). In DRGs of mice with paclitaxel-induced CIPN, we analyzed DRG neuronal lipid rafts, expression of TLR4, activation of transient receptor potential cation channel subfamily V member 1 (TRPV1), and TLR4-TRPV1 interaction. Using proximity ligation assay, flow cytometry, and whole-mount DRG microscopy, we found that CIPN increased DRG neuronal lipid rafts and TLR4 expression. These effects were reversed by intrathecal injection of apolipoprotein A-I binding protein (AIBP), a protein that binds to TLR4 and specifically targets cholesterol depletion from TLR4-expressing cells. Chemotherapy-induced peripheral neuropathy increased TRPV1 phosphorylation, localization to neuronal lipid rafts, and proximity to TLR4. These effects were also reversed by AIBP treatment. Regulation of TRPV1-TLR4 interactions and their associated lipid rafts by AIBP covaried with the enduring reversal of mechanical allodynia otherwise observed in CIPN. In addition, AIBP reduced intracellular calcium in response to the TRPV1 agonist capsaicin, which was increased in DRG neurons from paclitaxel-treated mice and in the naïve mouse DRG neurons incubated in vitro with paclitaxel. Together, these results suggest that the assembly of nociceptive and inflammatory receptors in the environment of lipid rafts regulates nociceptive signaling in DRG neurons and that AIBP can control lipid raft-associated nociceptive processing.
Collapse
Affiliation(s)
| | - Julia Borges Paes Lemes
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
| | - Leonardo Gonzalez
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Lauriane Delay
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
| | | | - Jenny W. Lu
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | | | - Ann M. Gregus
- School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, Virginia, USA
| | - Patrick M. Dougherty
- Departments of Anesthesia and Pain Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tony L. Yaksh
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
| | - Yury I. Miller
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
6
|
Cao A, Gao W, Sawada T, Yoshimoto RU, Aijima R, Ohsaki Y, Kido MA. Transient Receptor Potential Channel Vanilloid 1 Contributes to Facial Mechanical Hypersensitivity in a Mouse Model of Atopic Asthma. J Transl Med 2023; 103:100149. [PMID: 37059266 DOI: 10.1016/j.labinv.2023.100149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/16/2023] Open
Abstract
Sensitive skin, a common pathophysiological feature of allergic diseases, is defined as an unpleasant sensation in response to stimuli that normally should not provoke such sensations. However, the relationship between allergic inflammation and hypersensitive skin in the trigeminal system remains to be elucidated. To explore whether bronchial allergic inflammation affects facial skin and primary sensory neurons, we used an ovalbumin (OVA)-induced asthma mouse model. Significant mechanical hypersensitivity was observed in the facial skin of mice with pulmonary inflammation induced by OVA sensitization compared to mice treated with adjuvant or vehicle as controls. The skin of OVA-treated mice showed an increased number of nerve fibers, especially rich intraepithelial nerves, compared to controls. Transient receptor potential channel vanilloid 1 (TRPV1)-immunoreactive nerves were enriched in the skin of OVA-treated mice. Moreover, epithelial TRPV1 expression was higher in OVA-treated mice than in controls. Trigeminal ganglia of OVA-treated mice displayed larger numbers of activated microglia/macrophages and satellite glia. In addition, more TRPV1 immunoreactive neurons were found in the trigeminal ganglia of OVA-treated mice than in controls. Mechanical hypersensitivity was suppressed in OVA-treated Trpv1-deficient mice, while topical skin application of a TRPV1 antagonist before behavioral testing reduced the reaction induced by mechanical stimulation. Our findings reveal that mice with allergic inflammation of the bronchi had mechanical hypersensitivity in the facial skin that may have resulted from TRPV1-mediated neuronal plasticity and glial activation in the trigeminal ganglion.
Collapse
Affiliation(s)
- Ailin Cao
- Division of Histology and Neuroanatomy, Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Saga, Japan; Department of Oral Pathology, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Weiqi Gao
- Division of Histology and Neuroanatomy, Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Takeshi Sawada
- Division of Histology and Neuroanatomy, Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Reiko U Yoshimoto
- Division of Histology and Neuroanatomy, Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Saga, Japan; Department of Oral Pathology, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Reona Aijima
- Department of Oral Maxillofacial Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Yasuyoshi Ohsaki
- Division of Histology and Neuroanatomy, Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Mizuho A Kido
- Division of Histology and Neuroanatomy, Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Saga, Japan; Department of Oral Pathology, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
7
|
Chapman KB, Sayed D, Lamer T, Hunter C, Weisbein J, Patel KV, Dickerson D, Hagedorn JM, Lee DW, Amirdelfan K, Deer T, Chakravarthy K. Best Practices for Dorsal Root Ganglion Stimulation for Chronic Pain: Guidelines from the American Society of Pain and Neuroscience. J Pain Res 2023; 16:839-879. [PMID: 36942306 PMCID: PMC10024474 DOI: 10.2147/jpr.s364370] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 01/17/2023] [Indexed: 03/14/2023] Open
Abstract
With continued innovations in neuromodulation comes the need for evolving reviews of best practices. Dorsal root ganglion stimulation (DRG-S) has significantly improved the treatment of complex regional pain syndrome (CRPS), and it has broad applicability across a wide range of other conditions. Through funding and organizational leadership by the American Society for Pain and Neuroscience (ASPN), this best practices consensus document has been developed for the selection, implantation, and use of DRG stimulation for the treatment of chronic pain syndromes. This document is composed of a comprehensive narrative literature review that has been performed regarding the role of the DRG in chronic pain and the clinical evidence for DRG-S as a treatment for multiple pain etiologies. Best practice recommendations encompass safety management, implantation techniques, and mitigation of the potential complications reported in the literature. Looking to the future of neuromodulation, DRG-S holds promise as a robust intervention for otherwise intractable pain.
