1
|
Lark AR, Nass SR, Hahn YK, Gao B, Milne GL, Knapp PE, Hauser KF. HIV-1 Tat and morphine interactions dynamically shift striatal monoamine levels and exploratory behaviors over time. J Neurochem 2024; 168:185-204. [PMID: 38308495 PMCID: PMC10922901 DOI: 10.1111/jnc.16057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024]
Abstract
Despite the advent of combination anti-retroviral therapy (cART), nearly half of people infected with HIV treated with cART still exhibit HIV-associated neurocognitive disorders (HAND). HAND can be worsened by co-morbid opioid use disorder. The basal ganglia are particularly vulnerable to HIV-1 and exhibit higher viral loads and more severe pathology, which can be exacerbated by co-exposure to opioids. Evidence suggests that dopaminergic neurotransmission is disrupted by HIV exposure, however, little is known about whether co-exposure to opioids may alter neurotransmitter levels in the striatum and if this in turn influences behavior. Therefore, we assayed motor, anxiety-like, novelty-seeking, exploratory, and social behaviors, and levels of monoamines and their metabolites following 2 weeks and 2 months of Tat and/or morphine exposure in transgenic mice. Morphine decreased dopamine levels, but significantly elevated norepinephrine, the dopamine metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and the serotonin metabolite 5-hydroxyindoleacetic acid, which typically correlated with increased locomotor behavior. The combination of Tat and morphine altered dopamine, DOPAC, and HVA concentrations differently depending on the neurotransmitter/metabolite and duration of exposure but did not affect the numbers of tyrosine hydroxylase-positive neurons in the mesencephalon. Tat exposure increased the latency to interact with novel conspecifics, but not other novel objects, suggesting the viral protein inhibits exploratory behavior initiation in a context-dependent manner. By contrast, and consistent with prior findings that opioid misuse can increase novelty-seeking behavior, morphine exposure increased the time spent exploring a novel environment. Finally, Tat and morphine interacted to affect locomotor activity in a time-dependent manner, while grip strength and rotarod performance were unaffected. Together, our results provide novel insight into the unique effects of HIV-1 Tat and morphine on monoamine neurochemistry that may underlie their divergent effects on motor and exploratory behavior.
Collapse
Affiliation(s)
| | | | | | - Benlian Gao
- Neurochemistry Core, Vanderbilt Brain Institute, Vanderbilt University
| | - Ginger L. Milne
- Neurochemistry Core, Vanderbilt Brain Institute, Vanderbilt University
| | - Pamela E. Knapp
- Department of Pharmacology & Toxicology
- Department of Anatomy and Neurobiology
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University
| | - Kurt F. Hauser
- Department of Pharmacology & Toxicology
- Department of Anatomy and Neurobiology
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University
| |
Collapse
|
2
|
Lark ARS, Silva LK, Nass SR, Marone MG, Ohene-Nyako M, Ihrig TM, Marks WD, Yarotskyy V, Rory McQuiston A, Knapp PE, Hauser KF. Progressive Degeneration and Adaptive Excitability in Dopamine D1 and D2 Receptor-Expressing Striatal Neurons Exposed to HIV-1 Tat and Morphine. Cell Mol Neurobiol 2023; 43:1105-1127. [PMID: 35695980 PMCID: PMC9976699 DOI: 10.1007/s10571-022-01232-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/10/2022] [Indexed: 11/03/2022]
Abstract
The striatum is especially vulnerable to HIV-1 infection, with medium spiny neurons (MSNs) exhibiting marked synaptodendritic damage that can be exacerbated by opioid use disorder. Despite known structural defects in MSNs co-exposed to HIV-1 Tat and opioids, the pathophysiological sequelae of sustained HIV-1 exposure and acute comorbid effects of opioids on dopamine D1 and D2 receptor-expressing (D1 and D2) MSNs are unknown. To address this question, Drd1-tdTomato- or Drd2-eGFP-expressing reporter and conditional HIV-1 Tat transgenic mice were interbred. MSNs in ex vivo slices from male mice were assessed by whole-cell patch-clamp electrophysiology and filled with biocytin to explore the functional and structural effects of progressive Tat and acute morphine exposure. Although the excitability of both D1 and D2 MSNs increased following 48 h of Tat exposure, D1 MSN firing rates decreased below control (Tat-) levels following 2 weeks and 1 month of Tat exposure but returned to control levels after 2 months. D2 neurons continued to display Tat-dependent increases in excitability at 2 weeks, but also returned to control levels following 1 and 2 months of Tat induction. Acute morphine exposure increased D1 MSN excitability irrespective of the duration of Tat exposure, while D2 MSNs were variably affected. That D1 and D2 MSN excitability would return to control levels was unexpected since both subpopulations displayed significant synaptodendritic degeneration and pathologic phospho-tau-Thr205 accumulation following 2 months of Tat induction. Thus, despite frank morphologic damage, D1 and D2 MSNs uniquely adapt to sustained Tat and acute morphine insults.
