1
|
Arasappan D, Spears A, Shah S, Mayfield RD, Akula N, McMahon FJ, Jabbi M. Brain transcriptomic signatures for mood disorders and suicide phenotypes: an anterior insula and subgenual ACC network postmortem study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.606080. [PMID: 39185191 PMCID: PMC11343154 DOI: 10.1101/2024.08.14.606080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Mood disorders affect over ten percent of humans, but studies dissecting the brain anatomical and molecular neurobiological mechanisms underlying mood (dys)functions have not consistently identified the patterns of pathological changes in relevant brain regions. Recent studies have identified pathological changes in the anterior insula (Ant-Ins) and subgenual anterior cingulate (sgACC) brain network in mood disorders, in line with this network's role in regulating mood/affective feeling states. Here, we applied whole-tissue RNA-sequencing measures of differentially expressed genes (DEGs) in mood disorders versus (vs.) psychiatrically unaffected controls (controls) to identify postmortem molecular pathological markers for mood disorder phenotypes. Using data-driven factor analysis of the postmortem phenotypic variables to determine relevant sources of population variances, we identified DEGs associated with mood disorder-related diagnostic phenotypes by combining gene co-expression, differential gene expression, and pathway-enrichment analyses. We found downregulation/under expression of inflammatory, and protein synthesis-related genes associated with psychiatric morbidity (i.e., all co-occurring mental disorders and suicide outcomes/death by suicide) in Ant-Ins, in contrasts to upregulation of synaptic membrane and ion channel-related genes with increased psychiatric morbidity in sgACC. Our results identified a preponderance of downregulated metabolic, protein synthesis, inflammatory, and synaptic membrane DEGs associated with suicide outcomes in relation to a factor representing longevity in the Ant-Ins and sgACC (AIAC) network. Our study revealed a critical brain network molecular repertoire for mood disorder phenotypes, including suicide outcomes and longevity, and provides a framework for defining dosage-sensitive (i.e., downregulated vs. upregulated) molecular signatures for mood disorder phenotypic complexity and pathological outcomes.
Collapse
Affiliation(s)
- Dhivya Arasappan
- Center for Biomedical Research Support, The University of Texas at Austin, Dell Medical School, Austin, Texas, USA
| | - Abigail Spears
- Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin, Dell Medical School, Austin, Texas, USA
| | - Simran Shah
- Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin, Dell Medical School, Austin, Texas, USA
| | - Roy D Mayfield
- Department of Neuroscience and Waggoner Center for Addiction Research, The University of Texas at Austin
| | - Nirmala Akula
- Genetic Basis of Mood & Anxiety Section, Intramural Research Program, NIMH, NIH, Bethesda, MD USA
| | - Francis J McMahon
- Genetic Basis of Mood & Anxiety Section, Intramural Research Program, NIMH, NIH, Bethesda, MD USA
| | - Mbemba Jabbi
- Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin, Dell Medical School, Austin, Texas, USA
- Center for Learning and Memory, The University of Texas at Austin, Dell Medical School, Austin, Texas, USA
- Mulva clinics for the Neurosciences, Dell Medical School, Austin, Texas, USA
| |
Collapse
|
2
|
Morikawa S, Tanabe K, Kaneko N, Hishimura N, Nakamura A. Comprehensive overview of disease models for Wolfram syndrome: toward effective treatments. Mamm Genome 2024; 35:1-12. [PMID: 38351344 DOI: 10.1007/s00335-023-10028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/27/2023] [Indexed: 02/23/2024]
Abstract
Wolfram syndrome (OMIM 222300) is a rare autosomal recessive disease with a devastating array of symptoms, including diabetes mellitus, optic nerve atrophy, diabetes insipidus, hearing loss, and neurological dysfunction. The discovery of the causative gene, WFS1, has propelled research on this disease. However, a comprehensive understanding of the function of WFS1 remains unknown, making the development of effective treatment a pressing challenge. To bridge these knowledge gaps, disease models for Wolfram syndrome are indispensable, and understanding the characteristics of each model is critical. This review will provide a summary of the current knowledge regarding WFS1 function and offer a comprehensive overview of established disease models for Wolfram syndrome, covering animal models such as mice, rats, flies, and zebrafish, along with induced pluripotent stem cell (iPSC)-derived human cellular models. These models replicate key aspects of Wolfram syndrome, contributing to a deeper understanding of its pathogenesis and providing a platform for discovering potential therapeutic approaches.
Collapse
Affiliation(s)
- Shuntaro Morikawa
- Department of Pediatrics, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo, 060-8638, Japan.
| | - Katsuya Tanabe
- Division of Endocrinology, Metabolism, Haematological Science and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Naoya Kaneko
- Department of Pediatrics, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo, 060-8638, Japan
| | - Nozomi Hishimura
- Department of Pediatrics, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo, 060-8638, Japan
| | - Akie Nakamura
- Department of Pediatrics, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo, 060-8638, Japan
| |
Collapse
|
3
|
Wang W, Wang Z, Cao J, Dong Y, Chen Y. Roles of Rac1-Dependent Intrinsic Forgetting in Memory-Related Brain Disorders: Demon or Angel. Int J Mol Sci 2023; 24:10736. [PMID: 37445914 DOI: 10.3390/ijms241310736] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Animals are required to handle daily massive amounts of information in an ever-changing environment, and the resulting memories and experiences determine their survival and development, which is critical for adaptive evolution. However, intrinsic forgetting, which actively deletes irrelevant information, is equally important for memory acquisition and consolidation. Recently, it has been shown that Rac1 activity plays a key role in intrinsic forgetting, maintaining the balance of the brain's memory management system in a controlled manner. In addition, dysfunctions of Rac1-dependent intrinsic forgetting may contribute to memory deficits in neurological and neurodegenerative diseases. Here, these new findings will provide insights into the neurobiology of memory and forgetting, pathological mechanisms and potential therapies for brain disorders that alter intrinsic forgetting mechanisms.
Collapse
Affiliation(s)
- Wei Wang
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zixu Wang
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jing Cao
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yulan Dong
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yaoxing Chen
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
4
|
ATF6β Deficiency Elicits Anxiety-like Behavior and Hyperactivity Under Stress Conditions. Neurochem Res 2023; 48:2175-2186. [PMID: 36853481 DOI: 10.1007/s11064-023-03900-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/31/2023] [Accepted: 02/21/2023] [Indexed: 03/01/2023]
Abstract
Activating transcription factor 6 (ATF6) is an endoplasmic reticulum (ER) stress-regulated transcription factor that induces expression of major molecular chaperones in the ER. We recently reported that ATF6β, a subtype of ATF6, promoted survival of hippocampal neurons exposed to ER stress and excitotoxicity, at least in part by inducing expression of calreticulin, an ER molecular chaperone with high Ca2+-binding capacity. In the present study, we demonstrate that ATF6β deficiency in mice also decreases calreticulin expression and increases expression of glucose-regulated protein 78, another ER molecular chaperone, in emotional brain regions such as the prefrontal cortex (PFC), hypothalamus, hippocampus, and amygdala. Comprehensive behavioral analyses revealed that Atf6b-/- mice exhibit anxiety-like behavior in the light/dark transition test and hyperactivity in the forced swim test. Consistent with these results, PFC and hypothalamic corticotropin-releasing hormone (CRH) expression was increased in Atf6b-/- mice, as was circulating corticosterone. Moreover, CRH receptor 1 antagonism alleviated anxiety-like behavior in Atf6b-/- mice. These findings suggest that ATF6β deficiency produces anxiety-like behavior and hyperactivity via a CRH receptor 1-dependent mechanism. ATF6β could play a role in psychiatric conditions in the emotional centers of the brain.
Collapse
|
5
|
Rossi G, Ordazzo G, Vanni NN, Castoldi V, Iannielli A, Di Silvestre D, Bellini E, Bernardo L, Giannelli SG, Luoni M, Muggeo S, Leocani L, Mauri P, Broccoli V. MCT1-dependent energetic failure and neuroinflammation underlie optic nerve degeneration in Wolfram syndrome mice. eLife 2023; 12:81779. [PMID: 36645345 PMCID: PMC9891717 DOI: 10.7554/elife.81779] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
Wolfram syndrome 1 (WS1) is a rare genetic disorder caused by mutations in the WFS1 gene leading to a wide spectrum of clinical dysfunctions, among which blindness, diabetes, and neurological deficits are the most prominent. WFS1 encodes for the endoplasmic reticulum (ER) resident transmembrane protein wolframin with multiple functions in ER processes. However, the WFS1-dependent etiopathology in retinal cells is unknown. Herein, we showed that Wfs1 mutant mice developed early retinal electrophysiological impairments followed by marked visual loss. Interestingly, axons and myelin disruption in the optic nerve preceded the degeneration of the retinal ganglion cell bodies in the retina. Transcriptomics at pre-degenerative stage revealed the STAT3-dependent activation of proinflammatory glial markers with reduction of the homeostatic and pro-survival factors glutamine synthetase and BDNF. Furthermore, label-free comparative proteomics identified a significant reduction of the monocarboxylate transport isoform 1 (MCT1) and its partner basigin that are highly enriched on retinal glia and myelin-forming oligodendrocytes in optic nerve together with wolframin. Loss of MCT1 caused a failure in lactate transfer from glial to neuronal cell bodies and axons leading to a chronic hypometabolic state. Thus, this bioenergetic impairment is occurring concurrently both within the axonal regions and cell bodies of the retinal ganglion cells, selectively endangering their survival while impacting less on other retinal cells. This metabolic dysfunction occurs months before the frank RGC degeneration suggesting an extended time-window for intervening with new therapeutic strategies focused on boosting retinal and optic nerve bioenergetics in WS1.
