1
|
Freire MAM, Franca JG, Picanco-Diniz CW, Manger PR, Kaas JH, Pereira A. Organization of Somatosensory Cortex in the South American Rodent Paca (Cuniculus paca). BRAIN, BEHAVIOR AND EVOLUTION 2024; 98:275-289. [PMID: 38198769 DOI: 10.1159/000534469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/02/2023] [Indexed: 01/12/2024]
Abstract
INTRODUCTION The study of non-laboratory species has been part of a broader effort to establish the basic organization of the mammalian neocortex, as these species may provide unique insights relevant to cortical organization, function, and evolution. METHODS In the present study, the organization of three somatosensory cortical areas of the medium-sized (5-11 kg body mass) Amazonian rodent, the paca (Cuniculus paca), was determined using a combination of electrophysiological microelectrode mapping and histochemical techniques (cytochrome oxidase and NADPH diaphorase) in tangential sections. RESULTS Electrophysiological mapping revealed a somatotopically organized primary somatosensory cortical area (S1) located in the rostral parietal cortex with a characteristic foot-medial/head-lateral contralateral body surface representation similar to that found in other species. S1 was bordered laterally by two regions housing neurons responsive to tactile stimuli, presumably the secondary somatosensory (S2) and parietal ventral (PV) cortical areas that evinced a mirror-reversal representation (relative to S1) of the contralateral body surface. The limits of the putative primary visual (V1) and primary auditory (A1) cortical areas, as well as the complete representation of the contralateral body surface in S1, were determined indirectly by the histochemical stains. Like the barrel field described in small rodents, we identified a modular arrangement located in the face representation of S1. CONCLUSIONS The relative location, somatotopic organization, and pattern of neuropil histochemical reactivity in the three paca somatosensory cortical areas investigated are similar to those described in other mammalian species, providing additional evidence of a common plan of organization for the somatosensory cortex in the rostral parietal cortex of mammals.
Collapse
Affiliation(s)
| | - João G Franca
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
| | - Antonio Pereira
- Institute of Technology, Federal University of Pará, Belem, Brazil
| |
Collapse
|
2
|
Microelectrode implants, inflammatory response and long-lasting effects on NADPH diaphorase neurons in the rat frontal cortex. Exp Brain Res 2022; 240:2569-2580. [PMID: 35947168 DOI: 10.1007/s00221-022-06434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/03/2022] [Indexed: 11/04/2022]
Abstract
At present, one of the main therapeutic challenges comprises the development of technologies to improve the life quality of people suffering from different types of body paralysis, through the reestablishment of sensory and motor functions. In this regard, brain-machine interfaces (BMI) offer hope to effectively mitigate body paralysis through the control of paralyzed body parts by brain activity. Invasive BMI use chronic multielectrode implants to record neural activity directly from the brain tissue. While such invasive devices provide the highest amount of usable neural activity for BMI control, they also involve direct damage to the nervous tissue. In the cerebral cortex, high levels of the enzyme NADPH diaphorase (NADPH-d) characterize a particular class of interneurons that regulates neuronal excitability and blood supply. To gain insight into the biocompatibility of invasive BMI, we assessed the impact of chronic implanted tungsten multielectrode bundles on the distribution and morphology of NADPH-d-reactive neurons in the rat frontal cortex. NADPH-d neuronal labeling was correlated with glial response markers and with indices of healthy neuronal activity measured by electrophysiological recordings performed up to 3 months after multielectrode implantation. Chronic electrode arrays caused a small and quite localized structural disturbance on the implanted site, with neuronal loss and glial activation circumscribed to the site of implant. Electrodes remained viable during the entire period of implantation. Moreover, neither the distribution nor the morphology of NADPH-d neurons was altered. Overall, our findings provide additional evidence that tungsten multielectrodes can be employed as a viable element for long-lasting therapeutic BMI applications.
Collapse
|
3
|
Rocha GS, Freire MAM, Paiva KM, Oliveira RF, Norrara B, Morais PLAG, Oliveira LC, Engelberth RCGJ, Cavalcante JS, Cavalcanti JRLP. Effect of senescence on the tyrosine hydroxylase and S100B immunoreactivity in the nigrostriatal pathway of the rat. J Chem Neuroanat 2022; 124:102136. [PMID: 35809809 DOI: 10.1016/j.jchemneu.2022.102136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
Senescence is a natural and progressive physiological event that leads to a series of morphophysiological alterations in the organism. The brain is the most vulnerable organ to both structural and functional changes during this process. Dopamine is a key neurotransmitter for the proper functioning of the brain, directly involved in circuitries related with emotions, learning, motivation and reward. One of the main dopamine- producing nuclei is the substantia nigra pars compacta (SNpc), which establish connections with the striatum forming the so-called nigrostriatal pathway. S100B is a calcium binding protein mainly expressed by astrocytes, involved in both intracellular and extracellular processes, and whose expression is increased following injury in the nervous tissue, being a useful marker in altered status of central nervous system. The present study aimed to analyze the impact of senescence on the cells immunoreactive for tyrosine hydroxylase (TH) and S100B along the nigrostriatal pathway of the rat. Our results show an decreased expression of S100B+ cells in SNpc. In addition, there was a significant decrease in TH immunoreactivity in both projection fibers and TH+ cell bodies. In the striatum, a decrease in TH immunoreactivity was also observed, as well as an enlargement of the white matter bundles. Our findings point out that senescence is related to the anatomical and neurochemical changes observed throughout the nigrostriatal pathway.