Collapse
Affiliation(s)
- Arianna R S Lark
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - Lindsay K Silva
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
- PPD®, Part of Thermo Fisher Scientific, Richmond, VA, 23230-3323, USA
| | - Sara R Nass
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - Michael G Marone
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - Michael Ohene-Nyako
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - Therese M Ihrig
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - William D Marks
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
- Department of Psychiatry, Southwestern Medical Center, University of Texas, Dallas, TX, 75235, USA
| | - Viktor Yarotskyy
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - A Rory McQuiston
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, PO Box 980709, Richmond, VA, 23298-0709, USA
| | - Pamela E Knapp
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, PO Box 980709, Richmond, VA, 23298-0709, USA
- Institute for Drug and Alcohol Studies, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA.
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, PO Box 980709, Richmond, VA, 23298-0709, USA.
- Institute for Drug and Alcohol Studies, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
3
|
Nass SR, Hahn YK, Ohene-Nyako M, McLane VD, Damaj MI, Thacker LR, Knapp PE, Hauser KF. Depressive-like Behavior Is Accompanied by Prefrontal Cortical Innate Immune Fatigue and Dendritic Spine Losses after HIV-1 Tat and Morphine Exposure. Viruses 2023; 15:v15030590. [PMID: 36992299 PMCID: PMC10052300 DOI: 10.3390/v15030590] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/23/2023] Open
Abstract
Opioid use disorder (OUD) and HIV are comorbid epidemics that can increase depression. HIV and the viral protein Tat can directly induce neuronal injury within reward and emotionality brain circuitry, including the prefrontal cortex (PFC). Such damage involves both excitotoxic mechanisms and more indirect pathways through neuroinflammation, both of which can be worsened by opioid co-exposure. To assess whether excitotoxicity and/or neuroinflammation might drive depressive behaviors in persons infected with HIV (PWH) and those who use opioids, male mice were exposed to HIV-1 Tat for eight weeks, given escalating doses of morphine during the last two weeks, and assessed for depressive-like behavior. Tat expression decreased sucrose consumption and adaptability, whereas morphine administration increased chow consumption and exacerbated Tat-induced decreases in nesting and burrowing—activities associated with well-being. Across all treatment groups, depressive-like behavior correlated with increased proinflammatory cytokines in the PFC. Nevertheless, supporting the theory that innate immune responses adapt to chronic Tat exposure, most proinflammatory cytokines were unaffected by Tat or morphine. Further, Tat increased PFC levels of the anti-inflammatory cytokine IL-10, which were exacerbated by morphine administration. Tat, but not morphine, decreased dendritic spine density on layer V pyramidal neurons in the anterior cingulate. Together, our findings suggest that HIV-1 Tat and morphine differentially induce depressive-like behaviors associated with increased neuroinflammation, synaptic losses, and immune fatigue within the PFC.
