1
|
Abagnale C, Sebastianelli G, Casillo F, Di Renzo A, Parisi V, Cioffi E, Serrao M, Schoenen J, Coppola G, Di Lorenzo C. A 1-month ketogenic diet in patients with migraine gives a clinical beneficial effect associated with increased latency of somatosensory thalamo-cortical activity. Clin Neurophysiol Pract 2024; 9:292-298. [PMID: 39640871 PMCID: PMC11617316 DOI: 10.1016/j.cnp.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/25/2024] [Accepted: 11/09/2024] [Indexed: 12/07/2024] Open
Abstract
Objective Since the habituation deficit of evoked potentials could be related to abnormal thalamocortical drive, we searched for a modulatory effect of ketogenic diet (KD) on somatosensory-evoked thalamo-cortical activity. KD is effective in preventing migraine. Previous studies showed that KD normalises habituation of somatosensory and visual cortical evoked responses in parallel with a decrease in of migraine attack frequency. Methods We electrically stimulated the median nerve at the wrist to record somatosensory high-frequency oscillations (HFOs) in twenty patients with episodic migraine with and without aura before and after one month of normo- (n = 9) or hypocaloric KD (n = 11). For pre-synaptic thalamocortical and post-synaptic cortical HFOs, we measured the latency of the negative oscillatory maximum, the intra-burst frequency, the number of negative peaks, and the maximum peak-to-peak amplitude. Results In the total group of patients, the one-month KD significantly increased the latency of the negative oscillatory maximum in pre-synaptic, i.e. thalamocortical activity (t = 2.70, p = 0.015) and in post-synaptic HFOs, i.e. cortical activity (t = 3.08, p = 0.006). This effect could be attributed to hypo-caloric KD, as it was not found after normo-caloric KD. Other HFO parameters, such as amplitude, duration, or number of oscillations, were not affected. Conclusions A 1-month hypo-caloric KD is able to delay the propagation of neuronal activity through the thalamo-cortical network. This effect does not seem to be correlated with the therapeutic efficacy of KD, but rather to low-calorie intake. Significance Our results imply that consuming a restricted amount of calories could alter the balance between central excitation and inhibition in migraine.
Collapse
Affiliation(s)
- Chiara Abagnale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| | - Gabriele Sebastianelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| | - Francesco Casillo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| | | | | | | | - Mariano Serrao
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| | - Jean Schoenen
- University of Liège, CHU Sart Tilman-B23, Giga-Neurosciences, Neuroanantomy, Liège, Belgium
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| | - Cherubino Di Lorenzo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| |
Collapse
|
2
|
da Silva VF, Gayger-Dias V, da Silva RS, Sobottka TM, Cigerce A, Lissner LJ, Wartchow KM, Rodrigues L, Zanotto C, Fróes FCTDS, Seady M, Quincozes-Santos A, Gonçalves CA. Calorie restriction protects against acute systemic LPS-induced inflammation. Nutr Neurosci 2024; 27:1237-1249. [PMID: 38386276 DOI: 10.1080/1028415x.2024.2316448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Caloric restriction (CR) has been proposed as a nutritional strategy to combat chronic diseases, including neurodegenerative diseases, as well as to delay aging. However, despite the benefits of CR, questions remain about its underlying mechanisms and cellular and molecular targets.Objective: As inflammatory processes are the basis or accompany chronic diseases and aging, we investigated the protective role of CR in the event of an acute inflammatory stimulus.Methods: Peripheral inflammatory and metabolic parameters were evaluated in Wistar rats following CR and/or acute lipopolysaccharide (LPS) administration, as well as glial changes (microglia and astrocytes), in two regions of the brain (hippocampus and hypothalamus) involved in the inflammatory response. We used a protocol of 30% CR, for 4 or 8 weeks. Serum and brain parameters were analyzed by biochemical or immunological assays.Results: Benefits of CR were observed during the inflammatory challenge, where the partial reduction of serum interleukin-6, mediated by CR, attenuated the systemic response. In the central nervous system (CNS), specifically in the hippocampus, CR attenuated the response to the LPS, as evaluated by tumor necrosis factor alpha (TNFα) levels. Furthermore, in the hippocampus, CR increased the glutathione (GSH) levels, resulting in a better antioxidant response.Discussion: This study contributes to the understanding of the effects of CR, particularly in the CNS, and expands knowledge about glial cells, emphasizing their importance in neuroprotection strategies.
