1
|
Quintanilla J, Jia Y, Pruess BS, Chavez J, Gall CM, Lynch G, Gunn BG. Pre- versus Post-synaptic Forms of LTP in Two Branches of the Same Hippocampal Afferent. J Neurosci 2024; 44:e1449232024. [PMID: 38326038 PMCID: PMC10919254 DOI: 10.1523/jneurosci.1449-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/18/2023] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
There has been considerable controversy about pre- versus postsynaptic expression of memory-related long-term potentiation (LTP), with corresponding disputes about underlying mechanisms. We report here an instance in male mice, in which both types of potentiation are expressed but in separate branches of the same hippocampal afferent. Induction of LTP in the dentate gyrus (DG) branch of the lateral perforant path (LPP) reduces paired-pulse facilitation, is blocked by antagonism of cannabinoid receptor type 1, and is not affected by suppression of postsynaptic actin polymerization. These observations are consistent with presynaptic expression. The opposite pattern of results was obtained in the LPP branch that innervates the distal dendrites of CA3: LTP did not reduce paired-pulse facilitation, was unaffected by the cannabinoid receptor blocker, and required postsynaptic actin filament assembly. Differences in the two LPP termination sites were also noted for frequency facilitation of synaptic responses, an effect that was reproduced in a two-step simulation by small adjustments to vesicle release dynamics. These results indicate that different types of glutamatergic neurons impose different forms of filtering and synaptic plasticity on their afferents. They also suggest that inputs are routed to, and encoded by, different sites within the hippocampus depending upon the pattern of activity arriving over the parent axon.
Collapse
Affiliation(s)
- J Quintanilla
- Department of Anatomy & Neurobiology, University of California, Irvine, California 92697
| | - Y Jia
- Department of Anatomy & Neurobiology, University of California, Irvine, California 92697
| | - B S Pruess
- Department of Anatomy & Neurobiology, University of California, Irvine, California 92697
| | - J Chavez
- Department of Anatomy & Neurobiology, University of California, Irvine, California 92697
| | - C M Gall
- Department of Anatomy & Neurobiology, University of California, Irvine, California 92697
- Neurobiology & Behavior, University of California, Irvine, California 92697
| | - G Lynch
- Department of Anatomy & Neurobiology, University of California, Irvine, California 92697
- Psychiatry & Human Behavior, University of California, Irvine, California 92697
| | - B G Gunn
- Department of Anatomy & Neurobiology, University of California, Irvine, California 92697
| |
Collapse
|
2
|
Khan MSI, Nabeka H, Islam F, Shimokawa T, Saito S, Li X, Kawabe S, Hamada F, Tachibana T, Matsuda S. Early neonatal loss of inhibitory synaptic input to the spinal motor neurons confers spina bifida-like leg dysfunction in a chicken model. Dis Model Mech 2017; 10:1421-1432. [PMID: 28982681 PMCID: PMC5769610 DOI: 10.1242/dmm.031054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/02/2017] [Indexed: 01/03/2023] Open
Abstract
Spina bifida aperta (SBA), one of the most common congenital malformations, causes lifelong neurological complications, particularly in terms of motor dysfunction. Fetuses with SBA exhibit voluntary leg movements in utero and during early neonatal life, but these disappear within the first few weeks after birth. However, the pathophysiological sequence underlying such motor dysfunction remains unclear. Additionally, because important insights have yet to be obtained from human cases, an appropriate animal model is essential. Here, we investigated the neuropathological mechanisms of progression of SBA-like motor dysfunctions in a neural tube surgery-induced chicken model of SBA at different pathogenesis points ranging from embryonic to posthatch ages. We found that chicks with SBA-like features lose voluntary leg movements and subsequently exhibit lower-limb paralysis within the first 2 weeks after hatching, coinciding with the synaptic change-induced disruption of spinal motor networks at the site of the SBA lesion in the lumbosacral region. Such synaptic changes reduced the ratio of inhibitory-to-excitatory inputs to motor neurons and were associated with a drastic loss of γ-aminobutyric acid (GABA)ergic inputs and upregulation of the cholinergic activities of motor neurons. Furthermore, most of the neurons in ventral horns, which appeared to be suffering from excitotoxicity during the early postnatal days, underwent apoptosis. However, the triggers of cellular abnormalization and neurodegenerative signaling were evident in the middle- to late-gestational stages, probably attributable to the amniotic fluid-induced in ovo milieu. In conclusion, we found that early neonatal loss of neurons in the ventral horn of exposed spinal cord affords novel insights into the pathophysiology of SBA-like leg dysfunction.