Collapse
Affiliation(s)
- Sara R. Nass
- Department of Pharmacology and Toxicology, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Yun K. Hahn
- Department of Anatomy and Neurobiology, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0709, USA
| | - Michael Ohene-Nyako
- Department of Pharmacology and Toxicology, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Virginia D. McLane
- Department of Pharmacology and Toxicology, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - M. Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Leroy R. Thacker
- Department of Biostatistics, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Pamela E. Knapp
- Department of Pharmacology and Toxicology, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
- Department of Anatomy and Neurobiology, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0709, USA
- Institute for Drug and Alcohol Studies, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0059, USA
| | - Kurt F. Hauser
- Department of Pharmacology and Toxicology, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
- Department of Anatomy and Neurobiology, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0709, USA
- Institute for Drug and Alcohol Studies, Medical College of Virginia (MCV) Campus, Virginia Commonwealth University, Richmond, VA 23298-0059, USA
- Correspondence: ; Tel.: +1-804-628-7579; Fax: +1-804-828-0676
| |
Collapse
|
4
|
Hauser KF, Ohene-Nyako M, Knapp PE. Accelerated brain aging with opioid misuse and HIV: New insights on the role of glially derived pro-inflammation mediators and neuronal chloride homeostasis. Curr Opin Neurobiol 2023; 78:102653. [PMID: 36584655 PMCID: PMC9933139 DOI: 10.1016/j.conb.2022.102653] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 12/29/2022]
Abstract
Opioid use disorder (OUD) has become a national crisis and contributes to the spread of human immunodeficiency virus (HIV) infection. Emerging evidence and advances in experimental models, methodology, and our understanding of disease processes at the molecular and cellular levels reveal that opioids per se can directly exacerbate the pathophysiology of neuroHIV. Despite substantial inroads, the impact of OUD on the severity, development, and prognosis of neuroHIV and HIV-associated neurocognitive disorders is not fully understood. In this review, we explore current evidence that OUD and neuroHIV interact to accelerate cognitive deficits and enhance the neurodegenerative changes typically seen with aging, through their effects on neuroinflammation. We suggest new thoughts on the processes that may underlie accelerated brain aging, including dysregulation of neuronal inhibition, and highlight findings suggesting that opioids, through actions at the μ-opioid receptor, interact with HIV in the central nervous system to promote unique structural and functional comorbid deficits not seen in either OUD or neuroHIV alone.
Collapse
Affiliation(s)
- Kurt F Hauser
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0613, USA; Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0709, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, 203 East Cary Street, Richmond, Virginia 23298-0059, USA
| | - Michael Ohene-Nyako
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Pamela E Knapp
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0613, USA; Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0709, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, 203 East Cary Street, Richmond, Virginia 23298-0059, USA.
| |
Collapse
|
5
|
Wan YX, Shi G, Jian LY, Fan XY. Blockade of endocannabinoid system by oxytocin attenuates memory deficits in oxycodone-treated rats. Addict Biol 2023; 28:e13260. [PMID: 36577736 DOI: 10.1111/adb.13260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/26/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022]
Abstract
Oxycodone is a highly prescribed opioid and its abuse has been rampant. Accumulating evidence shows that the cannabinoid CB1 receptor (CB1R) plays a key role in mediating rewarding effects to opioids. However, the downstream signalling of CB1R induced by oxycodone remains unclear. The neuropeptide oxytocin is well known as a potential remedy for drug addiction. Thus, our study aims to explore the mechanism of oxycodone-induced learning and memory deficits underlying the endocannabinoid system (ECS) and the effect of oxytocin. Rats were intraperitoneally injected with oxycodone once a day for eight consecutive day. Novel object recognition, resident-intruder and Morris Water Maze tests were employed to assess the cognitive, social and spatial memory of the rats after oxycodone withdrawal. The (co-)expression of CB1R, cyclin-dependent kinase 5 (Cdk5), regulatory protein p25, tau and phosphorylated tau was measured 1 day after the last behavioural test. The histopathological staining and synaptic density in the hippocampus were observed as well. We found that oxycodone upregulated the expression of p-GSK3β, co-expression of p-Cdk5 and p25 through CB1R. This finding was accompanied by elevation of pSer396, pSer404 in the tau, and reduction of the number of neurons, dendritic spines and synaptic density in the hippocampus. Furthermore, i.c.v. treatment with oxytocin ameliorates memory deficits in oxycodone-treated rats through inhibition of the ECS. We propose further studies on the clinical use of this neuropeptide, which may potentially cure drug addiction.