Collapse
Affiliation(s)
- Vanessa-Fernanda da Silva
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde (ICBS), Graduate Program in Biochemistry, Porto Alegre, Brazil
| | - Vitor Gayger-Dias
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde (ICBS), Graduate Program in Biochemistry, Porto Alegre, Brazil
| | - Rafaela Sampaio da Silva
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde (ICBS), Graduate Program in Biochemistry, Porto Alegre, Brazil
| | - Thomas Michel Sobottka
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde (ICBS), Graduate Program in Biochemistry, Porto Alegre, Brazil
| | - Anderson Cigerce
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde (ICBS), Graduate Program in Biochemistry, Porto Alegre, Brazil
| | - Lílian Juliana Lissner
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde (ICBS), Graduate Program in Biochemistry, Porto Alegre, Brazil
- Dipartimento di Fisiologia e Farmacologia "Vittorio Erspamer", Università degli Studi di Roma "La Sapienza", Piazzale Aldo Moro, Rome
| | - Krista Minéia Wartchow
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Letícia Rodrigues
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde (ICBS), Graduate Program in Biochemistry, Porto Alegre, Brazil
| | - Caroline Zanotto
- Biochemistry Laboratory, Grupo Hospitalar Conceição, Porto Alegre, Brazil
| | | | - Marina Seady
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde (ICBS), Graduate Program in Biochemistry, Porto Alegre, Brazil
| | - André Quincozes-Santos
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde (ICBS), Graduate Program in Biochemistry, Porto Alegre, Brazil
| | - Carlos-Alberto Gonçalves
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde (ICBS), Graduate Program in Biochemistry, Porto Alegre, Brazil
| |
Collapse
|
3
|
Veiga GB, Zanini BM, Garcia DN, Hense JD, Barreto MM, Isola JVV, Mondadori RG, Masternak MM, Stout MB, Schneider A. Effects of calorie, protein, and branched chain amino acid restriction on ovarian aging in mice. Reprod Biol 2024; 24:100856. [PMID: 38295721 PMCID: PMC10978239 DOI: 10.1016/j.repbio.2024.100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 04/02/2024]
Abstract
Calorie restriction (CR) is an intervention that promotes longevity and preserves the ovarian reserve. Some studies have observed that the positive impacts of CR can be linked to restriction of protein (PR) and branched-chain amino acids (BCAAs) independent of calorie intake. The aim of this study was to compare the effects of protein and BCAA restriction to 30% CR on the ovarian reserve of female mice. For this, 3 month-old C57BL/6 female mice (n = 35) were randomized into four groups for four months dietary interventions including: control group (CTL; n = 8), 30% CR (CR; n = 9), protein restriction (PR; n = 9) and BCAA restriction (BCAAR; n = 9). Body mass gain, body composition, food intake, serum levels of BCAAs, ovarian reserve and estrous cyclicity were evaluated. We observed that CR, protein and BCAA restriction prevented weight gain and changed body composition compared to the CTL group. The BCAA restriction did not affect the ovarian reserve, while both PR and CR prevented activation of primordial follicles. This prevention occurred in PR group despite the lack of reduction of calorie intake compared to CTL group, and CR did not reduce protein intake in levels similar to the PR group. BCAA restriction resulted in increased calorie intake compared to CTL and PR mice, but only PR reduced serum BCAA levels compared to the CTL group. Our data indicates that PR has similar effects to CR on the ovarian reserve, whereas BCAA restriction alone did not affect it.
Collapse
Affiliation(s)
- Gabriel B Veiga
- Universidade Federal de Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Bianka M Zanini
- Universidade Federal de Pelotas (UFPEL), Pelotas, RS, Brazil
| | | | - Jéssica D Hense
- Universidade Federal de Pelotas (UFPEL), Pelotas, RS, Brazil
| | | | - José V V Isola
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | - Michal M Masternak
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA; Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Michael B Stout
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | |
Collapse
|
4
|
Yu W, Chen L, Li X, Han T, Yang Y, Hu C, Yu W, Lü Y. Alteration of Metabolic Profiles during the Progression of Alzheimer's Disease. Brain Sci 2023; 13:1459. [PMID: 37891827 PMCID: PMC10605479 DOI: 10.3390/brainsci13101459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder that threatens the population health of older adults. However, the mechanisms of the altered metabolism involved in AD pathology are poorly understood. The aim of the study was to identify the potential biomarkers of AD and discover the metabolomic changes produced during the progression of the disease. (2) Methods: Gas chromatography-mass spectrometry (GC-MS) was used to measure the concentrations of the serum metabolites in a cohort of subjects with AD (n = 88) and a cognitively normal control (CN) group (n = 85). The patients were classified as very mild (n = 25), mild (n = 27), moderate (n = 25), and severe (n = 11). The serum metabolic profiles were analyzed using multivariate and univariate approaches. Least absolute shrinkage and selection operator (LASSO) logistic regression was applied to identify the potential biomarkers of AD. Biofunctional enrichment analysis was performed using the Kyoto Encyclopedia of Genes and Genomes. (3) Results: Our results revealed considerable separation between the AD and CN groups. Six metabolites were identified as potential biomarkers of AD (AUC > 0.85), and the diagnostic model of three metabolites could predict the risk of AD with high accuracy (AUC = 0.984). The metabolic enrichment analysis revealed that carbohydrate metabolism deficiency and the disturbance of amino acid, fatty acid, and lipid metabolism were involved in AD progression. Especially, the pathway analysis highlighted that l-glutamate participated in four crucial nervous system pathways (including the GABAergic synapse, the glutamatergic synapse, retrograde endocannabinoid signaling, and the synaptic vesicle cycle). (4) Conclusions: Carbohydrate metabolism deficiency and amino acid dysregulation, fatty acid, and lipid metabolism disorders were pivotal events in AD progression. Our study may provide novel insights into the role of metabolic disorders in AD pathogenesis and identify new markers for AD diagnosis.
Collapse
Affiliation(s)
- Wuhan Yu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (W.Y.); (L.C.)
| | - Lihua Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (W.Y.); (L.C.)
| | - Xuebing Li
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (W.Y.); (L.C.)
| | - Tingli Han
- Department of Obsetric and Gyncology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Liggins Institute, The University of Auckland, Auckland 1023, New Zealand
| | - Yang Yang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400716, China
| | - Cheng Hu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (W.Y.); (L.C.)
| | - Weihua Yu
- Institutes of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Yang Lü
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (W.Y.); (L.C.)
