1
|
Mufti K, Cordova M, Scott EN, Trueman JN, Lovnicki JM, Loucks CM, Rassekh SR, Ross CJD, Carleton BC. Genomic variations associated with risk and protection against vincristine-induced peripheral neuropathy in pediatric cancer patients. NPJ Genom Med 2024; 9:56. [PMID: 39500896 PMCID: PMC11538333 DOI: 10.1038/s41525-024-00443-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
Vincristine-induced peripheral neuropathy is a common and highly debilitating toxicity from vincristine treatment that affects quality of life and often requires dose reduction, potentially affecting survival. Although previous studies demonstrated genetic factors are associated with vincristine neuropathy risk, the clinical relevance of most identified variants is limited by small sample sizes and unclear clinical phenotypes. A genome-wide association study was conducted in 1100 cases and controls matched by vincristine dose and genetic ancestry, uncovering a statistically significant (p < 5.0 × 10-8) variant in MCM3AP gene that substantially increases the risk of neuropathy and 12 variants protective against neuropathy within/near SPDYA, METTL8, PDE4D, FBN2, ZFAND3, NFIB, PAPPA, LRRTM3, NRG3, VTI1A, ARHGAP5, and ACTN1. A follow-up pathway analysis reveals the involvement of four key pathways, including nerve structure and development, myelination, neuronal transmission, and cytoskeleton/microfibril function pathways. These findings present potential actionable genomic markers of vincristine neuropathy and offer opportunities for tailored interventions to improve vincristine safety in children with cancer. This study is registered with ClinicalTrials.gov under the title National Active Surveillance Network and Pharmacogenomics of Adverse Drug Reactions in Children (ID NCT00414115, registered on December 21, 2006).
Collapse
Affiliation(s)
- Kheireddin Mufti
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Miguel Cordova
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Erika N Scott
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jessica N Trueman
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, BC, Canada
| | - Jessica M Lovnicki
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, BC, Canada
| | - Catrina M Loucks
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Shahrad R Rassekh
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Division of Hematology, Oncology & Bone Marrow Transplant, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Colin J D Ross
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada.
| | - Bruce C Carleton
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
- Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, BC, Canada.
| |
Collapse
|
2
|
Melrose J. Dystroglycan-HSPG interactions provide synaptic plasticity and specificity. Glycobiology 2024; 34:cwae051. [PMID: 39223703 PMCID: PMC11368572 DOI: 10.1093/glycob/cwae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
AIM This study examined the roles of the laminin and proteoglycan receptor dystroglycan (DG) in extracellular matrix stabilization and cellular mechanosensory processes conveyed through communication between the extracellular matrix (ECM) and cytoskeleton facilitated by DG. Specific functional attributes of HS-proteoglycans (HSPGs) are conveyed through interactions with DG and provide synaptic specificity through diverse interactions with an extensive range of cell attachment and adaptor proteins which convey synaptic plasticity. HSPG-DG interactions are important in phototransduction and neurotransduction and facilitate retinal bipolar-photoreceptor neuronal signaling in vision. Besides synaptic stabilization, HSPG-DG interactions also stabilize basement membranes and the ECM and have specific roles in the assembly and function of the neuromuscular junction. This provides neuromuscular control of muscle systems that control conscious body movement as well as essential autonomic control of diaphragm, intercostal and abdominal muscles and muscle systems in the face, mouth and pharynx which assist in breathing processes. DG is thus a multifunctional cell regulatory glycoprotein receptor and regulates a diverse range of biological and physiological processes throughout the human body. The unique glycosylation of the αDG domain is responsible for its diverse interactions with ECM components in cell-ECM signaling. Cytoskeletal cell regulatory switches assembled by the βDG domain in its role as a nuclear scaffolding protein respond to such ECM cues to regulate cellular behavior and tissue homeostasis thus DG has fascinating and diverse roles in health and disease.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, St. Leonards, NSW 2065, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
3
|
Bai SY, Zeng DY, Ouyang M, Zeng Y, Tan W, Xu L. Synaptic cell adhesion molecules contribute to the pathogenesis and progression of fragile X syndrome. Front Cell Neurosci 2024; 18:1393536. [PMID: 39022311 PMCID: PMC11252757 DOI: 10.3389/fncel.2024.1393536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and a monogenic cause of autism spectrum disorders. Deficiencies in the fragile X messenger ribonucleoprotein, encoded by the FMR1 gene, lead to various anatomical and pathophysiological abnormalities and behavioral deficits, such as spine dysmorphogenesis and learning and memory impairments. Synaptic cell adhesion molecules (CAMs) play crucial roles in synapse formation and neural signal transmission by promoting the formation of new synaptic contacts, accurately organizing presynaptic and postsynaptic protein complexes, and ensuring the accuracy of signal transmission. Recent studies have implicated synaptic CAMs such as the immunoglobulin superfamily, N-cadherin, leucine-rich repeat proteins, and neuroligin-1 in the pathogenesis of FXS and found that they contribute to defects in dendritic spines and synaptic plasticity in FXS animal models. This review systematically summarizes the biological associations between nine representative synaptic CAMs and FMRP, as well as the functional consequences of the interaction, to provide new insights into the mechanisms of abnormal synaptic development in FXS.
Collapse
Affiliation(s)
- Shu-Yuan Bai
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| | - De-Yang Zeng
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| | - Ming Ouyang
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| | - Yan Zeng
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| | - Wei Tan
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| | - Lang Xu
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Chofflet N, Naito Y, Pastore AJ, Padmanabhan N, Nguyen PT, Poitras C, Feller B, Yi N, Van Prooijen J, Khaled H, Coulombe B, Clapcote SJ, Bourgault S, Siddiqui TJ, Rudenko G, Takahashi H. Structural and functional characterization of the IgSF21-neurexin2α complex and its related signaling pathways in the regulation of inhibitory synapse organization. Front Mol Neurosci 2024; 17:1371145. [PMID: 38571813 PMCID: PMC10989685 DOI: 10.3389/fnmol.2024.1371145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024] Open
Abstract
The prevailing model behind synapse development and specificity is that a multitude of adhesion molecules engage in transsynaptic interactions to induce pre- and postsynaptic assembly. How these extracellular interactions translate into intracellular signal transduction for synaptic assembly remains unclear. Here, we focus on a synapse organizing complex formed by immunoglobulin superfamily member 21 (IgSF21) and neurexin2α (Nrxn2α) that regulates GABAergic synapse development in the mouse brain. We reveal that the interaction between presynaptic Nrxn2α and postsynaptic IgSF21 is a high-affinity receptor-ligand interaction and identify a binding interface in the IgSF21-Nrxn2α complex. Despite being expressed in both dendritic and somatic regions, IgSF21 preferentially regulates dendritic GABAergic presynaptic differentiation whereas another canonical Nrxn ligand, neuroligin2 (Nlgn2), primarily regulates perisomatic presynaptic differentiation. To explore mechanisms that could underlie this compartment specificity, we targeted multiple signaling pathways pharmacologically while monitoring the synaptogenic activity of IgSF21 and Nlgn2. Interestingly, both IgSF21 and Nlgn2 require c-jun N-terminal kinase (JNK)-mediated signaling, whereas Nlgn2, but not IgSF21, additionally requires CaMKII and Src kinase activity. JNK inhibition diminished de novo presynaptic differentiation without affecting the maintenance of formed synapses. We further found that Nrxn2α knockout brains exhibit altered synaptic JNK activity in a sex-specific fashion, suggesting functional linkage between Nrxns and JNK. Thus, our study elucidates the structural and functional relationship of IgSF21 with Nrxn2α and distinct signaling pathways for IgSF21-Nrxn2α and Nlgn2-Nrxn synaptic organizing complexes in vitro. We therefore propose a revised hypothesis that Nrxns act as molecular hubs to specify synaptic properties not only through their multiple extracellular ligands but also through distinct intracellular signaling pathways of these ligands.