Collapse
Affiliation(s)
- Yu-Xiao Wan
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guang Shi
- Department of Neurology, The People's Hospital of Liaoning Province, Shenyang, China
| | - Ling-Yan Jian
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin-Yu Fan
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Ohene-Nyako M, Nass SR, Richard HT, Lukande R, Nicol MR, McRae M, Knapp PE, Hauser KF. Casein Kinase 2 Mediates HIV- and Opioid-Induced Pathologic Phosphorylation of TAR DNA Binding Protein 43 in the Basal Ganglia. ASN Neuro 2023; 15:17590914231158218. [PMID: 36890725 PMCID: PMC9998424 DOI: 10.1177/17590914231158218] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
SUMMARY STATEMENT HIV/HIV-1 Tat and morphine independently increase pathologic phosphorylation of TAR DNA binding protein 43 in the striatum. HIV- and opioid-induced pathologic phosphorylation of TAR DNA binding protein 43 may involve enhanced CK2 activity and protein levels.
Collapse
Affiliation(s)
- Michael Ohene-Nyako
- Pharmacology and Toxicology, School of Medicine, 6886Virginia Commonwealth University, Richmond, VA, USA
| | - Sara R Nass
- Pharmacology and Toxicology, School of Medicine, 6886Virginia Commonwealth University, Richmond, VA, USA
| | - Hope T Richard
- Pathology, School of Medicine, 6886Virginia Commonwealth University, Richmond, VA, USA
| | - Robert Lukande
- Pathology, College of Health Sciences, 58589Makerere University, Kampala, Uganda
| | - Melanie R Nicol
- Experimental and Clinical Pharmacology, College of Pharmacy, 15515University of Minnesota, Minneapolis, MN, USA
| | - MaryPeace McRae
- Pharmacotherapy and Outcomes Science, School of Pharmacy, 15535Virginia Commonwealth University, Richmond, VA, USA
| | - Pamela E Knapp
- Pharmacology and Toxicology, School of Medicine, 6886Virginia Commonwealth University, Richmond, VA, USA.,Anatomy and Neurobiology, School of Medicine, 6886Virginia Commonwealth University, Richmond, VA, USA.,Institute for Drug and Alcohol Studies, 6886Virginia Commonwealth University, Richmond, VA, USA
| | - Kurt F Hauser
- Pharmacology and Toxicology, School of Medicine, 6886Virginia Commonwealth University, Richmond, VA, USA.,Anatomy and Neurobiology, School of Medicine, 6886Virginia Commonwealth University, Richmond, VA, USA.,Institute for Drug and Alcohol Studies, 6886Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
7
|
Liu X, Guo L, Duan B, Wu J, Wang E. Novel benzodiazepine remimazolam tosylate delays neurodegeneration of aged mice via decreasing tau phosphorylation. Neurotoxicology 2022; 92:156-165. [DOI: 10.1016/j.neuro.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 10/15/2022]
|
8
|
Qrareya AN, Mahdi F, Kaufman MJ, Ashpole NM, Paris JJ. Age-related neuroendocrine, cognitive, and behavioral co-morbidities are promoted by HIV-1 Tat expression in male mice. Aging (Albany NY) 2022; 14:5345-5365. [PMID: 35830469 PMCID: PMC9320553 DOI: 10.18632/aging.204166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022]
Abstract
In the U.S. about half of the HIV-infected individuals are aged 50 and older. In men living with HIV, secondary hypogonadism is common and occurs earlier than in seronegative men, and its prevalence increases with age. While the mechanisms(s) are unknown, the HIV-1 trans-activator of transcription (Tat) protein disrupts neuroendocrine function in mice partly by dysregulating mitochondria and neurosteroidogenesis. We hypothesized that conditional Tat expression in middle-aged male transgenic mice [Tat(+)] would promote age-related comorbidities compared to age-matched controls [Tat(−)]. We expected Tat to alter steroid hormone milieu consistent with behavioral deficits. Middle-aged Tat(+) mice had lower circulating testosterone and progesterone than age-matched controls and greater circulating corticosterone and central allopregnanolone than other groups. Young Tat(+) mice had greater circulating progesterone and estradiol-to-testosterone ratios. Older age or Tat exposure increased anxiety-like behavior (open field; elevated plus-maze), increased cognitive errors (radial arm water maze), and reduced grip strength. Young Tat(+), or middle-aged Tat(−), males had higher mechanical nociceptive thresholds than age-matched counterparts. Steroid levels correlated with behaviors. Thus, Tat may contribute to HIV-accelerated aging.