Collapse
Affiliation(s)
- Greta Rossi
- Division of Neuroscience, San Raffaele Scientific InstituteMilanoItaly
| | - Gabriele Ordazzo
- Division of Neuroscience, San Raffaele Scientific InstituteMilanoItaly
| | - Niccolò N Vanni
- Division of Neuroscience, San Raffaele Scientific InstituteMilanoItaly
| | - Valerio Castoldi
- Division of Neuroscience, San Raffaele Scientific InstituteMilanoItaly
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific InstituteMilanItaly
| | - Angelo Iannielli
- Division of Neuroscience, San Raffaele Scientific InstituteMilanoItaly
- National Research Council of Italy, Institute of NeuroscienceMilanoItaly
| | - Dario Di Silvestre
- National Research Council of Italy, Institute of Technologies in BiomedicineMilanItaly
| | - Edoardo Bellini
- Division of Neuroscience, San Raffaele Scientific InstituteMilanoItaly
| | - Letizia Bernardo
- National Research Council of Italy, Institute of Technologies in BiomedicineMilanItaly
| | | | - Mirko Luoni
- Division of Neuroscience, San Raffaele Scientific InstituteMilanoItaly
- National Research Council of Italy, Institute of NeuroscienceMilanoItaly
| | - Sharon Muggeo
- Division of Neuroscience, San Raffaele Scientific InstituteMilanoItaly
| | - Letizia Leocani
- Division of Neuroscience, San Raffaele Scientific InstituteMilanoItaly
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific InstituteMilanItaly
| | - PierLuigi Mauri
- National Research Council of Italy, Institute of Technologies in BiomedicineMilanItaly
| | - Vania Broccoli
- Division of Neuroscience, San Raffaele Scientific InstituteMilanoItaly
- National Research Council of Italy, Institute of NeuroscienceMilanoItaly
| |
Collapse
|
6
|
Psychiatric Diagnoses and Medications in Wolfram Syndrome. Scand J Child Adolesc Psychiatr Psychol 2022; 10:163-174. [PMID: 36687263 PMCID: PMC9828213 DOI: 10.2478/sjcapp-2022-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Wolfram Syndrome is a rare genetic disorder usually resulting from pathogenic variation in the WFS1 gene, which leads to an exaggerated endoplasmic reticulum (ER) stress response. The disorder is typically characterized by diabetes insipidus, diabetes mellitus, optic nerve atrophy, hearing loss, and neurodegenerative features. Existing literature suggests it may also have psychiatric manifestations. Objective To examine lifetime psychiatric diagnoses and medication history in Wolfram Syndrome. Method Child, adolescent, and young adult Wolfram Syndrome participants (n=39) were assessed by a child & adolescent psychiatrist to determine best estimate DSM-5 lifetime psychiatric diagnoses as well as psychoactive medication history. In addition, the Child & Adolescent Symptom Inventory-5 (CASI-5) Parent Checklist was used to determine likely psychiatric diagnoses based on symptom counts in Wolfram Syndrome patients (n=33), type 1 diabetes (n=15), and healthy comparison (n=18) groups. Results Study participants with Wolfram Syndrome had high lifetime rates of anxiety disorders (77%). Also, 31% had an obsessive-compulsive spectrum disorder, 33% had a mood disorder, 31% had a neurodevelopmental or disruptive behavior disorder, and 31% had a sleep-wake disorder. More than half of Wolfram Syndrome participants had taken at least one psychoactive medication, and one third had taken at least one selective serotonin reuptake inhibitor (SSRI). Some individuals reported poor response to sertraline but better response after switching to another SSRI (fluoxetine or citalopram). In general, people with Wolfram Syndrome often reported benefit from psychotherapy and/or commonly used psychoactive medications appropriate for their psychiatric diagnoses. Conclusions Wolfram Syndrome may be associated with elevated risk for anxiety and obsessive-compulsive spectrum disorders, which seem generally responsive to usual treatments for these disorders.
Collapse
|
7
|
Crouzier L, Danese A, Yasui Y, Richard EM, Liévens JC, Patergnani S, Couly S, Diez C, Denus M, Cubedo N, Rossel M, Thiry M, Su TP, Pinton P, Maurice T, Delprat B. Activation of the sigma-1 receptor chaperone alleviates symptoms of Wolfram syndrome in preclinical models. Sci Transl Med 2022; 14:eabh3763. [PMID: 35138910 PMCID: PMC9516885 DOI: 10.1126/scitranslmed.abh3763] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Wolfram syndrome is a rare autosomal recessive disease affecting many organs with life-threatening consequences; currently, no treatment is available. The disease is caused by mutations in the WSF1 gene, coding for the protein wolframin, an endoplasmic reticulum (ER) transmembrane protein involved in contacts between ER and mitochondria termed as mitochondria-associated ER membranes (MAMs). Inherited mutations usually reduce the protein's stability, altering its homeostasis and ultimately reducing ER to mitochondria calcium ion transfer, leading to mitochondrial dysfunction and cell death. In this study, we found that activation of the sigma-1 receptor (S1R), an ER-resident protein involved in calcium ion transfer, could counteract the functional alterations of MAMs due to wolframin deficiency. The S1R agonist PRE-084 restored calcium ion transfer and mitochondrial respiration in vitro, corrected the associated increased autophagy and mitophagy, and was able to alleviate the behavioral symptoms observed in zebrafish and mouse models of the disease. Our findings provide a potential therapeutic strategy for treating Wolfram syndrome by efficiently boosting MAM function using the ligand-operated S1R chaperone. Moreover, such strategy might also be relevant for other degenerative and mitochondrial diseases involving MAM dysfunction.
Collapse
Affiliation(s)
- Lucie Crouzier
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | - Alberto Danese
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Yuko Yasui
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, 333 Cassell Drive, Baltimore, MD 21224, USA
| | | | | | - Simone Patergnani
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Simon Couly
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Camille Diez
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | - Morgane Denus
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | - Nicolas Cubedo
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | | | - Marc Thiry
- Laboratoire de Biologie Cellulaire, Université de Liège, GIGA-Neurosciences, Quartier Hopital, Avenue Hippocrate 15, 4000 Liege 1, Belgium
| | - Tsung-Ping Su
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Paolo Pinton
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Tangui Maurice
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | | |
Collapse
|
8
|
Crouzier L, Richard EM, Sourbron J, Lagae L, Maurice T, Delprat B. Use of Zebrafish Models to Boost Research in Rare Genetic Diseases. Int J Mol Sci 2021; 22:13356. [PMID: 34948153 PMCID: PMC8706563 DOI: 10.3390/ijms222413356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Rare genetic diseases are a group of pathologies with often unmet clinical needs. Even if rare by a single genetic disease (from 1/2000 to 1/more than 1,000,000), the total number of patients concerned account for approximatively 400 million peoples worldwide. Finding treatments remains challenging due to the complexity of these diseases, the small number of patients and the challenge in conducting clinical trials. Therefore, innovative preclinical research strategies are required. The zebrafish has emerged as a powerful animal model for investigating rare diseases. Zebrafish combines conserved vertebrate characteristics with high rate of breeding, limited housing requirements and low costs. More than 84% of human genes responsible for diseases present an orthologue, suggesting that the majority of genetic diseases could be modelized in zebrafish. In this review, we emphasize the unique advantages of zebrafish models over other in vivo models, particularly underlining the high throughput phenotypic capacity for therapeutic screening. We briefly introduce how the generation of zebrafish transgenic lines by gene-modulating technologies can be used to model rare genetic diseases. Then, we describe how zebrafish could be phenotyped using state-of-the-art technologies. Two prototypic examples of rare diseases illustrate how zebrafish models could play a critical role in deciphering the underlying mechanisms of rare genetic diseases and their use to identify innovative therapeutic solutions.