Collapse
Affiliation(s)
- Kenneth B Chapman
- The Spine & Pain Institute of New York, New York, NY, USA
- Department of Anesthesiology, Zucker School of Medicine at Hofstra Northwell, Manhasset, NY, USA
- Department of Anesthesiology, NYU Langone Medical Center, New York, NY, USA
| | - Dawood Sayed
- Department of Anesthesiology, The University of Kansas Medical Center (KUMC), Kansas City, KS, USA
| | - Tim Lamer
- Department of Anesthesiology and Perioperative Medicine, Division of Pain Medicine, Mayo Clinic, Rochester, MN, USA
| | - Corey Hunter
- Ainsworth Institute of Pain Management, New York, NY, USA
| | | | - Kiran V Patel
- The Spine & Pain Institute of New York, New York, NY, USA
- Department of Anesthesiology, Zucker School of Medicine at Hofstra Northwell, Manhasset, NY, USA
- Department of Anesthesiology, NYU Langone Medical Center, New York, NY, USA
| | - David Dickerson
- Department of Anesthesiology, Critical Care and Pain Medicine, NorthShore University Health System, Evanston, IL, USA
- Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, USA
| | | | - David W Lee
- Fullerton Orthopedic Surgery Medical Group, Fullerton, CA, USA
| | | | - Timothy Deer
- The Spine and Nerve Center of the Virginias, Charleston, WV, USA
| | - Krishnan Chakravarthy
- Department of Anesthesiology and Pain Medicine, University of California San Diego Health Sciences, San Diego, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
8
|
Xing J, Wang Η, Chen L, Wang H, Huang H, Huang J, Xu C. Blocking Cx43 alleviates neuropathic pain in rats with chronic constriction injury via the P2X4 and P38/ERK-P65 pathways. Int Immunopharmacol 2023; 114:109506. [PMID: 36442284 DOI: 10.1016/j.intimp.2022.109506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Neuropathic pain is a growing concern in the medical community, and studies on new analgesic targets for neuropathic pain have become a new hot spot. Whether Connexin43 (Cx43) has a key role in neuropathic pain mediated by the purinergic 2X4 (P2X4) receptor in rats with chronic constriction injury (CCI) was explored in this study. Our experimental results show that blockade of Cx43 could attenuate neuropathic pain in rats suffering from CCI via the P2X4, p38, ERK, and NF-kB signalling pathways. These results suggest that Cx43 may be a promising therapeutic target for the development of novel pharmacological agents in the management of neuropathic pain.
Collapse
Affiliation(s)
- Juping Xing
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, Jiangxi, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang 330006, Jiangxi, PR China
| | - Ηongji Wang
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, Jiangxi, PR China
| | - Lisha Chen
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, Jiangxi, PR China
| | - Hanxi Wang
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, Jiangxi, PR China
| | - Huan Huang
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, Jiangxi, PR China
| | - Jiabao Huang
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, Jiangxi, PR China
| | - Changshui Xu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, Jiangxi, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang 330006, Jiangxi, PR China; The Clinical Medical School, Jiangxi Medical College, Shangrao 334000, Jiangxi, PR China; The First Affiliated Hospital, Jiangxi Medical College, Shangrao 334000, Jiangxi, PR China.
| |
Collapse
|
9
|
Malange KF, Navia-Pelaez JM, Dias EV, Lemes JBP, Choi SH, Dos Santos GG, Yaksh TL, Corr M. Macrophages and glial cells: Innate immune drivers of inflammatory arthritic pain perception from peripheral joints to the central nervous system. FRONTIERS IN PAIN RESEARCH 2022; 3:1018800. [PMID: 36387416 PMCID: PMC9644179 DOI: 10.3389/fpain.2022.1018800] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/03/2022] [Indexed: 07/22/2023] Open
Abstract
Millions of people suffer from arthritis worldwide, consistently struggling with daily activities due to debilitating pain evoked by this disease. Perhaps the most intensively investigated type of inflammatory arthritis is rheumatoid arthritis (RA), where, despite considerable advances in research and clinical management, gaps regarding the neuroimmune interactions that guide inflammation and chronic pain in this disease remain to be clarified. The pain and inflammation associated with arthritis are not isolated to the joints, and inflammatory mechanisms induced by different immune and glial cells in other tissues may affect the development of chronic pain that results from the disease. This review aims to provide an overview of the state-of-the-art research on the roles that innate immune, and glial cells play in the onset and maintenance of arthritis-associated pain, reviewing nociceptive pathways from the joint through the dorsal root ganglion, spinal circuits, and different structures in the brain. We will focus on the cellular mechanisms related to neuroinflammation and pain, and treatments targeting these mechanisms from the periphery and the CNS. A comprehensive understanding of the role these cells play in peripheral inflammation and initiation of pain and the central pathways in the spinal cord and brain will facilitate identifying new targets and pathways to aide in developing therapeutic strategies to treat joint pain associated with RA.