| |
Collapse
|
5
|
Shao Y, Fu Z, Wang Y, Yang Z, Lin Y, Li S, Cheng C, Wei M, Liu Z, Xu G, Le W. A metabolome atlas of mouse brain on the global metabolic signature dynamics following short-term fasting. Signal Transduct Target Ther 2023; 8:334. [PMID: 37679319 PMCID: PMC10484938 DOI: 10.1038/s41392-023-01552-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 09/09/2023] Open
Abstract
Calorie restriction (CR) or a fasting regimen is considered one of the most potent non-pharmacological interventions to prevent chronic metabolic disorders, ameliorate autoimmune diseases, and attenuate aging. Despite efforts, the mechanisms by which CR improves health, particularly brain health, are still not fully understood. Metabolic homeostasis is vital for brain function, and a detailed metabolome atlas of the brain is essential for understanding the networks connecting different brain regions. Herein, we applied gas chromatography-mass spectrometry-based metabolomics and lipidomics, covering 797 structurally annotated metabolites, to investigate the metabolome of seven brain regions in fasted (3, 6, 12, and 24 h) and ad libitum fed mice. Using multivariate and univariate statistical techniques, we generated a metabolome atlas of mouse brain on the global metabolic signature dynamics across multiple brain regions following short-term fasting (STF). Significant metabolic differences across brain regions along with STF-triggered region-dependent metabolic remodeling were identified. We found that STF elicited triacylglycerol degradation and lipolysis to compensate for energy demand under fasting conditions. Besides, changes in amino acid profiles were observed, which may play crucial roles in the regulation of energy metabolism, neurotransmitter signaling, and anti-inflammatory and antioxidant in response to STF. Additionally, this study reported, for the first time, that STF triggers a significant elevation of N-acylethanolamines, a class of neuroprotective lipids, in the brain and liver. These findings provide novel insights into the molecular basis and mechanisms of CR and offer a comprehensive resource for further investigation.
Collapse
Affiliation(s)
- Yaping Shao
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, 193 Lianhe Road, 116021, Dalian, China.
| | - Zhenfa Fu
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, 193 Lianhe Road, 116021, Dalian, China
| | - Yanfeng Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023, Dalian, China
| | - Zhaofei Yang
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, 193 Lianhe Road, 116021, Dalian, China
| | - Yushan Lin
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, 193 Lianhe Road, 116021, Dalian, China
| | - Song Li
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, 193 Lianhe Road, 116021, Dalian, China
| | - Cheng Cheng
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, 193 Lianhe Road, 116021, Dalian, China
| | - Min Wei
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, 193 Lianhe Road, 116021, Dalian, China
| | - Zheyi Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023, Dalian, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023, Dalian, China.
| | - Weidong Le
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, 193 Lianhe Road, 116021, Dalian, China.
- Institute of Neurology, Sichuan Academy of Medical Science-Sichuan Provincial Hospital, Medical School of UESTC, 611731, Chengdu, China.
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW The goal of this review is to describe how emerging technological developments in pre-clinical animal research can be harnessed to accelerate research in anorexia nervosa (AN). RECENT FINDINGS The activity-based anorexia (ABA) paradigm, the best characterized animal model of AN, combines restricted feeding, excessive exercise, and weight loss. A growing body of evidence supports the idea that pathophysiological weight loss in this model is due to cognitive inflexibility, a clinical feature of AN. Targeted manipulations that recapitulate brain changes reported in AN - hyperdopaminergia or hyperactivity of cortical inputs to the nucleus accumbens - exacerbate weight loss in the ABA paradigm, providing the first evidence of causality. The power of preclinical research lies in the ability to assess the consequences of targeted manipulations of neuronal circuits that have been implicated in clinical research. Additional paradigms are needed to capture other features of AN that are not seen in ABA.
Collapse
Affiliation(s)
- Marie François
- Division of Molecular Genetics, Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, USA
| | - Lori M Zeltser
- Division of Molecular Genetics, Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, USA.
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, USA.
| |
Collapse
|
7
|
Correa CR, Schena C, Lopes SC, Prediger RD, Silva EL, Venske DKR, Ribeiro LC, Moreira JD. Combined effects of caloric restriction and fish oil attenuated anti-depressant and anxiolytic-like effects of fish oil: association with hippocampal BDNF concentrations. Behav Brain Res 2020; 393:112770. [PMID: 32561388 DOI: 10.1016/j.bbr.2020.112770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/09/2020] [Accepted: 06/08/2020] [Indexed: 01/18/2023]
Abstract
Omega-3-enriched fish oil (FO) and caloric restriction (CR) are nutritional therapeutic approaches that exert an important impact on brain function, behavior, memory, and neuroprotection. Here, we investigate the synergic effects of both therapeutic approaches combined (CR + FO) on behavior (memory, anxiety-like behavior, antidepressant-like behavior), as well as its association with hippocampal brain-derived neurotrophic factor (BDNF) concentrations. Adult male Wistar rats were divided into four dietary groups: Control group (C) - chow ad libitum; CR group - 30 % CR, considering C group food intake; FO group - FO-enriched chow ad libitum; and CR + FO group - FO-enriched 30 % CR chow. After 12 weeks of dietary treatment, behavioural analysis set was conducted, and hippocampal BDNF concentrations were measured. FO group presented anxiolytic-like and antidepressant-like behaviors as well as improved memory in the Morris' water maze. These effects were attenuated by the combined CR + FO treatment. FO group also presented higher BDNF concentrations. There was a positive association between the number of entries in the platform quadrant in the MWM and hippocampal BDNF concentrations (β = 0.39; R² = 0.15; p = 0.042) and an inverse association between forced swim immobility time and BDNF concentrations (β = -0.39; R² = 0.15; p = 0.041). Taken together, our data showed that the 12-week FO dietary treatment promoted anxiolytic-like and antidepressant-like behaviors as well as memory improvement, and these effects were associated with BDNF concentrations. Synergic effects of interventions attenuated FO-related behavioral responses and BDNF concentrations and probably reduced hippocampal neuroplasticity.