Collapse
Affiliation(s)
- Lucie Crouzier
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France; (L.C.); (E.M.R.); (T.M.)
| | - Elodie M. Richard
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France; (L.C.); (E.M.R.); (T.M.)
| | - Jo Sourbron
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, 3000 Leuven, Belgium; (J.S.); (L.L.)
| | - Lieven Lagae
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, 3000 Leuven, Belgium; (J.S.); (L.L.)
| | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France; (L.C.); (E.M.R.); (T.M.)
| | - Benjamin Delprat
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France; (L.C.); (E.M.R.); (T.M.)
| |
Collapse
|
9
|
Nrf2 Alleviates Cognitive Dysfunction and Brain Inflammatory Injury via Mediating Wfs1 in Rats with Depression-Like Behaviors. Inflammation 2021; 45:399-413. [PMID: 34495404 DOI: 10.1007/s10753-021-01554-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/26/2021] [Accepted: 08/23/2021] [Indexed: 12/26/2022]
Abstract
Depression is a major threat to global mental health and demands targeted therapeutic regimens. The current study set out to evaluate the regulatory mechanism of nuclear factor erythroid-2 related factor 2 (Nrf2) in depression-induced cognitive dysfunction and inflammatory injury. First, depressive rat models were established via chronic unpredicted mild stress (CUMS) treatment. Cognitive function of rats was assessed by a series of behavioral tests. Rats were further stereotactically injected with Nrf2 overexpression vector, with expression patterns of Nrf2, miR-17-5p, and wolfram syndrome 1 (Wfs1) detected using qRT-PCR and Western blot assay. In addition, pathological changes of murine hippocampus were analyzed using hematoxylin-eosin staining. In vitro cell models were additionally established using lipopolysaccharide. Cell viability was detected via the CCK-8 method. Moreover, levels of TNF-α, IL-1β, and IL-10 were detected via ELISA. Furthermore, the binding relationships between Nrf2 and the miR-17-5p promoter, miR-17-5p, and Wfs1 were verified. It was found that Nrf2 was weakly expressed in CUMS-treated rats, whereas Nrf2 upregulation alleviated cognitive dysfunction and brain inflammatory injury. Meanwhile, Nrf2 inhibited miR-17-5p expression via binding to the miR-17-5p promoter. miR-17-5p was also found to limit Wfs1 transcription. miR-17-5p overexpression or Wfs1 downregulation partly reversed the role of Nrf2 in reliving inflammatory injury of murine hippocampal neurons. Overall, our findings indicated that Nrf2 inhibited miR-17-5p expression and promoted Wfs1 transcription, thereby alleviating cognitive dysfunction and inflammatory injury in rats with depression-like behaviors.
Collapse
|
10
|
Gaines CH, Snyder AE, Ervin RB, Farrington J, Walsh K, Schoenrock SA, Tarantino LM. Behavioral characterization of a novel Cisd2 mutant mouse. Behav Brain Res 2021; 405:113187. [PMID: 33610659 DOI: 10.1016/j.bbr.2021.113187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022]
Abstract
Wolfram syndrome (WFS) is a rare autosomal recessive disorder characterized by diabetes mellitus and insipidus, progressive optic atrophy and sensorineural deafness. An increased incidence of psychiatric disorders has also been reported in WFS patients. There are two subtypes of WFS. Type 1 (WFS1) is caused by mutations in the WFS1 gene and type 2 (WFS2) results from mutations in the CISD2 gene. Existing Wfs1 knockout mice exhibit many WFS1 cardinal symptoms including diabetic nephropathy, metabolic disruptions and optic atrophy. Far fewer studies have examined loss of Cisd2 function in mice. We identified B6.DDY-Cisd2m1Lmt, a mouse model with a spontaneous mutation in the Cisd2 gene. B6.DDY-Cisd2m1Lmt mice were initially identified based on the presence of audible sonic vocalizations as well as decreased body size and weight compared to unaffected wildtype littermates. Although Wfs1 knockout mice have been characterized for numerous behavioral phenotypes, similar studies have been lacking for Cisd2 mutant mice. We tested B6.DDY-Cisd2m1Lmt mice in a battery of behavioral assays that model phenotypes related to neurological and psychiatric disorders including anxiety, sensorimotor gating, stress response, social interaction and learning and memory. B6.DDY-Cisd2m1Lmt mice displayed hypoactivity across several behavioral tests, exhibited increased stress response and had deficits in spatial learning and memory and sensorimotor gating compared to wildtype littermates. Our data indicate that the B6.DDY-Cisd2m1Lmt mouse strain is a useful model to investigate potential mechanisms underlying the neurological and psychiatric symptoms observed in WFS.
Collapse
Affiliation(s)
- Christiann H Gaines
- Department of Genetics, University of North Carolina at Chapel Hill, NC, United States; Neuroscience Curriculum, University of North Carolina at Chapel Hill, NC, United States
| | - Angela E Snyder
- Department of Genetics, University of North Carolina at Chapel Hill, NC, United States
| | - Robin B Ervin
- Psychiatry Department, School of Medicine, University of North Carolina at Chapel Hill, NC, United States
| | - Joseph Farrington
- Department of Genetics, University of North Carolina at Chapel Hill, NC, United States
| | - Kenneth Walsh
- Department of Genetics, University of North Carolina at Chapel Hill, NC, United States
| | - Sarah A Schoenrock
- Department of Genetics, University of North Carolina at Chapel Hill, NC, United States; Neuroscience Curriculum, University of North Carolina at Chapel Hill, NC, United States
| | - Lisa M Tarantino
- Department of Genetics, University of North Carolina at Chapel Hill, NC, United States; Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC, United States.
| |
Collapse
|
11
|
Yang J, Chen C, Jin X, Liu L, Lin J, Kang X, Zhu S. Wfs1 and Related Molecules as Key Candidate Genes in the Hippocampus of Depression. Front Genet 2021; 11:589370. [PMID: 33552119 PMCID: PMC7863986 DOI: 10.3389/fgene.2020.589370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/14/2020] [Indexed: 12/28/2022] Open
Abstract
Background Depression is a prevalent mental disorder, which is difficult to diagnose and treat due to its unclear pathogenic mechanisms. The discovery of novel and effective therapeutic targets for depression is urgently needed. The hippocampus is a crucial region involved in depression and has been a therapeutic target for many antidepressants. Thus, it is beneficial for comprehensive research to be carried out on the molecular mechanisms of the hippocampus involved in the pathogenesis of depression. This study aims to investigate the differentially expressed genes (DEG) in the hippocampus in a chronic unpredictable mild stress (CUMS) mouse model. Method The study obtained GSE84183 from the GEO database. The R language screened the differential expression genes (DEG) in the hippocampus tissue of depressed mice, and the enrichment pathways of DEGs were analyzed. A protein-protein interaction (PPI) network was constructed in the STRING database and visualized in Cytoscape software. MicroRNAs for these DEGs were obtained from TarBase and mortar base databases, and transcription factors (TF) related to DEG were predicted from the ENCODE database. Both networks used the visual analysis platform NetworkAnalyst. Finally, the microRNA-TF network was integrated based on the above two networks and imported into Cytoscape for further analysis. Results This study screened 325 differentially expressed genes, containing 42 downregulated genes and 283 upregulated genes. Most of these genes are enriched in the cell cycle and the chemokine signaling pathway. Meanwhile, Wfs1, one of the top ten DEGs, was identified as the key regulator of the cell cycle and the participator in the highest number of modules screened out in PPI networks. Wfs1-related molecules, including UBTF, mmu-mir-17-5p, and mmu-mir-7b-5p, were therefore screened out. Furthermore, we confirmed the downregulation of Wfs1 and upregulation of UBTF/mmu-mir-17-5p/mmu-mir-7b-5p in the hippocampus of the CUMS mouse model. Our data indicate that Wfs1 and related molecules were predicted to be associated with the pathological process of depression. This research provided potential new molecular targets of stress-induced depression.
Collapse
Affiliation(s)
- Jing Yang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chaoqin Chen
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyuan Jin
- Department of Public Health, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Lu Liu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiajia Lin
- Department of Neurobiology, The Innovation Center for Brain Science, Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianhui Kang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengmei Zhu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Di Lorenzo C, Di Lorenzo G, Coppola G, Parisi V, Grieco GS, Santorelli FM, Pascale E, Pierelli F. Genetics Influences Drug Consumption in Medication Overuse Headache, Not in Migraine: Evidence From Wolframin His611Arg Polymorphism Analysis. Front Neurol 2021; 11:599517. [PMID: 33551959 PMCID: PMC7862332 DOI: 10.3389/fneur.2020.599517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/15/2020] [Indexed: 11/15/2022] Open
Abstract
Background: The Wolframin His611Arg polymorphism can influence drug consumption in psychiatric patients with impulsive addictive behavior. This cross-sectional study aims to assess the prevalence of the Wolframin His611Arg polymorphism in MOH, a secondary headache belonging to the spectrum of addictive disorders, episodic migraine (EM), and healthy subjects (HS), and its influence on drug consumption. Methods: One-hundred and seventy-two EM, 107 MOH, and 83 HS were enrolled and genotyped for the Wolframin His611Arg polymorphism. Subjects were classified as homozygous for allele His (H/H subjects), homozygous for allele Arg (R/R subjects), and heterozygous (H/R subjects), regrouped as R/R and carriers of allele H (non-R/R), and matched for clinical data. Results: There were no differences in allelic distributions between the three groups (p = 0.19). Drug consumption and other clinical characteristics were not influenced by the Wolframin His611Arg polymorphism (p = 0.42; β = 0.04) in the EM group. Among the MOH population, R/R subjects consumed more analgesics (p < 0.0001; β = −0.38), particularly combination drugs (p = 0.0001; d = 2.32). Discussion: The Wolframin His611Arg polymorphism has a similar prevalence between the MOH, EM, and HS groups. The presence of the R/R genotype does not influence symptomatic drug consumption in EM, whereas it determines an increased use of symptomatic drugs in the MOH group, in particular combination drugs (i.e., drugs containing psychoactive compounds). Conclusions: Our findings are consistent with the hypothesis that the Wolframin His611Arg polymorphism plays its effect only in the MOH population, influencing the impulsivity control underlying addictive behavior.