Collapse
Affiliation(s)
- Kaue Franco Malange
- Department of Anesthesiology, University of California, San Diego, CA, United States
| | | | - Elayne Vieira Dias
- Department of Neurology, University of California, San Francisco, CA, United States
| | | | - Soo-Ho Choi
- Department of Medicine, University of California, San Diego, CA, United States
| | | | - Tony L. Yaksh
- Department of Anesthesiology, University of California, San Diego, CA, United States
| | - Maripat Corr
- Department of Medicine, University of California, San Diego, CA, United States
| |
Collapse
|
10
|
Jager SE, Pallesen LT, Lin L, Izzi F, Pinheiro AM, Villa-Hernandez S, Cesare P, Vaegter CB, Denk F. Comparative transcriptional analysis of satellite glial cell injury response. Wellcome Open Res 2022; 7:156. [PMID: 35950162 PMCID: PMC9329822 DOI: 10.12688/wellcomeopenres.17885.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Satellite glial cells (SGCs) tightly surround and support primary sensory neurons in the peripheral nervous system and are increasingly recognized for their involvement in the development of neuropathic pain following nerve injury. SGCs are difficult to investigate due to their flattened shape and tight physical connection to neurons in vivo and their rapid changes in phenotype and protein expression when cultured in vitro. Consequently, several aspects of SGC function under normal conditions as well as after a nerve injury remain to be explored. The recent advance in single cell RNA sequencing (scRNAseq) technologies has enabled a new approach to investigate SGCs. Methods: In this study we used scRNAseq to investigate SGCs from mice subjected to sciatic nerve injury. We used a meta-analysis approach to compare the injury response with that found in other published datasets. Furthermore, we also used scRNAseq to investigate how cells from the dorsal root ganglion (DRG) change after 3 days in culture. Results: From our meta-analysis of the injured conditions, we find that SGCs share a common signature of 18 regulated genes following sciatic nerve crush or sciatic nerve ligation, involving transcriptional regulation of cholesterol biosynthesis. We also observed a considerable transcriptional change when culturing SGCs, suggesting that some differentiate into a specialised in vitro state while others start resembling Schwann cell-like precursors. Conclusion: By using integrated analyses of new and previously published scRNAseq datasets, this study provides a consensus view of which genes are most robustly changed in SGCs after injury. Our results are available via the Broad Institute Single Cell Portal, so that readers can explore and search for genes of interest.
Collapse
Affiliation(s)
- Sara Elgaard Jager
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London, UK
| | - Lone Tjener Pallesen
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Denmark & Steno and Diabetes Center, Aarhus, Denmark
| | - Francesca Izzi
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Tübingen, Germany
| | - Alana Miranda Pinheiro
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
| | - Sara Villa-Hernandez
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London, UK
| | - Paolo Cesare
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Tübingen, Germany
| | - Christian Bjerggaard Vaegter
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
| | - Franziska Denk
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London, UK
| |
Collapse
|
11
|
Glutamine Maintains Satellite Glial Cells Growth and Survival in Culture. Neurochem Res 2022; 47:3635-3646. [PMID: 35522367 DOI: 10.1007/s11064-022-03614-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/10/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
Abstract
Satellite glial cells (SGCs) tightly surround neurons and modulate sensory transmission in dorsal root ganglion (DRG). At present, the biological property of primary SGCs in culture deserves further investigation. To reveal the key factor for SGCs growth and survival, we examined the effects of different culture supplementations containing Dulbecco's Modified Eagle Medium (DMEM)/F12, DMEM high glucose (HG) or Neurobasal-A (NB). CCK-8 proliferation assay showed an increased proliferation of SGCs in DMEM/F12 and DMEM/HG, but not in NB medium. Bax, AnnexinV, and propidium iodide (PI) staining results showed that NB medium caused cell death and apoptosis. We showed that glutamine was over 2.5 mM in DMEM/F12 and DMEM/HG, whereas it was absence in NB medium. Interestingly, exogenous glutamine application significantly reversed the poor proliferation and cell death of SGCs in NB medium. These findings demonstrated that DMEM/F12 medium was optimal to get high-purity SGCs. Glutamine was the key molecule to maintain SGCs growth and survival in culture. Here, we provided a novel approach to get high-purity SGCs by changing the key component of culture medium. Our study shed a new light on understanding the biological property and modulation of glial cells of primary sensory ganglia.
Collapse
|
12
|
Xiao Z, Xu M, Lan L, Xu K, Zhang YR. Activation of the P2X7 receptor in the dental pulp tissue contributes to the pain in rats with acute pulpitis. Mol Pain 2022; 18:17448069221106844. [PMID: 35748325 PMCID: PMC9237923 DOI: 10.1177/17448069221106844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Treatment of acute pulpitis (AP) is beneficial for pain relief and pulp regeneration. The purinergic P2X7 receptor activation is responsible for the formation and maintenance of inflammation and pain. This study aims to determine the role of the pulp tissue P2X7 receptor to activate the mechanisms of the AP in rats. The Sprague-Dawley rats were divided into groups, namely, normal, normal saline (NS), and lipopolysaccharide (LPS) groups. Alterations in pain behavior were detected through head-withdrawal thresholds (HWTs), and the pathological changes in pulp tissue were studied through hematoxylin and eosin staining. The expression of the P2X7 receptor in pulp tissue was observed through immunohistochemistry and Western Blotting. The effect of the P2X7 receptor antagonist A-740003 on HWTs was also observed. The levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in the pulp tissue of rats were analyzed through enzyme-linked immunosorbent assay. The HWTs were reduced in the rats with AP. Inflammation is formed but was found more severe in the LPS group than the NS group, and the expression levels of the P2X7 receptors in the NS and LPS groups were higher than in the normal group. The periodontal ligament injection of the A-740003 dose-dependant increases the HWTs in rats with AP. The IL-6 and TNF-α levels in the pulp in the NS and LPS groups were increased but reversed by A-740003 injection. In rats with AP, the expression level of the P2X7 receptor and IL-6/TNF-α release was upregulated. The A-740003 can relieve pain and reduce the inflammation progression in rats with AP.
Collapse
Affiliation(s)
- Zhi Xiao
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Min Xu
- Department of Oral Anatomy and Physiology, School and Hospital of Stomatology, Zunyi Medical University, Zunyi, China
| | - Lan Lan
- Department of Oral Anatomy and Physiology, School and Hospital of Stomatology, Zunyi Medical University, Zunyi, China
| | - Ke Xu
- Department of Oral Anatomy and Physiology, School and Hospital of Stomatology, Zunyi Medical University, Zunyi, China
| | - Yue-Rong Zhang
- Department of Oral Anatomy and Physiology, School and Hospital of Stomatology, Zunyi Medical University, Zunyi, China
- Yue-Rong Zhang, Department of Oral Anatomy and Physiology, School and Hospital of stomatology, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China.