Collapse
Affiliation(s)
- Nicolas Chofflet
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Yusuke Naito
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Anthony John Pastore
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, United States
| | - Nirmala Padmanabhan
- PrairieNeuro Research Centre, Health Sciences Centre, Kleysen Institute for Advanced Medicine, Winnipeg, MB, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Phuong Trang Nguyen
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Department of Chemistry, Université du Québec à Montréal, Montreal, QC, Canada
| | - Christian Poitras
- Department of Translational Proteomics, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
| | - Benjamin Feller
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Nayoung Yi
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Jeremie Van Prooijen
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
| | - Husam Khaled
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Benoit Coulombe
- Department of Translational Proteomics, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
| | - Steven J. Clapcote
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Steve Bourgault
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Department of Chemistry, Université du Québec à Montréal, Montreal, QC, Canada
| | - Tabrez J. Siddiqui
- PrairieNeuro Research Centre, Health Sciences Centre, Kleysen Institute for Advanced Medicine, Winnipeg, MB, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
- The Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Program in Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Gabby Rudenko
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, United States
| | - Hideto Takahashi
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
5
|
Melrose J. Hippo cell signaling and HS-proteoglycans regulate tissue form and function, age-dependent maturation, extracellular matrix remodeling, and repair. Am J Physiol Cell Physiol 2024; 326:C810-C828. [PMID: 38223931 DOI: 10.1152/ajpcell.00683.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
This review examined how Hippo cell signaling and heparan sulfate (HS)-proteoglycans (HSPGs) regulate tissue form and function. Despite being a nonweight-bearing tissue, the brain is regulated by Hippo mechanoresponsive cell signaling pathways during embryonic development. HS-proteoglycans interact with growth factors, morphogens, and extracellular matrix components to regulate development and pathology. Pikachurin and Eyes shut (Eys) interact with dystroglycan to stabilize the photoreceptor axoneme primary cilium and ribbon synapse facilitating phototransduction and neurotransduction with bipolar retinal neuronal networks in ocular vision, the primary human sense. Another HSPG, Neurexin interacts with structural and adaptor proteins to stabilize synapses and ensure specificity of neural interactions, and aids in synaptic potentiation and plasticity in neurotransduction. HSPGs also stabilize the blood-brain barrier and motor neuron basal structures in the neuromuscular junction. Agrin and perlecan localize acetylcholinesterase and its receptors in the neuromuscular junction essential for neuromuscular control. The primary cilium is a mechanosensory hub on neurons, utilized by YES associated protein (YAP)-transcriptional coactivator with PDZ-binding motif (TAZ) Hippo, Hh, Wnt, transforming growth factor (TGF)-β/bone matrix protein (BMP) receptor tyrosine kinase cell signaling. Members of the glypican HSPG proteoglycan family interact with Smoothened and Patched G-protein coupled receptors on the cilium to regulate Hh and Wnt signaling during neuronal development. Control of glycosyl sulfotransferases and endogenous protease expression by Hippo TAZ YAP represents a mechanism whereby the fine structure of HS-proteoglycans can be potentially modulated spatiotemporally to regulate tissue morphogenesis in a similar manner to how Hippo signaling controls sialyltransferase expression and mediation of cell-cell recognition, dysfunctional sialic acid expression is a feature of many tumors.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, University of Sydney, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
- Sydney Medical School-Northern, University of Sydney at Royal North Shore Hospital, St. Leonards, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Connor SA, Siddiqui TJ. Synapse organizers as molecular codes for synaptic plasticity. Trends Neurosci 2023; 46:971-985. [PMID: 37652840 DOI: 10.1016/j.tins.2023.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/13/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023]
Abstract
Synapse organizing proteins are multifaceted molecules that coordinate the complex processes of brain development and plasticity at the level of individual synapses. Their importance is demonstrated by the major brain disorders that emerge when their function is compromised. The mechanisms whereby the various families of organizers govern synapses are diverse, but converge on the structure, function, and plasticity of synapses. Therefore, synapse organizers regulate how synapses adapt to ongoing activity, a process central for determining the developmental trajectory of the brain and critical to all forms of cognition. Here, we explore how synapse organizers set the conditions for synaptic plasticity and the associated molecular events, which eventually link to behavioral features of neurodevelopmental and neuropsychiatric disorders. We also propose central questions on how synapse organizers influence network function through integrating nanoscale and circuit-level organization of the brain.
Collapse
Affiliation(s)
- Steven A Connor
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| | - Tabrez J Siddiqui
- PrairieNeuro Research Centre, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, MB R3E 0Z3, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; The Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada; Program in Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
7
|
Perozzo AM, Schwenk J, Kamalova A, Nakagawa T, Fakler B, Bowie D. GSG1L-containing AMPA receptor complexes are defined by their spatiotemporal expression, native interactome and allosteric sites. Nat Commun 2023; 14:6799. [PMID: 37884493 PMCID: PMC10603098 DOI: 10.1038/s41467-023-42517-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Transmembrane AMPA receptor regulatory proteins (TARPs) and germ cell-specific gene 1-like protein (GSG1L) are claudin-type AMPA receptor (AMPAR) auxiliary subunits that profoundly regulate glutamatergic synapse strength and plasticity. While AMPAR-TARP complexes have been extensively studied, less is known about GSG1L-containing AMPARs. Here, we show that GSG1L's spatiotemporal expression, native interactome and allosteric sites are distinct. GSG1L generally expresses late during brain development in a region-specific manner, constituting about 5% of all AMPAR complexes in adulthood. While GSG1L can co-assemble with TARPs or cornichons (CNIHs), it also assembles as the sole auxiliary subunit. Unexpectedly, GSG1L acts through two discrete evolutionarily-conserved sites on the agonist-binding domain with a weak allosteric interaction at the TARP/KGK site to slow desensitization, and a stronger interaction at a different site that slows recovery from desensitization. Together, these distinctions help explain GSG1L's evolutionary past and how it fulfills a unique signaling role within glutamatergic synapses.
Collapse
Affiliation(s)
- Amanda M Perozzo
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3A 1A1, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Jochen Schwenk
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104, Freiburg, Germany
| | - Aichurok Kamalova
- Department of Molecular Physiology and Biophysics, Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Terunaga Nakagawa
- Department of Molecular Physiology and Biophysics, Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104, Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Derek Bowie
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
8
|
Feller B, Fallon A, Luo W, Nguyen PT, Shlaifer I, Lee AK, Chofflet N, Yi N, Khaled H, Karkout S, Bourgault S, Durcan TM, Takahashi H. α-Synuclein Preformed Fibrils Bind to β-Neurexins and Impair β-Neurexin-Mediated Presynaptic Organization. Cells 2023; 12:cells12071083. [PMID: 37048156 PMCID: PMC10093570 DOI: 10.3390/cells12071083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Synucleinopathies form a group of neurodegenerative diseases defined by the misfolding and aggregation of α-synuclein (α-syn). Abnormal accumulation and spreading of α-syn aggregates lead to synapse dysfunction and neuronal cell death. Yet, little is known about the synaptic mechanisms underlying the α-syn pathology. Here we identified β-isoforms of neurexins (β-NRXs) as presynaptic organizing proteins that interact with α-syn preformed fibrils (α-syn PFFs), toxic α-syn aggregates, but not α-syn monomers. Our cell surface protein binding assays and surface plasmon resonance assays reveal that α-syn PFFs bind directly to β-NRXs through their N-terminal histidine-rich domain (HRD) at the nanomolar range (KD: ~500 nM monomer equivalent). Furthermore, our artificial synapse formation assays show that α-syn PFFs diminish excitatory and inhibitory presynaptic organization induced by a specific isoform of neuroligin 1 that binds only β-NRXs, but not α-isoforms of neurexins. Thus, our data suggest that α-syn PFFs interact with β-NRXs to inhibit β-NRX-mediated presynaptic organization, providing novel molecular insight into how α-syn PFFs induce synaptic pathology in synucleinopathies such as Parkinson’s disease and dementia with Lewy bodies.
Collapse
Affiliation(s)
- Benjamin Feller
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada
- Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Aurélie Fallon
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada
- Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Wen Luo
- The Neuro’s Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Phuong Trang Nguyen
- Department of Chemistry, Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada
| | - Irina Shlaifer
- The Neuro’s Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alfred Kihoon Lee
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B2, Canada
| | - Nicolas Chofflet
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B2, Canada
| | - Nayoung Yi
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada
- Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Husam Khaled
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada
- Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Samer Karkout
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada
| | - Steve Bourgault
- Department of Chemistry, Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada
| | - Thomas M. Durcan
- The Neuro’s Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B2, Canada
| | - Hideto Takahashi
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada
- Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B2, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
9
|
Kim J, Wulschner LEG, Oh WC, Ko J. Trans
‐synaptic mechanisms orchestrated by mammalian synaptic cell adhesion molecules. Bioessays 2022; 44:e2200134. [DOI: 10.1002/bies.202200134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Jinhu Kim
- Department of Brain Sciences Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu Korea
- Center for Synapse Diversity and Specificity DGIST Daegu Korea
| | | | - Won Chan Oh
- Department of Pharmacology University of Colorado School of Medicine Aurora Colorado USA
| | - Jaewon Ko
- Department of Brain Sciences Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu Korea
- Center for Synapse Diversity and Specificity DGIST Daegu Korea
| |
Collapse
|
10
|
Dhume SH, Connor SA, Mills F, Tari PK, Au-Yeung SHM, Karimi B, Oku S, Roppongi RT, Kawabe H, Bamji SX, Wang YT, Brose N, Jackson MF, Craig AM, Siddiqui TJ. Distinct but overlapping roles of LRRTM1 and LRRTM2 in developing and mature hippocampal circuits. eLife 2022; 11:64742. [PMID: 35662394 PMCID: PMC9170246 DOI: 10.7554/elife.64742] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/20/2022] [Indexed: 01/21/2023] Open
Abstract
LRRTMs are postsynaptic cell adhesion proteins that have region-restricted expression in the brain. To determine their role in the molecular organization of synapses in vivo, we studied synapse development and plasticity in hippocampal neuronal circuits in mice lacking both Lrrtm1 and Lrrtm2. We found that LRRTM1 and LRRTM2 regulate the density and morphological integrity of excitatory synapses on CA1 pyramidal neurons in the developing brain but are not essential for these roles in the mature circuit. Further, they are required for long-term-potentiation in the CA3-CA1 pathway and the dentate gyrus, and for enduring fear memory in both the developing and mature brain. Our data show that LRRTM1 and LRRTM2 regulate synapse development and function in a cell-type and developmental-stage-specific manner, and thereby contribute to the fine-tuning of hippocampal circuit connectivity and plasticity.