Collapse
Affiliation(s)
- Cherubino Di Lorenzo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Giorgio Di Lorenzo
- Chair of Psychiatry, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Vincenzo Parisi
- IRCCS Fondazione G.B. Bietti per lo Studio e la Ricerca in Oftalmologia, Rome, Italy
| | - Gaetano S Grieco
- Genomic and Post-Genomic Center, IRCCS Fondazione Istituto Neurologico Casimiro Mondino, Pavia, Italy
| | | | - Esterina Pascale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Francesco Pierelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy.,IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| |
Collapse
|
13
|
Mishra R, Chen BS, Richa P, Yu-Wai-Man P. Wolfram syndrome: new pathophysiological insights and therapeutic strategies. THERAPEUTIC ADVANCES IN RARE DISEASE 2021; 2:26330040211039518. [PMID: 37181110 PMCID: PMC10032446 DOI: 10.1177/26330040211039518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/23/2021] [Indexed: 05/16/2023]
Abstract
Wolfram Syndrome (WS) is an ultra-rare, progressive neurodegenerative disease characterized by early-onset diabetes mellitus and irreversible loss of vision, secondary to optic nerve degeneration. Visual loss in WS is an important cause of registrable blindness in children and young adults and the pathological hallmark is the preferential loss of retinal ganglion cells within the inner retina. In addition to optic atrophy, affected individuals frequently develop variable combinations of neurological, endocrinological, and psychiatric complications. The majority of patients carry recessive mutations in the WFS1 (4p16.1) gene that encodes for a multimeric transmembrane protein, wolframin, embedded within the endoplasmic reticulum (ER). An increasingly recognised subgroup of patients harbor dominant WFS1 mutations that usually cause a milder phenotype, which can be limited to optic atrophy. Wolframin is a ubiquitous protein with high levels of expression in retinal, neuronal, and muscle tissues. It is a multifunctional protein that regulates a host of cellular functions, in particular the dynamic interaction with mitochondria at mitochondria-associated membranes. Wolframin has been implicated in several crucial cellular signaling pathways, including insulin signaling, calcium homeostasis, and the regulation of apoptosis and the ER stress response. There is currently no cure for WS; management remains largely supportive. This review will cover the clinical, genetic, and pathophysiological features of WS, with a specific focus on disease models and the molecular pathways that could serve as potential therapeutic targets. The current landscape of therapeutic options will also be discussed in the context of the latest evidence, including the pipeline for repurposed drugs and gene therapy. Plain language summary Wolfram syndrome - disease mechanisms and treatment options Wolfram syndrome (WS) is an ultra-rare genetic disease that causes diabetes mellitus and progressive loss of vision from early childhood. Vision is affected in WS because of damage to a specialized type of cells in the retina, known as retinal ganglion cells (RGCs), which converge at the back of the eye to form the optic nerve. The optic nerve is the fast-conducting cable that transmits visual information from the eye to the vision processing centers within the brain. As RGCs are lost, the optic nerve degenerates and it becomes pale in appearance (optic atrophy). Although diabetes mellitus and optic atrophy are the main features of WS, some patients can develop more severe problems because the brain and other organs, such as the kidneys and the bladder, are also affected. The majority of patients with WS carry spelling mistakes (mutations) in the WFS1 gene, which is located on the short arm of chromosome 4 (4p16.1). This gene is highly expressed in the eye and in the brain, and it encodes for a protein located within a compartment of the cell known as the endoplasmic reticulum. For reasons that still remain unclear, WFS1 mutations preferentially affect RGCs, accounting for the prominent visual loss in this genetic disorder. There is currently no effective treatment to halt or slow disease progression and management remains supportive, including the provision of visual aids and occupational rehabilitation. Research into WS has been limited by its relative rarity and the inability to get access to eye and brain tissues from affected patients. However, major advances in our understanding of this disease have been made recently by making use of more accessible cells from patients, such as skin cells (fibroblasts), or animal models, such as mice and zebrafish. This review summarizes the mechanisms by which WFS1 mutations affect cells, impairing their function and eventually leading to their premature loss. The possible treatment strategies to block these pathways are also discussed, with a particular focus on drug repurposing (i.e., using drugs that are already approved for other diseases) and gene therapy (i.e., replacing or repairing the defective WFS1 gene).
Collapse
Affiliation(s)
- Ratnakar Mishra
- Cambridge Centre for Brain Repair and MRC
Mitochondrial Biology Unit, Department of Clinical Neurosciences, University
of Cambridge, Cambridge, UK
| | - Benson S. Chen
- Cambridge Centre for Brain Repair and MRC
Mitochondrial Biology Unit, Department of Clinical Neurosciences, University
of Cambridge, Cambridge, UK
- Cambridge Eye Unit, Addenbrooke’s Hospital,
Cambridge University Hospitals, Cambridge, UK
| | - Prachi Richa
- Department of Physiology, Development and
Neuroscience, University of Cambridge, Cambridge, UK
| | - Patrick Yu-Wai-Man
- Cambridge Centre for Brain Repair and MRC
Mitochondrial Biology Unit, Department of Clinical Neurosciences, University
of Cambridge, ED Adrian Building, Robinson Way, Cambridge, CB2 0PY, UK
- Cambridge Eye Unit, Addenbrooke’s Hospital,
Cambridge University Hospitals, Cambridge, UK
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University
College London, London, UK
| |
Collapse
|
14
|
Rho GTPases in the Amygdala-A Switch for Fears? Cells 2020; 9:cells9091972. [PMID: 32858950 PMCID: PMC7563696 DOI: 10.3390/cells9091972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 12/28/2022] Open
Abstract
Fear is a fundamental evolutionary process for survival. However, excess or irrational fear hampers normal activity and leads to phobia. The amygdala is the primary brain region associated with fear learning and conditioning. There, Rho GTPases are molecular switches that act as signaling molecules for further downstream processes that modulate, among others, dendritic spine morphogenesis and thereby play a role in fear conditioning. The three main Rho GTPases—RhoA, Rac1, and Cdc42, together with their modulators, are known to be involved in many psychiatric disorders that affect the amygdala′s fear conditioning mechanism. Rich2, a RhoGAP mainly for Rac1 and Cdc42, has been studied extensively in such regard. Here, we will discuss these effectors, along with Rich2, as a molecular switch for fears, especially in the amygdala. Understanding the role of Rho GTPases in fear controlling could be beneficial for the development of therapeutic strategies targeting conditions with abnormal fear/anxiety-like behaviors.
Collapse
|
15
|
Monteiro C, Tavares E, Câmara A, Nobre J. Regulação molecular do ritmo circadiano e transtornos psiquiátricos: uma revisão sistemática. JORNAL BRASILEIRO DE PSIQUIATRIA 2020. [DOI: 10.1590/0047-2085000000258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RESUMO Objetivo O artigo possui como objetivo investigar os genes relógio que estão mais associados com os transtornos psiquiátricos, as funções e localizações desses genes, assim como investigar o principal transtorno, método e modelo considerados nas análises. O trabalho busca resumir os achados e discutir o impacto dessas pesquisas no conhecimento científico. Métodos Esta revisão utilizou-se de uma metodologia sistemática (Prospero; ID 152031) e seguiu as diretrizes PRISMA. A busca dos estudos foi realizada nas bases de dados PubMed/MEDLINE e Scientific Eletronic Library Online e foram utilizados os termos do Medical Subject Headings Terms . Foram selecionados estudos quantitativos com resultados conclusivos referentes à associação de transtornos psiquiátricos com a regulação molecular do ritmo circadiano. As informações úteis foram extraídas e utilizadas para a elaboração de gráficos e tabelas. Resultados Foram incluídos 24 artigos em nosso estudo. Observou-se que o transtorno bipolar consistiu no transtorno psiquiátrico mais abordado (40% dos estudos); a nacionalidade polonesa dos participantes também se destacou em 39% dos trabalhos. Adicionalmente, o gene PER foi o mais estudado (25%) e o córtex cerebral foi a principal região em que os genes relógio avaliados se expressam (34%). A PCR comum mostrou ser o método mais utilizado (38%) e o metabolismo da serotonina mostrou ser a principal função desempenhada pelos produtos gênicos (16%). Conclusões Em conjunto, os resultados sugerem que o transtorno bipolar consiste no distúrbio psiquiátrico mais prevalente entre as pesquisas relacionadas aos genes circadianos, expressos principalmente no córtex cerebral de humanos, em especial o gene PER .
Collapse
Affiliation(s)
| | | | - Alice Câmara
- Universidade Federal do Rio Grande do Norte, Brasil
| | - Jonas Nobre
- Universidade Federal do Rio Grande do Norte, Brasil
| |
Collapse
|
16
|
Kato T. Current understanding of bipolar disorder: Toward integration of biological basis and treatment strategies. Psychiatry Clin Neurosci 2019; 73:526-540. [PMID: 31021488 DOI: 10.1111/pcn.12852] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/18/2022]
Abstract
Biological studies of bipolar disorder initially focused on the mechanism of action for antidepressants and antipsychotic drugs, and the roles of monoamines (e.g., serotonin, dopamine) have been extensively studied. Thereafter, based on the mechanism of action of lithium, intracellular signal transduction systems, including inositol metabolism and intracellular calcium signaling, have drawn attention. Involvement of intracellular calcium signaling has been supported by genetics and cellular studies. Elucidation of the neural circuits affected by calcium signaling abnormalities is critical, and our previous study suggested a role of the paraventricular thalamic nucleus. The genetic vulnerability of mitochondria causes calcium dysregulation and results in the hyperexcitability of serotonergic neurons, which are suggested to be susceptible to oxidative stress. Efficacy of anticonvulsants, animal studies of candidate genes, and studies using induced pluripotent stem cell-derived neurons have suggested a relation between bipolar disorder and the hyperexcitability of neurons. Recent genetic findings suggest the roles of polyunsaturated acids. At the systems level, social rhythm therapy targets circadian rhythm abnormalities, and cognitive behavioral therapy may target emotion/cognition (E/C) imbalance. In the future, pharmacological and psychosocial treatments may be combined and optimized based on the biological basis of each patient, which will realize individualized treatment.