Collapse
Affiliation(s)
- Gabriel S Rocha
- Graduate Program in Biochemistry and Molecular Biology, University of the State of Rio Grande do Norte (UERN), Mossoró, RN, Brazil
| | - Marco Aurelio M Freire
- Graduate Program in Health and Society, University of the State of Rio Grande do Norte (UERN), Mossoró, RN, Brazil
| | - Karina M Paiva
- Graduate Program in Biochemistry and Molecular Biology, University of the State of Rio Grande do Norte (UERN), Mossoró, RN, Brazil
| | - Rodrigo F Oliveira
- Graduate Program in Biochemistry and Molecular Biology, University of the State of Rio Grande do Norte (UERN), Mossoró, RN, Brazil
| | - Bianca Norrara
- Laboratory of Experimental Neurology, University of the State of Rio Grande do Norte (UERN), Mossoró, RN, Brazil
| | - Paulo Leonardo A G Morais
- Laboratory of Experimental Neurology, University of the State of Rio Grande do Norte (UERN), Mossoró, RN, Brazil
| | - Lucidio C Oliveira
- Laboratory of Experimental Neurology, University of the State of Rio Grande do Norte (UERN), Mossoró, RN, Brazil
| | | | | | - José Rodolfo L P Cavalcanti
- Graduate Program in Biochemistry and Molecular Biology, University of the State of Rio Grande do Norte (UERN), Mossoró, RN, Brazil; Graduate Program in Health and Society, University of the State of Rio Grande do Norte (UERN), Mossoró, RN, Brazil; Laboratory of Experimental Neurology, University of the State of Rio Grande do Norte (UERN), Mossoró, RN, Brazil.
| |
Collapse
|
4
|
Souza MF, Medeiros KAAL, Lins LCRF, Bispo JMM, Gois AM, Santos ER, Almeida-Souza TH, Melo JEC, Franco HS, Silva RS, Pereira-Filho EA, Freire MAM, Santos JR. Motor, memory, and anxiety-like behavioral impairments associated with brain-derived neurotrophic factor and dopaminergic imbalance after inhalational exposure to deltamethrin. Brain Res Bull 2022; 181:55-64. [PMID: 35041849 DOI: 10.1016/j.brainresbull.2022.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/16/2022]
Abstract
Believed to cause damage to the nervous system and possibly being associated with neurodegenerative diseases, deltamethrin (DM) is a type II pyrethroid used in pest control, public health, home environment, and vector control. The objective of this study was to evaluate the motor, cognitive and emotional changes associated with dopaminergic and BDNF imbalance after DM exposure in rats. Sixty Wistar rats (9-10 months-old) were used, under Ethics Committee on Animal Research license (ID 19/2017). The animals were randomly divided into four groups: control (CTL, 0.9% saline), DM2 (2mg DM in 1.6mL 0.9% saline), DM4 (4mg of DM in 1.6mL of 0.9% saline), and DM8 (8mg of DM in 1.6mL of 0.9% saline). DM groups were submitted to 9 or 15 inhalations, one every 48hours. Half of the animals from each group were randomly selected and perfused 24hours after the 9th or 15th inhalation. Throughout the experiment, the animal's behavior were evaluated using catalepsy test, open field, hole-board test, Modified Elevated Plus Maze, and social interaction. At the end of the experiments, the rats were perfused transcardially and their brains were processed for Tyrosine Hydroxylase (TH) and Brain derived neurotrophic factor (BDNF) immunohistochemistries. The animals submitted to 9 inhalations of DM showed a reduction in immunoreactivity for TH in the Substantia nigra pars compacta (SNpc), ventral tegmental area (VTA), and dorsal striatum (DS) areas, and an increase in BDNF in the DS and CA1, CA3 and dentate gyrus (DG) hippocampal areas. Conversely, the animals submitted to 15 inhalations of DM showed immunoreactivity reduced for TH in the SNpc and VTA, and an increase in BDNF in the hippocampal areas (CA3 and DG). Our results indicate that the DM inhalation at different periods induce motor and cognitive impairments in rats. Such alterations were accompanied by dopaminergic system damage and a possible dysfunction on synaptic plasticity.
Collapse
Affiliation(s)
- Marina F Souza
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Katty A A L Medeiros
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Lívia C R F Lins
- Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - José M M Bispo
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Auderlan M Gois
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Edson R Santos
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Thiago H Almeida-Souza
- Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - João E C Melo
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Heitor S Franco
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Rodolfo S Silva
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Eduardo A Pereira-Filho
- Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Marco Aurelio M Freire
- Graduate Program in Health and Society, University of the State of Rio Grande do Norte, Mossoró/RN, Brazil
| | - José R Santos
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil.