Collapse
Affiliation(s)
- Cinthia R Correa
- Post Graduate Program in Nutrition, Department of Nutrition, Health Sciences Centre, Universidade Federal de Santa Catarina (UFSC), Brazil
| | - Claudia Schena
- Department of Nutrition, Health Sciences Centre, Universidade Federal de Santa Catarina (UFSC), Brazil
| | - Samantha C Lopes
- Post Graduate Program in Pharmacology, Department of Pharmacology, Universidade Federal de Santa Catarina (UFSC), Brazil; Medical Science Research Group - Biomedical and Clinical Investigation, Medicine Graduation Course, Centro Universitário para o Desenvolvimento do Alto Vale do Itajaí. Brazil
| | - Rui D Prediger
- Post Graduate Program in Pharmacology, Department of Pharmacology, Universidade Federal de Santa Catarina (UFSC), Brazil
| | - E L Silva
- Post Graduate Program in Nutrition, Department of Nutrition, Health Sciences Centre, Universidade Federal de Santa Catarina (UFSC), Brazil
| | - Débora K R Venske
- Post Graduate Program in Nutrition, Department of Nutrition, Health Sciences Centre, Universidade Federal de Santa Catarina (UFSC), Brazil
| | - L C Ribeiro
- Department of Nutrition, Health Sciences Centre, Universidade Federal de Santa Catarina (UFSC), Brazil
| | - J D Moreira
- Post Graduate Program in Nutrition, Department of Nutrition, Health Sciences Centre, Universidade Federal de Santa Catarina (UFSC), Brazil.
| |
Collapse
|
8
|
Cui M, Jiang Y, Zhao Q, Zhu Z, Liang X, Zhang K, Wu W, Dong Q, An Y, Tang H, Ding D, Chen X. Metabolomics and incident dementia in older Chinese adults: The Shanghai Aging Study. Alzheimers Dement 2020; 16:779-788. [PMID: 32270572 DOI: 10.1002/alz.12074] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/27/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Metabolomics provide a promising tool to understand the pathogenesis and to identify novel biomarkers of dementia. This study aimed to determine circulating metabolites associated with incident dementia in a Chinese cohort, and whether a selected metabolite panel could predict dementia. METHODS Thirty-eight metabolites in baseline serum were profiled by nuclear magnetic resonance in 1440 dementia-free participants followed 5 years in the Shanghai Aging Study. RESULTS Higher serum levels of glutamine and O-acetyl-glycoproteins were associated with increased risk of dementia, whereas glutamate, tyrosine, acetate, glycine, and phenylalanine were negatively related to incident dementia. A panel of five metabolites selected by least absolute shrinkage and selection operator within cross-validation regression analysis could predict incident dementia with an area under the receiver-operating characteristic curve of 0.72. DISCUSSION We identified seven candidate serum metabolic biomarkers for dementia. These findings and the underlying biological mechanisms need to be further replicated and elucidated in future studies.
Collapse
Affiliation(s)
- Mei Cui
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanfeng Jiang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China.,School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Qianhua Zhao
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhen Zhu
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China.,Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Xiaoniu Liang
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Kexun Zhang
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China.,Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Wanqing Wu
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanpeng An
- Metabonomics and Systems Biology Laboratory, School of Life Sciences, Fudan University, Shanghai, China
| | - Huiru Tang
- Metabonomics and Systems Biology Laboratory, School of Life Sciences, Fudan University, Shanghai, China
| | - Ding Ding
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China.,School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| |
Collapse
|
9
|
Popov A, Denisov P, Bychkov M, Brazhe A, Lyukmanova E, Shenkarev Z, Lazareva N, Verkhratsky A, Semyanov A. Caloric restriction triggers morphofunctional remodeling of astrocytes and enhances synaptic plasticity in the mouse hippocampus. Cell Death Dis 2020; 11:208. [PMID: 32231202 PMCID: PMC7105492 DOI: 10.1038/s41419-020-2406-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 11/22/2022]
Abstract
Calorie-restricted (CR) diet has multiple beneficial effects on brain function. Here we report morphological and functional changes in hippocampal astrocytes in 3-months-old mice subjected to 1 month of the diet. Whole-cell patch-clamp recordings were performed in the CA1 stratum (str.) radiatum astrocytes of hippocampal slices. The cells were also loaded with fluorescent dye through the patch pipette. CR did not affect the number of astrocytic branches but increased the volume fraction (VF) of distal perisynaptic astrocytic leaflets. The astrocyte growth did not lead to a decrease in the cell input resistance, which may be attributed to a decrease in astrocyte coupling through the gap junctions. Western blotting revealed a decrease in the expression of Cx43 but not Cx30. Immunocytochemical analysis demonstrated a decrease in the density and size of Cx43 clusters. Cx30 cluster density did not change, while their size increased in the vicinity of astrocytic soma. CR shortened K+ and glutamate transporter currents in astrocytes in response to 5 × 50 Hz Schaffer collateral stimulation. However, no change in the expression of astrocytic glutamate transporter 1 (GLT-1) was observed, while the level of glutamine synthetase (GS) decreased. These findings suggest that enhanced enwrapping of synapses by the astrocytic leaflets reduces glutamate and K+ spillover. Reduced spillover led to a decreased contribution of extrasynaptic N2B containing N-methyl-D-aspartate receptors (NMDARs) to the tail of burst-induced EPSCs. The magnitude of long-term potentiation (LTP) in the glutamatergic CA3–CA1 synapses was significantly enhanced after CR. This enhancement was abolished by N2B-NMDARs antagonist. Our findings suggest that astrocytic morphofunctional remodeling is responsible for enhanced synaptic plasticity, which provides a basis for improved learning and memory reported after CR.