Collapse
Affiliation(s)
- Shreya H Dhume
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Steven A Connor
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada.,Department of Biology, York University, Toronto, Canada
| | - Fergil Mills
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Parisa Karimi Tari
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada.,Department of Biology, York University, Toronto, Canada
| | - Sarah H M Au-Yeung
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Benjamin Karimi
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Shinichiro Oku
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada.,Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Reiko T Roppongi
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,Department of Gerontology, Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan.,Department of Pharmacology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Shernaz X Bamji
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Yu Tian Wang
- Division of Neurology, Department of Medicine and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Michael F Jackson
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
| | - Ann Marie Craig
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Tabrez J Siddiqui
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada.,The Children's Hospital Research Institute of Manitoba, Winnipeg, Canada.,Program in Biomedical Engineering, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
11
|
Abstract
Neurexin-3 is primarily localized in the presynaptic membrane and forms complexes with various ligands located in the postsynaptic membrane. Neurexin-3 has important roles in synapse development and synapse functions. Neurexin-3 mediates excitatory presynaptic differentiation by interacting with leucine-rich-repeat transmembrane neuronal proteins. Meanwhile, neurexin-3 modulates the expression of presynaptic α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors and γ-aminobutyric acid A receptors by interacting with neuroligins at excitatory and inhibitory synapses. Numerous studies have documented the potential contribution of neurexin-3 to neurodegenerative and neuropsychiatric disorders, such as Alzheimer's disease, addiction behaviors, and other diseases, which raises hopes that understanding the mechanisms of neurexin-3 may hold the key to developing new strategies for related illnesses. This review comprehensively covers the literature to provide current knowledge of the structure, function, and clinical role of neurexin-3.
Collapse
|
12
|
Kim J, Park D, Seo NY, Yoon TH, Kim GH, Lee SH, Seo J, Um JW, Lee KJ, Ko J. LRRTM3 regulates activity-dependent synchronization of synapse properties in topographically connected hippocampal neural circuits. Proc Natl Acad Sci U S A 2022; 119:e2110196119. [PMID: 35022233 PMCID: PMC8784129 DOI: 10.1073/pnas.2110196119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 12/03/2021] [Indexed: 11/18/2022] Open
Abstract
Synaptic cell-adhesion molecules (CAMs) organize the architecture and properties of neural circuits. However, whether synaptic CAMs are involved in activity-dependent remodeling of specific neural circuits is incompletely understood. Leucine-rich repeat transmembrane protein 3 (LRRTM3) is required for the excitatory synapse development of hippocampal dentate gyrus (DG) granule neurons. Here, we report that Lrrtm3-deficient mice exhibit selective reductions in excitatory synapse density and synaptic strength in projections involving the medial entorhinal cortex (MEC) and DG granule neurons, accompanied by increased neurotransmitter release and decreased excitability of granule neurons. LRRTM3 deletion significantly reduced excitatory synaptic innervation of hippocampal mossy fibers (Mf) of DG granule neurons onto thorny excrescences in hippocampal CA3 neurons. Moreover, LRRTM3 loss in DG neurons significantly decreased mossy fiber long-term potentiation (Mf-LTP). Remarkably, silencing MEC-DG circuits protected against the decrease in the excitatory synaptic inputs onto DG and CA3 neurons, excitability of DG granule neurons, and Mf-LTP in Lrrtm3-deficient mice. These results suggest that LRRTM3 may be a critical factor in activity-dependent synchronization of the topography of MEC-DG-CA3 excitatory synaptic connections. Collectively, our data propose that LRRTM3 shapes the target-specific structural and functional properties of specific hippocampal circuits.
Collapse
Affiliation(s)
- Jinhu Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Dongseok Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Na-Young Seo
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Neural Circuits Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| | - Taek-Han Yoon
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Gyu Hyun Kim
- Neural Circuits Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| | - Sang-Hoon Lee
- Neural Circuits Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
- Brain Research Core Facilities, KBRI, Daegu 41062, Korea
| | - Jinsoo Seo
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Kea Joo Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- Neural Circuits Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
| |
Collapse
|
13
|
Clarke RA, Eapen V. LRRTM4 Terminal Exon Duplicated in Family with Tourette Syndrome, Autism and ADHD. Genes (Basel) 2021; 13:genes13010066. [PMID: 35052406 PMCID: PMC8774418 DOI: 10.3390/genes13010066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/25/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
Tourette syndrome (TS) is a neurodevelopmental disorder characterised by motor and vocal tics and strong association with autistic deficits, obsessive–compulsive disorder (OCD) and attention-deficit/hyperactivity disorder (ADHD). The genetic overlap between TS and autism spectrum disorder (ASD) includes those genes that encode the neurexin trans-synaptic connexus (NTSC) inclusive of the presynaptic neurexins (NRXNs) and postsynaptic neuroligins (NLGNs), cerebellin precursors (CBLNs in complex with the glutamate ionotropic receptor deltas (GRIDs)) and the leucine-rich repeat transmembrane proteins (LRRTMs). In this study, we report the first evidence of a TS and ASD association with yet another NTSC gene family member, namely LRRTM4. Duplication of the terminal exon of LRRTM4 was found in two females with TS from the same family (mother and daughter) in association with autistic traits and ASD.
Collapse
|
14
|
Liouta K, Chabbert J, Benquet S, Tessier B, Studer V, Sainlos M, De Wit J, Thoumine O, Chamma I. Role of regulatory C-terminal motifs in synaptic confinement of LRRTM2. Biol Cell 2021; 113:492-506. [PMID: 34498765 DOI: 10.1111/boc.202100026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/25/2022]
Abstract
Leucine Rich Repeat Transmembrane proteins (LRRTMs) are neuronal cell adhesion molecules involved in synapse development and plasticity. LRRTM2 is the most synaptogenic isoform of the family, and its expression is strongly restricted to excitatory synapses in mature neurons. However, the mechanisms by which LRRTM2 is trafficked and stabilized at synapses remain unknown. Here, we examine the role of LRRTM2 intracellular domain on its membrane expression and stabilization at excitatory synapses, using a knock-down strategy combined to single molecule tracking and super-resolution dSTORM microscopy. We show that LRRTM2 operates an important shift in mobility after synaptogenesis in hippocampal neurons. Knock-down of LRRTM2 during synapse formation reduced excitatory synapse density in mature neurons. Deletion of LRRTM2 C-terminal domain abolished the compartmentalization of LRRTM2 in dendrites and disrupted its synaptic enrichment. Furtheremore, we show that LRRTM2 diffusion is increased in the absence of its intracellular domain, and that the protein is more dispersed at synapses. Surprisingly, LRRTM2 confinement at synapses was strongly dependent on a YxxC motif in the C-terminal domain, but was independent of the PDZ-like binding motif ECEV. Finally, the nanoscale organization of LRRTM2 at excitatory synapses depended on its C-terminal domain, with involvement of both the PDZ-binding and YxxC motifs. Altogether, these results demonstrate that LRRTM2 trafficking and enrichment at excitatory synapses are dependent on its intracellular domain.
Collapse
Affiliation(s)
- Konstantina Liouta
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Julia Chabbert
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Sebastien Benquet
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Béatrice Tessier
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Vincent Studer
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Matthieu Sainlos
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Joris De Wit
- VIB Center for Brain & Disease Research, Leuven, Belgium.,KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Olivier Thoumine
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Ingrid Chamma
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| |
Collapse
|
15
|
Keen KL, Petersen AJ, Figueroa AG, Fordyce BI, Shin J, Yadav R, Erdin S, Pearce RA, Talkowski ME, Bhattacharyya A, Terasawa E. Physiological Characterization and Transcriptomic Properties of GnRH Neurons Derived From Human Stem Cells. Endocrinology 2021; 162:6298609. [PMID: 34125902 PMCID: PMC8294693 DOI: 10.1210/endocr/bqab120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 12/23/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons in the hypothalamus play a key role in the regulation of reproductive function. In this study, we sought an efficient method for generating GnRH neurons from human embryonic and induced pluripotent stem cells (hESC and hiPSC, respectively). First, we found that exposure of primitive neuroepithelial cells, rather than neuroprogenitor cells, to fibroblast growth factor 8 (FGF8), was more effective in generating GnRH neurons. Second, addition of kisspeptin to FGF8 further increased the efficiency rates of GnRH neurogeneration. Third, we generated a fluorescent marker mCherry labeled human embryonic GnRH cell line (mCh-hESC) using a CRISPR-Cas9 targeting approach. Fourth, we examined physiological characteristics of GnRH (mCh-hESC) neurons: similar to GnRH neurons in vivo, they released the GnRH peptide in a pulsatile manner at ~60 min intervals; GnRH release increased in response to high potassium, kisspeptin, estradiol, and neurokinin B challenges; and injection of depolarizing current induced action potentials. Finally, we characterized developmental changes in transcriptomes of GnRH neurons using hESC, hiPSC, and mCh-hESC. The developmental pattern of transcriptomes was remarkably similar among the 3 cell lines. Collectively, human stem cell-derived GnRH neurons will be an important tool for establishing disease models to understand diseases, such as idiopathic hypothalamic hypogonadism, and testing contraceptive drugs.