| |
Collapse
|
5
|
Guimaraes BDPPF, Curado MR, Nogueira-Campos AA, Houzel JC, Gattass R. Nitrergic neurons of the forepaw representation in the rat somatosensory and motor cortices: A quantitative study. J Comp Neurol 2021; 529:3321-3335. [PMID: 34008863 DOI: 10.1002/cne.25192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 11/07/2022]
Abstract
Nitrergic neurons (NNs) are inhibitory neurons capable of releasing nitric oxide (NO) that are labeled with nicotinamide adenine dinucleotide phosphate diaphorase histochemistry. The rat primary somatosensory (S1) and motor (M1) cortices are a favorable model to investigate NN populations by comparing their morphology, since these areas share the border of forepaw representation. The distribution of the Type I NN of the forepaw representation in the S1 and M1 cortices of the rat in different laminar compartments and the morphological parameters related to the cell body and dendritic arborization were measured and compared. We observed that the neuronal density in the S1 (130 NN/mm3 ) was higher than the neuronal density in the M1 (119 NN/mm3 ). Most NN neurons were multipolar (S1 with 58%; M1 with 69%), and a minority of the NN neurons were horizontal (S1 with 6%; M1 with 12%). NN found in S1 had a higher verticality index than NN found in M1, and no significant differences were observed for the other morphological parameters. We also demonstrated significant differences in most of the morphological parameters of the NN between different cortical compartments of S1 and M1. Our results indicate that the NN of the forepaw in S1 and M1 corresponds to a neuronal population, where the functionality is independent of the different types of sensory and motor processing. However, the morphological differences found between the cortical compartments of S1 and M1, as well as the higher density of NNs found in S1, indicate that the release of NO varies between the areas.
Collapse
Affiliation(s)
| | - Marco Rocha Curado
- Program of Morphological Science, Institute of Biomedical Science, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anaelli Aparecida Nogueira-Campos
- Laboratory of Cognitive Neurophysiology, Department of Physiology, Institute of Biological Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Jean Christophe Houzel
- Program of Morphological Science, Institute of Biomedical Science, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo Gattass
- Program of Neurobiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Afarinesh MR, Behzadi G. The Effects of De-Whiskering and Congenital Hypothyroidism on The Development of Nitrergic Neurons in Rat Primary Somatosensory and Motor Cortices. CELL JOURNAL 2018; 20:157-167. [PMID: 29633592 PMCID: PMC5893286 DOI: 10.22074/cellj.2018.5112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/14/2017] [Indexed: 11/25/2022]
Abstract
Objective The aim of the present study is to investigate the effects of chronic whisker deprivation on possible alterations to
the development of nitrergic neurons in the whisker part of the somatosensory (wS1) and motor (wM1) cortices in offspring
with congenital hypothyroidism (CH).
Materials and Methods In the experimental study, CH was induced by adding propylthiouracil to the rats drinking water from
embryonic day 16 to postnatal day (PND) 60. In whisker-deprived (WD) pups, all the whiskers were trimmed from PND 1 to
60. Nitrergic interneurons in the wS1/M1 cortices were detected by NADPH-diaphorase histochemistry staining technique in
the control (Ctl), Ctl+WD, Hypo and Hypo+WD groups.
Results In both wS1 and wM1 cortices the number of nitrergic neurons was significantly reduced in the Hypo and
Hypo+WD groups compared to Ctl and Ctl+WD groups, respectively (P<0.05) while bilateral whisker deprivation had no
remarkable effect. The mean soma diameter size of NADPH-d labeled neurons in the Ctl+WD and Hypo+WD groups
was decreased compared to the Ctl and Hypo groups, respectively. A similar patterns of decreased NADPH-d labeled
neurons in the wS1/M1 cortices occur in the processes of nitrergic neurons in both congenital hypothyroidism and
whisker deprivation.
Conclusion Our results suggest that both congenital hypothyroidism and whisker deprivation may disturb normal
development of the wS1 and wM1 cortical circuits in which nitrergic neurons are involved.
Collapse
Affiliation(s)
- Mohammad Reza Afarinesh
- Isfahan Neuroscience Research Center (INRC), Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Gila Behzadi
- Functional Neuroanatomy Labaratory, Department of Physiology, Faculty of Medicine, Shahid Beheshti Medicine Science University, Tehran, Iran
| |
Collapse
|
7
|
Macedo-Lima M, Freire MAM, de Carvalho Pimentel H, Rodrigues Ferreira Lins LC, Amador de Lucena Medeiros KA, Viola GG, dos Santos JR, Marchioro M. Characterization of NADPH Diaphorase- and Doublecortin-Positive Neurons in the Lizard Hippocampal Formation. BRAIN, BEHAVIOR AND EVOLUTION 2017; 88:222-234. [DOI: 10.1159/000453105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/06/2016] [Indexed: 11/19/2022]
Abstract
The lizard cortex has remarkable similarities with the mammalian hippocampus. Both regions process memories, have similar cytoarchitectural properties, and are important neurogenic foci in adults. Lizards show striking levels of widespread neurogenesis in adulthood and can regenerate entire cortical areas after injury. Nitric oxide (NO) is an important regulatory factor of mammalian neurogenesis and hippocampal function. However, little is known about its role in nonmammalian neurogenesis. Here, we analyzed the distribution, morphology, and dendritic complexity (Neurolucida reconstructions) of NO-producing neurons through NADPH diaphorase (NADPHd) activity, and how they compare with the distribution of doublecortin-positive (DCX+) neurons in the hippocampal formation of the neotropical lizard Tropidurus hispidus. NADPHd-positive (NADPHd+) neurons in the dorsomedial cortex (DMC; putatively homologous to mammalian CA3) were more numerous and complex than the ones in the medial cortex (MC; putatively homologous to the dentate gyrus). We found that NADPHd+ DMC neurons send long projections into the MC. Interestingly, in the MC, NADPHd+ neurons existed in 2 patterns: small somata with low intensity of staining in the outer layer and large somata with high intensity of staining in the deep layer, a pattern similar to the mammalian cortex. Additionally, NADPHd+ neurons were absent in the granular cell layer of the MC. In contrast, DCX+ neurons were scarce in the DMC but highly numerous in the MC, particularly in the granular cell layer. We hypothesize that NO-producing neurons in the DMC provide important input to proliferating/migrating neurons in the highly neurogenic MC.