Collapse
Affiliation(s)
- Alaa N Qrareya
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Fakhri Mahdi
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Marc J Kaufman
- Department of Psychiatry, McLean Imaging Center, McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA
| | - Nicole M Ashpole
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.,Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA
| | - Jason J Paris
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.,Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
9
|
McLane VD, Lark ARS, Nass SR, Knapp PE, Hauser KF. HIV-1 Tat reduces apical dendritic spine density throughout the trisynaptic pathway in the hippocampus of male transgenic mice. Neurosci Lett 2022; 782:136688. [PMID: 35595189 DOI: 10.1016/j.neulet.2022.136688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 12/01/2022]
Abstract
Nearly one-third of persons infected with HIV-1 (PWH) develop HIV-associated neurocognitive disorders (HAND), which can be exacerbated by exposure to opioids. The impact of opioids on HIV-induced alterations in neuronal plasticity is less well understood. Both morphine exposure and HIV have been shown to disrupt synaptic growth and stability in the hippocampus suggesting a potential site of convergence for their deleterious effects. In the present study, we examined the density of dendritic spines in CA1 and CA3 pyramidal neurons, and granule neurons within the dentate gyrus representing the hippocampal trisynaptic pathway after short-term exposure to the HIV transactivator of transcription (Tat) protein and morphine. We exposed inducible male, HIV-1 Tat transgenic mice to escalating doses of morphine (10-40 mg/kg, b.i.d.) and examined synaptodendritic structure in Golgi-impregnated hippocampal neurons. HIV-1 Tat, but not morphine, systematically reduced the density of apical, but not basilar, dendrites of CA1 and CA3 pyramidal neurons, and granule neuronal apical dendrites, suggesting the coordinated loss of specific synaptic interconnections throughout the hippocampal trisynaptic pathway.
Collapse
Affiliation(s)
- Virginia D McLane
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Arianna R S Lark
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA.
| | - Sara R Nass
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA.
| | - Pamela E Knapp
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA; Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA.
| | - Kurt F Hauser
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA; Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
10
|
Biotypes of HIV-associated neurocognitive disorders based on viral and immune pathogenesis. Curr Opin Infect Dis 2022; 35:223-230. [PMID: 35665716 PMCID: PMC9179892 DOI: 10.1097/qco.0000000000000825] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW HIV-associated neurocognitive disorders (HAND) continues to be prevalent in people living with HIV despite antiretroviral therapy. However, understanding disease mechanisms and identifying therapeutic avenues has been challenging. One of the challenges is that HAND is a heterogeneous disease and that patients identified with similar impairments phenotypically may have very different underlying disease processes. As the NeuroAIDS field is re-evaluating the approaches used to identify patients with HIV-associated neurological impairments, we propose the subtyping of patients into biotypes based on viral and immune pathogenesis. RECENT FINDINGS Here we review the evidence supporting subtyping patients with HIV-associated neurological complications into four biotypes: macrophage-mediated HIV encephalitis, CNS viral escape, T-cell-mediated HIV encephalitis, and HIV protein-associated encephalopathy. SUMMARY Subtyping patients into subgroups based on biotypes has emerged as a useful approach for studying heterogeneous diseases. Understanding biotypes of HIV-associated neurocognitive impairments may therefore enable better understanding of disease mechanisms, allow for the development of prognostic and diagnostic markers, and could ultimately guide therapeutic decisions.