Collapse
Affiliation(s)
- Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Wako, Japan
| |
Collapse
|
17
|
Han SK, Kim D, Lee H, Kim I, Kim S. Divergence of Noncoding Regulatory Elements Explains Gene–Phenotype Differences between Human and Mouse Orthologous Genes. Mol Biol Evol 2018; 35:1653-1667. [DOI: 10.1093/molbev/msy056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Seong Kyu Han
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Donghyo Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Heetak Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Inhae Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Sanguk Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| |
Collapse
|
18
|
Ivask M, Pajusalu S, Reimann E, Kõks S. Hippocampus and Hypothalamus RNA-sequencing of WFS1-deficient Mice. Neuroscience 2018; 374:91-103. [PMID: 29406269 DOI: 10.1016/j.neuroscience.2018.01.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 11/26/2017] [Accepted: 01/18/2018] [Indexed: 01/08/2023]
Abstract
Wolfram syndrome is caused by mutations in the WFS1 gene. WFS1 protein dysfunction results in a range of neuroendocrine syndromes and is mostly characterized by juvenile-onset diabetes mellitus and optic atrophy. WFS1 has been shown to participate in membrane trafficking, protein processing and Ca2+ homeostasis in the endoplasmic reticulum. Aim of the present study was to find the transcriptomic changes influenced by WFS1 in the hypothalamus and hippocampus using RNA-sequencing. The WFS1-deficient mice were used as a model system to analyze the changes in transcriptional networks. The number of differentially expressed genes between hypothalami of WFS1-deficient (Wfs1KO) and wild-type (WT) mice was 43 and between hippocampi 311 with False Discovery Rate (FDR) <0.05. Avpr1a and Avpr1b were significantly upregulated in the hypothalamus and hippocampus of Wfs1KO mice respectively. Trpm8 was the most upregulated gene in the hippocampus of Wfs1KO mice. The functional analysis revealed significant enrichment of networks and pathways associated with protein synthesis, cell-to-cell signaling and interaction, molecular transport, metabolic disease and nervous system development and function. In conclusion, the transcriptomic profiles of WFS1-deficient hypothalamus and hippocampus do indicate the activation of degenerative molecular pathways causing the clinical occurrences typical to Wolfram syndrome.
Collapse
Affiliation(s)
- Marilin Ivask
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.
| | - Sander Pajusalu
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia; Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Ene Reimann
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Sulev Kõks
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
19
|
Sakakibara Y, Sekiya M, Fujisaki N, Quan X, Iijima KM. Knockdown of wfs1, a fly homolog of Wolfram syndrome 1, in the nervous system increases susceptibility to age- and stress-induced neuronal dysfunction and degeneration in Drosophila. PLoS Genet 2018; 14:e1007196. [PMID: 29357349 PMCID: PMC5794194 DOI: 10.1371/journal.pgen.1007196] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/01/2018] [Accepted: 01/09/2018] [Indexed: 01/08/2023] Open
Abstract
Wolfram syndrome (WS), caused by loss-of-function mutations in the Wolfram syndrome 1 gene (WFS1), is characterized by juvenile-onset diabetes mellitus, bilateral optic atrophy, and a wide spectrum of neurological and psychiatric manifestations. WFS1 encodes an endoplasmic reticulum (ER)-resident transmembrane protein, and mutations in this gene lead to pancreatic β-cell death induced by high levels of ER stress. However, the mechanisms underlying neurodegeneration caused by WFS1 deficiency remain elusive. Here, we investigated the role of WFS1 in the maintenance of neuronal integrity in vivo by knocking down the expression of wfs1, the Drosophila homolog of WFS1, in the central nervous system. Neuronal knockdown of wfs1 caused age-dependent behavioral deficits and neurodegeneration in the fly brain. Knockdown of wfs1 in neurons and glial cells resulted in premature death and significantly exacerbated behavioral deficits in flies, suggesting that wfs1 has important functions in both cell types. Although wfs1 knockdown alone did not promote ER stress, it increased the susceptibility to oxidative stress-, excitotoxicity- or tauopathy-induced behavioral deficits, and neurodegeneration. The glutamate release inhibitor riluzole significantly suppressed premature death phenotypes induced by neuronal and glial knockdown of wfs1. This study highlights the protective role of wfs1 against age-associated neurodegeneration and furthers our understanding of potential disease-modifying factors that determine susceptibility and resilience to age-associated neurodegenerative diseases. Wolfram syndrome (WS), a neurodegenerative disorder with an autosomal recessive inheritance pattern, has a variable clinical presentation that includes diabetes mellitus, optic atrophy, and a wide spectrum of neurological and psychiatric manifestations. Homozygous mutations in WFS1 are causative for WS. The prognosis of WS is poor, and most patients die prematurely with respiratory failure due to brain stem atrophy. However, the mechanisms underlying the neurological manifestations of WS remain elusive. In this study, we used the fruit fly Drosophila to examine the neurological features of WS by generating genetically modified flies harboring knockdown of wfs1, the fly homolog of WFS1, in the central nervous system. These flies developed age-dependent behavioral deficits, neurodegeneration and premature death. wfs1-deficient flies were vulnerable to various age-related stressors such as oxidative stress and excitotoxicity, and to neurodegeneration caused by Alzheimer’s disease-related toxic proteins. The premature death phenotype in wfs1-deficient flies was ameliorated by administration of riluzole, which inhibits glutamate-induced excitotoxicity. This study provides insight into the mechanisms underlying neurodegeneration not only in WS, but also in age-associated neurodegenerative diseases such as Alzheimer’s disease.
Collapse
Affiliation(s)
- Yasufumi Sakakibara
- Department of Alzheimer’s Disease Research, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Michiko Sekiya
- Department of Alzheimer’s Disease Research, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Naoki Fujisaki
- Department of Alzheimer’s Disease Research, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3–1 Tanabe-dori, Mizuho-ku, Nagoya, Japan
| | - Xiuming Quan
- Department of Alzheimer’s Disease Research, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Koichi M. Iijima
- Department of Alzheimer’s Disease Research, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3–1 Tanabe-dori, Mizuho-ku, Nagoya, Japan
- * E-mail:
| |
Collapse
|
20
|
Kato T. Neurobiological basis of bipolar disorder: Mitochondrial dysfunction hypothesis and beyond. Schizophr Res 2017; 187:62-66. [PMID: 27839913 DOI: 10.1016/j.schres.2016.10.037] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/24/2016] [Accepted: 10/27/2016] [Indexed: 02/07/2023]
Abstract
Bipolar disorder is one of two major psychotic disorders together with schizophrenia and causes severe psychosocial disturbance. Lack of adequate animal models hampers development of new mood stabilizers. We proposed a mitochondrial dysfunction hypothesis and have been studying the neurobiology of bipolar disorder based on this hypothesis. We showed that deletions of mitochondrial DNA (ΔmtDNA) play a pathophysiological role at least in some patients with bipolar disorder possibly by affecting intracellular calcium regulation. Mutant polymerase γ transgenic mice that accumulate ΔmtDNA in the brain showed recurrent spontaneous depression-like episodes which were prevented by a serotonin-selective reuptake inhibitor and worsened by lithium withdrawal. The animal model would be useful to develop new mood stabilizers.
Collapse
Affiliation(s)
- Tadafumi Kato
- Laboratory for Molecular Dynamic of Mental Disorders, RIKEN Brain Science Institute, Japan.