Collapse
Affiliation(s)
- Md Sakirul Islam Khan
- Department of Anatomy and Embryology, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan .,Department of Animal Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Hiroaki Nabeka
- Department of Anatomy and Embryology, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan
| | - Farzana Islam
- Department of Anatomy and Embryology, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan
| | - Tetsuya Shimokawa
- Department of Anatomy and Embryology, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan
| | - Shouichiro Saito
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu 501-1128, Japan
| | - Xuan Li
- Department of Anatomy and Embryology, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan
| | - Soichiro Kawabe
- Fukui Prefectural Dinosaur Museum, Katsuyama, Fukui 911-8601, Japan
| | - Fumihiko Hamada
- Department of Human Anatomy, Faculty of Medicine, Oita University, Yufu, Oita 879-5593, Japan
| | - Tetsuya Tachibana
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - Seiji Matsuda
- Department of Anatomy and Embryology, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan
| |
Collapse
|
3
|
Nabeka H, Shimokawa T, Doihara T, Saito S, Wakisaka H, Hamada F, Kobayashi N, Matsuda S. A prosaposin-derived Peptide alleviates kainic Acid-induced brain injury. PLoS One 2015; 10:e0126856. [PMID: 25993033 PMCID: PMC4436272 DOI: 10.1371/journal.pone.0126856] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/08/2015] [Indexed: 12/22/2022] Open
Abstract
Four sphingolipid activator proteins (i.e., saposins A–D) are synthesized from a single precursor protein, prosaposin (PS), which exerts exogenous neurotrophic effects in vivo and in vitro. Kainic acid (KA) injection in rodents is a good model in which to study neurotrophic factor elevation; PS and its mRNA are increased in neurons and the choroid plexus in this animal model. An 18-mer peptide (LSELIINNATEELLIKGL; PS18) derived from the PS neurotrophic region prevents neuronal damage after ischemia, and PS18 is a potent candidate molecule for use in alleviating ischemia-induced learning disabilities and neuronal loss. KA is a glutamate analog that stimulates excitatory neurotransmitter release and induces ischemia-like neuronal degeneration; it has been used to define mechanisms involved in neurodegeneration and neuroprotection. In the present study, we demonstrate that a subcutaneous injection of 0.2 and 2.0 mg/kg PS18 significantly improved behavioral deficits of Wistar rats (n = 6 per group), and enhanced the survival of hippocampal and cortical neurons against neurotoxicity induced by 12 mg/kg KA compared with control animals. PS18 significantly protected hippocampal synapses against KA-induced destruction. To evaluate the extent of PS18- and KA-induced effects in these hippocampal regions, we performed histological evaluations using semithin sections stained with toluidine blue, as well as ordinal sections stained with hematoxylin and eosin. We revealed a distinctive feature of KA-induced brain injury, which reportedly mimics ischemia, but affects a much wider area than ischemia-induced injury: KA induced neuronal degeneration not only in the CA1 region, where neurons degenerate following ischemia, but also in the CA2, CA3, and CA4 hippocampal regions.