| |
Collapse
|
13
|
Exercise Reduces Pain Behavior and Pathological Changes in Dorsal Root Ganglia Induced by Systemic Inflammation in Mice. Neurosci Lett 2022; 778:136616. [DOI: 10.1016/j.neulet.2022.136616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/11/2022] [Accepted: 04/01/2022] [Indexed: 11/23/2022]
|
14
|
Sinegubov A, Andreeva D, Burzak N, Vasyutina M, Murashova L, Dyachuk V. Heterogeneity and Potency of Peripheral Glial Cells in Embryonic Development and Adults. Front Mol Neurosci 2022; 15:737949. [PMID: 35401107 PMCID: PMC8990813 DOI: 10.3389/fnmol.2022.737949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
This review describes the heterogeneity of peripheral glial cell populations, from the emergence of Schwann cells (SCs) in early development, to their involvement, and that of their derivatives in adult glial populations. We focus on the origin of the first glial precursors from neural crest cells (NCCs), and their ability to differentiate into several cell types during development. We also discuss the heterogeneity of embryonic glia in light of the latest data from genetic tracing and transcriptome analysis. Special attention has been paid to the biology of glial populations in adult animals, by highlighting common features of different glial cell types and molecular differences that modulate their functions. Finally, we consider the communication of glial cells with axons of neurons in normal and pathological conditions. In conclusion, the present review details how information available on glial cell types and their functions in normal and pathological conditions may be utilized in the development of novel therapeutic strategies for the treatment of patients with neurodiseases.
Collapse
|
15
|
Hoshino Y, Okuno T, Saigusa D, Kano K, Yamamoto S, Shindou H, Aoki J, Uchida K, Yokomizo T, Ito N. Lysophosphatidic acid receptor 1/3 antagonist inhibits the activation of satellite glial cells and reduces acute nociceptive responses. FASEB J 2022; 36:e22236. [PMID: 35218596 DOI: 10.1096/fj.202101678r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023]
Abstract
Lysophosphatidic acid (LPA) exerts various biological activities through six characterized G protein-coupled receptors (LPA1-6 ). While LPA-LPA1 signaling contributes toward the demyelination and retraction of C-fiber and induces neuropathic pain, the effects of LPA-LPA1 signaling on acute nociceptive pain is uncertain. This study investigated the role of LPA-LPA1 signaling in acute nociceptive pain using the formalin test. The pharmacological inhibition of the LPA-LPA1 axis significantly attenuated formalin-induced nociceptive behavior. The LPA1 mRNA was expressed in satellite glial cells (SGCs) in dorsal root ganglion (DRG) and was particularly abundant in SGCs surrounding large DRG neurons, which express neurofilament 200. Treatment with LPA1/3 receptor (LPA1/3 ) antagonist inhibited the upregulation of glial markers and inflammatory cytokines in DRG following formalin injection. The LPA1/3 antagonist also attenuated phosphorylation of extracellular signal-regulated kinase, especially in SGCs and cyclic AMP response element-binding protein in the dorsal horn following formalin injection. LPA amounts after formalin injection to the footpad were quantified by liquid chromatography/tandem mass spectrometry, and LPA levels were found to be increased in the innervated DRGs. Our results indicate that LPA produced in the innervated DRGs promotes the activation of SGCs through LPA1 , increases the sensitivity of primary neurons, and modulates pain behavior. These results facilitate our understanding of the pathology of acute nociceptive pain and demonstrate the possibility of the LPA1 on SGCs as a novel target for acute pain control.
Collapse
Affiliation(s)
- Yoko Hoshino
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Anesthesiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshiaki Okuno
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Daisuke Saigusa
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan.,Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, Sendai, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shota Yamamoto
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan.,Department of Lipid Medical Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kanji Uchida
- Department of Anesthesiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobuko Ito
- Department of Anesthesiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Huang B, Zdora I, de Buhr N, Eikelberg D, Baumgärtner W, Leitzen E. Phenotypical changes of satellite glial cells in a murine model of G M1 -gangliosidosis. J Cell Mol Med 2021; 26:527-539. [PMID: 34877779 PMCID: PMC8743646 DOI: 10.1111/jcmm.17113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/12/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022] Open
Abstract
Satellite glial cells (SGCs) of dorsal root ganglia (DRG) react in response to various injuries in the nervous system. This study investigates reactive changes within SGCs in a murine model for GM1‐gangliosidosis (GM1). DRG of homozygous β‐galactosidase‐knockout mice and homozygous C57BL/6 wild‐type mice were investigated performing immunostaining on formalin‐fixed, paraffin‐embedded tissue. A marked upregulation of glial fibrillary acidic protein (GFAP), the progenitor marker nestin and Ki67 within SGCs of diseased mice, starting after 4 months at the earliest GFAP, along with intracytoplasmic accumulation of ganglioside within neurons and deterioration of clinical signs was identified. Interestingly, nestin‐positive SGCs were detected after 8 months only. No changes regarding inwardly rectifying potassium channel 4.1, 2, 3‐cyclic nucleotide 3‐phosphodiesterase, Sox2, doublecortin, periaxin and caspase3 were observed in SGCs. Iba1 was only detected in close vicinity of SGCs indicating infiltrating or tissue‐resident macrophages. These results indicate that SGCs of DRG show phenotypical changes during the course of GM1, characterized by GFAP upregulation, proliferation and expression of a neural progenitor marker at a late time point. This points towards an important role of SGCs during neurodegenerative disorders and supports that SGCs represent a multipotent glial precursor cell line with high plasticity and functionality.