Collapse
Affiliation(s)
- Alexander Popov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow, 117997, Russia
| | - Pavel Denisov
- University of Nizhny Novgorod, Gagarin Ave. 23, Nizhny Novgorod, 603950, Russia
| | - Maxim Bychkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow, 117997, Russia
| | - Alexey Brazhe
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow, 117997, Russia.,Faculty of Biology, Moscow State University, Leninskie Gory 1/12, Moscow, 119234, Russia
| | - Ekaterina Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow, 117997, Russia
| | - Zakhar Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow, 117997, Russia
| | - Natalia Lazareva
- Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya, 19с1, Moscow, 119146, Russia
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK. .,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow, 117997, Russia. .,Faculty of Biology, Moscow State University, Leninskie Gory 1/12, Moscow, 119234, Russia. .,Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya, 19с1, Moscow, 119146, Russia.
| |
Collapse
|
10
|
Garcia DN, Saccon TD, Pradiee J, Rincón JAA, Andrade KRS, Rovani MT, Mondadori RG, Cruz LAX, Barros CC, Masternak MM, Bartke A, Mason JB, Schneider A. Effect of caloric restriction and rapamycin on ovarian aging in mice. GeroScience 2019; 41:395-408. [PMID: 31359237 PMCID: PMC6815295 DOI: 10.1007/s11357-019-00087-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/16/2019] [Indexed: 12/26/2022] Open
Abstract
Caloric restriction (CR) increases the preservation of the ovarian primordial follicular reserve, which can potentially delay menopause. Rapamycin also increases preservation on the ovarian reserve, with similar mechanism to CR. Therefore, the aim of our study was to evaluate the effects of rapamycin and CR on metabolism, ovarian reserve, and gene expression in mice. Thirty-six female mice were allocated into three groups: control, rapamycin-treated (4 mg/kg body weight every other day), and 30% CR. Caloric restricted females had lower body weight (P < 0.05) and increased insulin sensitivity (P = 0.003), while rapamycin injection did not change body weight (P > 0.05) and induced insulin resistance (P < 0.05). Both CR and rapamycin females displayed a higher number of primordial follicles (P = 0.02 and 0.04, respectively), fewer primary, secondary, and tertiary follicles (P < 0.05) and displayed increased ovarian Foxo3a gene expression (P < 0.05). Despite the divergent metabolic effects of the CR and rapamycin treatments, females from both groups displayed a similar increase in ovarian reserve, which was associated with higher expression of ovarian Foxo3a.
Collapse
Affiliation(s)
- Driele N. Garcia
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - Tatiana D. Saccon
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - Jorgea Pradiee
- Faculdade de Medicina Veterinária, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - Joao A. A. Rincón
- Faculdade de Medicina Veterinária, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | | | - Monique T. Rovani
- Faculdade de Medicina Veterinária, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | | | - Luis A. X. Cruz
- Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - Carlos C. Barros
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - Michal M. Masternak
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL USA
- Department of Head and Neck Surgery, The Greater Poland Cancer Centre, Poznan, Poland
| | - Andrzej Bartke
- Departments of Internal Medicine and Physiology, Southern Illinois University School of Medicine, Springfield, IL USA
| | - Jeffrey B. Mason
- Department of Animal, Dairy and Veterinary Sciences, Center for Integrated BioSystems, School of Veterinary Medicine, Utah State University, Logan, UT USA
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS Brazil
| |
Collapse
|
11
|
Fann DYW, Ng GYQ, Poh L, Arumugam TV. Positive effects of intermittent fasting in ischemic stroke. Exp Gerontol 2017; 89:93-102. [PMID: 28115234 DOI: 10.1016/j.exger.2017.01.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/26/2016] [Accepted: 01/18/2017] [Indexed: 12/18/2022]
Abstract
Intermittent fasting (IF) is a dietary protocol where energy restriction is induced by alternate periods of ad libitum feeding and fasting. Prophylactic intermittent fasting has been shown to extend lifespan and attenuate the progress and severity of age-related diseases such as cardiovascular (e.g. stroke and myocardial infarction), neurodegenerative (e.g. Alzheimer's disease and Parkinson's disease) and cancerous diseases in animal models. Stroke is the second leading cause of death, and lifestyle risk factors such as obesity and physical inactivity have been associated with elevated risks of stroke in humans. Recent studies have shown that prophylactic IF may mitigate tissue damage and neurological deficit following ischemic stroke by a mechanism(s) involving suppression of excitotoxicity, oxidative stress, inflammation and cell death pathways in animal stroke models. This review summarizes data supporting the potential hormesis mechanisms of prophylactic IF in animal models, and with a focus on findings from animal studies of prophylactic IF in stroke in our laboratory.
Collapse
Affiliation(s)
- David Yang-Wei Fann
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gavin Yong Quan Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Luting Poh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thiruma V Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
12
|
García‐Matas S, Paul RK, Molina‐Martínez P, Palacios H, Gutierrez VM, Corpas R, Pallas M, Cristòfol R, Cabo R, Sanfeliu C. In vitro caloric restriction induces protective genes and functional rejuvenation in senescent SAMP8 astrocytes. Aging Cell 2015; 14:334-44. [PMID: 25711920 PMCID: PMC4406662 DOI: 10.1111/acel.12259] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2014] [Indexed: 12/12/2022] Open
Abstract
Astrocytes are key cells in brain aging, helping neurons to undertake healthy aging or otherwise letting them enter into a spiral of neurodegeneration. We aimed to characterize astrocytes cultured from senescence-accelerated prone 8 (SAMP8) mice, a mouse model of brain pathological aging, along with the effects of caloric restriction, the most effective rejuvenating treatment known so far. Analysis of the transcriptomic profiles of SAMP8 astrocytes cultured in control conditions and treated with caloric restriction serum was performed using mRNA microarrays. A decrease in mitochondrial and ribosome mRNA, which was restored by caloric restriction, confirmed the age-related profile of SAMP8 astrocytes and the benefits of caloric restriction. An amelioration of antioxidant and neurodegeneration-related pathways confirmed the brain benefits of caloric restriction. Studies of oxidative stress and mitochondrial function demonstrated a reduction of oxidative damage and partial improvement of mitochondria after caloric restriction. In summary, caloric restriction showed a significant tendency to normalize pathologically aged astrocytes through the activation of pathways that are protective against the age-related deterioration of brain physiology.