Collapse
Affiliation(s)
- Hiroaki Nabeka
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
- * E-mail:
| | - Tetsuya Shimokawa
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Takuya Doihara
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Shouichiro Saito
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
| | | | - Fumihiko Hamada
- Department of Human Anatomy, Oita University Fuculty of Medicine, Yufu, Oita, Japan
| | - Naoto Kobayashi
- Medical Education Center, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Seiji Matsuda
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| |
Collapse
|
4
|
Brusco J, Merlo S, Ikeda ÉT, Petralia RS, Kachar B, Rasia-Filho AA, Moreira JE. Inhibitory and multisynaptic spines, and hemispherical synaptic specialization in the posterodorsal medial amygdala of male and female rats. J Comp Neurol 2015; 522:2075-88. [PMID: 24318545 DOI: 10.1002/cne.23518] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/26/2013] [Accepted: 12/03/2013] [Indexed: 12/23/2022]
Abstract
The density of dendritic spines is sexually dimorphic and variable throughout the female estrous cycle in the rat posterodorsal medial amygdala (MePD), a relevant area for the modulation of reproductive behavior in rats. The local synaptic activity differs between hemispheres in prepubertal animals. Here we used serial section transmission electron microscopy to produce 3D reconstructions of dendritic shafts and spines to characterize synaptic contacts on MePD neurons of both hemispheres in adult males and in females along the estrous cycle. Pleomorphic spines and nonsynaptic filopodia occur in the MePD. On average, 8.6% of dendritic spines received inputs from symmetric gamma-aminobutyric acid (GABA)-immunoreactive terminals, whereas 3.6% received two synaptic contacts on the spine head, neck, or base. Presynaptic terminals in female right MePD had a higher density of synaptic vesicles and docked vesicles than the left MePD, suggesting a higher rate of synaptic vesicle release in the right MePD of female rats. In contrast, males did not show laterality in any of those parameters. The proportion of putative inhibitory synapses on dendritic shafts in the right MePD of females in proestrus was higher than in the left MePD, and higher than in the right MePD in males, or in females in diestrus or estrus. This work shows synaptic laterality depending on sex and estrous cycle phase in mature MePD neurons. Most likely, sexual hormone effects are lateralized in this brain region, leading to higher synaptic activity in the right than in the left hemisphere of females, mediating timely neuroendocrine and social/reproductive behavior.
Collapse
Affiliation(s)
- Janaina Brusco
- Department of Neuroscience and Behavior, University of São Paulo, School of Medicine at Ribeirão Preto, Ribeirão Preto, SP, 14049-900, Brazil; National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Dall'Oglio A, Xavier LL, Hilbig A, Ferme D, Moreira JE, Achaval M, Rasia-Filho AA. Cellular components of the human medial amygdaloid nucleus. J Comp Neurol 2013; 521:589-611. [PMID: 22806548 DOI: 10.1002/cne.23192] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 04/22/2012] [Accepted: 07/10/2012] [Indexed: 12/24/2022]
Abstract
The medial nucleus (Me) is a superficial component of the amygdaloid complex. Here we assessed the density and morphology of the neurons and glial cells, the glial fibrillary acidic protein (GFAP) immunoreactivity, and the ultrastructure of the synaptic sites in the human Me. The optical fractionator method was applied. The Me presented an estimated mean neuronal density of 1.53 × 10⁵ neurons/mm³ (greater in the left hemisphere), more glia (72% of all cells) than neurons, and a nonneuronal:neuronal ratio of 2.7. Golgi-impregnated neurons had round or ovoid, fusiform, angular, and polygonal cell bodies (10-30 μm in diameter). The length of the dendrites varied, and pleomorphic spines were found in sparsely spiny or densely spiny cells (1.5-5.2 spines/dendritic μm). The axons in the Me neuropil were fine or coarsely beaded, and fibers showed simple or notably complex collateral terminations. The protoplasmic astrocytes were either isolated or formed small clusters and showed GFAP-immunoreactive cell bodies and multiple branches. Furthermore, we identified both asymmetrical (with various small, clear, round, electron-lucent vesicles and, occasionally, large, dense-core vesicles) and symmetrical (with small, flattened vesicles) axodendritic contacts, also including multisynaptic spines. The astrocytes surround and may compose tripartite or tetrapartite synapses, the latter including the extracellular matrix between the pre- and the postsynaptic elements. Interestingly, the terminal axons exhibited a glomerular-like structure with various asymmetrical contacts. These new morphological data on the cellular population and synaptic complexity of the human Me can contribute to our knowledge of its role in health and pathological conditions.