Collapse
Affiliation(s)
- Bei Huang
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center of Systems Neuroscience, Hannover, Germany
| | - Isabel Zdora
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center of Systems Neuroscience, Hannover, Germany
| | - Nicole de Buhr
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Deborah Eikelberg
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center of Systems Neuroscience, Hannover, Germany
| | - Eva Leitzen
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
17
|
Ma W, Yang JW, Wang XB, Luo T, Zhou L, Lagares A, Li H, Liang Z, Liu KP, Zang CH, Li CY, Wu Z, Guo JH, Zhou XF, Li LY. Negative regulation by proBDNF signaling of peripheral neurogenesis in the sensory ganglia of adult rats. Biomed Pharmacother 2021; 144:112273. [PMID: 34700232 DOI: 10.1016/j.biopha.2021.112273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/31/2022] Open
Abstract
Neurogenesis in the adult brain is well recognized and plays a critical role in the maintenance of brain function and homeostasis. However, whether neurogenesis also occurs in the adult peripheral nervous system remains unknown. Here, using sensory ganglia (dorsal root ganglia, DRGs) as a model, we show that neurogenesis also occurs in the peripheral nervous system, but in a manner different from that in the central nervous system. Satellite glial cells (SGCs) express the neuronal precursor markers Nestin, POU domain, class 4, transcription factor 1, and p75 pan-neurotrophin receptor. Following sciatic nerve injury, the suppression of endogenous proBDNF by proBDNF antibodies resulted in the transformation of proliferating SGCs into doublecortin-positive cells in the DRGs. Using purified SGCs migrating out from the DRGs, the inhibition of endogenous proBDNF promoted the conversion of SGCs into neuronal phenotypes in vitro. Our findings suggest that SGCs are neuronal precursors, and that proBDNF maintains the SGC phenotype. Furthermore, the suppression of proBDNF signaling is necessary for neuronal phenotype acquisition by SGCs. Thus, we propose that peripheral neurogenesis may occur via the direct conversion of SGCs into neurons, and that this process is negatively regulated by proBDNF.
Collapse
Affiliation(s)
- Wei Ma
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Jin-Wei Yang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China
| | - Xian-Bin Wang
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China; Department of Rehabilitation Medicine, Guizhou Medical University, Guiyang 550000, Guizhou, China
| | - Tao Luo
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China; Medical college of Panzhihua University, Panzhihua 617000, Sichuan, China
| | - Lei Zhou
- The Key Laboratory of Stem Cell and Regenerative Medicine of Yunnan Province, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Alfonso Lagares
- Department of Neurosurgery, Hospital 12 de Octubre, Instituto de Investigación imas12, Universidad Complutense de Madrid, Madrid, Spain
| | - Hongyun Li
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, NSW 2050, Australia
| | - Zhang Liang
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Kuang-Pin Liu
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Cheng-Hao Zang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China
| | - Chun-Yan Li
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Zhen Wu
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China
| | - Jian-Hui Guo
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China.
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, Sansom Institute, Faculty of Health Sciences, University of South Australia, Adelaide, SA 5000, Australia.
| | - Li-Yan Li
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China.
| |
Collapse
|
18
|
Wangzhou A, Paige C, Neerukonda SV, Naik DK, Kume M, David ET, Dussor G, Ray PR, Price TJ. A ligand-receptor interactome platform for discovery of pain mechanisms and therapeutic targets. Sci Signal 2021; 14:14/674/eabe1648. [PMID: 33727337 DOI: 10.1126/scisignal.abe1648] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the peripheral nervous system, ligand-receptor interactions between cells and neurons shape sensory experience, including pain. We set out to identify the potential interactions between sensory neurons and peripheral cell types implicated in disease-associated pain. Using mouse and human RNA sequencing datasets and computational analysis, we created interactome maps between dorsal root ganglion (DRG) sensory neurons and an array of normal cell types, as well as colitis-associated glial cells, rheumatoid arthritis-associated synovial macrophages, and pancreatic tumor tissue. These maps revealed a common correlation between the abundance of heparin-binding EGF-like growth factor (HBEGF) in peripheral cells with that of its receptor EGFR (a member of the ErbB family of receptors) in DRG neurons. Subsequently, we confirmed that increased abundance of HBEGF enhanced nociception in mice, likely acting on DRG neurons through ErbB family receptors. Collectively, these interactomes highlight ligand-receptor interactions that may lead to treatments for disease-associated pain and, furthermore, reflect the complexity of cell-to-neuron signaling in chronic pain states.
Collapse
Affiliation(s)
- Andi Wangzhou
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Candler Paige
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Sanjay V Neerukonda
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Dhananjay K Naik
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Moeno Kume
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Eric T David
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Gregory Dussor
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Pradipta R Ray
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA.
| | - Theodore J Price
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA.
| |
Collapse
|
19
|
Zhang K, Wang J, Xi H, Li L, Lou Z. Investigation of Neuroprotective Effects of Erythropoietin on Chronic Neuropathic Pain in a Chronic Constriction Injury Rat Model. J Pain Res 2020; 13:3147-3155. [PMID: 33311994 PMCID: PMC7725095 DOI: 10.2147/jpr.s285870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/17/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction Neuropathic pain is pretty common in modern society, and the treatment effect is far from satisfactory. This study aimed to find evidence of the neuroprotective effect of erythropoietin (EPO) in the treatment of neuropathic pain in a rat model of chronic constriction injury (CCI). Methods A total of 30 rats were randomly divided into sham operation group, CCI group, or CCI+EPO group. The mechanical and thermal nociception thresholds are evaluated as behavioral assessments. The dorsal root ganglion cells were morphologically evaluated by hematoxylin and eosin staining, and AMPK, p-AMPK, mTOR, p70S6K, and AQP-2 proteins were compared and analyzed by Western blotting. Compared with the sham operation group, rats in the CCI group had shorter paw withdrawal threshold and paw withdrawal latency, abnormal morphology, and increased satellite glial cells. Results After treatment with EPO, these changes were significantly reversed. In vivo administration of erythropoietin seems to be able to regulate the expression of AQP-2 through the AMPK/mTOR/p70S6K pathway. Our study provides behavioral, morphological, and immunoblot evidence to prove the neuroprotective effect of EPO in the treatment of chronic neuropathic pain in the CCI rat model. Conclusion Our results indicate that EPO has the potential to treat neuropathic pain caused by peripheral nerve injury, although further verification is needed.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Junhao Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Haiyang Xi
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Lepeng Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Zhaohui Lou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| |
Collapse
|
20
|
Lagomarsino VN, Kostic AD, Chiu IM. Mechanisms of microbial-neuronal interactions in pain and nociception. NEUROBIOLOGY OF PAIN 2020; 9:100056. [PMID: 33392418 PMCID: PMC7772816 DOI: 10.1016/j.ynpai.2020.100056] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 11/18/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023]
Abstract
Molecular mechanisms of how microorganisms communicate with sensory afferent neurons. How pathogenic microorganisms directly communicate with nociceptor neurons to inflict pain on the host. Symbiotic bacterial communication with gut-extrinsic sensory afferent neurons. Plausible roles on how gut symbionts directly mediate pain and nociception.