Collapse
Affiliation(s)
- Silvia García‐Matas
- Aging and Neurodegeneration Unit Biomedical Research Institute of Barcelona (IIBB) Consejo Superior de Investigaciones Científicas and IDIBAPS 08036 Barcelona Spain
| | - Rajib K. Paul
- Experimental Gerontology Section TGB NIA NIH251 Bayview Blvd Baltimore MD 21224
| | - Patricia Molina‐Martínez
- Aging and Neurodegeneration Unit Biomedical Research Institute of Barcelona (IIBB) Consejo Superior de Investigaciones Científicas and IDIBAPS 08036 Barcelona Spain
| | - Hector Palacios
- Experimental Gerontology Section TGB NIA NIH251 Bayview Blvd Baltimore MD 21224
| | | | - Rubén Corpas
- Aging and Neurodegeneration Unit Biomedical Research Institute of Barcelona (IIBB) Consejo Superior de Investigaciones Científicas and IDIBAPS 08036 Barcelona Spain
| | - Mercè Pallas
- Department of Pharmacology and Therapeutic Chemistry Faculty of Pharmacy IBUB, University of Barcelona and CIBERNED 08028 Barcelona Spain
| | - Rosa Cristòfol
- Aging and Neurodegeneration Unit Biomedical Research Institute of Barcelona (IIBB) Consejo Superior de Investigaciones Científicas and IDIBAPS 08036 Barcelona Spain
| | - Rafael Cabo
- Experimental Gerontology Section TGB NIA NIH251 Bayview Blvd Baltimore MD 21224
| | - Coral Sanfeliu
- Aging and Neurodegeneration Unit Biomedical Research Institute of Barcelona (IIBB) Consejo Superior de Investigaciones Científicas and IDIBAPS 08036 Barcelona Spain
| |
Collapse
|
13
|
Dutra MF, Bristot IJ, Batassini C, Cunha NB, Vizuete AFK, de Souza DF, Moreira JCF, Gonçalves CA. Effects of chronic caloric restriction on kidney and heart redox status and antioxidant enzyme activities in Wistar rats. BMB Rep 2013. [PMID: 23187008 PMCID: PMC4133804 DOI: 10.5483/bmbrep.2012.45.11.094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Caloric restriction (CR) has been associated with health benefits and these effects have been attributed, in part, to modulation of oxidative status by CR; however, data are still controversial. Here, we investigate the effects of seventeen weeks of chronic CR on parameters of oxidative damage/modification of proteins and on antioxidant enzyme activities in cardiac and kidney tissues. Our results demonstrate that CR induced an increase in protein carbonylation in the heart without changing the content of sulfhydryl groups or the activities of superoxide dismutase and catalase (CAT). Moreover, CR caused an increase in CAT activity in kidney, without changing other parameters. Protein carbonylation has been associated with oxidative damage and functional impairment; however, we cannot exclude the possibility that, under our conditions, this alteration indicates a different functional meaning in the heart tissue. In addition, we reinforce the idea that CR can increase CAT activity in the kidney. [BMB Reports 2012; 45(11): 671-676]
Collapse
Affiliation(s)
- Márcio Ferreira Dutra
- Departamento de Bioquímica, Instituto de Ciências Básicas da Sáude, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
A calorie-restricted diet decreases brain iron accumulation and preserves motor performance in old rhesus monkeys. J Neurosci 2012; 32:11897-904. [PMID: 23082321 DOI: 10.1523/jneurosci.2553-12.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Caloric restriction (CR) reduces the pathological effects of aging and extends the lifespan in many species, including nonhuman primates, although the effect on the brain is less well characterized. We used two common indicators of aging, motor performance speed and brain iron deposition measured in vivo using magnetic resonance imaging, to determine the potential effect of CR on elderly rhesus macaques eating restricted (n=24, 13 males, 11 females) and standard (n=17, 8 males, 9 females) diets. Both the CR and control monkeys showed age-related increases in iron concentrations in globus pallidus (GP) and substantia nigra (SN), although the CR group had significantly less iron deposition in the GP, SN, red nucleus, and temporal cortex. A Diet X Age interaction revealed that CR modified age-related brain changes, evidenced as attenuation in the rate of iron accumulation in basal ganglia and parietal, temporal, and perirhinal cortex. Additionally, control monkeys had significantly slower fine motor performance on the Movement Assessment Panel, which was negatively correlated with iron accumulation in left SN and parietal lobe, although CR animals did not show this relationship. Our observations suggest that the CR-induced benefit of reduced iron deposition and preserved motor function may indicate neural protection similar to effects described previously in aging rodent and primate species.
Collapse
|
15
|
Perianes-Cachero A, Burgos-Ramos E, Puebla-Jiménez L, Canelles S, Viveros MP, Mela V, Chowen JA, Argente J, Arilla-Ferreiro E, Barrios V. Leptin-induced downregulation of the rat hippocampal somatostatinergic system may potentiate its anorexigenic effects. Neurochem Int 2012; 61:1385-96. [PMID: 23073237 DOI: 10.1016/j.neuint.2012.09.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 09/24/2012] [Accepted: 09/30/2012] [Indexed: 10/27/2022]
Abstract
The learning and memory mechanisms in the hippocampus translate hormonal signals of energy balance into behavioral outcomes involved in the regulation of food intake. As leptin and its receptors are expressed in the hippocampus and somatostatin (SRIF), an orexigenic neuropeptide, may inhibit leptin-mediated suppression of food intake in other brain areas, we asked whether chronic leptin infusion induces changes in the hippocampal somatostatinergic system and whether these modifications are involved in leptin-mediated effects. We studied 18 male Wistar rats divided into three groups: controls (C), treated intracerebroventricularly (icv) with leptin (12 μg/day) for 14 days (L) and a pair-fed group (PF) that received the same amount of food consumed by the L group. Food restriction increased whereas leptin decreased the hippocampal SRIF receptor density, due to changes in SRIF receptor 2 protein levels. These changes in the PF group were concurrent with an increase of hippocampal G protein-coupled receptor kinase 2 protein levels and activation of Akt and cyclic AMP response element binding protein. The inhibitory effect of SRIF on adenylyl cyclase (AC) activity, however, was decreased in L rats, coincident with lower G inhibitory α3 and higher AC-I levels as well as signal transducer and activator of transcription factor 3 activation. In addition, 20 male Wistar rats were included to analyze whether the leptin antagonist L39A/D40A/F41A and the SRIF receptor agonist SMS 201-995 modify SRIF signaling and food intake, respectively. Administration of L39A/D40A/F41A reversed changes in SRIF signaling, whereas SMS 201-995 ameliorated food consumption in L. Altogether, these results suggest that increased somatostatinergic tone in PF rats may be a mechanism to improve the hippocampal orexigenic effects in a situation of metabolic demand, whereas down-regulation of this system in L rats may represent a mechanism to enhance the anorexigenic effects of leptin.