Collapse
Affiliation(s)
- Kim L Keen
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
| | - Andrew J Petersen
- Waisman Center, Graduate School, University of Wisconsin, Madison, WI, USA
| | - Alexander G Figueroa
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Benjamin I Fordyce
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
| | - Jaeweon Shin
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Rachita Yadav
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
| | - Serkan Erdin
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
| | - Robert A Pearce
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
| | - Anita Bhattacharyya
- Waisman Center, Graduate School, University of Wisconsin, Madison, WI, USA
- Department of Cell and Regenerative Medicine, University of Wisconsin, Madison, WI, USA
| | - Ei Terasawa
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Correspondence: Ei Terasawa, PhD, Wisconsin National Primate Research Center, University of Wisconsin, 1223 Capitol Court, Madison, WI 53715-1299, USA.
| |
Collapse
|
16
|
Drulis-Fajdasz D, Gostomska-Pampuch K, Duda P, Wiśniewski JR, Rakus D. Quantitative Proteomics Reveals Significant Differences between Mouse Brain Formations in Expression of Proteins Involved in Neuronal Plasticity during Aging. Cells 2021; 10:2021. [PMID: 34440790 PMCID: PMC8393337 DOI: 10.3390/cells10082021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 12/22/2022] Open
Abstract
Aging is associated with a general decline in cognitive functions, which appears to be due to alterations in the amounts of proteins involved in the regulation of synaptic plasticity. Here, we present a quantitative analysis of proteins involved in neurotransmission in three brain regions, namely, the hippocampus, the cerebral cortex and the cerebellum, in mice aged 1 and 22 months, using the total protein approach technique. We demonstrate that although the titer of some proteins involved in neurotransmission and synaptic plasticity is affected by aging in a similar manner in all the studied brain formations, in fact, each of the formations represents its own mode of aging. Generally, the hippocampal and cortical proteomes are much more unstable during the lifetime than the cerebellar proteome. The data presented here provide a general picture of the effect of physiological aging on synaptic plasticity and might suggest potential drug targets for anti-aging therapies.
Collapse
Affiliation(s)
- Dominika Drulis-Fajdasz
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (D.D.-F.); (P.D.)
| | - Kinga Gostomska-Pampuch
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; (K.G.-P.); (J.R.W.)
- Department of Biochemistry and Immunochemistry, Wrocław Medical University, Chałubińskiego 10, 50-368 Wrocław, Poland
| | - Przemysław Duda
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (D.D.-F.); (P.D.)
| | - Jacek Roman Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; (K.G.-P.); (J.R.W.)
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (D.D.-F.); (P.D.)
| |
Collapse
|
17
|
Ichinose M, Suzuki N, Wang T, Kobayashi H, Vrbanac L, Ng JQ, Wright JA, Lannagan TRM, Gieniec KA, Lewis M, Ando R, Enomoto A, Koblar S, Thomas P, Worthley DL, Woods SL. The BMP antagonist gremlin 1 contributes to the development of cortical excitatory neurons, motor balance and fear responses. Development 2021; 148:269258. [PMID: 34184027 PMCID: PMC8313862 DOI: 10.1242/dev.195883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 06/15/2021] [Indexed: 12/13/2022]
Abstract
Bone morphogenetic protein (BMP) signaling is required for early forebrain development and cortical formation. How the endogenous modulators of BMP signaling regulate the structural and functional maturation of the developing brain remains unclear. Here, we show that expression of the BMP antagonist Grem1 marks committed layer V and VI glutamatergic neurons in the embryonic mouse brain. Lineage tracing of Grem1-expressing cells in the embryonic brain was examined by administration of tamoxifen to pregnant Grem1creERT; Rosa26LSLTdtomato mice at 13.5 days post coitum (dpc), followed by collection of embryos later in gestation. In addition, at 14.5 dpc, bulk mRNA-seq analysis of differentially expressed transcripts between FACS-sorted Grem1-positive and -negative cells was performed. We also generated Emx1-cre-mediated Grem1 conditional knockout mice (Emx1-Cre;Grem1flox/flox) in which the Grem1 gene was deleted specifically in the dorsal telencephalon. Grem1Emx1cKO animals had reduced cortical thickness, especially layers V and VI, and impaired motor balance and fear sensitivity compared with littermate controls. This study has revealed new roles for Grem1 in the structural and functional maturation of the developing cortex. Summary: The BMP antagonist Grem1 is expressed by committed deep-layer glutamatergic neurons in the embryonic mouse cortex. Grem1 conditional knockout mice display cortical and behavioral abnormalities.
Collapse
Affiliation(s)
- Mari Ichinose
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, SA 5000, Australia.,Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Nobumi Suzuki
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, SA 5000, Australia.,Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Tongtong Wang
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, SA 5000, Australia.,Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Hiroki Kobayashi
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, SA 5000, Australia.,Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia.,Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Laura Vrbanac
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, SA 5000, Australia.,Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Jia Q Ng
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, SA 5000, Australia.,Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Josephine A Wright
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, SA 5000, Australia.,Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Tamsin R M Lannagan
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, SA 5000, Australia.,Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Krystyna A Gieniec
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, SA 5000, Australia.,Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Martin Lewis
- Department of Psychiatry, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5001, Australia.,Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Ryota Ando
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Simon Koblar
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, SA 5000, Australia.,Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Paul Thomas
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, SA 5000, Australia.,Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Daniel L Worthley
- Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Susan L Woods
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, SA 5000, Australia.,Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| |
Collapse
|
18
|
Cerebrolysin enhances the expression of the synaptogenic protein LRRTM4 in the hippocampus and improves learning and memory in senescent rats. Behav Pharmacol 2021; 31:491-499. [PMID: 31850962 DOI: 10.1097/fbp.0000000000000530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Aging reduces the efficiency of the organs and systems, including the cognitive functions. Brain aging is related to a decrease in the vascularity, neurogenesis, and synaptic plasticity. Cerebrolysin, a peptide and amino acid preparation, has been shown to improve the cognitive performance in animal models of Alzheimer's disease. Similarly, the leucine-rich repeat transmembrane 4 protein exhibits a strong synaptogenic activity in the hippocampal synapses. The aim of this study was to evaluate the effect of the cerebrolysin treatment on the learning and memory abilities, sensorimotor functions, and the leucine-rich repeat transmembrane 4 protein expression in the brain of 15-month-old rats. Cerebrolysin (1076 mg/kg) or vehicle was administered to Wistar rats intraperitoneally for 4 weeks. After the treatments, learning and memory were tested using the Barnes maze test, and the acoustic startle response, and its pre-pulse inhibition and habituation were measured. Finally, the leucine-rich repeat transmembrane 4 expression was measured in the brainstem, striatum, and hippocampus using a Western-blot assay. The 15-month-old vehicle-treated rats showed impairments in the habituation of the acoustic startle response and in learning and memory when compared to 3-month-old rats. These impairments were attenuated by the subchronic cerebrolysin treatment. The leucine-rich repeat transmembrane 4 protein expression was lower in the old vehicle-treated rats than in the young rats; the cerebrolysin treatment attenuated that decrease in the old rats. The leucine-rich repeat transmembrane 4 protein was not expressed in striatum or brainstem. These results suggest that the subchronic cerebrolysin treatment enhances the learning and memory abilities in aging by increasing the expression of the leucine-rich repeat transmembrane 4 protein in the hippocampus.
Collapse
|
19
|
Kim HY, Um JW, Ko J. Proper synaptic adhesion signaling in the control of neural circuit architecture and brain function. Prog Neurobiol 2021; 200:101983. [PMID: 33422662 DOI: 10.1016/j.pneurobio.2020.101983] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/23/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
Trans-synaptic cell-adhesion molecules are critical for governing various stages of synapse development and specifying neural circuit properties via the formation of multifarious signaling pathways. Recent studies have pinpointed the putative roles of trans-synaptic cell-adhesion molecules in mediating various cognitive functions. Here, we review the literature on the roles of a diverse group of central synaptic organizers, including neurexins (Nrxns), leukocyte common antigen-related receptor protein tyrosine phosphatases (LAR-RPTPs), and their associated binding proteins, in regulating properties of specific type of synapses and neural circuits. In addition, we highlight the findings that aberrant synaptic adhesion signaling leads to alterations in the structures, transmission, and plasticity of specific synapses across diverse brain areas. These results seem to suggest that proper trans-synaptic signaling pathways by Nrxns, LAR-RPTPs, and their interacting network is likely to constitute central molecular complexes that form the basis for cognitive functions, and that these complexes are heterogeneously and complexly disrupted in many neuropsychiatric and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Hee Young Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea
| | - Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea; Core Protein Resources Center, DGIST, Daegu, 42988, South Korea.