Nociceptor sensory neurons innervate barrier tissues that are constantly exposed to microbial stimuli. During infection, pathogenic microorganisms can breach barrier surfaces and produce pain by directly activating nociceptors. Microorganisms that live in symbiotic relationships with their hosts, commensals and mutualists, have also been associated with pain, but the molecular mechanisms of how symbionts act on nociceptor neurons to modulate pain remain largely unknown. In this review, we will discuss the known molecular mechanisms of how microbes directly interact with sensory afferent neurons affecting nociception in the gut, skin and lungs. We will touch on how bacterial, viral and fungal pathogens signal to the host to inflict or suppress pain. We will also discuss recent studies examining how gut symbionts affect pain. Specifically, we will discuss how gut symbionts may interact with sensory afferent neurons either directly, through secretion of metabolites or neurotransmitters, or indirectly,through first signaling to epithelial cells or immune cells, to regulate visceral, neuropathic and inflammatory pain. While this area of research is still in its infancy, more mechanistic studies to examine microbial-sensory neuron crosstalk in nociception may allow us to develop new therapies for the treatment of acute and chronic pain.
Collapse
Affiliation(s)
- Valentina N Lagomarsino
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA.,Joslin Diabetes Center, Boston, MA 02115, USA.,Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Aleksandar D Kostic
- Joslin Diabetes Center, Boston, MA 02115, USA.,Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
21
|
Bhusal A, Rahman MH, Lee WH, Lee IK, Suk K. Satellite glia as a critical component of diabetic neuropathy: Role of lipocalin-2 and pyruvate dehydrogenase kinase-2 axis in the dorsal root ganglion. Glia 2020; 69:971-996. [PMID: 33251681 DOI: 10.1002/glia.23942] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is a common complication of uncontrolled diabetes. The pathogenesis of DPN is associated with chronic inflammation in dorsal root ganglion (DRG), eventually causing structural and functional changes. Studies on DPN have primarily focused on neuronal component, and there is limited knowledge about the role of satellite glial cells (SGCs), although they completely enclose neuronal soma in DRG. Lipocalin-2 (LCN2) is a pro-inflammatory acute-phase protein found in high levels in diverse neuroinflammatory and metabolic disorders. In diabetic DRG, the expression of LCN2 was increased exclusively in the SGCs. This upregulation of LCN2 in SGCs correlated with increased inflammatory responses in DRG and sciatic nerve. Furthermore, diabetes-induced inflammation and morphological changes in DRG, as well as sciatic nerve, were attenuated in Lcn2 knockout (KO) mice. Lcn2 gene ablation also ameliorated neuropathy phenotype as determined by nerve conduction velocity and intraepidermal nerve fiber density. Mechanistically, studies using specific gene KO mice, adenovirus-mediated gene overexpression strategy, and primary cultures of DRG SGCs and neurons have demonstrated that LCN2 enhances the expression of mitochondrial gate-keeping regulator pyruvate dehydrogenase kinase-2 (PDK2) through PPARβ/δ, thereby inhibiting pyruvate dehydrogenase activity and increasing production of glycolytic end product lactic acid in DRG SGCs and neurons of diabetic mice. Collectively, our findings reveal a crucial role of glial LCN2-PPARβ/δ-PDK2-lactic acid axis in progression of DPN. Our results establish a link between pro-inflammatory LCN2 and glycolytic PDK2 in DRG SGCs and neurons and propose a novel glia-based mechanism and drug target for therapy of DPN. MAIN POINTS: Diabetes upregulates LCN2 in satellite glia, which in turn increases pyruvate dehydrogenase kinase-2 (PDK2) expression and lactic acid production in dorsal root ganglia (DRG). Glial LCN2-PDK2-lactic acid axis in DRG plays a crucial role in the pathogenesis of diabetic neuropathy.
Collapse
Affiliation(s)
- Anup Bhusal
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Md Habibur Rahman
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, Brain Korea 21 Plus/Kyungpook National University Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea.,Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
22
|
Hanani M, Spray DC. Emerging importance of satellite glia in nervous system function and dysfunction. Nat Rev Neurosci 2020; 21:485-498. [PMID: 32699292 PMCID: PMC7374656 DOI: 10.1038/s41583-020-0333-z] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2020] [Indexed: 02/08/2023]
Abstract
Satellite glial cells (SGCs) closely envelop cell bodies of neurons in sensory, sympathetic and parasympathetic ganglia. This unique organization is not found elsewhere in the nervous system. SGCs in sensory ganglia are activated by numerous types of nerve injury and inflammation. The activation includes upregulation of glial fibrillary acidic protein, stronger gap junction-mediated SGC-SGC and neuron-SGC coupling, increased sensitivity to ATP, downregulation of Kir4.1 potassium channels and increased cytokine synthesis and release. There is evidence that these changes in SGCs contribute to chronic pain by augmenting neuronal activity and that these changes are consistent in various rodent pain models and likely also in human pain. Therefore, understanding these changes and the resulting abnormal interactions of SGCs with sensory neurons could provide a mechanistic approach that might be exploited therapeutically in alleviation and prevention of pain. We describe how SGCs are altered in rodent models of four common types of pain: systemic inflammation (sickness behaviour), post-surgical pain, diabetic neuropathic pain and post-herpetic pain.
