1
|
Kanoh T, Mizoguchi T, Tonoki A, Itoh M. Modeling of age-related neurological disease: utility of zebrafish. Front Aging Neurosci 2024; 16:1399098. [PMID: 38765773 PMCID: PMC11099255 DOI: 10.3389/fnagi.2024.1399098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
Many age-related neurological diseases still lack effective treatments, making their understanding a critical and urgent issue in the globally aging society. To overcome this challenge, an animal model that accurately mimics these diseases is essential. To date, many mouse models have been developed to induce age-related neurological diseases through genetic manipulation or drug administration. These models help in understanding disease mechanisms and finding potential therapeutic targets. However, some age-related neurological diseases cannot be fully replicated in human pathology due to the different aspects between humans and mice. Although zebrafish has recently come into focus as a promising model for studying aging, there are few genetic zebrafish models of the age-related neurological disease. This review compares the aging phenotypes of humans, mice, and zebrafish, and provides an overview of age-related neurological diseases that can be mimicked in mouse models and those that cannot. We presented the possibility that reproducing human cerebral small vessel diseases during aging might be difficult in mice, and zebrafish has potential to be another animal model of such diseases due to their similarity of aging phenotype to humans.
Collapse
Affiliation(s)
- Tohgo Kanoh
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Takamasa Mizoguchi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Ayako Tonoki
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Motoyuki Itoh
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
- Health and Disease Omics Center, Chiba University, Chiba, Japan
| |
Collapse
|
2
|
Grzesiuk M, Grabska M, Pawelec A. Fluoxetine may interfere with learning in fish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 105:104358. [PMID: 38154759 DOI: 10.1016/j.etap.2023.104358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/25/2023] [Indexed: 12/30/2023]
Abstract
Our study aimed to test whether fluoxetine impairs learning in fish and whether this potential impairment is reversible. Learning efficiency, with no aversive stimuli, of the Carassius carassius was analysed under different pharmaceutical conditions: (i) fish cultured without antidepressant (control), (ii) fish exposed to fluoxetine for 21 days (fluoxetine), and (iii) fish exposed to fluoxetine for 21 days and then cultured without fluoxetine for another 21 days (recovery). We exposed animals to environmental concentrations (360 ng L-1) of antidepressant. The learning rate was measured by timing how long it took the individual fish to find food and start feeding, six days in a row. The control and recovery fish took significantly less time to start eating over the six days. Control fish start eating 14 times faster than the fluoxetine fish. Fluoxetine can significantly affect learning and 21-day recovery period is not enough to fully restore the original learning abilities.
Collapse
Affiliation(s)
- Malgorzata Grzesiuk
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Warsaw, Poland.
| | - Marta Grabska
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Alicja Pawelec
- Department of Hydrobiology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
3
|
Bai Y, Henry J, Cheng E, Perry S, Mawdsley D, Wong BBM, Kaslin J, Wlodkowic D. Toward Real-Time Animal Tracking with Integrated Stimulus Control for Automated Conditioning in Aquatic Eco-Neurotoxicology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19453-19462. [PMID: 37956114 DOI: 10.1021/acs.est.3c07013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Aquatic eco-neurotoxicology is an emerging field that requires new analytical systems to study the effects of pollutants on animal behaviors. This is especially true if we are to gain insights into one of the least studied aspects: the potential perturbations that neurotoxicants can have on cognitive behaviors. The paucity of experimental data is partly caused by a lack of low-cost technologies for the analysis of higher-level neurological functions (e.g., associative learning) in small aquatic organisms. Here, we present a proof-of-concept prototype that utilizes a new real-time animal tracking software for on-the-fly video analysis and closed-loop, external hardware communications to deliver stimuli based on specific behaviors in aquatic organisms, spanning three animal phyla: chordates (fish, frog), platyhelminthes (flatworm), and arthropods (crustacean). The system's open-source software features an intuitive graphical user interface and advanced adaptive threshold-based image segmentation for precise animal detection. We demonstrate the precision of animal tracking across multiple aquatic species with varying modes of locomotion. The presented technology interfaces easily with low-cost and open-source hardware such as the Arduino microcontroller family for closed-loop stimuli control. The new system has potential future applications in eco-neurotoxicology, where it could enable new opportunities for cognitive research in diverse small aquatic model organisms.