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea.
| |
Collapse
|
20
|
Zhang L, Li J, Li Y, Wang Z, Wang G, Yu Y, Song C, Cui W. Spinal caspase-3 contributes to tibial fracture-associated postoperative allodynia via up-regulation of LRRTM1 expression in mice. Neurosci Lett 2020; 739:135429. [PMID: 33069813 DOI: 10.1016/j.neulet.2020.135429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/22/2020] [Accepted: 09/27/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Bone fracture may subsequently cause chronic postoperative pain after orthopedic surgery, but mechanisms remain elusive. The necessity of caspase-3 in neuroinflammation and synaptic plasticity has been summarized in pathological pain. Leucine-rich repeat transmembrane protein 1 (LRRTM1) mediates synaptic delivery of AMPA receptor and synaptogenesis. This study evaluated whether caspase-3 and LRRTM1 are required for fracture-associated postoperative allodynia. METHODS A model of tibial fracture with intramedullary pinning in mice was established for the induction of postoperative pain, verified by measurement of mechanical paw withdrawal threshold and cold scores response to acetone. The caspase-3 specific inhibitor, recombinant caspase-3 and LRRTM1 knockdown by shRNA were utilized for the investigation of pathogenesis as well as the prevention of allodynia. Also, the activity of caspase-3 and the expression of LRRTM1 in the spinal dorsal horn were examined by Western blot and RT-qPCR. RESULTS This study reported that tibial fracture and orthopedic surgery produced long-lasting mechanical allodynia and cold allodynia, along with the up-modulation of spinal caspase-3 activity (but not caspase-3 expression) and LRRTM1 expression. Spinal caspase-3 inhibition prevented fracture-associated behavioral allodynia in a dose-dependent manner. Caspase-3 inhibitor also reduced the spinal increased LRRTM1 level after tibial fracture with pinning. Spinal LRRTM1 deficiency impaired fracture-caused postoperative pain. Intrathecal recombinant caspase-3 facilitated acute pain hypersensitivity and spinal LRRTM1 expression in naïve mice, reversing by LRRTM1 knockdown. CONCLUSION Our current results demonstrate the spinal up-regulation of LRRTM1 by caspase-3 activation in the development of tibial fracture-associated postoperative pain in mice.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Jing Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Yize Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Zhen Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Guolin Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Chengcheng Song
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China.
| | - Wei Cui
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China.
| |
Collapse
|
21
|
Lee AK, Khaled H, Chofflet N, Takahashi H. Synaptic Organizers in Alzheimer's Disease: A Classification Based on Amyloid-β Sensitivity. Front Cell Neurosci 2020; 14:281. [PMID: 32982693 PMCID: PMC7492772 DOI: 10.3389/fncel.2020.00281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/10/2020] [Indexed: 12/25/2022] Open
Abstract
Synaptic pathology is one of the major hallmarks observed from the early stage of Alzheimer’s disease (AD), leading to cognitive and memory impairment characteristic of AD patients. Synaptic connectivity and specificity are regulated by multiple trans-bindings between pre- and post-synaptic organizers, the complex of which exerts synaptogenic activity. Neurexins (NRXs) and Leukocyte common antigen-related receptor protein tyrosine phosphatases (LAR-RPTPs) are the major presynaptic organizers promoting synaptogenesis through their distinct binding to a wide array of postsynaptic organizers. Recent studies have shown that amyloid-β oligomers (AβOs), a major detrimental molecule in AD, interact with NRXs and neuroligin-1, an NRX-binding postsynaptic organizer, to cause synaptic impairment. On the other hand, LAR-RPTPs and their postsynaptic binding partners have no interaction with AβOs, and their synaptogenic activity is maintained even in the presence of AβOs. Here, we review the current evidence regarding the involvement of synaptic organizers in AD, with a focus on Aβ synaptic pathology, to propose a new classification where NRX-based and LAR-RPTP-based synaptic organizing complexes are classified into Aβ-sensitive and Aβ-insensitive synaptic organizers, respectively. We further discuss how their different Aβ sensitivity is involved in Aβ vulnerability and tolerance of synapses for exploring potential therapeutic approaches for AD.
Collapse
Affiliation(s)
- Alfred Kihoon Lee
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Husam Khaled
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada.,Molecular Biology Program, Université de Montréal, Montréal, QC, Canada
| | - Nicolas Chofflet
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Hideto Takahashi
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.,Molecular Biology Program, Université de Montréal, Montréal, QC, Canada.,Department of Medicine, Université de Montréal, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
22
|
Agosto MA, Wensel TG. LRRTM4 is a member of the transsynaptic complex between rod photoreceptors and bipolar cells. J Comp Neurol 2020; 529:221-233. [PMID: 32390181 DOI: 10.1002/cne.24944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/09/2020] [Accepted: 05/01/2020] [Indexed: 12/22/2022]
Abstract
Leucine rich repeat transmembrane (LRRTM) proteins are synaptic adhesion molecules with roles in synapse formation and signaling. LRRTM4 transcripts were previously shown to be enriched in rod bipolar cells (BCs), secondary neurons of the retina that form synapses with rod photoreceptors. Using two different antibodies, LRRTM4 was found to reside primarily at rod BC dendritic tips, where it colocalized with the transduction channel protein, TRPM1. LRRTM4 was not detected at dendritic tips of ON-cone BCs. Following somatic knockout of LRRTM4 in BCs by subretinal injection and electroporation of CRISPR/Cas9, LRRTM4 was abolished or reduced in the dendritic tips of transfected cells. Knockout cells had a normal complement of TRPM1 at their dendritic tips, while GPR179 accumulation was partially reduced. In experiments with heterologously expressed protein, the extracellular domain of LRRTM4 was found to engage in heparan-sulfate dependent binding with pikachurin. These results implicate LRRTM4 in the GPR179-pikachurin-dystroglycan transsynaptic complex at rod synapses.
Collapse
Affiliation(s)
- Melina A Agosto
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Theodore G Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
23
|
Neurons, Glia, Extracellular Matrix and Neurovascular Unit: A Systems Biology Approach to the Complexity of Synaptic Plasticity in Health and Disease. Int J Mol Sci 2020; 21:ijms21041539. [PMID: 32102370 PMCID: PMC7073232 DOI: 10.3390/ijms21041539] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023] Open
Abstract
The synaptic cleft has been vastly investigated in the last decades, leading to a novel and fascinating model of the functional and structural modifications linked to synaptic transmission and brain processing. The classic neurocentric model encompassing the neuronal pre- and post-synaptic terminals partly explains the fine-tuned plastic modifications under both pathological and physiological circumstances. Recent experimental evidence has incontrovertibly added oligodendrocytes, astrocytes, and microglia as pivotal elements for synapse formation and remodeling (tripartite synapse) in both the developing and adult brain. Moreover, synaptic plasticity and its pathological counterpart (maladaptive plasticity) have shown a deep connection with other molecular elements of the extracellular matrix (ECM), once considered as a mere extracellular structural scaffold altogether with the cellular glue (i.e., glia). The ECM adds another level of complexity to the modern model of the synapse, particularly, for the long-term plasticity and circuit maintenance. This model, called tetrapartite synapse, can be further implemented by including the neurovascular unit (NVU) and the immune system. Although they were considered so far as tightly separated from the central nervous system (CNS) plasticity, at least in physiological conditions, recent evidence endorsed these elements as structural and paramount actors in synaptic plasticity. This scenario is, as far as speculations and evidence have shown, a consistent model for both adaptive and maladaptive plasticity. However, a comprehensive understanding of brain processes and circuitry complexity is still lacking. Here we propose that a better interpretation of the CNS complexity can be granted by a systems biology approach through the construction of predictive molecular models that enable to enlighten the regulatory logic of the complex molecular networks underlying brain function in health and disease, thus opening the way to more effective treatments.
Collapse
|
24
|
Morris KM, Hindle MM, Boitard S, Burt DW, Danner AF, Eory L, Forrest HL, Gourichon D, Gros J, Hillier LW, Jaffredo T, Khoury H, Lansford R, Leterrier C, Loudon A, Mason AS, Meddle SL, Minvielle F, Minx P, Pitel F, Seiler JP, Shimmura T, Tomlinson C, Vignal A, Webster RG, Yoshimura T, Warren WC, Smith J. The quail genome: insights into social behaviour, seasonal biology and infectious disease response. BMC Biol 2020; 18:14. [PMID: 32050986 PMCID: PMC7017630 DOI: 10.1186/s12915-020-0743-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The Japanese quail (Coturnix japonica) is a popular domestic poultry species and an increasingly significant model species in avian developmental, behavioural and disease research. RESULTS We have produced a high-quality quail genome sequence, spanning 0.93 Gb assigned to 33 chromosomes. In terms of contiguity, assembly statistics, gene content and chromosomal organisation, the quail genome shows high similarity to the chicken genome. We demonstrate the utility of this genome through three diverse applications. First, we identify selection signatures and candidate genes associated with social behaviour in the quail genome, an important agricultural and domestication trait. Second, we investigate the effects and interaction of photoperiod and temperature on the transcriptome of the quail medial basal hypothalamus, revealing key mechanisms of photoperiodism. Finally, we investigate the response of quail to H5N1 influenza infection. In quail lung, many critical immune genes and pathways were downregulated after H5N1 infection, and this may be key to the susceptibility of quail to H5N1. CONCLUSIONS We have produced a high-quality genome of the quail which will facilitate further studies into diverse research questions using the quail as a model avian species.