Collapse
|
11
|
Nass SR, Ohene-Nyako M, Hahn YK, Knapp PE, Hauser KF. Neurodegeneration Within the Amygdala Is Differentially Induced by Opioid and HIV-1 Tat Exposure. Front Neurosci 2022; 16:804774. [PMID: 35600626 PMCID: PMC9115100 DOI: 10.3389/fnins.2022.804774] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/24/2022] [Indexed: 11/25/2022] Open
Abstract
Opioid use disorder (OUD) is a critical problem that contributes to the spread of HIV and may intrinsically worsen neuroHIV. Despite the advent of combined antiretroviral therapies (cART), about half of persons infected with HIV (PWH) experience cognitive and emotional deficits that can be exacerbated by opioid abuse. HIV-1 Tat is expressed in the central nervous system (CNS) of PWH on cART and is thought to contribute to neuroHIV. The amygdala regulates emotion and memories associated with fear and stress and is important in addiction behavior. Notwithstanding its importance in emotional saliency, the effects of HIV and opioids in the amygdala are underexplored. To assess Tat- and morphine-induced neuropathology within the amygdala, male Tat transgenic mice were exposed to Tat for 8 weeks and administered saline and/or escalating doses of morphine twice daily (s.c.) during the last 2 weeks of Tat exposure. Eight weeks of Tat exposure decreased the acoustic startle response and the dendritic spine density in the basolateral amygdala, but not the central nucleus of the amygdala. In contrast, repeated exposure to morphine alone, but not Tat, increased the acoustic startle response and whole amygdalar levels of amyloid-β (Aβ) monomers and oligomers and tau phosphorylation at Ser396, but not neurofilament light chain levels. Co-exposure to Tat and morphine decreased habituation and prepulse inhibition to the acoustic startle response and potentiated the morphine-induced increase in Aβ monomers. Together, our findings indicate that sustained Tat and morphine exposure differentially promote synaptodendritic degeneration within the amygdala and alter sensorimotor processing.
Collapse
Affiliation(s)
- Sara R. Nass
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Michael Ohene-Nyako
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Yun K. Hahn
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Pamela E. Knapp
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, United States
| | - Kurt F. Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, United States
- *Correspondence: Kurt F. Hauser,
| |
Collapse
|
12
|
Nass SR, Lark ARS, Hahn YK, McLane VD, Ihrig TM, Contois L, Napier TC, Knapp PE, Hauser KF. HIV-1 Tat and morphine decrease murine inter-male social interactions and associated oxytocin levels in the prefrontal cortex, amygdala, and hypothalamic paraventricular nucleus. Horm Behav 2021; 133:105008. [PMID: 34171549 PMCID: PMC8277758 DOI: 10.1016/j.yhbeh.2021.105008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/11/2021] [Accepted: 05/22/2021] [Indexed: 12/15/2022]
Abstract
Many persons infected with HIV-1 (PWH) and opioid-dependent individuals experience deficits in sociability that interfere with daily living. Sociability is regulated by the prefrontal cortico-hippocampal-amygdalar circuit. Within this circuit HIV-1 trans-activator of transcription (HIV-1 Tat) and opioids can increase dendritic pathology and alter neuronal firing. Changes in sociability are also associated with dysregulation of hypothalamic neuropeptides such as oxytocin or corticotropin releasing factor (CRF) in the prefrontal cortico-hippocampal-amygdalar circuit. Accordingly, we hypothesized that the interaction of HIV-1 Tat and morphine would impair inter-male social interactions and disrupt oxytocin and CRF within the PFC and associated circuitry. Male mice were exposed to HIV-1 Tat for 8 weeks and administered saline or escalating doses of morphine twice daily (s.c.) during the last 2 weeks of HIV-1 Tat exposure. Tat attenuated aggressive interactions with an unknown intruder, whereas morphine decreased both non-aggressive and aggressive social interactions in the resident-intruder test. However, there was no effect of Tat or morphine on non-reciprocal interactions in the social interaction and novelty tests. Tat, but not morphine, decreased oxytocin levels in the PFC and amygdala, whereas both Tat and morphine decreased the percentage of oxytocin-immunoreactive neurons in the hypothalamic paraventricular nucleus (PVN). In Tat(+) or morphine-exposed mice, regional levels of CRF and oxytocin correlated with alterations in behavior in the social interaction and novelty tests. Overall, decreased expression of oxytocin in the prefrontal cortico-hippocampal-amygdalar circuit is associated with morphine- and HIV-Tat-induced deficits in social behavior.