| |
Collapse
|
21
|
Banlaki Z, Cimarelli G, Viranyi Z, Kubinyi E, Sasvari-Szekely M, Ronai Z. DNA methylation patterns of behavior-related gene promoter regions dissect the gray wolf from domestic dog breeds. Mol Genet Genomics 2017; 292:685-697. [DOI: 10.1007/s00438-017-1305-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 03/02/2017] [Indexed: 12/26/2022]
|
22
|
Shrestha P, Mousa A, Heintz N. Layer 2/3 pyramidal cells in the medial prefrontal cortex moderate stress induced depressive behaviors. eLife 2015; 4. [PMID: 26371510 PMCID: PMC4566133 DOI: 10.7554/elife.08752] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/08/2015] [Indexed: 12/27/2022] Open
Abstract
Major depressive disorder (MDD) is a prevalent illness that can be precipitated by acute or chronic stress. Studies of patients with Wolfram syndrome and carriers have identified Wfs1 mutations as causative for MDD. The medial prefrontal cortex (mPFC) is known to be involved in depression and behavioral resilience, although the cell types and circuits in the mPFC that moderate depressive behaviors in response to stress have not been determined. Here, we report that deletion of Wfs1 from layer 2/3 pyramidal cells impairs the ability of the mPFC to suppress stress-induced depressive behaviors, and results in hyperactivation of the hypothalamic–pituitary–adrenal axis and altered accumulation of important growth and neurotrophic factors. Our data identify superficial layer 2/3 pyramidal cells as critical for moderation of stress in the context of depressive behaviors and suggest that dysfunction in these cells may contribute to the clinical relationship between stress and depression. DOI:http://dx.doi.org/10.7554/eLife.08752.001 Around 16% of people will experience an episode of major depression at some point in their lives, with symptoms including a loss of motivation, a reduced enjoyment of previously pleasurable activities, and disturbances in sleep and appetite. Multiple genes and environmental factors have been implicated in depression, and one of the strongest risk factors for developing the disorder is exposure to stress. Stress and depression affect many of the same brain regions, most notably the prefrontal cortex—an area that is involved in decision making, problem solving and regulating emotions. Shrestha et al. therefore reasoned that a good way of obtaining insights into the relationship between stress and depression would be to study prefrontal cortex cells that express genes that have been linked to depression. One such gene is Wfs1. Mutations in this gene cause a rare disorder called Wolfram syndrome, in which affected individuals experience a wide range of symptoms that often include severe depression. Shrestha et al. identified a specific population of cells in the prefrontal cortex that express Wfs1. When subjected to a stressful event, such as being restrained, mice that had been genetically modified to lack this gene in their prefrontal cortex were more likely to exhibit depression-like behaviors than non-modified mice. The genetically modified mice also released more stress hormones when restrained and produced different amounts of a number of proteins that regulate the growth and signaling of neurons. Shrestha et al. propose that these proteins act on neural circuits that control how the mice respond to stress. Furthermore, changes in the levels or the distribution of these proteins may increase the likelihood that a stressful event will trigger behaviors associated with depression. Further experiments are required to investigate the possibility that using drugs to manipulate cells that express Wfs1 could protect against the harmful effects of stress, or even treat existing episodes of depression. DOI:http://dx.doi.org/10.7554/eLife.08752.002
Collapse
Affiliation(s)
- Prerana Shrestha
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Awni Mousa
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Nathaniel Heintz
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| |
Collapse
|
23
|
Kato T, Kasahara T, Kubota-Sakashita M, Kato TM, Nakajima K. Animal models of recurrent or bipolar depression. Neuroscience 2015; 321:189-196. [PMID: 26265551 DOI: 10.1016/j.neuroscience.2015.08.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/14/2015] [Accepted: 08/06/2015] [Indexed: 01/09/2023]
Abstract
Animal models of mental disorders should ideally have construct, face, and predictive validity, but current animal models do not always satisfy these validity criteria. Additionally, animal models of depression rely mainly on stress-induced behavioral changes. These stress-induced models have limited validity, because stress is not a risk factor specific to depression, and the models do not recapitulate the recurrent and spontaneous nature of depressive episodes. Although animal models exhibiting recurrent depressive episodes or bipolar depression have not yet been established, several researchers are trying to generate such animals by modeling clinical risk factors as well as by manipulating a specific neural circuit using emerging techniques.
Collapse
Affiliation(s)
- T Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Japan.
| | - T Kasahara
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Japan
| | - M Kubota-Sakashita
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Japan
| | - T M Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Japan
| | - K Nakajima
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Japan
| |
Collapse
|
24
|
Comai S, Ochoa-Sanchez R, Dominguez-Lopez S, Bambico FR, Gobbi G. Melancholic-Like behaviors and circadian neurobiological abnormalities in melatonin MT1 receptor knockout mice. Int J Neuropsychopharmacol 2015; 18:pyu075. [PMID: 25638817 PMCID: PMC4360238 DOI: 10.1093/ijnp/pyu075] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Melancholic depression, described also as endogenous depression, is a mood disorder with distinctive specific psychopathological features and biological homogeneity, including anhedonia, circadian variation of mood, psychomotor activation, weight loss, diurnal cortisol changes, and sleep disturbances. Although several hypotheses have been proposed, the etiology of this disorder is still unknown. METHODS Behavioral, electrophysiological and biochemical approaches were used to characterize the emotional phenotype, serotonergic and noradrenergic electrical activity, and corticosterone in melatonin MT1 receptor knockout mice and their wild type counterparts, during both light and dark phases. RESULTS Melatonin MT1 receptor knockout mice have decreased mobility in the forced swim and tail suspension tests as well as decreased sucrose consumption, mostly during the dark/inactive phase. These mood variations are reversed by chronic treatment with the tricyclic antidepressant desipramine. In addition, MT1 receptor knockout mice exhibit psychomotor disturbances, higher serum levels of corticosterone the dark phase, and a blunted circadian variation of corticosterone levels. In vivo electrophysiological recordings show a decreased burst-firing activity of locus coeruleus norepinephrine neurons during the dark phase. The circadian physiological variation in the spontaneous firing activity of high-firing neuronal subpopulations of both norepinephrine neurons and dorsal raphe serotonin neurons are abolished in MT1 knockout mice. CONCLUSIONS These data demonstrate that melatonin MT1 receptor knockout mice recapitulate several behavioral and neurobiological circadian changes of human melancholic depression and, for the first time, suggest that the MT1 receptor may be implicated in the pathogenesis of melancholic depression and is a potential pharmacological target for this mental condition.
Collapse
Affiliation(s)
| | | | - Sergio Dominguez-Lopez
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University and McGill University Health Center, Montréal, QC, Canada (Drs Comai, Ochoa-Sanchez, Dominguez-Lopez, Bambico, and Gobbi)
| | | | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University and McGill University Health Center, Montréal, QC, Canada (Drs Comai, Ochoa-Sanchez, Dominguez-Lopez, Bambico, and Gobbi).
| |
Collapse
|
25
|
Effect of chronic valproic Acid treatment on hepatic gene expression profile in wfs1 knockout mouse. PPAR Res 2014; 2014:349525. [PMID: 24799886 PMCID: PMC3995169 DOI: 10.1155/2014/349525] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 02/17/2014] [Accepted: 02/17/2014] [Indexed: 12/03/2022] Open
Abstract
Valproic acid (VPA) is a widely used anticonvulsant and mood-stabilizing drug whose use is often associated with drug-induced weight gain. Treatment with VPA has been shown to upregulate Wfs1 expression in vitro. Aim of the present study was to compare the effect of chronic VPA treatment in wild type (WT) and Wfs1 knockout (KO) mice on hepatic gene expression profile. Wild type, Wfs1 heterozygous, and homozygous mice were treated with VPA for three months (300 mg/kg i.p. daily) and gene expression profiles in liver were evaluated using Affymetrix Mouse GeneChip 1.0 ST array. We identified 42 genes affected by Wfs1 genotype, 10 genes regulated by VPA treatment, and 9 genes whose regulation by VPA was dependent on genotype. Among the genes that were regulated differentially by VPA depending on genotype was peroxisome proliferator-activated receptor delta (Ppard), whose expression was upregulated in response to VPA treatment in WT, but not in Wfs1 KO mice. Thus, regulation of Ppard by VPA is dependent on Wfs1 genotype.
Collapse
|
26
|
Abstract
Monoamine oxidase A (MAO-A), the catabolic enzyme of norepinephrine and serotonin, plays a critical role in emotional and social behavior. However, the control and impact of endogenous MAO-A levels in the brain remains unknown. Here we show that the RING finger-type E3 ubiquitin ligase Rines/RNF180 regulates brain MAO-A subset, monoamine levels, and emotional behavior. Rines interacted with MAO-A and promoted its ubiquitination and degradation. Rines knock-out mice displayed impaired stress responses, enhanced anxiety, and affiliative behavior. Norepinephrine and serotonin levels were altered in the locus ceruleus, prefrontal cortex, and amygdala in either stressed or resting conditions, and MAO-A enzymatic activity was enhanced in the locus ceruleus in Rines knock-out mice. Treatment of Rines knock-out mice with MAO inhibitors showed genotype-specific effects on some of the abnormal affective behaviors. These results indicated that the control of emotional behavior by Rines is partly due to the regulation of MAO-A levels. These findings verify that Rines is a critical regulator of the monoaminergic system and emotional behavior and identify a promising candidate drug target for treating diseases associated with emotion.
Collapse
|
27
|
Niculescu AB. Convergent functional genomics of psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:587-94. [PMID: 23728881 DOI: 10.1002/ajmg.b.32163] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 03/19/2013] [Indexed: 12/27/2022]
Abstract
Genetic and gene expression studies, in humans and animal models of psychiatric and other medical disorders, are becoming increasingly integrated. Particularly for genomics, the convergence and integration of data across species, experimental modalities and technical platforms is providing a fit-to-disease way of extracting reproducible and biologically important signal, in contrast to the fit-to-cohort effect and limited reproducibility of human genetic analyses alone. With the advent of whole-genome sequencing and the realization that a major portion of the non-coding genome may contain regulatory variants, Convergent Functional Genomics (CFG) approaches are going to be essential to identify disease-relevant signal from the tremendous polymorphic variation present in the general population. Such work in psychiatry can provide an example of how to address other genetically complex disorders, and in turn will benefit by incorporating concepts from other areas, such as cancer, cardiovascular diseases, and diabetes.