Collapse
Affiliation(s)
- Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - David C Spray
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| |
Collapse
|
23
|
The Actions and Mechanisms of P2X7R and p38 MAPK Activation in Mediating Bortezomib-Induced Neuropathic Pain. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8143754. [PMID: 32733956 PMCID: PMC7376423 DOI: 10.1155/2020/8143754] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/12/2020] [Accepted: 06/13/2020] [Indexed: 01/12/2023]
Abstract
The proteasome inhibitor bortezomib (BTZ) is a potent first-line anticancer drug for multiple myeloma; nonetheless, it induced peripheral neuropathy. It has been suggested that many cytokines may play a role in mediating neuropathic pain, but the underlying molecular mechanism is not fully understood. Recent studies have shown that neuropathic pain is closely related to the purinergic ligand-gated ion channel 7 receptor (P2X7R), one of the P2X receptors, which is richly expressed in glial cells. P2X7-p38 pathway is correlated with microglia- and satellite glial cell- (SGC-) mediated neuropathic pain. However, the association of P2X7R and p38MAPK in mediating BTZ-induced neuropathic pain remains unclear. In this study, the relationship between P2X7R activation and p38 phosphorylation in the dorsal root ganglion (DRG) and spinal dorsal horn (SDH) in the development and maintenance of BTZ-induced neuropathic pain was elucidated. The results showed that BTZ increased mechanical thresholds in rats, accompanied with upregulation of P2X7R expression and p38MAPK phosphorylation, indicating that P2X7R and p38MAPK are key molecules in the development and maintenance of BTZ-induced neuropathic pain. Inhibiting p38MAPK phosphorylation with SB203580 resulted in downregulation of P2X7R expression levels. Inhibition of P2X7R with Brilliant Blue G (BBG) reversed neuropathic pain might decrease through the expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 via inhibiting p38MAPK phosphorylation. The P2X7R/p38MAPK signaling pathway in SGCs of DRG and microglia of SDH might be a potential pharmacological target behind this mechanism as an opportunity to relieve BTZ-induced neuropathic pain.
Collapse
|
24
|
Driessen AK, Devlin AC, Lundy FT, Martin SL, Sergeant GP, Mazzone SB, McGarvey LP. Perspectives on neuroinflammation contributing to chronic cough. Eur Respir J 2020; 56:13993003.00758-2020. [DOI: 10.1183/13993003.00758-2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023]
Abstract
Chronic cough can be a troublesome clinical problem. Current thinking is that increased activity and/or enhanced sensitivity of the peripheral and central neural pathways mediates chronic cough via processes similar to those associated with the development of chronic pain. While inflammation is widely thought to be involved in the development of chronic cough, the true mechanisms causing altered neural activity and sensitisation remain largely unknown. In this back-to-basics perspective article we explore evidence that inflammation in chronic cough may, at least in part, involve neuroinflammation orchestrated by glial cells of the nervous system. We summarise the extensive evidence for the role of both peripheral and central glial cells in chronic pain, and hypothesise that the commonalities between pain and cough pathogenesis and clinical presentation warrant investigations into the neuroinflammatory mechanisms that contribute to chronic cough. We open the debate that glial cells may represent an underappreciated therapeutic target for controlling troublesome cough in disease.
Collapse
|
25
|
Neves AF, Farias FH, de Magalhães SF, Araldi D, Pagliusi M, Tambeli CH, Sartori CR, Lotufo CMDC, Parada CA. Peripheral Inflammatory Hyperalgesia Depends on P2X7 Receptors in Satellite Glial Cells. Front Physiol 2020; 11:473. [PMID: 32523543 PMCID: PMC7261868 DOI: 10.3389/fphys.2020.00473] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/17/2020] [Indexed: 12/23/2022] Open
Abstract
Peripheral inflammatory hyperalgesia depends on the sensitization of primary nociceptive neurons. Inflammation drives molecular alterations not only locally but also in the dorsal root ganglion (DRG) where interleukin-1 beta (IL-1β) and purinoceptors are upregulated. Activation of the P2X7 purinoceptors by ATP is essential for IL-1β maturation and release. At the DRG, P2X7R are expressed by satellite glial cells (SGCs) surrounding sensory neurons soma. Although SGCs have no projections outside the sensory ganglia these cells affect pain signaling through intercellular communication. Therefore, here we investigated whether activation of P2X7R by ATP and the subsequent release of IL-1β in DRG participate in peripheral inflammatory hyperalgesia. Immunofluorescent images confirmed the expression of P2X7R and IL-1β in SGCs of the DRG. The function of P2X7R was then verified using a selective antagonist, A-740003, or antisense for P2X7R administered in the L5-DRG. Inflammation was induced by CFA, carrageenan, IL-1β, or PGE2 administered in rat's hind paw. Blockage of P2X7R at the DRG reduced the mechanical hyperalgesia induced by CFA, and prevented the mechanical hyperalgesia induced by carrageenan or IL-1β, but not PGE2. It was also found an increase in P2X7 mRNA expression at the DRG after peripheral inflammation. IL-1β production was also increased by inflammatory stimuli in vivo and in vitro, using SGC-enriched cultures stimulated with LPS. In LPS-stimulated cultures, activation of P2X7R by BzATP induced the release of IL-1β, which was blocked by A-740003. In summary, our data suggest that peripheral inflammation leads to the activation of P2X7R expressed by SGCs at the DRG. Then, ATP-induced activation of P2X7R mediates the release of IL-1β from SGC. This evidence places the SGC as an active player in the establishment of peripheral inflammatory hyperalgesia and highlights the importance of the events in DRG for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Amanda Ferreira Neves
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Felipe Hertzing Farias
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | - Dionéia Araldi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Marco Pagliusi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Claudia Herrera Tambeli
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Cesar Renato Sartori
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | - Carlos Amílcar Parada
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
26
|
Zhang WJ, Zhu ZM, Liu ZX. The role and pharmacological properties of the P2X7 receptor in neuropathic pain. Brain Res Bull 2020; 155:19-28. [PMID: 31778766 DOI: 10.1016/j.brainresbull.2019.11.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/03/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023]
Abstract
Neuropathic Pain (NPP) is caused by direct or indirect damage to the nervous system and is a common symptom of many diseases. Clinically, drugs are usually used to suppress pain, such as (lidocaine, morphine, etc.), but the effect is short-lived, poor analgesia, and there are certain dependence and side effects. Therefore, the investigation of the treatment of NPP has become an urgent problem in medical, attracting a lot of research attention. P2X7 is dependent on Adenosine triphosphate (ATP) ion channel receptors and has dual functions for the development of nerve damage and pain. In this review, we explored the link between the P2X7 receptor (P2X7R) and NPP, providing insight into the P2X7R and NPP, discussing the pathological mechanism of P2 X7R in NPP and the biological characteristics of P2X7R antagonist inhibiting its over-expression for the targeted therapy of NPP.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- The Second Affiliate Hospital. Nanchang University, Nanchang City. Jiangxi Province, China; Basic Medical School, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Zheng-Ming Zhu
- The Second Affiliate Hospital. Nanchang University, Nanchang City. Jiangxi Province, China.