Collapse
Affiliation(s)
- Katrina M Morris
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | - Matthew M Hindle
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Simon Boitard
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet Tolosan, France
| | - David W Burt
- The John Hay Building, Queensland Biosciences Precinct, 306 Carmody Road, The University of Queensland, QLD, St Lucia, 4072, Australia
| | - Angela F Danner
- Virology Division, Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Lel Eory
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Heather L Forrest
- Virology Division, Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - David Gourichon
- PEAT Pôle d'Expérimentation Avicole de Tours, Centre de recherche Val de Loire, INRAE, 1295, Nouzilly, UE, France
| | - Jerome Gros
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Docteur Roux, 75724, Cedex 15, Paris, France
- CNRS URA3738, 25 rue du Dr Roux, 75015, Paris, France
| | - LaDeana W Hillier
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Blvd, St Louis, MO, 63108, USA
| | - Thierry Jaffredo
- CNRS UMR7622, Inserm U 1156, Laboratoire de Biologie du Développement, Sorbonne Université, IBPS, 75005, Paris, France
| | - Hanane Khoury
- CNRS UMR7622, Inserm U 1156, Laboratoire de Biologie du Développement, Sorbonne Université, IBPS, 75005, Paris, France
| | - Rusty Lansford
- Department of Radiology and Developmental Neuroscience Program, Saban Research Institute, Children's Hospital Los Angeles and Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90027, USA
| | - Christine Leterrier
- UMR85 Physiologie de la Reproduction et des Comportements, INRAE, CNRS, Université François Rabelais, IFCE, INRAE, Val de Loire, 37380, Nouzilly, Centre, France
| | - Andrew Loudon
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, 3.001, A.V. Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - Andrew S Mason
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Simone L Meddle
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Francis Minvielle
- GABI, INRAE, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Patrick Minx
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Blvd, St Louis, MO, 63108, USA
| | - Frédérique Pitel
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet Tolosan, France
| | - J Patrick Seiler
- Virology Division, Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Tsuyoshi Shimmura
- Department of Biological Production, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo, 183-8538, Japan
| | - Chad Tomlinson
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Blvd, St Louis, MO, 63108, USA
| | - Alain Vignal
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet Tolosan, France
| | - Robert G Webster
- Virology Division, Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Takashi Yoshimura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Wesley C Warren
- Department of Animal Sciences, Department of Surgery, Institute for Data Science and Informatics, University of Missouri, Bond Life Sciences Center, 1201 Rollins Street, Columbia, MO, 65211, USA
| | - Jacqueline Smith
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| |
Collapse
|
25
|
Roppongi RT, Dhume SH, Padmanabhan N, Silwal P, Zahra N, Karimi B, Bomkamp C, Patil CS, Champagne-Jorgensen K, Twilley RE, Zhang P, Jackson MF, Siddiqui TJ. LRRTMs Organize Synapses through Differential Engagement of Neurexin and PTPσ. Neuron 2020; 106:108-125.e12. [PMID: 31995730 DOI: 10.1016/j.neuron.2020.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 08/07/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023]
Abstract
Presynaptic neurexins (Nrxs) and type IIa receptor-type protein tyrosine phosphatases (RPTPs) organize synapses through a network of postsynaptic ligands. We show that leucine-rich-repeat transmembrane neuronal proteins (LRRTMs) differentially engage the protein domains of Nrx but require its heparan sulfate (HS) modification to induce presynaptic differentiation. Binding to the HS of Nrx is sufficient for LRRTM3 and LRRTM4 to induce synaptogenesis. We identify mammalian Nrx1γ as a potent synapse organizer and reveal LRRTM4 as its postsynaptic ligand. Mice expressing a mutant form of LRRTM4 that cannot bind to HS show structural and functional deficits at dentate gyrus excitatory synapses. Through the HS of Nrx, LRRTMs also recruit PTPσ to induce presynaptic differentiation but function to varying degrees in its absence. PTPσ forms a robust complex with Nrx, revealing an unexpected interaction between the two presynaptic hubs. These findings underscore the complex interplay of synapse organizers in specifying the molecular logic of a neural circuit.
Collapse
Affiliation(s)
- Reiko T Roppongi
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, MB R3E 0Z3, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Shreya H Dhume
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, MB R3E 0Z3, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Nirmala Padmanabhan
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, MB R3E 0Z3, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Prabhisha Silwal
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, MB R3E 0Z3, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Nazmeena Zahra
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, MB R3E 0Z3, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Benyamin Karimi
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, MB R3E 0Z3, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Claire Bomkamp
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B, Canada
| | - Chetan S Patil
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, MB R3E 0Z3, Canada; Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
| | - Kevin Champagne-Jorgensen
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, MB R3E 0Z3, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Rebecca E Twilley
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, MB R3E 0Z3, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Peng Zhang
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B, Canada
| | - Michael F Jackson
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, MB R3E 0Z3, Canada; Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
| | - Tabrez J Siddiqui
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, MB R3E 0Z3, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; The Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| |
Collapse
|
26
|
Clarke RA, Furlong TM, Eapen V. Tourette Syndrome Risk Genes Regulate Mitochondrial Dynamics, Structure, and Function. Front Psychiatry 2020; 11:556803. [PMID: 33776808 PMCID: PMC7987655 DOI: 10.3389/fpsyt.2020.556803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/23/2020] [Indexed: 11/13/2022] Open
Abstract
Gilles de la Tourette syndrome (GTS) is a neurodevelopmental disorder characterized by motor and vocal tics with an estimated prevalence of 1% in children and adolescents. GTS has high rates of inheritance with many rare mutations identified. Apart from the role of the neurexin trans-synaptic connexus (NTSC) little has been confirmed regarding the molecular basis of GTS. The NTSC pathway regulates neuronal circuitry development, synaptic connectivity and neurotransmission. In this study we integrate GTS mutations into mitochondrial pathways that also regulate neuronal circuitry development, synaptic connectivity and neurotransmission. Many deleterious mutations in GTS occur in genes with complementary and consecutive roles in mitochondrial dynamics, structure and function (MDSF) pathways. These genes include those involved in mitochondrial transport (NDE1, DISC1, OPA1), mitochondrial fusion (OPA1), fission (ADCY2, DGKB, AMPK/PKA, RCAN1, PKC), mitochondrial metabolic and bio-energetic optimization (IMMP2L, MPV17, MRPL3, MRPL44). This study is the first to develop and describe an integrated mitochondrial pathway in the pathogenesis of GTS. The evidence from this study and our earlier modeling of GTS molecular pathways provides compounding support for a GTS deficit in mitochondrial supply affecting neurotransmission.
Collapse
Affiliation(s)
- Raymond A Clarke
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Teri M Furlong
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Valsamma Eapen
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia.,South West Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| |
Collapse
|
27
|
Emerging Roles of Synapse Organizers in the Regulation of Critical Periods. Neural Plast 2019; 2019:1538137. [PMID: 31565044 PMCID: PMC6745111 DOI: 10.1155/2019/1538137] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/09/2019] [Accepted: 07/25/2019] [Indexed: 01/10/2023] Open
Abstract
Experience remodels cortical connectivity during developmental windows called critical periods. Experience-dependent regulation of synaptic strength during these periods establishes circuit functions that are stabilized as critical period plasticity wanes. These processes have been extensively studied in the developing visual cortex, where critical period opening and closure are orchestrated by the assembly, maturation, and strengthening of distinct synapse types. The synaptic specificity of these processes points towards the involvement of distinct molecular pathways. Attractive candidates are pre- and postsynaptic transmembrane proteins that form adhesive complexes across the synaptic cleft. These synapse-organizing proteins control synapse development and maintenance and modulate structural and functional properties of synapses. Recent evidence suggests that they have pivotal roles in the onset and closure of the critical period for vision. In this review, we describe roles of synapse-organizing adhesion molecules in the regulation of visual critical period plasticity and we discuss the potential they offer to restore circuit functions in amblyopia and other neurodevelopmental disorders.