Collapse
|
8
|
Mahmoud MA, Fahmy GH, Moftah MZ, Sabry I. Distribution of nitric oxide-producing cells along spinal cord in urodeles. Front Cell Neurosci 2014; 8:299. [PMID: 25309330 PMCID: PMC4174862 DOI: 10.3389/fncel.2014.00299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 09/05/2014] [Indexed: 11/24/2022] Open
Abstract
Nitric oxide is a unique neurotransmitter, which participates in many physiological and pathological processes in the organism. There are little data about the neuronal nitric oxide synthase immunoreactivity in the spinal cord of amphibians. In this respect, the present study aims to investigate the distribution of nitric oxide producing cells in the spinal cord of urodele and to find out the possibility of a functional locomotory role to this neurotransmitter. The results of the present study demonstrate a specific pattern of NADPH-d labeling in the selected amphibian model throughout the spinal cord length as NADPH-d-producing cells and fibers were present in almost all segments of the spinal cord of the salamander investigated. However, their number, cytological characteristics and labeling intensity varied significantly. It was noticed that the NO-producing cells (NO-PC) were accumulated in the ventral side of certain segments in the spinal cord corresponding to the brachial and sacral plexuses. In addition, the number of NO-PC was found to be increased also at the beginning of the tail and this could be due to the fact that salamanders are tetrapods having bimodal locomotion, namely swimming and walking.
Collapse
Affiliation(s)
- Mayada A Mahmoud
- Faculty of Medicine, Institut de Neurosciences des Systèmes, Unités Mixtes de Recherche Institut National de la Santé et de la Recherche Médicale 1106, Aix-Marseille University Marseille, France
| | - Gehan H Fahmy
- Zoology Department, Faculty of Science, Alexandria University Alexandria, Egypt
| | - Marie Z Moftah
- Zoology Department, Faculty of Science, Alexandria University Alexandria, Egypt
| | - Ismail Sabry
- Zoology Department, Faculty of Science, Alexandria University Alexandria, Egypt
| |
Collapse
|
9
|
Hinova-Palova DV, Edelstein L, Landzhov B, Minkov M, Malinova L, Hristov S, Denaro FJ, Alexandrov A, Kiriakova T, Brainova I, Paloff A, Ovtscharoff W. Topographical distribution and morphology of NADPH-diaphorase-stained neurons in the human claustrum. Front Syst Neurosci 2014; 8:96. [PMID: 24904317 PMCID: PMC4034338 DOI: 10.3389/fnsys.2014.00096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/06/2014] [Indexed: 12/21/2022] Open
Abstract
We studied the topographical distribution and morphological characteristics of NADPH-diaphorase-positive neurons and fibers in the human claustrum. These neurons were seen to be heterogeneously distributed throughout the claustrum. Taking into account the size and shape of stained perikarya as well as dendritic and axonal characteristics, Nicotinamide adenine dinucleotide phosphate-diaphorase (NADPHd)-positive neurons were categorized by diameter into three types: large, medium and small. Large neurons ranged from 25 to 35 μm in diameter and typically displayed elliptical or multipolar cell bodies. Medium neurons ranged from 20 to 25 μm in diameter and displayed multipolar, bipolar and irregular cell bodies. Small neurons ranged from 14 to 20 μm in diameter and most often displayed oval or elliptical cell bodies. Based on dendritic characteristics, these neurons were divided into spiny and aspiny subtypes. Our findings reveal two populations of NADPHd-positive neurons in the human claustrum-one comprised of large and medium cells consistent with a projection neuron phenotype, the other represented by small cells resembling the interneuron phenotype as defined by previous Golgi impregnation studies.