Collapse
Affiliation(s)
- Arancha Perianes-Cachero
- Neurobiochemistry Unit, Department of Biochemistry and Molecular Biology, Facultad de Medicina, Universidad de Alcalá, Alcalá de Henares, E-28871 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ribeiro LC, Rodrigues L, Quincozes-Santos A, Tramontina AC, Bambini-Junior V, Zanotto C, Diehl LA, Biasibetti R, Kleinkauf-Rocha J, Dalmaz C, Goncalves CA, Gottfried C. Caloric restriction improves basal redox parameters in hippocampus and cerebral cortex of Wistar rats. Brain Res 2012; 1472:11-9. [PMID: 22842081 DOI: 10.1016/j.brainres.2012.07.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 06/29/2012] [Accepted: 07/12/2012] [Indexed: 11/26/2022]
Abstract
Caloric restriction (CR) has been shown to either decrease or prevent the progression of several age-related pathologies. In previous work, we demonstrated that CR modulates astrocyte functions, suggesting that CR may exert neuroglial modulation. Here, we investigated the effects of CR on hippocampal (Hc) and cortical (Cx) oxidative stress parameters of male Wistar rats. Our results showed that CR-fed rats had 17% less body weight gain after 12 weeks of treatment. CR improved locomotion performance, increased glutathione levels and decreased glutathione peroxidase activity and the production of reactive oxygen species. However, no changes were observed in lipid peroxidation, nitric oxide content and catalase activity. Single cell gel electrophoresis assay (comet assay) revealed a reduction in the extent of basal DNA damage upon CR. Our data suggest that dietary CR could induce both hippocampal and cortical modulation resulting in metabolic changes and as a consequence, significant improvement of cellular defense-associated parameters.
Collapse
Affiliation(s)
- Leticia C Ribeiro
- Research Group in Neuroglial Plasticity, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Valladolid-Acebes I, Merino B, Principato A, Fole A, Barbas C, Lorenzo MP, García A, Del Olmo N, Ruiz-Gayo M, Cano V. High-fat diets induce changes in hippocampal glutamate metabolism and neurotransmission. Am J Physiol Endocrinol Metab 2012; 302:E396-402. [PMID: 22114023 DOI: 10.1152/ajpendo.00343.2011] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obesity and high-fat (HF) diets have a deleterious impact on hippocampal function and lead to impaired synaptic plasticity and learning deficits. Because all of these processes need an adequate glutamatergic transmission, we have hypothesized that nutritional imbalance triggered by these diets might eventually concern glutamate (Glu) neural pathways within the hippocampus. Glu is withdrawn from excitatory synapses by specific uptake mechanisms involving neuronal (EAAT-3) and glial (GLT-1, GLAST) transporters, which regulate the time that synaptically released Glu remains in the extracellular space and, consequently, the duration and location of postsynaptic receptor activation. The goal of the present study was to evaluate in mouse hippocampus the effect of a short-term high-fat dietary treatment on 1) Glu uptake kinetics, 2) the density of Glu carriers and Glu-degrading enzymes, 3) the density of Glu receptor subunits, and 4) synaptic transmission and plasticity. Here, we show that HF diet triggers a 50% decrease of the Michaelis-Menten constant together with a 300% increase of the maximal velocity of the uptake process. Glial Glu carriers GLT-1 and GLAST were upregulated in HF mice (32 and 27%, respectively), whereas Glu-degrading enzymes glutamine synthase and GABA-decarboxilase appeared to be downregulated in these animals. In addition, HF diet hippocampus displayed diminished basal synaptic transmission and hindered NMDA-induced long-term depression (NMDA-LTD). This was coincident with a reduced density of the NR2B subunit of NMDA receptors. All of these results are compatible with the development of leptin resistance within the hippocampus. Our data show that HF diets upregulate mechanisms involved in Glu clearance and simultaneously impair Glu metabolism. Neurochemical changes occur concomitantly with impaired basal synaptic transmission and reduced NMDA-LTD. Taken together, our results suggest that HF diets trigger neurochemical changes, leading to a desensitization of NMDA receptors within the hippocampus, which might account for cognitive deficits.