Collapse
|
28
|
Chen YC, Liu YL, Tsai SJ, Kuo PH, Huang SS, Lee YS. LRRTM4 and PCSK5 Genetic Polymorphisms as Markers for Cognitive Impairment in A Hypotensive Aging Population: A Genome-Wide Association Study in Taiwan. J Clin Med 2019; 8:jcm8081124. [PMID: 31362389 PMCID: PMC6723657 DOI: 10.3390/jcm8081124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/16/2019] [Accepted: 07/26/2019] [Indexed: 01/19/2023] Open
Abstract
Hypotension can affect cerebral perfusion and worsen cognitive outcomes. The prevalence of low blood pressure (BP) rises with increasing age. To our knowledge, no study has examined the genetic biomarkers for hypotension-related cognitive impairment (CI) yet. Utilizing the population-based genome-wide study of the Taiwan Biobank containing the data of 2533 healthy aging subjects, we found after adjustments for age, sex, education years, and principal components at a suggestive level of 1 × 10−5 that minor alleles of leucine rich repeat transmembrane neuronal 4 (LRRTM4) (rs13388459, rs1075716, rs62171995, rs17406146, rs2077823, and rs62170897), proprotein convertase subtilisin/kexin type 5 (PCSK5) (rs10521467), and the intergenic variation rs117129097 (the nearby gene: TMEM132C) are risk factors for CI in hypotensive subjects. Except for rs117129097, these single nucleotide polymorphisms (SNPs) were not markers per se for CI or for BP regulation. However, we found a suggestive interaction effect between each of the eight SNPs and hypotension on CI risk. In the hypotensive participants, those carrying minor alleles were associated with a higher incidence of CI in an additive manner than were those carrying major alleles (2 × 10−4 to 9 × 10−7). Intensive BP lowering in elderly patients carrying a minor allele of the eight identified SNPs should raise cautions to prevent a potential treatment-induced neurodegeneration.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang-Gung University, No.5, Fuxing St., Guishan Township, Taoyuan County 333, Taiwan
- Dementia Center, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan County 333, Taiwan
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Shih-Pai Road, Sec. 2, Taipei 11217, Taiwan
- Division of Psychiatry, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei, 112 Taiwan
| | - Po-Hsiu Kuo
- Department of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, No.17, Xuzhou Rd, Taipei 100, Taiwan
| | - Shih-Sin Huang
- Institute of Statistical Science, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Yun-Shien Lee
- Department of Biotechnology, Ming Chuan University, 5 De Ming Rd., Taoyuan City 333, Taiwan.
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, No.5, Fuxing St., Guishan Township, Taoyuan County 333, Taiwan.
| |
Collapse
|
29
|
Dai J, Aoto J, Südhof TC. Alternative Splicing of Presynaptic Neurexins Differentially Controls Postsynaptic NMDA and AMPA Receptor Responses. Neuron 2019; 102:993-1008.e5. [PMID: 31005376 PMCID: PMC6554035 DOI: 10.1016/j.neuron.2019.03.032] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/20/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022]
Abstract
AMPA- and NMDA-type glutamate receptors mediate distinct postsynaptic signals that differ characteristically among synapses. How postsynaptic AMPA- and NMDA-receptor levels are regulated, however, remains unclear. Using newly generated conditional knockin mice that enable genetic control of neurexin alternative splicing, we show that in hippocampal synapses, alternative splicing of presynaptic neurexin-1 at splice site 4 (SS4) dramatically enhanced postsynaptic NMDA-receptor-mediated, but not AMPA-receptor-mediated, synaptic responses without altering synapse density. In contrast, alternative splicing of neurexin-3 at SS4 suppressed AMPA-receptor-mediated, but not NMDA-receptor-mediated, synaptic responses, while alternative splicing of neurexin-2 at SS4 had no effect on NMDA- or AMPA-receptor-mediated responses. Presynaptic overexpression of the neurexin-1β and neurexin-3β SS4+ splice variants, but not of their SS4- splice variants, replicated the respective SS4+ knockin phenotypes. Thus, different neurexins perform distinct nonoverlapping functions at hippocampal synapses that are independently regulated by alternative splicing. These functions transsynaptically control NMDA and AMPA receptors, thereby mediating presynaptic control of postsynaptic responses.
Collapse
Affiliation(s)
- Jinye Dai
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Jason Aoto
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Thomas C Südhof
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
30
|
Bissen D, Foss F, Acker-Palmer A. AMPA receptors and their minions: auxiliary proteins in AMPA receptor trafficking. Cell Mol Life Sci 2019; 76:2133-2169. [PMID: 30937469 PMCID: PMC6502786 DOI: 10.1007/s00018-019-03068-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/12/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Abstract
To correctly transfer information, neuronal networks need to continuously adjust their synaptic strength to extrinsic stimuli. This ability, termed synaptic plasticity, is at the heart of their function and is, thus, tightly regulated. In glutamatergic neurons, synaptic strength is controlled by the number and function of AMPA receptors at the postsynapse, which mediate most of the fast excitatory transmission in the central nervous system. Their trafficking to, at, and from the synapse, is, therefore, a key mechanism underlying synaptic plasticity. Intensive research over the last 20 years has revealed the increasing importance of interacting proteins, which accompany AMPA receptors throughout their lifetime and help to refine the temporal and spatial modulation of their trafficking and function. In this review, we discuss the current knowledge about the roles of key partners in regulating AMPA receptor trafficking and focus especially on the movement between the intracellular, extrasynaptic, and synaptic pools. We examine their involvement not only in basal synaptic function, but also in Hebbian and homeostatic plasticity. Included in our review are well-established AMPA receptor interactants such as GRIP1 and PICK1, the classical auxiliary subunits TARP and CNIH, and the newest additions to AMPA receptor native complexes.
Collapse
Affiliation(s)
- Diane Bissen
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
- Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438, Frankfurt am Main, Germany
| | - Franziska Foss
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Amparo Acker-Palmer
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
- Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438, Frankfurt am Main, Germany.
- Cardio-Pulmonary Institute (CPI), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
31
|
Neurexins - versatile molecular platforms in the synaptic cleft. Curr Opin Struct Biol 2019; 54:112-121. [PMID: 30831539 DOI: 10.1016/j.sbi.2019.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 01/05/2023]
Abstract
Neurexins constitute a large family of synaptic organizers. Their extracellular domains protrude into the synaptic cleft where they can form transsynaptic bridges with different partners. A unique constellation of structural elements within their ectodomains enables neurexins to create molecular platforms within the synaptic cleft that permit a large portfolio of partners to be recruited, assembled and their interactions to be dynamically regulated. Neurexins and their partners are implicated in neuropsychiatric diseases including autism spectrum disorder and schizophrenia. Detailed understanding of the mechanisms that underlie neurexin interactions may in future guide the design of tools to manipulate synaptic connections and their function, in particular those involved in the pathogenesis of neuropsychiatric disease.
Collapse
|
32
|
Yamagata A, Fukai S. Structural insights into leucine-rich repeat-containing synaptic cleft molecules. Curr Opin Struct Biol 2019; 54:68-77. [PMID: 30784960 DOI: 10.1016/j.sbi.2019.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 11/28/2018] [Accepted: 01/07/2019] [Indexed: 02/04/2023]
Abstract
Synapses are cell adhesion structures specialized for signal transmission between neurons. At the synapse, presynaptic and postsynaptic terminals of neurons are functionally connected but spatially separated and form a cleft. Membrane receptor-like cell adhesion molecules and secreted proteins in the synaptic cleft (synaptic cleft molecules) can mediate structural and functional linkages between the presynaptic and postsynaptic terminals for neural development or activity. A leucine-rich repeat (LRR) has been known as a typical structural motif for protein-protein interactions and plays important roles in intermolecular interactions mediated by synaptic cleft molecules. In this review, we summarize structural insights into LRR-containing synaptic cleft molecules from recent structural studies and discuss how they are linked to their downstream events.
Collapse
Affiliation(s)
- Atsushi Yamagata
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan; Synchrotron Radiation Research Organization, The University of Tokyo, Tokyo 113-0032, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan.
| | - Shuya Fukai
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan; Synchrotron Radiation Research Organization, The University of Tokyo, Tokyo 113-0032, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan.
| |
Collapse
|
33
|
Connor SA, Elegheert J, Xie Y, Craig AM. Pumping the brakes: suppression of synapse development by MDGA-neuroligin interactions. Curr Opin Neurobiol 2019; 57:71-80. [PMID: 30771697 DOI: 10.1016/j.conb.2019.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 12/22/2022]
Abstract
Synapse development depends on a dynamic balance between synapse promoters and suppressors. MDGAs, immunoglobulin superfamily proteins, negatively regulate synapse development through blocking neuroligin-neurexin interactions. Recent analyses of MDGA-neuroligin complexes revealed the structural basis of this activity and indicate that MDGAs interact with all neuroligins with differential affinities. Surprisingly, analyses of mouse mutants revealed a functional divergence, with targeted mutation of Mdga1 and Mdga2 elevating inhibitory and excitatory synapses, respectively, on hippocampal pyramidal neurons. Further research is needed to determine the synapse-specific organizing properties of MDGAs in neural circuits, which may depend on relative levels and subcellular distributions of each MDGA, neuroligin and neurexin. Behavioral deficits in Mdga mutant mice support genetic links to schizophrenia and autism spectrum disorders and raise the possibility of harnessing these interactions for therapeutic purposes.