Collapse
Affiliation(s)
- Alexander B Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana; Indianapolis VA Medical Center, Indianapolis, Indiana
| |
Collapse
|
28
|
Visnapuu T, Raud S, Loomets M, Reimets R, Sütt S, Luuk H, Plaas M, Kõks S, Volke V, Alttoa A, Harro J, Vasar E. Wfs1-deficient mice display altered function of serotonergic system and increased behavioral response to antidepressants. Front Neurosci 2013; 7:132. [PMID: 23914152 PMCID: PMC3728556 DOI: 10.3389/fnins.2013.00132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/09/2013] [Indexed: 12/31/2022] Open
Abstract
It has been shown that mutations in the WFS1 gene make humans more susceptible to mood disorders. Besides that, mood disorders are associated with alterations in the activity of serotonergic and noradrenergic systems. Therefore, in this study, the effects of imipramine, an inhibitor of serotonin (5-HT) and noradrenaline (NA) reuptake, and paroxetine, a selective inhibitor of 5-HT reuptake, were studied in tests of behavioral despair. The tail suspension test (TST) and forced swimming test (FST) were performed in Wfs1-deficient mice. Simultaneously, gene expression and monoamine metabolism studies were conducted to evaluate changes in 5-HT- and NA-ergic systems of Wfs1-deficient mice. The basal immobility time of Wfs1-deficient mice in TST and FST did not differ from that of their wild-type littermates. However, a significant reduction of immobility time in response to lower doses of imipramine and paroxetine was observed in homozygous Wfs1-deficient mice, but not in their wild-type littermates. In gene expression studies, the levels of 5-HT transporter (SERT) were significantly reduced in the pons of homozygous animals. Monoamine metabolism was assayed separately in the dorsal and ventral striatum of naive mice and mice exposed for 30 min to brightly lit motility boxes. We found that this aversive challenge caused a significant increase in the levels of 5-HT and 5-hydroxyindoleacetic acid (5-HIAA), a metabolite of 5-HT, in the ventral and dorsal striatum of wild-type mice, but not in their homozygous littermates. Taken together, the blunted 5-HT metabolism and reduced levels of SERT are a likely reason for the elevated sensitivity of these mice to the action of imipramine and paroxetine. These changes in the pharmacological and neurochemical phenotype of Wfs1-deficient mice may help to explain the increased susceptibility of Wolfram syndrome patients to depressive states.
Collapse
Affiliation(s)
- Tanel Visnapuu
- Department of Physiology, University of Tartu Tartu, Estonia ; Centre for Excellence in Translational Medicine, University of Tartu Tartu, Estonia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kovacs-Nagy R, Elek Z, Szekely A, Nanasi T, Sasvari-Szekely M, Ronai Z. Association of aggression with a novel microRNA binding site polymorphism in the wolframin gene. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:404-12. [PMID: 23650218 DOI: 10.1002/ajmg.b.32157] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 03/13/2013] [Indexed: 11/08/2022]
Abstract
Rare mutations in the WFS1 gene lead to Wolfram syndrome, a severe multisystem disorder with progressive neurodegeneration and diabetes mellitus causing life-threatening complications and premature death. Only a few association studies using small clinical samples tested the possible effects of common WFS1 gene variants on mood disorders and suicide, the non-clinical spectrum has not been studied yet. Self-report data on Aggression, Impulsiveness, Anxiety, and Depression were collected from a large (N = 801) non-psychiatric sample. Single nucleotide polymorphisms (SNPs) were selected to provide an adequate coverage of the entire WFS1 gene, as well as to include putative microRNA binding site polymorphisms. Molecular analysis of the assumed microRNA binding site variant was performed by an in vitro reporter-gene assay of the cloned 3' untranslated region with coexpression of miR-668. Among the 17 WFS1 SNPs, only the rs1046322, a putative microRNA (miR-668) binding site polymorphism showed significant association with psychological dimensions after correction for multiple testing: those with the homozygous form of the minor allele reported higher aggression on the Buss-Perry Aggression Questionnaire (P = 0.0005). Functional effect of the same SNP was also demonstrated in a luciferase reporter system: the minor A allele showed lower repression compared to the major G allele, if co-expressed with miR-668. To our knowledge, this is the first report describing a microRNA binding site polymorphism of the WFS1 gene and its association with human aggression based on a large, non-clinical sample.
Collapse
Affiliation(s)
- Reka Kovacs-Nagy
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
30
|
WFS1 variants in Finnish patients with diabetes mellitus, sensorineural hearing impairment or optic atrophy, and in suicide victims. J Hum Genet 2013; 58:495-500. [PMID: 23595122 DOI: 10.1038/jhg.2013.29] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 01/02/2013] [Accepted: 03/26/2013] [Indexed: 11/09/2022]
Abstract
Mutations in the wolframin gene, WFS1, cause Wolfram syndrome, a rare recessive neurodegenerative disorder. The clinical features include early-onset bilateral optic atrophy (OA), diabetes mellitus (DM), diabetes insipidus, hearing impairment, urinary tract abnormalities and psychiatric illness, and, furthermore, WFS1 variants appear to be associated with non-syndromic DM and hearing impairment. Variation of WFS1 was investigated in Finnish subjects consisting 182 patients with DM, 117 patients with sensorineural hearing impairment (SNHI) and 44 patients with OA, and in 95 suicide victims. Twenty-two variants were found in the coding region of WFS1, including three novel nonsynonymous variants. The frequency of the p.[His456] allele was significantly higher in the patients with SNHI (11.5%; corrected P=0.00008), DM (6.6%; corrected P=0.036) or OA (9.1%; corrected P=0.043) than that in the 285 controls (3.3%). The frequency of the p.[His611] allele was 55.8% in the patients with DM being higher than that in the controls (47%; corrected P=0.039). The frequencies of p.[His456] and p.[His611] were similarly increased in an independent group of patients with DM (N=299). The results support previous findings that genetic variation of WFS1 contributes to the risk of DM and SNHI.
Collapse
|
31
|
Sano T, Kim YJ, Oshima E, Shimizu C, Kiyonari H, Abe T, Higashi H, Yamada K, Hirabayashi Y. Comparative characterization of GPRC5B and GPRC5C LacZ knockin mice; behavioral abnormalities in GPRC5B-deficient mice. Biochem Biophys Res Commun 2011; 412:460-5. [DOI: 10.1016/j.bbrc.2011.07.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 07/29/2011] [Indexed: 11/15/2022]
|
32
|
Robertson HR, Feng G. Annual Research Review: Transgenic mouse models of childhood-onset psychiatric disorders. J Child Psychol Psychiatry 2011; 52:442-75. [PMID: 21309772 PMCID: PMC3075087 DOI: 10.1111/j.1469-7610.2011.02380.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Childhood-onset psychiatric disorders, such as attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), mood disorders, obsessive compulsive spectrum disorders (OCSD), and schizophrenia (SZ), affect many school-age children, leading to a lower quality of life, including difficulties in school and personal relationships that persist into adulthood. Currently, the causes of these psychiatric disorders are poorly understood, resulting in difficulty diagnosing affected children, and insufficient treatment options. Family and twin studies implicate a genetic contribution for ADHD, ASD, mood disorders, OCSD, and SZ. Identification of candidate genes and chromosomal regions associated with a particular disorder provide targets for directed research, and understanding how these genes influence the disease state will provide valuable insights for improving the diagnosis and treatment of children with psychiatric disorders. Transgenic mouse models are one important approach in the study of human diseases, allowing for the use of a variety of experimental approaches to dissect the contribution of a specific chromosomal or genetic abnormality in human disorders. While it is impossible to model an entire psychiatric disorder in a single mouse model, these models can be extremely valuable in dissecting out the specific role of a gene, pathway, neuron subtype, or brain region in a particular abnormal behavior. In this review we discuss existing transgenic mouse models for childhood-onset psychiatric disorders. We compare the strength and weakness of various transgenic mouse models proposed for each of the common childhood-onset psychiatric disorders, and discuss future directions for the study of these disorders using cutting-edge genetic tools.
Collapse
Affiliation(s)
- Holly R. Robertson
- Duke University, Neurobiology Department Durham, N.C.,Massachusetts Institute of Technology, Brain and Cognitive Sciences Department Cambridge, M.A
| | - Guoping Feng
- Duke University, Neurobiology Department Durham, N.C.,Massachusetts Institute of Technology, Brain and Cognitive Sciences Department Cambridge, M.A
| |
Collapse
|
33
|
Impaired striatal dopamine output of homozygous Wfs1 mutant mice in response to [K+] challenge. J Physiol Biochem 2010; 67:53-60. [DOI: 10.1007/s13105-010-0048-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 09/21/2010] [Indexed: 12/18/2022]
|
34
|
Realini N, Vigano' D, Guidali C, Zamberletti E, Rubino T, Parolaro D. Chronic URB597 treatment at adulthood reverted most depressive-like symptoms induced by adolescent exposure to THC in female rats. Neuropharmacology 2010; 60:235-43. [PMID: 20850463 DOI: 10.1016/j.neuropharm.2010.09.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 08/31/2010] [Accepted: 09/06/2010] [Indexed: 12/13/2022]
Abstract
We have recently shown that chronic THC administration in adolescent female rats induces subtle but lasting alterations in the emotional circuit ending in depressive-like behaviour at adulthood. Here we describe other relevant depressive-like symptoms present in these animals. Adult female rats pretreated with THC display passive coping strategy towards acute stressful situations as demonstrated by their behaviours in the first session of the forced swim test, develop a profound anhedonic state as demonstrated by the reduced consumption of palatable food and present a decrease in social functioning. Besides the emotional symptoms, adolescent exposure to THC induced a significant deficit in object recognition memory. Since it has been reported that deficits in adult hippocampal neurogenesis may underlie the cognitive dysfunction seen in depression, we then survey cell proliferation in the dentate gyrus of the hippocampus. Adolescent THC exposure significantly reduced the number of BrdU-positive cells in THC-treated rats as well as hippocampal volume. We suggest that this complex depressive-like phenotype is triggered by a long-lasting decrease in CB1 receptor functionality in specific brain regions. To test whether an increase in the endocannabinoid signalling could ameliorate the depressive phenotype, adult female rats pre-exposed to THC were injected with URB597 (0.3mg/kg ip) and then tested in behavioural assays. URB597 was able to reverse most depressive-like symptoms induced by adolescent THC exposure such as the passive coping strategy observed in THC exposed animals in the forced swim test as well as anhedonia and the reduced social activity. These results support a role for the endocannabinoid system in the neurobiology of depression and suggest the use of URB597 as a new therapeutic tool with antidepressant properties.