Collapse
Affiliation(s)
- Yutao Bai
- The Neurotoxicology Laboratory, School of Science, RMIT University, Melbourne, VIC 3083, Australia
| | - Jason Henry
- The Neurotoxicology Laboratory, School of Science, RMIT University, Melbourne, VIC 3083, Australia
| | - Eva Cheng
- Faculty of Engineering and IT, School of Electrical and Data Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Stuart Perry
- Faculty of Engineering and IT, School of Electrical and Data Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - David Mawdsley
- Defence Science and Technology Group, Melbourne, VIC 3207, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Jan Kaslin
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Donald Wlodkowic
- The Neurotoxicology Laboratory, School of Science, RMIT University, Melbourne, VIC 3083, Australia
| |
Collapse
|
4
|
Mizoguchi T, Okita M, Minami Y, Fukunaga M, Maki A, Itoh M. Age-dependent dysfunction of the cerebrovascular system in the zebrafish telencephalon. Exp Gerontol 2023; 178:112206. [PMID: 37196825 DOI: 10.1016/j.exger.2023.112206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/02/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
The brain is an essential organ that controls various biological activities via the nervous system. The cerebral blood vessels supply oxygen and nutrients to neuronal cells and carry away waste products, which is essential in maintaining brain functions. Aging affects cerebral vascular function and decreases brain function. However, the physiological process of age-dependent cerebral vascular dysfunction is not fully understood. In this study, we examined aging effects on cerebral vascular patterning, vascular function, and learning ability in adult zebrafish. We found that the tortuosity of the blood vessels was increased, and the blood flow rate was reduced with aging in the zebrafish dorsal telencephalon. Moreover, we found cerebral blood flow positively correlated with learning ability in middle-old-aged zebrafish, as in aged humans. In addition, we also found that the elastin fiber decreased in the middle-old-aged fish brain vessel, suggesting a possible molecular mechanism underlying vessel dysfunction. Therefore, adult zebrafish may serve as a useful model for studying the aging-dependent decline in vascular function and human diseases such as vascular dementia.
Collapse
Affiliation(s)
- Takamasa Mizoguchi
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Mayu Okita
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Yuina Minami
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Misa Fukunaga
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Ayumi Maki
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Motoyuki Itoh
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan; Research Institute of Disaster Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| |
Collapse
|
5
|
Mazzitelli-Fuentes LS, Román FR, Castillo Elías JR, Deleglise EB, Mongiat LA. Spatial Learning Promotes Adult Neurogenesis in Specific Regions of the Zebrafish Pallium. Front Cell Dev Biol 2022; 10:840964. [PMID: 35646912 PMCID: PMC9130729 DOI: 10.3389/fcell.2022.840964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Adult neurogenesis could be considered as a homeostatic mechanism that accompanies the continuous growth of teleost fish. As an alternative but not excluding hypothesis, adult neurogenesis would provide a form of plasticity necessary to adapt the brain to environmental challenges. The zebrafish pallium is a brain structure involved in the processing of various cognitive functions and exhibits extended neurogenic niches throughout the periventricular zone. The involvement of neuronal addition as a learning-related plastic mechanism has not been explored in this model, yet. In this work, we trained adult zebrafish in a spatial behavioral paradigm and evaluated the neurogenic dynamics in different pallial niches. We found that adult zebrafish improved their performance in a cue-guided rhomboid maze throughout five daily sessions, being the fish able to relearn the task after a rule change. This cognitive activity increased cell proliferation exclusively in two pallial regions: the caudal lateral pallium (cLP) and the rostral medial pallium (rMP). To assessed whether learning impinges on pallial adult neurogenesis, mitotic cells were labeled by BrdU administration, and then fish were trained at different periods of adult-born neuron maturation. Our results indicate that adult-born neurons are being produced on demand in rMP and cLP during the learning process, but with distinct critical periods among these regions. Next, we evaluated the time course of adult neurogenesis by pulse and chase experiments. We found that labeled cells decreased between 4 and 32 dpl in both learning-sensitive regions, whereas a fraction of them continues proliferating over time. By modeling the population dynamics of neural stem cells (NSC), we propose that learning increases adult neurogenesis by two mechanisms: driving a chained proliferation of labeled NSC and rescuing newborn neurons from death. Our findings highlight adult neurogenesis as a conserved source of brain plasticity and shed light on a rostro-caudal specialization of pallial neurogenic niches in adult zebrafish.