Collapse
Affiliation(s)
- Dimka V Hinova-Palova
- Department of Anatomy, Histology, and Embryology, Medical University Sofia, Bulgaria
| | | | - Boycho Landzhov
- Department of Anatomy, Histology, and Embryology, Medical University Sofia, Bulgaria
| | - Minko Minkov
- Department of Anatomy and Histology, Medical University Varna, Bulgaria
| | - Lina Malinova
- Department of Anatomy, Histology, and Embryology, Medical University Sofia, Bulgaria
| | - Stanislav Hristov
- Department of Forensic Medicine and Deontology, Medical University Sofia, Bulgaria
| | - Frank J Denaro
- Department of Biology, Morgan State University Baltimore, MD, USA
| | - Alexandar Alexandrov
- Department of Forensic Medicine and Deontology, Medical University Sofia, Bulgaria
| | - Teodora Kiriakova
- Department of Forensic Medicine and Deontology, Medical University Sofia, Bulgaria
| | - Ilina Brainova
- Department of Forensic Medicine and Deontology, Medical University Sofia, Bulgaria
| | - Adrian Paloff
- Department of Anatomy, Histology, and Embryology, Medical University Sofia, Bulgaria
| | - Wladimir Ovtscharoff
- Department of Anatomy, Histology, and Embryology, Medical University Sofia, Bulgaria
| |
Collapse
|
10
|
Freire MAM, Santos JR. Distinct morphological features of NADPH diaphorase neurons across rodent's primary cortices. Front Neural Circuits 2013; 7:83. [PMID: 23637654 PMCID: PMC3636462 DOI: 10.3389/fncir.2013.00083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 04/12/2013] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marco A M Freire
- Laboratory of Cellular Neurobiology, Edmond and Lily Safra International Institute for Neuroscience of Natal Natal, Brazil
| | | |
Collapse
|
11
|
Tricoire L, Vitalis T. Neuronal nitric oxide synthase expressing neurons: a journey from birth to neuronal circuits. Front Neural Circuits 2012; 6:82. [PMID: 23227003 PMCID: PMC3514612 DOI: 10.3389/fncir.2012.00082] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 10/25/2012] [Indexed: 12/17/2022] Open
Abstract
Nitric oxide (NO) is an important signaling molecule crucial for many physiological processes such as synaptic plasticity, vasomotricity, and inflammation. Neuronal nitric oxide synthase (nNOS) is the enzyme responsible for the synthesis of NO by neurons. In the juvenile and mature hippocampus and neocortex nNOS is primarily expressed by subpopulations of GABAergic interneurons. Over the past two decades, many advances have been achieved in the characterization of neocortical and hippocampal nNOS expressing neurons. In this review, we summarize past and present studies that have characterized the electrophysiological, morphological, molecular, and synaptic properties of these neurons. We also discuss recent studies that have shed light on the developmental origins and specification of GABAergic neurons with specific attention to neocortical and hippocampal nNOS expressing GABAergic neurons. Finally, we summarize the roles of NO and nNOS-expressing inhibitory neurons.
Collapse
Affiliation(s)
- Ludovic Tricoire
- CNRS-UMR 7102, Laboratoire de Neurobiologie des Processus Adaptatifs, Université Pierre et Marie Curie Paris, France
| | | |
Collapse
|
12
|
Nogueira-Campos AA, Finamore DM, Imbiriba LA, Houzel JC, Franca JG. Distribution and morphology of nitrergic neurons across functional domains of the rat primary somatosensory cortex. Front Neural Circuits 2012; 6:57. [PMID: 23133407 PMCID: PMC3490138 DOI: 10.3389/fncir.2012.00057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 08/06/2012] [Indexed: 12/26/2022] Open
Abstract
The rat primary somatosensory cortex (S1) is remarkable for its conspicuous vertical compartmentalization in barrels and septal columns, which are additionally stratified in horizontal layers. Whereas excitatory neurons from each of these compartments perform different types of processing, the role of interneurons is much less clear. Among the numerous types of GABAergic interneurons, those producing nitric oxide (NO) are especially puzzling, since this gaseous messenger can modulate neural activity, synaptic plasticity, and neurovascular coupling. We used a quantitative morphological approach to investigate whether nitrergic interneurons, which might therefore be considered both as NO volume diffusers and as elements of local circuitry, display features that could relate to barrel cortex architecture. In fixed brain sections, nitrergic interneurons can be revealed by histochemical processing for NADPH-diaphorase (NADPHd). Here, the dendritic arbors of nitrergic neurons from different compartments of area S1 were 3D reconstructed from serial 200 μm thick sections, using 100x objective and the Neurolucida system. Standard morphological parameters were extracted for all individual arbors and compared across columns and layers. Wedge analysis was used to compute dendritic orientation indices. Supragranular (SG) layers displayed the highest density of nitrergic neurons, whereas layer IV contained nitrergic neurons with largest soma area. The highest nitrergic neuronal density was found in septa, where dendrites were previously characterized as more extense and ramified than in barrels. Dendritic arbors were not confined to the boundaries of the column nor layer of their respective soma, being mostly double-tufted and vertically oriented, except in SG layers. These data strongly suggest that nitrergic interneurons adapt their morphology to the dynamics of processing performed by cortical compartments.
Collapse
Affiliation(s)
- Anaelli A Nogueira-Campos
- Laboratório de Neurobiologia II, Programa de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil ; Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora Juiz de Fora, Brazil
| | | | | | | | | |
Collapse
|
13
|
Dittrich L, Heiss JE, Warrier DR, Perez XA, Quik M, Kilduff TS. Cortical nNOS neurons co-express the NK1 receptor and are depolarized by Substance P in multiple mammalian species. Front Neural Circuits 2012; 6:31. [PMID: 22679419 PMCID: PMC3367498 DOI: 10.3389/fncir.2012.00031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 05/06/2012] [Indexed: 11/17/2022] Open
Abstract
We have previously demonstrated that Type I neuronal nitric oxide synthase (nNOS)-expressing neurons are sleep-active in the cortex of mice, rats, and hamsters. These neurons are known to be GABAergic, to express Neuropeptide Y (NPY) and, in rats, to co-express the Substance P (SP) receptor NK1, suggesting a possible role for SP in sleep/wake regulation. To evaluate the degree of co-expression of nNOS and NK1 in the cortex among mammals, we used double immunofluorescence for nNOS and NK1 and determined the anatomical distribution in mouse, rat, and squirrel monkey cortex. Type I nNOS neurons co-expressed NK1 in all three species although the anatomical distribution within the cortex was species-specific. We then performed in vitro patch clamp recordings in cortical neurons in mouse and rat slices using the SP conjugate tetramethylrhodamine-SP (TMR-SP) to identify NK1-expressing cells and evaluated the effects of SP on these neurons. Bath application of SP (0.03–1 μM) resulted in a sustained increase in firing rate of these neurons; depolarization persisted in the presence of tetrodotoxin. These results suggest a conserved role for SP in the regulation of cortical sleep-active neurons in mammals.