Collapse
Affiliation(s)
- N Realini
- DBSF and Neuroscience Center, University of Insubria, via A. da Giussano 10, 21052 Busto Arsizio, VA, Italy
| | | | | | | | | | | |
Collapse
|
35
|
Sütt S, Raud S, Abramov U, Innos J, Luuk H, Plaas M, Kõks S, Zilmer K, Mahlapuu R, Zilmer M, Vasar E. Relation of exploratory behaviour to plasma corticosterone and Wfs1 gene expression in Wistar rats. J Psychopharmacol 2010; 24:905-13. [PMID: 19346280 DOI: 10.1177/0269881109102738] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Male Wistar rats exhibit significant variations in exploratory behaviour in the elevated plus-maze (EPM) model of anxiety. We have now investigated the relation between exploratory behaviour and levels of corticosterone and systemic oxidative stress. Also, the expression levels of endocannabinoid-related and wolframin (Wfs1) genes were measured in the forebrain structures. The rats were divided into high, intermediate and low exploratory activity groups. Exposure to EPM significantly elevated the serum levels of corticosterone in all rats, but especially in the high exploratory group. Oxidative stress indices and expression of endocannabinoid-related genes were not significantly affected by exposure to EPM. Wfs1 mRNA level was highly dependent on exploratory behaviour of animals. In low exploratory activity rats, Wfs1 gene expression was reduced in the temporal lobe, whereas in high exploratory activity group it was reduced in the mesolimbic area and hippocampus. Altogether, present study indicates that in high exploratory activity rats, the activation of brain areas related to novelty seeking is apparent, whereas in low exploratory activity group the brain structures linked to anxiety are activated.
Collapse
Affiliation(s)
- S Sütt
- Department of Physiology, Biomedicum, University of Tartu, Tartu, Estonia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sakatani S, Yamada K, Homma C, Munesue S, Yamamoto Y, Yamamoto H, Hirase H. Deletion of RAGE causes hyperactivity and increased sensitivity to auditory stimuli in mice. PLoS One 2009; 4:e8309. [PMID: 20016851 PMCID: PMC2788702 DOI: 10.1371/journal.pone.0008309] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 11/23/2009] [Indexed: 12/03/2022] Open
Abstract
The receptor for advanced glycation end-products (RAGE) is a multi-ligand receptor that belongs to the immunoglobulin superfamily of cell surface receptors. In diabetes and Alzheimer's disease, pathological progression is accelerated by activation of RAGE. However, how RAGE influences gross behavioral activity patterns in basal condition has not been addressed to date. In search for a functional role of RAGE in normal mice, a series of standard behavioral tests were performed on adult RAGE knockout (KO) mice. We observed a solid increase of home cage activity in RAGE KO. In addition, auditory startle response assessment resulted in a higher sensitivity to auditory signal and increased prepulse inhibition in KO mice. There were no significant differences between KO and wild types in behavioral tests for spatial memory and anxiety, as tested by Morris water maze, classical fear conditioning, and elevated plus maze. Our results raise a possibility that systemic therapeutic treatments to occlude RAGE activation may have adverse effects on general activity levels or sensitivity to auditory stimuli.
Collapse
Affiliation(s)
- Seiichi Sakatani
- Hirase Research Unit, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Kazuyuki Yamada
- Research Resource Center, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Chihiro Homma
- Research Resource Center, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Seiichi Munesue
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Hiroshi Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Hajime Hirase
- Hirase Research Unit, RIKEN Brain Science Institute, Wako, Saitama, Japan
- Saitama University Brain Science Institute, Saitama, Japan
- * E-mail:
| |
Collapse
|
37
|
Xu R, Xia B, Geng J, Shi J, Shi H, Yuan L, De W. Expression and localization of Wolfram syndrome 1 gene in the developing rat pancreas. World J Gastroenterol 2009; 15:5425-31. [PMID: 19916172 PMCID: PMC2778098 DOI: 10.3748/wjg.15.5425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression and function of Wolfram syndrome 1 gene (WFS1) during the development of normal pancreas.
METHODS: Pancreas from Sprague-Dawley rat fetuses, embryos, young and adult animals were used in this study. Expression levels of WFS1 in pancreas of different development stages were detected by reverse transcription-polymerase chain reation (RT-PCR) and Western blotting. To identify the cell location of WFS1 in the developing rat pancreas, double-immunofluorescent staining was performed using antibodies to specific cell markers and WFS1, respectively.
RESULTS: Compared to E15.5, the highest level of WFS1 mRNA was detected at E18.5, the level of WFS1 mRNA in E15.5 and P0 was less, and at a lowest at adult (P < 0.05 vs P0 and adult), respectively. Compare to E15.5, the highest level of WFS1 was at P14 and lowest at P21 (P < 0.05 vs P14 and P21), respectively. The WFS1 positive staining is expressed in the normal developing rat pancreas mainly in the islet beta-cells and mesenchyme at each stage tested.
CONCLUSION: These results indicate that WFS1 may be involved in some aspects of pancreatic development and further research on WFS1 may provide new evidences to prove the interactions between mesenchyma and epithelia at the same time.
Collapse
|
38
|
Wolfram syndrome 1 (Wfs1) mRNA expression in the normal mouse brain during postnatal development. Neurosci Res 2009; 64:213-30. [DOI: 10.1016/j.neures.2009.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 02/28/2009] [Accepted: 03/04/2009] [Indexed: 11/19/2022]
|
39
|
Kõks S, Soomets U, Paya-Cano JL, Fernandes C, Luuk H, Plaas M, Terasmaa A, Tillmann V, Noormets K, Vasar E, Schalkwyk LC. Wfs1 gene deletion causes growth retardation in mice and interferes with the growth hormone pathway. Physiol Genomics 2009; 37:249-59. [PMID: 19293327 DOI: 10.1152/physiolgenomics.90407.2008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of present study was to describe changes in gene expression in the temporal lobe of mice induced by deletion of the Wfs1 gene. Temporal lobes samples were analyzed using Affymetrix Mouse Genome 420 2 GeneChips and expression profiles were functionally annotated with GSEA and Ingenuity Pathway Analysis. We found that Wfs1 mutant mice are significantly smaller (20.9 +/- 1.6 g) than their wild-type counterparts (31.0 +/- 0.6 g, P < 0.0001). This difference existed in 129S6 and C57B6 backgrounds. Interestingly, microarray analysis identified upregulation of growth hormone (GH) transcripts and functional analysis revealed activation of GH pathways. In line with microarray data, the level of IGF-1 in the plasma of Wfs1 mutant mice was significantly increased (P < 0.05). Thus, Wfs1 deletion induces growth retardation, whereas the GH pathway is activated. To test the interaction between the Wfs1 deletion and genomic background, mutant mice were backcrossed to two different genetic backgrounds. In line with previous studies, an interaction between a gene knockout and genetic background was found in gene expression profiles in the congenic region. However, genetic background did not alter the effect of the Wfs1 mutation on either body weight or GH pathway activation. Further studies are needed to describe biochemical and molecular changes of the growth hormone axis as well as in other hormones to clarify their role in growth retardation in the Wfs1 mutant mice.
Collapse
Affiliation(s)
- S Kõks
- Department of Physiology, University of Tartu, Tartu, Estonia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wfs1-deficient mice display impaired behavioural adaptation in stressful environment. Behav Brain Res 2009; 198:334-45. [DOI: 10.1016/j.bbr.2008.11.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 10/28/2008] [Accepted: 11/04/2008] [Indexed: 11/19/2022]
|
41
|
Kato T. Molecular neurobiology of bipolar disorder: a disease of 'mood-stabilizing neurons'? Trends Neurosci 2008; 31:495-503. [PMID: 18774185 DOI: 10.1016/j.tins.2008.07.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 07/30/2008] [Accepted: 07/30/2008] [Indexed: 01/07/2023]
Abstract
Although the role of a genetic factor is established in bipolar disorder, causative genes or robust genetic risk factors have not been identified. Increased incidence of subcortical hyperintensity, altered calcium levels in cells derived from patients and neuroprotective effects of mood stabilizers suggest vulnerability or impaired resilience of neurons in bipolar disorder. Mitochondrial dysfunction or impaired endoplasmic reticulum stress response is suggested to play a role in the neurons' vulnerability. Progressive loss or dysfunction of 'mood-stabilizing neurons' might account for the characteristic course of the illness. The important next step in the neurobiological study of bipolar disorder is identification of the neural systems that are responsible for this disorder.
Collapse
Affiliation(s)
- Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan.
| |
Collapse
|