| | - Zeng-Xu Liu
- Basic Medical School, Nanchang University, Nanchang City, Jiangxi Province, China
| |
Collapse
|
27
|
Kumar S, Vinayak M. NADPH oxidase1 inhibition leads to regression of central sensitization during formalin induced acute nociception via attenuation of ERK1/2-NFκB signaling and glial activation. Neurochem Int 2019; 134:104652. [PMID: 31891736 DOI: 10.1016/j.neuint.2019.104652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/02/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022]
Abstract
Role of NADPH oxidase1 in the development of inflammatory pain has been demonstrated by gene knockout studies. Nevertheless, pharmacological inhibition of NOX1 is a requisite approach for therapeutic utility. Recently, we have reported the anti-nociceptive effect of newly identified NOX1 specific inhibitor ML171 (2-acetylphenothiazine). Inhibition of NOX1 resulted in attenuation of nociceptive sensitization during acute inflammatory pain via inhibition of ROS generation and its downstream ERK1/2 activation. However, glial activation accompanying inflammation is closely related to the initiation and maintenance of pain. Peripheral nociceptive inputs activate the primary afferents via release of various chemical mediators which are potentially capable of mediating signals from neuron to glia in DRG and subsequently in spinal cord dorsal horn. The subsequent interactions between neuron and glia contribute to pain hypersensitivity. Thus, the present study was focused to investigate the effect of ML171 on ERK1/2 signaling, glial activation, and crosstalk between neuron and glia in a mouse model of formalin induced acute nociception. Thus, the present study was focused to investigate the effect of ML171 on ERK1/2 signaling, glial activation, and crosstalk between neuron and glia in DRG and dorsal horn of the spinal cord of lumbar region (L3-L5) in a mouse model of formalin induced acute nociception. Intraperitoneal administration of ML171 decreased nociceptive behavioral responses, i.e. the flinch and lick counts, in formalin induced nociceptive mice. Immunofluorescence and Western blot analysis demonstrated decreased levels of nociceptive mediators like p-ERK1/2, p-NFκB p65, Iba1 and GFAP in DRG as well as in spinal cord dorsal horn; supporting anti-nociceptive potential of ML171. Further, co-localization studies showed the neuron-glia crosstalk in tissue dependent manner. ERK1/2 was found to be activated in glia and NFκB in neurons in DRG; whereas in case of spinal cord ERK1/2 was activated in neurons and NFκB in astrocytes. Decrease in nociceptive behavioral response and activation of nociceptive mediators after intraperitoneal administration of ML171 strongly advocate anti-nociceptive potential of ML171. This is the first report demonstrating modulation of ERK1/2-NFκB signaling pathway, glial activation and regulation of neuron-glia crosstalk by NADPH oxidase1 inhibition towards its anti-nociceptive action.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Manjula Vinayak
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
28
|
Diabetes-induced Neuropathic Mechanical Hyperalgesia Depends on P2X4 Receptor Activation in Dorsal Root Ganglia. Neuroscience 2018; 398:158-170. [PMID: 30537520 DOI: 10.1016/j.neuroscience.2018.12.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022]
Abstract
Peripheral diabetic neuropathy (PDN) manifests in 50-60% of type I and II diabetic patients and is the major cause of limb amputation. Adequate therapy for PDN is a current challenge. There are evidences that the activation of the P2X4 receptor (P2X4R) expressed on microglial cells of the central nervous system takes part in the development of neuropathic pain. However, there is an open question: Is P2X4R activation on dorsal root ganglia (DRG) involved in the development of neuropathic pain? To answer this question, this study verified the involvement of P2X4R expressed in DRG cells on diabetes-induced neuropathic mechanical hyperalgesia in rats. We found that intrathecal or ganglionar (L5-DRG) administration of a novel P2X4R antagonist (PSB-15417) or intrathecal administration of oligodeoxynucleotides (ODN)-antisense against the P2X4R reversed diabetes-induced neuropathic mechanical hyperalgesia. The DRG of the diabetic neuropathic rats showed an increase in P2X4R expression, and the DRG immunofluorescence suggested that P2X4R is expressed mainly in satellite glial cells (SGC). Finally, our study showed a functional expression of P2X4R in SGCs of the rat's DRG, because the P2X4R agonist BzATP elicits an increase in intracellular calcium concentration in SGCs, which was reduced by PSB-15417. These findings indicate that P2X4R activation in DRG is essential to diabetes-induced neuropathic mechanical hyperalgesia. Therefore, this purinergic receptor in DRG could be an interesting therapeutic target for quaternary P2X4R antagonists that do not cross the hematoencephalic barrier, for the control of neuropathic pain, preserving central nervous system functions.
Collapse
|