Collapse
Affiliation(s)
- Lars Dittrich
- Biosciences Division, Center for Neuroscience, SRI International, Menlo Park CA, USA
| | | | | | | | | | | |
Collapse
|
14
|
Freire MAM, Faber J, Picanço-Diniz CW, Franca JG, Pereira A. Morphometric variability of nicotinamide adenine dinucleotide phosphate diaphorase neurons in the primary sensory areas of the rat. Neuroscience 2011; 205:140-53. [PMID: 22226695 DOI: 10.1016/j.neuroscience.2011.12.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 12/14/2011] [Accepted: 12/15/2011] [Indexed: 12/21/2022]
Abstract
Even though there is great regional variation in the distribution of inhibitory neurons in the mammalian isocortex, relatively little is known about their morphological differences across areal borders. To obtain a better understanding of particularities of inhibitory circuits in cortical areas that correspond to different sensory modalities, we investigated the morphometric differences of a subset of inhibitory neurons reactive to the enzyme nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) within the primary auditory (A1), somatosensory (S1), and visual (V1) areas of the rat. One hundred and twenty NADPH-d-reactive neurons from cortical layer IV (40 cells in each cortical area) were reconstructed using the Neurolucida system. We collected morphometric data on cell body area, dendritic field area, number of dendrites per branching order, total dendritic length, dendritic complexity (Sholl analysis), and fractal dimension. To characterize different cell groups based on morphology, we performed a cluster analysis based on the previously mentioned parameters and searched for correlations among these variables. Morphometric analysis of NADPH-d neurons allowed us to distinguish three groups of cells, corresponding to the three analyzed areas. S1 neurons have a higher morphological complexity than those found in both A1 and V1. The difference among these groups, based on cluster analysis, was mainly related to the size and complexity of dendritic branching. A principal component analysis (PCA) applied to the data showed that area of dendritic field and fractal dimension are the parameters mostly responsible for dataset variance among the three areas. Our results suggest that the nitrergic cortical circuitry of primary sensory areas of the rat is differentially specialized, probably reflecting peculiarities of both habit and behavior of the species.
Collapse
Affiliation(s)
- M A M Freire
- Laboratory of Neurodegeneration and Infection, João de Barros Barreto Universitary Hospital, Federal University of Pará, 66073-000 Belém, PA, Brazil
| | | | | | | | | |
Collapse
|
15
|
Freire MAM, Morya E, Faber J, Santos JR, Guimaraes JS, Lemos NAM, Sameshima K, Pereira A, Ribeiro S, Nicolelis MAL. Comprehensive analysis of tissue preservation and recording quality from chronic multielectrode implants. PLoS One 2011; 6:e27554. [PMID: 22096594 PMCID: PMC3212580 DOI: 10.1371/journal.pone.0027554] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 10/19/2011] [Indexed: 11/18/2022] Open
Abstract
Multielectrodes have been used with great success to simultaneously record the activity of neuronal populations in awake, behaving animals. In particular, there is great promise in the use of this technique to allow the control of neuroprosthetic devices by human patients. However, it is crucial to fully characterize the tissue response to the chronic implants in animal models ahead of the initiation of human clinical trials. Here we evaluated the effects of unilateral multielectrode implants on the motor cortex of rats weekly recorded for 1-6 months using several histological methods to assess metabolic markers, inflammatory response, immediate-early gene (IEG) expression, cytoskeletal integrity and apoptotic profiles. We also investigated the correlations between each of these features and firing rates, to estimate the impact of post-implant time on neuronal recordings. Overall, limited neuronal loss and glial activation were observed on the implanted sites. Reactivity to enzymatic metabolic markers and IEG expression were not significantly different between implanted and non-implanted hemispheres. Multielectrode recordings remained viable for up to 6 months after implantation, and firing rates correlated well to the histochemical and immunohistochemical markers. Altogether, our results indicate that chronic tungsten multielectrode implants do not substantially alter the histological and functional integrity of target sites in the cerebral cortex.