Collapse
Affiliation(s)
- Aline Dall'Oglio
- Neuroscience Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre 90170-050-RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
6
|
Benson TE, Lee DJ, Brown MC. Tensor tympani motoneurons receive mostly excitatory synaptic inputs. Anat Rec (Hoboken) 2012; 296:133-45. [PMID: 23165747 DOI: 10.1002/ar.22620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 09/21/2012] [Indexed: 12/18/2022]
Abstract
The tensor tympani is a middle ear muscle that contracts in two different situations: in response to sound or during voluntary movements. To gain insight into the inputs and neural regulation of the tensor tympani, we examined the ultrastructure of synaptic terminals on labeled tensor tympani motoneurons (TTMNs) using transmission electron microscopy. Our sample of six TTMNs received 79 synaptic terminals that formed 126 synpases. Two types of synapses are associated with round vesicles and form asymmetric junctions (excitatory morphology). One of these types has vesicles that are large and round (Lg Rnd) and the other has vesicles that are smaller and round (Sm Rnd) and also contains at least one dense core vesicle. A third synapse type has inhibitory morphology because it forms symmetric synapses with pleomorphic vesicles (Pleo). These synaptic terminals can be associated with TTMN spines. Two other types of synapse are found on TTMNs but they are uncommon. Synaptic terminals of all types form multiple synapses but those from a single terminal are always the same type. Terminals with Lg Rnd vesicles formed the most synpases per terminal (avg. 2.73). Together, the synaptic terminals with Lg Rnd and Sm Rnd vesicles account for 62% of the terminals on TTMNs, and they likely represent the pathways driving the contractions in response to sound or during voluntary movements. Having a high proportion of excitatory inputs, the TTMN innervation is like that of stapedius motoneurons but proportionately different from other types of motoneurons.
Collapse
Affiliation(s)
- Thane E Benson
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
7
|
Baker JL, Perez-Rosello T, Migliore M, Barrionuevo G, Ascoli GA. A computer model of unitary responses from associational/commissural and perforant path synapses in hippocampal CA3 pyramidal cells. J Comput Neurosci 2010; 31:137-58. [PMID: 21191641 DOI: 10.1007/s10827-010-0304-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 10/17/2010] [Accepted: 12/14/2010] [Indexed: 02/03/2023]
Abstract
Despite the central position of CA3 pyramidal cells in the hippocampal circuit, the experimental investigation of their synaptic properties has been limited. Recent slice experiments from adult rats characterized AMPA and NMDA receptor unitary synaptic responses in CA3b pyramidal cells. Here, excitatory synaptic activation is modeled to infer biophysical parameters, aid analysis interpretation, explore mechanisms, and formulate predictions by contrasting simulated somatic recordings with experimental data. Reconstructed CA3b pyramidal cells from the public repository NeuroMorpho.Org were used to allow for cell-specific morphological variation. For each cell, synaptic responses were simulated for perforant pathway and associational/commissural synapses. Means and variability for peak amplitude, time-to-peak, and half-height width in these responses were compared with equivalent statistics from experimental recordings. Synaptic responses mediated by AMPA receptors are best fit with properties typical of previously characterized glutamatergic receptors where perforant path synapses have conductances twice that of associational/commissural synapses (0.9 vs. 0.5 nS) and more rapid peak times (1.0 vs. 3.3 ms). Reanalysis of passive-cell experimental traces using the model shows no evidence of a CA1-like increase of associational/commissural AMPA receptor conductance with increasing distance from the soma. Synaptic responses mediated by NMDA receptors are best fit with rapid kinetics, suggestive of NR2A subunits as expected in mature animals. Predictions were made for passive-cell current clamp recordings, combined AMPA and NMDA receptor responses, and local dendritic depolarization in response to unitary stimulations. Models of synaptic responses in active cells suggest altered axial resistivity and the presence of synaptically activated potassium channels in spines.
Collapse
Affiliation(s)
- John L Baker
- Center for Neural Informatics, Structures, & Plasticity, George Mason University, 4400 University Drive, MS 2A1, Fairfax, VA 22030, USA
| | | | | | | | | |
Collapse
|
8
|
Takemiya T, Matsumura K, Sugiura H, Maehara M, Yasuda S, Uematsu S, Akira S, Yamagata K. Endothelial microsomal prostaglandin E synthase-1 exacerbates neuronal loss induced by kainate. J Neurosci Res 2010; 88:381-90. [DOI: 10.1002/jnr.22195] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Cooper B, Werner HB, Flügge G. Glycoprotein M6a is present in glutamatergic axons in adult rat forebrain and cerebellum. Brain Res 2007; 1197:1-12. [PMID: 18241840 DOI: 10.1016/j.brainres.2007.11.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 11/13/2007] [Accepted: 11/26/2007] [Indexed: 11/19/2022]
Abstract
Glycoprotein M6a is a neuronally expressed member of the proteolipid protein (PLP) family of tetraspans. In vitro studies suggested a potential role in neurite outgrowth and spine formation and previous investigations have identified M6a as a stress-regulated gene. To investigate whether the distribution of M6a correlates with neuronal structures susceptible to alterations in response to stress, we localized M6a expression in neurons of hippocampal formation, prefrontal cortex and cerebellum using in situ hybridization and confocal immunofluorescence microscopy. In situ hybridization confirmed that M6a is expressed in dentate gyrus and cerebellar granule neurons and in hippocampal and cortical pyramidal neurons. Confocal microscopy localized M6a immunoreactivity to distinct sites within axonal membranes, but not in dendrites or neuronal somata. Moreover, M6a colocalized with synaptic markers of glutamatergic, but not GABAergic nerve terminals. M6a expression in the adult brain is particularly strong in unmyelinated axonal fibers, i.e. cerebellar parallel and hippocampal mossy fibers. In contrast, myelinated axons exhibit only minimal M6a immunoreactivity localized exclusively to terminal regions. The present neuroanatomical data demonstrate that M6a is an axonal component of glutamatergic neurons and that it is localized to distinct sites of the axonal plasma membrane of pyramidal and granule cells.