Collapse
Affiliation(s)
- Laura S Mazzitelli-Fuentes
- Departamento de Física Médica, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, San Carlos de Bariloche, Argentina.,Consejo Nacional de Investigaciones Científicas y, Técnicas, Argentina.,Instituto Balseiro, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
| | - Fernanda R Román
- Departamento de Física Médica, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, San Carlos de Bariloche, Argentina.,Consejo Nacional de Investigaciones Científicas y, Técnicas, Argentina.,Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, San Carlos de Bariloche, Argentina
| | - Julio R Castillo Elías
- Departamento de Física Médica, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, San Carlos de Bariloche, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Emilia B Deleglise
- Departamento de Física Médica, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, San Carlos de Bariloche, Argentina.,Consejo Nacional de Investigaciones Científicas y, Técnicas, Argentina.,Instituto Balseiro, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
| | - Lucas A Mongiat
- Departamento de Física Médica, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, San Carlos de Bariloche, Argentina.,Consejo Nacional de Investigaciones Científicas y, Técnicas, Argentina
| |
Collapse
|
6
|
Yang P, Takahashi H, Murase M, Itoh M. Zebrafish behavior feature recognition using three-dimensional tracking and machine learning. Sci Rep 2021; 11:13492. [PMID: 34188116 PMCID: PMC8242018 DOI: 10.1038/s41598-021-92854-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/14/2021] [Indexed: 11/09/2022] Open
Abstract
In this work, we aim to construct a new behavior analysis method by using machine learning. We used two cameras to capture three-dimensional (3D) tracking data of zebrafish, which were analyzed using fuzzy adaptive resonance theory (FuzzyART), a type of machine learning algorithm, to identify specific behavioral features. The method was tested based on an experiment in which electric shocks were delivered to zebrafish and zebrafish swimming was tracked in 3D simultaneously to find electric shock-associated behaviors. By processing the obtained data with FuzzyART, we discovered that distinguishing behaviors were statistically linked to the electric shock based on the machine learning algorithm. Moreover, our system could accept user-supplied data for detection and quantitative analysis of the behavior features, such as the behavior features defined by the 3D tracking analysis above. This system could be applied to discover new distinct behavior features in mutant zebrafish and used for drug administration screening and cognitive ability tests of zebrafish in the future.
Collapse
Affiliation(s)
- Peng Yang
- Graduate School of Pharmaceutical Science, Chiba University, Chiba, Japan
| | - Hiro Takahashi
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masataka Murase
- Aichi Institute of Technology Technical College of Communications and Electronics, Aichi, Japan
| | - Motoyuki Itoh
- Graduate School of Pharmaceutical Science, Chiba University, Chiba, Japan.
| |
Collapse
|
7
|
Effect of Tank Size on Zebrafish Behavior and Physiology. Animals (Basel) 2020; 10:ani10122353. [PMID: 33317187 PMCID: PMC7763847 DOI: 10.3390/ani10122353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 01/25/2023] Open
Abstract
Simple Summary Living space is an important aspect of animal welfare. Understanding the effects of welfare on experimental animals would help in drawing a precise conclusion. In this work, zebrafish in different tank sizes were studied through behavioral and physiology tests. Results showed that changes in the tank size affected zebrafish behavior; those that lived in small tanks behaved less boldly, had poor stamina, and spent much time on movement. Therefore, researchers should focus on zebrafish’s living space to generate valid data from laboratory studies. Abstract Environmental conditions strongly affect experimental animals. As a model organism, zebrafish has become important in life science studies. However, the potential effect of living environment on their behavior and physiology is often overlooked. This work aimed to determine whether tank size affects zebrafish behavior and physiology. Tests on shelter leaving, shelter seeking, shoaling, stamina, and pepsin and cortisol levels were conducted. Results showed that zebrafish behavior is easily affected by changes on the tank size. Fish that lived in small tanks behaved less boldly, had poor stamina, and spent much time on movement. Sex differences in behavior were only evident in the shelter seeking tests. Tank size had no effect on pepsin and cortisol, but cortisol concentrations in males were lower than those in females. This study suggests that zebrafish behavior is easily influenced by their living environment, and future related studies should consider their living space.