Collapse
Affiliation(s)
| | - Edgard Morya
- Clinical Neurophysiology Laboratory of the Associação Alberto Santos Dumont para Apoio a Pesquisa, Sírio Libanês Hospital, São Paulo/SP, Brazil
| | - Jean Faber
- Edmond and Lily Safra International Institute of Neuroscience of Natal, Natal/RN, Brazil
- Foundation Nanosciences and Clinatec/LETI/CEA, Grenoble, France
| | - Jose Ronaldo Santos
- Edmond and Lily Safra International Institute of Neuroscience of Natal, Natal/RN, Brazil
| | - Joanilson S. Guimaraes
- Edmond and Lily Safra International Institute of Neuroscience of Natal, Natal/RN, Brazil
| | - Nelson A. M. Lemos
- Edmond and Lily Safra International Institute of Neuroscience of Natal, Natal/RN, Brazil
| | - Koichi Sameshima
- Clinical Neurophysiology Laboratory of the Associação Alberto Santos Dumont para Apoio a Pesquisa, Sírio Libanês Hospital, São Paulo/SP, Brazil
- Department of Radiology, School of Medicine, University of São Paulo, São Paulo/SP, Brazil
| | - Antonio Pereira
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Sidarta Ribeiro
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Miguel A. L. Nicolelis
- Edmond and Lily Safra International Institute of Neuroscience of Natal, Natal/RN, Brazil
- Clinical Neurophysiology Laboratory of the Associação Alberto Santos Dumont para Apoio a Pesquisa, Sírio Libanês Hospital, São Paulo/SP, Brazil
- Center for Neuroengineering, Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
- Department of Psychological and Brain Sciences, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
16
|
Cao Z, Jia Z, Liu Y, Wang M, Zhao J, Zheng J, Wang G. Constitutive expression of ZmsHSP in Arabidopsis enhances their cytokinin sensitivity. Mol Biol Rep 2010; 37:1089-97. [PMID: 19821154 DOI: 10.1007/s11033-009-9848-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2009] [Accepted: 09/28/2009] [Indexed: 01/15/2023]
Abstract
A small HSP gene, ZmsHSP, was isolated from Zea mays. Sequence analysis revealed that the open reading frame of ZmsHSP was 477 bp and that it encodes a protein composed of 159 amino acid residues with a calculated molecular mass of 18.17 kD and a predicated isoelectric point (pI) of 5.63. ZmsHSP contains a CS domain (p23-like domain) and shares similarity with the HSP90 co-chaperone p23. The expression level of ZmsHSP was different among various tissues with the highest expression in leaves and the lowest in silks. Results also showed that the expression of ZmsHSP in maize was significantly up-regulated by dehydration. Transgenic Arabidopsis plants overexpressing ZmsHSP under the control of the CaMV 35S promoter had lower endogenous cytokinin content and showed more sensitivity to cytokinin during the germination and early seedling stage than wild-type plants, suggesting that ZmsHSP might has a function in cytokinin response in Zea mays.
Collapse
Affiliation(s)
- Zuping Cao
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100094, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Freire MAM, Rocha EG, Oliveira JLF, Guimarães JS, Silveira LCL, Elston GN, Pereira A, Picanço-Diniz CW. Morphological variability of NADPH diaphorase neurons across areas V1, V2, and V3 of the common agouti. Brain Res 2009; 1318:52-63. [PMID: 20036219 DOI: 10.1016/j.brainres.2009.12.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 12/11/2009] [Accepted: 12/14/2009] [Indexed: 01/24/2023]
Abstract
Previous studies have shown a noticeable phenotypic diversity for pyramidal cells among cortical areas in the cerebral cortex. Both the extent and systematic nature of this variation suggests a correlation with particular aspects of cortical processing. Nevertheless, regional variations in the morphology of inhibitory cells have not been evaluated with the same detail. In the present study we performed a 3D morphometric analysis of 120 NADPH diaphorase (NADPH-d) type I neurons in the visual cortex of a South American Hystricomorph rodent, the diurnal agouti (Dasyprocta sp.). We found significant differences in morphology of NADPH-d type I neurons among visual cortical areas: cells became progressively larger and more branched from V1 to V2 and V3. Presumably, the specialized morphology of these cells is correlated with different sampling geometry and function. The data suggest that area-specific specializations of cortical inhibitory circuitry are also present in rodents.
Collapse
Affiliation(s)
- Marco Aurélio M Freire
- Lab. Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, 66073-000 Belém, PA, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Bahia CP, Houzel JC, Picanço-Diniz CW, Pereira A. Spatiotemporal distribution of proteoglycans in the developing rat's barrel field and the effects of early deafferentation. J Comp Neurol 2008; 510:145-57. [DOI: 10.1002/cne.21781] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Freire MAM, Tourinho SC, Guimarães JS, Oliveira JLF, Picanço-Diniz CW, Gomes-Leal W, Pereira A. Histochemical characterization, distribution and morphometric analysis of NADPH diaphorase neurons in the spinal cord of the agouti. Front Neuroanat 2008; 2:2. [PMID: 18958200 PMCID: PMC2525924 DOI: 10.3389/neuro.05.002.2008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 05/08/2008] [Indexed: 01/12/2023] Open
Abstract
We evaluated the neuropil distribution of the enzymes NADPH diaphorase (NADPH-d) and cytochrome oxidase (CO) in the spinal cord of the agouti, a medium-sized diurnal rodent, together with the distribution pattern and morphometrical characteristics of NADPH-d reactive neurons across different spinal segments. Neuropil labeling pattern was remarkably similar for both enzymes in coronal sections: reactivity was higher in regions involved with pain processing. We found two distinct types of NADPH-d reactive neurons in the agouti's spinal cord: type I neurons had large, heavily stained cell bodies while type II neurons displayed relatively small and poorly stained somata. We concentrated our analysis on type I neurons. These were found mainly in the dorsal horn and around the central canal of every spinal segment, with a few scattered neurons located in the ventral horn of both cervical and lumbar regions. Overall, type I neurons were more numerous in the cervical region. Type I neurons were also found in the white matter, particularly in the ventral funiculum. Morphometrical analysis revealed that type I neurons located in the cervical region have dendritic trees that are more complex than those located in both lumbar and thoracic regions. In addition, NADPH-d cells located in the ventral horn had a larger cell body, especially in lumbar segments. The resulting pattern of cell body and neuropil distribution is in accordance with proposed schemes of segregation of function in the mammalian spinal cord.