Collapse
Affiliation(s)
- Ben Cooper
- Clinical Neurobiology Laboratory, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
| | | | | |
Collapse
|
10
|
Tremblay ME, Riad M, Bouvier D, Murai KK, Pasquale EB, Descarries L, Doucet G. Localization of EphA4 in axon terminals and dendritic spines of adult rat hippocampus. J Comp Neurol 2007; 501:691-702. [PMID: 17299751 DOI: 10.1002/cne.21263] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Eph receptors and their ephrin ligands assume various roles during central nervous system development. Several of these proteins are also expressed in the mature brain, and notably in the hippocampus, where EphA4 and ephrins have been shown to influence dendritic spine morphology and long-term potentiation (LTP). To examine the cellular and subcellular localization of EphA4 in adult rat ventral hippocampus, we used light and electron microscopic immunocytochemistry with a specific polyclonal antibody against EphA4. After immunoperoxidase labeling, EphA4 immunoreactivity was found to be enriched in the neuropil layers of CA1, CA3, and dentate gyrus. In all examined layers of these regions, myelinated axons, small astrocytic leaflets, unmyelinated axons, dendritic spines, and axon terminals were immunolabeled in increasing order of frequency. Neuronal cell bodies and dendritic branches were immunonegative. EphA4-labeled dendritic spines and axon terminals corresponded to 9-19% and 25-40% of the total number of spines and axon terminals, respectively. Most labeled spines were innervated by unlabeled terminals, but synaptic contacts between two labeled elements were seen. The vast majority of synaptic junctions made by labeled elements was asymmetrical and displayed features of excitatory synapses. Immunogold labeling of EphA4 was located mostly on the plasma membrane of axons, dendritic spines, and axon terminals, supporting its availability for surface interactions with ephrins. The dual preferential labeling of EphA4 on pre- or postsynaptic specializations of excitatory synapses in adult rat hippocampus is consistent with roles for this receptor in synaptic plasticity and LTP.
Collapse
Affiliation(s)
- Marie-Eve Tremblay
- Département de pathologie et biologie cellulaire and Groupe de recherche sur le système nerveux central, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
11
|
Hermel EES, Faccioni-Heuser MC, Marcuzzo S, Rasia-Filho AA, Achaval M. Ultrastructural features of neurons and synaptic contacts in the posterodorsal medial amygdala of adult male rats. J Anat 2006; 208:565-75. [PMID: 16637879 PMCID: PMC2100224 DOI: 10.1111/j.1469-7580.2006.00559.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2005] [Indexed: 11/29/2022] Open
Abstract
The aim of the present study was to describe the ultrastructure of neurons (from eight animals) and to analyse the synaptic terminal distribution (from two animals) in the posterodorsal subnucleus of the medial amygdala (MePD) of adult male rats. Using transmission electron microscopy, it was possible to identify many spiny and aspiny dendrites, unmyelinated axonal bundles, single axonal processes, a few myelinated axons, blood vessels and glial processes in the neuropil. Axodendritic synapses were the most frequently observed (67.5%), appearing to be of either the inhibitory or the excitatory types. The presynaptic region contained round or flattened vesicles that occurred either singly or with dense-cored vesicles (DCVs). The dendrites often received many synapses on a single shaft, and axon terminals displayed synaptic contacts with one or more postsynaptic structures. Dendritic spines showed different morphologies and the synapses on them (23.1%) formed a single and apparently excitatory synaptic contact with round, electron-lucid vesicles alone or, less frequently, with DCVs. Inhibitory and excitatory axosomatic synapses (8.2%) and excitatory axoaxonic synapses (1.2%) were also identified. The present report provides new findings relevant to the study of the MePD cellular organization and could be combined with other morphological data in order to reveal the functional activity of this area in male rats.