Collapse
|
8
|
Abboud C, Duveau A, Bouali-Benazzouz R, Massé K, Mattar J, Brochoire L, Fossat P, Boué-Grabot E, Hleihel W, Landry M. Animal models of pain: Diversity and benefits. J Neurosci Methods 2020; 348:108997. [PMID: 33188801 DOI: 10.1016/j.jneumeth.2020.108997] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 12/15/2022]
Abstract
Chronic pain is a maladaptive neurological disease that remains a major health problem. A deepening of our knowledge on mechanisms that cause pain is a prerequisite to developing novel treatments. A large variety of animal models of pain has been developed that recapitulate the diverse symptoms of different pain pathologies. These models reproduce different pain phenotypes and remain necessary to examine the multidimensional aspects of pain and understand the cellular and molecular basis underlying pain conditions. In this review, we propose an overview of animal models, from simple organisms to rodents and non-human primates and the specific traits of pain pathologies they model. We present the main behavioral tests for assessing pain and investing the underpinning mechanisms of chronic pathological pain. The validity of animal models is analysed based on their ability to mimic human clinical diseases and to predict treatment outcomes. Refine characterization of pathological phenotypes also requires to consider pain globally using specific procedures dedicated to study emotional comorbidities of pain. We discuss the limitations of pain models when research findings fail to be translated from animal models to human clinics. But we also point to some recent successes in analgesic drug development that highlight strategies for improving the predictive validity of animal models of pain. Finally, we emphasize the importance of using assortments of preclinical pain models to identify pain subtype mechanisms, and to foster the development of better analgesics.
Collapse
Affiliation(s)
- Cynthia Abboud
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France; Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France; Faculty of Arts and Sciences, Holy Spirit University of Kaslik (USEK), Lebanon
| | - Alexia Duveau
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Rabia Bouali-Benazzouz
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Karine Massé
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Joseph Mattar
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik (USEK), Lebanon
| | - Louison Brochoire
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Pascal Fossat
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Eric Boué-Grabot
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Walid Hleihel
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik (USEK), Lebanon; Faculty of Arts and Sciences, Holy Spirit University of Kaslik (USEK), Lebanon
| | - Marc Landry
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France.
| |
Collapse
|
9
|
A newly developed feeder and oxygen measurement system reveals the effects of aging and obesity on the metabolic rate of zebrafish. Exp Gerontol 2019; 127:110720. [DOI: 10.1016/j.exger.2019.110720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/31/2019] [Accepted: 08/31/2019] [Indexed: 01/09/2023]
|
10
|
López-Schier H. Neuroplasticity in the acoustic startle reflex in larval zebrafish. Curr Opin Neurobiol 2018; 54:134-139. [PMID: 30359930 DOI: 10.1016/j.conb.2018.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 10/04/2018] [Indexed: 12/22/2022]
Abstract
Learning is essential for animal survival under changing environments. Even in its simplest form, learning involves interactions between a handful of neuronal circuits, hundreds of neurons and many thousand synapses. In this review I will focus on habituation - a form of non-associative learning during which organisms decrease their response to repetitions of identical sensory stimuli. I will discuss how recent studies of the acoustic startle reflex mediated by the Mauthner cell in the zebrafish larva are helping to understand the neuroplastic processes that underlie habituation. In addition to being a fascinating biological process, habituation is clinically relevant because it is affected in various neuropsychiatric disorders in humans, including autism, schizophrenia, Fragile-X and Tourette's syndromes.
Collapse
Affiliation(s)
- Hernán López-Schier
- Research Unit Sensory Biology & Organogenesis, Helmholtz Zentrum Munich, Neuherberg 85764, Germany.
| |
Collapse
|