Collapse
Affiliation(s)
- Steven A Connor
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.
| | - Jonathan Elegheert
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297 and University of Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Yicheng Xie
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Ann Marie Craig
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada.
| |
Collapse
|
34
|
Abstract
Synapse formation is mediated by a surprisingly large number and wide variety of genes encoding many different protein classes. One of the families increasingly implicated in synapse wiring is the immunoglobulin superfamily (IgSF). IgSF molecules are by definition any protein containing at least one Ig-like domain, making this family one of the most common protein classes encoded by the genome. Here, we review the emerging roles for IgSF molecules in synapse formation specifically in the vertebrate brain, focusing on examples from three classes of IgSF members: ( a) cell adhesion molecules, ( b) signaling molecules, and ( c) immune molecules expressed in the brain. The critical roles for IgSF members in regulating synapse formation may explain their extensive involvement in neuropsychiatric and neurodevelopmental disorders. Solving the IgSF code for synapse formation may reveal multiple new targets for rescuing IgSF-mediated deficits in synapse formation and, eventually, new treatments for psychiatric disorders caused by altered IgSF-induced synapse wiring.
Collapse
Affiliation(s)
- Scott Cameron
- Center for Neuroscience, University of California, Davis, California 95618, USA; ,
| | | |
Collapse
|
35
|
Yamagata A, Goto-Ito S, Sato Y, Shiroshima T, Maeda A, Watanabe M, Saitoh T, Maenaka K, Terada T, Yoshida T, Uemura T, Fukai S. Structural insights into modulation and selectivity of transsynaptic neurexin-LRRTM interaction. Nat Commun 2018; 9:3964. [PMID: 30262834 PMCID: PMC6160412 DOI: 10.1038/s41467-018-06333-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 08/24/2018] [Indexed: 12/20/2022] Open
Abstract
Leucine-rich repeat transmembrane neuronal proteins (LRRTMs) function as postsynaptic organizers that induce excitatory synapses. Neurexins (Nrxns) and heparan sulfate proteoglycans have been identified as presynaptic ligands for LRRTMs. Specifically, LRRTM1 and LRRTM2 bind to the Nrxn splice variant lacking an insert at the splice site 4 (S4). Here, we report the crystal structure of the Nrxn1β–LRRTM2 complex at 3.4 Å resolution. The Nrxn1β–LRRTM2 interface involves Ca2+-mediated interactions and overlaps with the Nrxn–neuroligin interface. Together with structure-based mutational analyses at the molecular and cellular levels, the present structural analysis unveils the mechanism of selective binding between Nrxn and LRRTM1/2 and its modulation by the S4 insertion of Nrxn. Leucine-rich repeat transmembrane neuronal proteins (LRRTMs) function as postsynaptic organizers that induce excitatory synapses. Here authors solve the crystal structure of LRRTM2 in complex with its ligand Nrxn1β and shed light on how selective binding of ligands to LRRTM1/2 is achieved.
Collapse
Affiliation(s)
- Atsushi Yamagata
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan.,Synchrotron Radiation Research Organization, The University of Tokyo, Tokyo, 113-0032, Japan.,CREST, JST, Saitama, 332-0012, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8561, Japan
| | - Sakurako Goto-Ito
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan.,Synchrotron Radiation Research Organization, The University of Tokyo, Tokyo, 113-0032, Japan.,CREST, JST, Saitama, 332-0012, Japan
| | - Yusuke Sato
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan.,Synchrotron Radiation Research Organization, The University of Tokyo, Tokyo, 113-0032, Japan.,CREST, JST, Saitama, 332-0012, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8561, Japan
| | - Tomoko Shiroshima
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan.,Synchrotron Radiation Research Organization, The University of Tokyo, Tokyo, 113-0032, Japan.,CREST, JST, Saitama, 332-0012, Japan
| | - Asami Maeda
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan.,Synchrotron Radiation Research Organization, The University of Tokyo, Tokyo, 113-0032, Japan.,CREST, JST, Saitama, 332-0012, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Faculty of Medicine, Sapporo, 060-8638, Japan
| | - Takashi Saitoh
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, 006-8585, Japan
| | - Katsumi Maenaka
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan.,Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Tohru Terada
- Interfaculty Initiative in Information Studies, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Tomoyuki Yoshida
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan.,PRESTO, JST, Saitama, 332-0012, Japan
| | - Takeshi Uemura
- CREST, JST, Saitama, 332-0012, Japan. .,Division of Gene Research, Research Center for Supports to Advanced Science, Shinshu University, Nagano, 390-8621, Japan. .,Department of Biological Sciences for Intractable Neurological Diseases, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, 390-8621, Japan.
| | - Shuya Fukai
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan. .,Synchrotron Radiation Research Organization, The University of Tokyo, Tokyo, 113-0032, Japan. .,CREST, JST, Saitama, 332-0012, Japan. .,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8561, Japan.
| |
Collapse
|
36
|
Zhang P, Lu H, Peixoto RT, Pines MK, Ge Y, Oku S, Siddiqui TJ, Xie Y, Wu W, Archer-Hartmann S, Yoshida K, Tanaka KF, Aricescu AR, Azadi P, Gordon MD, Sabatini BL, Wong ROL, Craig AM. Heparan Sulfate Organizes Neuronal Synapses through Neurexin Partnerships. Cell 2018; 174:1450-1464.e23. [PMID: 30100184 PMCID: PMC6173057 DOI: 10.1016/j.cell.2018.07.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 06/23/2018] [Accepted: 06/29/2018] [Indexed: 12/22/2022]
Abstract
Synapses are fundamental units of communication in the brain. The prototypical synapse-organizing complex neurexin-neuroligin mediates synapse development and function and is central to a shared genetic risk pathway in autism and schizophrenia. Neurexin's role in synapse development is thought to be mediated purely by its protein domains, but we reveal a requirement for a rare glycan modification. Mice lacking heparan sulfate (HS) on neurexin-1 show reduced survival, as well as structural and functional deficits at central synapses. HS directly binds postsynaptic partners neuroligins and LRRTMs, revealing a dual binding mode involving intrinsic glycan and protein domains for canonical synapse-organizing complexes. Neurexin HS chains also bind novel ligands, potentially expanding the neurexin interactome to hundreds of HS-binding proteins. Because HS structure is heterogeneous, our findings indicate an additional dimension to neurexin diversity, provide a molecular basis for fine-tuning synaptic function, and open therapeutic directions targeting glycan-binding motifs critical for brain development.
Collapse
Affiliation(s)
- Peng Zhang
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada.
| | - Hong Lu
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Rui T Peixoto
- Howard Hughes Medical Institute, Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA; Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Mary K Pines
- Department of Zoology and Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Yuan Ge
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Shinichiro Oku
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Tabrez J Siddiqui
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Yicheng Xie
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Wenlan Wu
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada; Medical School, Henan University of Science and Technology, Luoyang 471023, China
| | | | - Keitaro Yoshida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - A Radu Aricescu
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Michael D Gordon
- Department of Zoology and Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Bernardo L Sabatini
- Howard Hughes Medical Institute, Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Ann Marie Craig
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada.
| |
Collapse
|
37
|
Deletion of LRRTM1 and LRRTM2 in adult mice impairs basal AMPA receptor transmission and LTP in hippocampal CA1 pyramidal neurons. Proc Natl Acad Sci U S A 2018; 115:E5382-E5389. [PMID: 29784826 DOI: 10.1073/pnas.1803280115] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leucine-rich repeat transmembrane (LRRTM) proteins are synaptic cell adhesion molecules that influence synapse formation and function. They are genetically associated with neuropsychiatric disorders, and via their synaptic actions likely regulate the establishment and function of neural circuits in the mammalian brain. Here, we take advantage of the generation of a LRRTM1 and LRRTM2 double conditional knockout mouse (LRRTM1,2 cKO) to examine the role of LRRTM1,2 at mature excitatory synapses in hippocampal CA1 pyramidal neurons. Genetic deletion of LRRTM1,2 in vivo in CA1 neurons using Cre recombinase-expressing lentiviruses dramatically impaired long-term potentiation (LTP), an impairment that was rescued by simultaneous expression of LRRTM2, but not LRRTM4. Mutation or deletion of the intracellular tail of LRRTM2 did not affect its ability to rescue LTP, while point mutations designed to impair its binding to presynaptic neurexins prevented rescue of LTP. In contrast to previous work using shRNA-mediated knockdown of LRRTM1,2, KO of these proteins at mature synapses also caused a decrease in AMPA receptor-mediated, but not NMDA receptor-mediated, synaptic transmission and had no detectable effect on presynaptic function. Imaging of recombinant photoactivatable AMPA receptor subunit GluA1 in the dendritic spines of cultured neurons revealed that it was less stable in the absence of LRRTM1,2. These results illustrate the advantages of conditional genetic deletion experiments for elucidating the function of endogenous synaptic proteins and suggest that LRRTM1,2 proteins help stabilize synaptic AMPA receptors at mature spines during basal synaptic transmission and LTP.
Collapse
|
38
|
Takahashi H, Matsuda K, Tabuchi K, Ko J. Central synapse, neural circuit, and brain function. Neurosci Res 2017; 116:1-2. [PMID: 28364859 DOI: 10.1016/j.neures.2017.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Hideto Takahashi
- Synapse Development and Plasticity, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, H2W 1R7, Canada.
| | - Keiko Matsuda
- Department of Neurophysiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, 160-8582, Japan
| | - Katsuhiko Tabuchi
- Department of Molecular & Cellular Physiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan; Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto 390-8621, Japan
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| |
Collapse
|