Collapse
Affiliation(s)
- E E S Hermel
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Brazil
| | | | | | | | | |
Collapse
|
12
|
Ventriglia F, Di Maio V. Multisynaptic activity in a pyramidal neuron model and neural code. Biosystems 2006; 86:18-26. [PMID: 16870323 DOI: 10.1016/j.biosystems.2006.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 02/19/2006] [Accepted: 02/22/2006] [Indexed: 11/29/2022]
Abstract
The highly irregular firing of mammalian cortical pyramidal neurons is one of the most striking observation of the brain activity. This result affects greatly the discussion on the neural code, i.e. how the brain codes information transmitted along the different cortical stages. In fact it seems to be in favor of one of the two main hypotheses about this issue, named the rate code. But the supporters of the contrasting hypothesis, the temporal code, consider this evidence inconclusive. We discuss here a leaky integrate-and-fire model of a hippocampal pyramidal neuron intended to be biologically sound to investigate the genesis of the irregular pyramidal firing and to give useful information about the coding problem. To this aim, the complete set of excitatory and inhibitory synapses impinging on such a neuron has been taken into account. The firing activity of the neuron model has been studied by computer simulation both in basic conditions and allowing brief periods of over-stimulation in specific regions of its synaptic constellation. Our results show neuronal firing conditions similar to those observed in experimental investigations on pyramidal cortical neurons. In particular, the variation coefficient (CV) computed from the inter-spike intervals (ISIs) in our simulations for basic conditions is close to the unity as that computed from experimental data. Our simulation shows also different behaviors in firing sequences for different frequencies of stimulation.
Collapse
Affiliation(s)
- Francesco Ventriglia
- Istituto di Cibernetica E Caianiello del CNR, Via Campi Flegrei 34, Pozzuoli (NA), Italy.
| | | |
Collapse
|
13
|
Tsurugizawa T, Mukai H, Tanabe N, Murakami G, Hojo Y, Kominami S, Mitsuhashi K, Komatsuzaki Y, Morrison JH, Janssen WGM, Kimoto T, Kawato S. Estrogen induces rapid decrease in dendritic thorns of CA3 pyramidal neurons in adult male rat hippocampus. Biochem Biophys Res Commun 2005; 337:1345-52. [PMID: 16242668 DOI: 10.1016/j.bbrc.2005.09.188] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 09/26/2005] [Indexed: 10/25/2022]
Abstract
Modulation of hippocampal synaptic plasticity by estrogen has been attracting much attention. Thorns of thorny excrescences of CA3 hippocampal neurons are post-synaptic regions whose presynaptic partners are mossy fiber terminals. Here we demonstrated the rapid effect of estradiol on the density of thorns of thorny excrescences, by imaging Lucifer Yellow-injected CA3 neurons in adult male rat hippocampal slices. The application of 1nM estradiol induced rapid decrease in the density of thorns on pyramidal neurons within 2h. The estradiol-mediated decrease in the density of thorns was blocked by CNQX (AMPA receptor antagonist) and PD98059 (MAP kinase inhibitor), but not by MK-801 (NMDA receptor antagonist). ERalpha agonist PPT induced the same suppressive effect as that induced by estradiol on the density of thorns, but ERbeta agonist DPN did not affect the density of thorns. Note that a 1nM estradiol treatment did not affect the density of spines in the stratum radiatum and stratum oriens. A search for synaptic ERalpha was performed using purified RC-19 antibody. The localization of ERalpha (67kDa) in the CA3 mossy fiber terminals and thorns was demonstrated using immunogold electron microscopy. These results imply that estradiol drives the signaling pathway including ERalpha and MAP kinase.
Collapse
Affiliation(s)
- Tomokazu Tsurugizawa
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo at Komaba, 3-8-1 Meguro, Tokyo 153, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Neural Code and Irregular Spike Trains. BRAIN, VISION, AND ARTIFICIAL INTELLIGENCE 2005. [DOI: 10.1007/11565123_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|