Collapse
Affiliation(s)
- Sara R Nass
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0613, USA
| | - Arianna R S Lark
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0613, USA
| | - Yun K Hahn
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0709, USA
| | - Virginia D McLane
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0613, USA
| | - Therese M Ihrig
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0613, USA
| | - Liangru Contois
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0613, USA
| | - T Celeste Napier
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL 60612-2847, USA; Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL 60612-3818, USA
| | - Pamela E Knapp
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0613, USA; Department of Anatomy and Neurobiology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0709, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0059, USA
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0613, USA; Department of Anatomy and Neurobiology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0709, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298-0059, USA.
| |
Collapse
|
13
|
Cirino TJ, McLaughlin JP. Mini review: Promotion of substance abuse in HIV patients: Biological mediation by HIV-1 Tat protein. Neurosci Lett 2021; 753:135877. [PMID: 33838257 DOI: 10.1016/j.neulet.2021.135877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 11/29/2022]
Abstract
Despite successful viral suppression by combinatorial anti-retroviral therapy, HIV infection continues to negatively impact the quality of life of patients by promoting neuropathy and HIV-Associated Neurocognitive Disorders (HAND), where substance use disorder (SUD) is highly comorbid and known to worsen health outcomes. While substance abuse exacerbates the progression of HIV, emerging evidence also suggests the virus may potentiate the rewarding effect of abused substances. As HIV does not infect neurons, these effects are theorized to be mediated by viral proteins. Key among these proteins are HIV-1 Tat, which can continue to be produced under viral suppression in patients. This review will recap the behavioral evidence for HIV-1 Tat mediation of a potentiation of cocaine, opioid and alcohol reward, and explore the neurochemical dysfunction associated by Tat as potential mechanisms underlying changes in reward. Targeting rampant oxidative stress, inflammation and excitotoxicity associated with HIV and Tat protein exposure may prove useful in combating persistent substance abuse comorbid with HIV in the clinic.
Collapse
Affiliation(s)
- Thomas J Cirino
- Department of Neurology, School of Medicine, University of California at San Francisco, San Francisco, CA, 94158, USA
| | - Jay P McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
14
|
Masemann D, Ludwig S, Boergeling Y. Advances in Transgenic Mouse Models to Study Infections by Human Pathogenic Viruses. Int J Mol Sci 2020; 21:E9289. [PMID: 33291453 PMCID: PMC7730764 DOI: 10.3390/ijms21239289] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 02/08/2023] Open
Abstract
Medical research is changing into direction of precision therapy, thus, sophisticated preclinical models are urgently needed. In human pathogenic virus research, the major technical hurdle is not only to translate discoveries from animals to treatments of humans, but also to overcome the problem of interspecies differences with regard to productive infections and comparable disease development. Transgenic mice provide a basis for research of disease pathogenesis after infection with human-specific viruses. Today, humanized mice can be found at the very heart of this forefront of medical research allowing for recapitulation of disease pathogenesis and drug mechanisms in humans. This review discusses progress in the development and use of transgenic mice for the study of virus-induced human diseases towards identification of new drug innovations to treat and control human pathogenic infectious diseases.
Collapse
Affiliation(s)
| | | | - Yvonne Boergeling
- Institute of Virology Muenster, University of Muenster, 48149 Muenster, Germany; (D.M.); (S.L.)
| |
Collapse
|