Collapse
Affiliation(s)
- Marco Aurélio M Freire
- Laboratory of Functional Neuroanatomy, Institute of Biological Sciences, Federal University of Pará Belém, Brazil
| | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Freire MAM, Oliveira RB, Picanço-Diniz CW, Pereira A. Differential effects of methylmercury intoxication in the rat's barrel field as evidenced by NADPH diaphorase histochemistry. Neurotoxicology 2006; 28:175-81. [PMID: 16930717 DOI: 10.1016/j.neuro.2006.06.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 06/20/2006] [Accepted: 06/22/2006] [Indexed: 10/24/2022]
Abstract
In the present study, we investigated the effects of mercury intoxication on the structure of the posteromedial barrel subfield (PMBSF) in the primary somatosensory cortex (SI) of adult rats, as revealed by histochemical reactivity to the enzyme NADPH diaphorase (NADPH-d). Enzymatic reactivity in the neuropil inside barrels was drastically reduced in intoxicated animals, suggesting that the synthesis and/or transport of the nitric oxide synthase enzyme can be altered in acute mercury intoxication. However, the cell bodies and dendrites of barrel neurons, also strongly reactive to the enzyme, were spared from the mercury's deleterious effects.
Collapse
Affiliation(s)
- Marco Aurélio M Freire
- Laboratory of Functional Neuroanatomy, Department of Morphology, Federal University of Pará, Belém 66075-900, PA, Brazil.
| | | | | | | |
Collapse
|
22
|
Freire MAM, Franca JG, Picanço-Diniz CW, Pereira A. Neuropil reactivity, distribution and morphology of NADPH diaphorase type I neurons in the barrel cortex of the adult mouse. J Chem Neuroanat 2006; 30:71-81. [PMID: 16002260 DOI: 10.1016/j.jchemneu.2005.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 01/11/2005] [Accepted: 04/25/2005] [Indexed: 10/25/2022]
Abstract
The mouse, like a few other rodent and marsupial species, displays a striking modular architecture in its primary somatosensory cortex (SI). These modules, known as barrels, are mostly defined by the peculiar arrangement of granule cells and thalamic axons in layer IV. In the present work, we studied both the distribution and morphology of neurons stained for NADPH diaphorase (NADPH-d) and neuropil reactivity in the posteromedial barrel subfield (PMBSF), which represents the mystacial whiskers. We then compared our results with previous descriptions of NADPH-d distribution in both neonatal and young mice. We found two types of neurons in the PMBSF: type I neurons, which have large cell bodies and are heavily stained by the NADPH-d reaction; and type II neurons, characterized by relatively small and poorly stained cell bodies. The distribution of type I cells in the PMBSF was not homogenous, with cells tending to concentrate in septa between barrels. Moreover, the cells found in septal region possess both a larger and more complex dendritic arborization than cells located inside barrels. Our findings are at variance with results from other groups that reported both an absence of type II cells and a homogeneous distribution of type I cells in the PMBSF of young animals. In addition, our results show a distribution of type I cells which is very similar to that previously described for the rat's barrel field.
Collapse
Affiliation(s)
- Marco Aurélio M Freire
- Laboratory of Functional Neuroanatomy, Department of Morphology, Biological Sciences Building, Federal University of Pará, Belém, PA, Brazil
| | | | | | | |
Collapse
|
23
|
Rocha EG, Santiago LF, Freire MAM, Gomes-Leal W, Dias IA, Lent R, Houzel JC, Franca JG, Pereira A, Picanço-Diniz CW. Callosal axon arbors in the limb representations of the somatosensory cortex (SI) in the agouti (Dasyprocta primnolopha). J Comp Neurol 2006; 500:255-66. [PMID: 17111360 DOI: 10.1002/cne.21167] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The present report compares the morphology of callosal axon arbors projecting from and to the hind- or forelimb representations in the primary somatosensory cortex (SI) of the agouti (Dasyprocta primnolopha), a large, lisencephlic Brazilian rodent that uses forelimb coordination for feeding. Callosal axons were labeled after single pressure (n = 6) or iontophoretic injections (n = 2) of the neuronal tracer biotinylated dextran amine (BDA, 10 kD), either into the hind- (n = 4) or forelimb (n = 4) representations of SI, as identified by electrophysiological recording. Sixty-nine labeled axon fragments located across all layers of contralateral SI representations of the hindlimb (n = 35) and forelimb (n = 34) were analyzed. Quantitative morphometric features such as densities of branching points and boutons, segments length, branching angles, and terminal field areas were measured. Cluster analysis of these values revealed the existence of two types of axon terminals: Type I (46.4%), less branched and more widespread, and Type II (53.6%), more branched and compact. Both axon types were asymmetrically distributed; Type I axonal fragments being more frequent in hindlimb (71.9%) vs. forelimb (28.13%) representation, while most of Type II axonal arbors were found in the forelimb representation (67.56%). We concluded that the sets of callosal axon connecting fore- and hindlimb regions in SI are morphometrically distinct from each other. As callosal projections in somatosensory and motor cortices seem to be essential for bimanual interaction, we suggest that the morphological specialization of callosal axons in SI of the agouti may be correlated with this particular function.
Collapse
Affiliation(s)
- E G Rocha
- Laboratório de Neuroanatomia Funcional, Departamento de Morfologia-Universidade Federal do Pará, 66075-900 Belém, PA, Brasil
| | | | | | | | | | | | | | | | | | | |
Collapse
|