Collapse
Affiliation(s)
- Ismael Valladolid-Acebes
- Departamento de Ciencias Farmacéuticas y de la Alimentación, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Manzanero S, Gelderblom M, Magnus T, Arumugam TV. Calorie restriction and stroke. EXPERIMENTAL & TRANSLATIONAL STROKE MEDICINE 2011; 3:8. [PMID: 21910904 PMCID: PMC3179731 DOI: 10.1186/2040-7378-3-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 09/12/2011] [Indexed: 12/15/2022]
Abstract
Stroke, a major cause of disability and mortality in the elderly, occurs when a cerebral blood vessel is occluded or ruptured, resulting in ischemic damage and death of brain cells. The injury mechanism involves metabolic and oxidative stress, excitotoxicity, apoptosis and inflammatory processes, including activation of glial cells and infiltration of leukocytes. In animal models, dietary energy restriction, by daily calorie reduction (CR) or intermittent fasting (IF), extends lifespan and decreases the development of age-related diseases. Dietary energy restriction may also benefit neurons, as suggested by experimental evidence showing that CR and IF protect neurons against degeneration in animal models. Recent findings by our group and others suggest the possibility that dietary energy restriction may protect against stroke induced brain injury, in part by inducing the expression of neurotrophic factors, such as brain-derived neurotrophic factor (BDNF) and basic fibroblast growth factor (bFGF); protein chaperones, including heat shock protein 70 (Hsp70) and glucose regulated protein 78 (GRP78); antioxidant enzymes, such as superoxide dismutases (SOD) and heme oxygenase-1 (HO-1), silent information regulator T1 (SIRT1), uncoupling proteins and anti-inflammatory cytokines. This article discusses the protective mechanisms activated by dietary energy restriction in ischemic stroke.
Collapse
Affiliation(s)
- Silvia Manzanero
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia.
| | | | | | | |
Collapse
|
19
|
Santin K, da Rocha RF, Cechetti F, Quincozes-Santos A, de Souza DF, Nardin P, Rodrigues L, Leite MC, Moreira JCF, Salbego CG, Gonçalves CA. Moderate exercise training and chronic caloric restriction modulate redox status in rat hippocampus. Brain Res 2011; 1421:1-10. [PMID: 21974860 DOI: 10.1016/j.brainres.2011.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 07/27/2011] [Accepted: 08/02/2011] [Indexed: 01/29/2023]
Abstract
Physical activity has been related to antioxidant adaptations, which is associated with health benefits, including those to the nervous system. Additionally, available data suggest exercise and a caloric restriction regimen may reduce both the incidence and severity of neurological disorders. Therefore, our aim was to compare hippocampal redox status and glial parameters among sedentary, trained, caloric-restricted sedentary and caloric-restricted trained rats. Forty male adult rats were divided into 4 groups: ad libitum-fed sedentary (AS), ad libitum-fed exercise training (AE), calorie-restricted sedentary (RS) and calorie-restricted exercise training (RE). The caloric restriction (decrease of 30% in food intake) and exercise training (moderate in a treadmill) were carried out for 3 months. Thereafter hippocampus was surgically removed, and then redox and glial parameters were assessed. Increases in reduced glutathione (GSH) levels and total antioxidant reactivity (TAR) were observed in AE, RS and RE. The nitrite/nitrate levels decreased only in RE. We found a decrease in carbonyl content in AE, RS and RE, while no modifications were detected in thiobarbituric acid reactive substances (TBARS). Total reactive antioxidant potential (TRAP), superoxide dismutase (SOD) activity, S100B and glial fibrilary acid protein (GFAP) content did not change, but caloric restriction was able to increase glutamine synthetase (GS) activity in RS and glutamate uptake in RS and RE. Exercise training, caloric restriction and both combined can decrease oxidative damage in the hippocampus, possibly involving modulation of astroglial function, and could be used as a strategy for the prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Katiane Santin
- Department of Biochemistry, Institute of Health Basic Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Cerqueira FM, Kowaltowski AJ. Commonly adopted caloric restriction protocols often involve malnutrition. Ageing Res Rev 2010; 9:424-30. [PMID: 20493280 DOI: 10.1016/j.arr.2010.05.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 05/10/2010] [Accepted: 05/10/2010] [Indexed: 02/08/2023]
Abstract
Undernutrition without malnutrition is an intervention that enhances laboratory animal life span, and is widely studied to uncover factors limiting longevity. In a search of the literature over a course of four years, we found that most protocols currently adopted as caloric restriction do not meet micronutrient standards set by the National Research Council for laboratory rats and mice. We provide evidence that the most commonly adopted caloric restriction protocol, a 40% restriction of the AIN-93 diet without vitamin or mineral supplementation, leads to malnutrition in both mice and rats. Furthermore, others and we find that every other day feeding, another dietary intervention often referred to as caloric restriction, does not limit the total amount of calories consumed. Altogether, we propose that the term "caloric restriction" should be used specifically to describe diets that decrease calorie intake but not micronutrient availability, and that protocols adopted should be described in detail in order to allow for comparisons and better understanding of the effects of these diets.
Collapse
|
21
|
A calorie-restricted diet decreases brain iron accumulation and preserves motor performance in old rhesus monkeys. J Neurosci 2010; 30:7940-7. [PMID: 20534842 DOI: 10.1523/jneurosci.0835-10.2010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Caloric restriction (CR) reduces the pathological effects of aging and extends the lifespan in many species, including nonhuman primates, although the effect on the brain is less well characterized. We used two common indicators of aging, motor performance speed and brain iron deposition measured in vivo using MRI, to determine the potential effect of CR on elderly rhesus macaques eating restricted (n = 24; 13 males, 11 females) and standard diets (n = 17; 8 males, 9 females). Both the CR and control monkeys showed age-related increases in iron concentrations in globus pallidus (GP) and substantia nigra (SN), although the CR group had significantly less iron deposition in the GP, SN, red nucleus, and temporal cortex. A diet x age interaction revealed that CR modified age-related brain changes, evidenced as attenuation in the rate of iron accumulation in basal ganglia and parietal, temporal, and perirhinal cortex. Additionally, control monkeys had significantly slower fine motor performance on the Movement Assessment Panel, which was negatively correlated with iron accumulation in left SN and parietal lobe, although CR animals did not show this relationship. Our observations suggest that the CR-induced benefit of reduced iron deposition and preserved motor function may indicate neural protection similar to effects described previously in aging rodent and primate species.
Collapse
|