1
|
Protasiewicz-Timofticiuc DC, Bădescu D, Moța M, Ștefan AG, Mitrea A, Clenciu D, Efrem IC, Roșu MM, Vladu BE, Gheonea TC, Moța E, Vladu IM. Back to Roots: Dysbiosis, Obesity, Metabolic Syndrome, Type 2 Diabetes Mellitus, and Obstructive Sleep Apnea-Is There an Objective Connection? A Narrative Review. Nutrients 2024; 16:4057. [PMID: 39683451 DOI: 10.3390/nu16234057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
In recent decades, it has become clear that the gut is more than just a digestive organ; it also functions as an immune organ with regulatory capabilities and acts as a "second brain" that influences brain function due to the presence and regulatory roles of the gut microbiota (GM). The GM is a crucial component of its host and significantly impacts human health. Dysbiosis, or microbial imbalance, has been closely linked to various diseases, including gastrointestinal, neurological, psychiatric, and metabolic disorders. The aim of this narrative review is to highlight the roles of the GM in maintaining metabolic health. Sleep is a vital biological necessity, with living organisms having evolved an internal sleep-wake rhythm that aligns with a roughly 24 h light/dark cycle, and this is known as the circadian rhythm. This cycle is essential for tissue repair, restoration, and overall optimal body functioning. Sleep irregularities have become more prevalent in modern society, with fast-paced lifestyles often disrupting normal sleep patterns. Urban living factors, such as fast food consumption, shift work, exposure to artificial light and nighttime noise, medications, and social activities, can adversely affect circadian rhythms, with dysbiosis being one of the many factors incriminated in the etiology of sleep disorders.
Collapse
Affiliation(s)
| | - Diana Bădescu
- Department of Diabetes, Nutrition and Metabolic Diseases, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania
| | - Maria Moța
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | | | - Adina Mitrea
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Diana Clenciu
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ion Cristian Efrem
- Department of Medical Semiology, Faculty of Dentistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Maria Magdalena Roșu
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Midwives and Nursing, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Beatrice Elena Vladu
- Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Theodora Claudia Gheonea
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Eugen Moța
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ionela Mihaela Vladu
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
2
|
Helfrich-Förster C. The Never Given 2022 Pittendrigh/Aschoff Lecture: The Clock Network in the Brain-Insights From Insects. J Biol Rhythms 2024:7487304241290861. [PMID: 39529231 DOI: 10.1177/07487304241290861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
My journey into chronobiology began in 1977 with lectures and internships with Wolfgang Engelmann and Hans Erkert at the University of Tübingen in Germany. At that time, the only known animal clock gene was Period, and the location and organization of the master circadian clock in the brain was completely unknown for the model insect Drosophila melanogaster. I was thus privileged to witness and participate in the research that led us from discovering the first clock gene to identifying the clock network in the fly brain and the putative pathways linking it to behavior and physiology. This article highlights my role in these developments and also shows how the successful use of D. melanogaster for studies of circadian rhythms has contributed to the understanding of clock networks in other animals. I also report on my experiences in the German scientific system and hope that my story will be of interest to some of you.
Collapse
Affiliation(s)
- Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Wevers A, San Roman-Mata S, Navarro-Ledesma S, Pruimboom L. The Role of Insulin Within the Socio-Psycho-Biological Framework in Type 2 Diabetes-A Perspective from Psychoneuroimmunology. Biomedicines 2024; 12:2539. [PMID: 39595105 PMCID: PMC11591609 DOI: 10.3390/biomedicines12112539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
The interplay between socio-psychological factors and biological systems is pivotal in defining human health and disease, particularly in chronic non-communicable diseases. Recent advancements in psychoneuroimmunology and mitochondrial psychobiology have emphasized the significance of psychological factors as critical determinants of disease onset, progression, recurrence, and severity. These insights align with evolutionary biology, psychology, and psychiatry, highlighting the inherent social nature of humans. This study proposes a theory that expands insulin's role beyond traditional metabolic functions, incorporating it into the Mitochondrial Information Processing System (MIPS) and exploring it from an evolutionary medicine perspective to explore its function in processing psychological and social factors into biological responses. This narrative review comprises data from preclinical animal studies, longitudinal cohort studies, cross-sectional studies, machine learning analyses, and randomized controlled trials, and investigates the role of insulin in health and disease. The result is a proposal for a theoretical framework of insulin as a social substance within the socio-psycho-biological framework, emphasizing its extensive roles in health and disease. Type 2 Diabetes Mellitus (T2DM) with musculoskeletal disorders and neurodegeneration exemplifies this narrative. We suggest further research towards a comprehensive treatment protocol meeting evolutionary expectations, where incorporating psychosocial interventions plays an essential role. By supporting the concept of 'insulin resilience' and suggesting the use of heart rate variability to assess insulin resilience, we aim to provide an integrative approach to managing insulin levels and monitoring the effectiveness of interventions. This integrative strategy addresses broader socio-psychological factors, ultimately improving health outcomes for individuals with T2DM and musculoskeletal complications and neurodegeneration while providing new insights into the interplay between socio-psychological factors and biological systems in chronic diseases.
Collapse
Affiliation(s)
- Anne Wevers
- Clinical Medicine and Public Health PhD Program, Faculty of Health Sciences, University of Granada, 18071 Granada, Spain;
| | - Silvia San Roman-Mata
- Department of Nursing, Faculty of Health Sciences, Campus of Melilla, University of Granada, 52004 Melilla, Spain;
| | - Santiago Navarro-Ledesma
- Department of Physical Therapy, Faculty of Health Sciences, Campus of Melilla, University of Granada, 52004 Melilla, Spain
- University Chair in Clinical Psychoneuroimmunology, Campus of Melilla, University of Granada and PNI Europe, 52004 Melilla, Spain;
| | - Leo Pruimboom
- University Chair in Clinical Psychoneuroimmunology, Campus of Melilla, University of Granada and PNI Europe, 52004 Melilla, Spain;
| |
Collapse
|
4
|
Coskun A, Lippi G. The impact of physiological variations on personalized reference intervals and decision limits: an in-depth analysis. Clin Chem Lab Med 2024; 62:2140-2147. [PMID: 38452477 DOI: 10.1515/cclm-2024-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
The interpretation of laboratory data is a comparative procedure. Physicians typically need reference values to compare patients' laboratory data for clinical decisions. Therefore, establishing reliable reference data is essential for accurate diagnosis and patient monitoring. Human metabolism is a dynamic process. Various types of systematic and random fluctuations in the concentration/activity of biomolecules are observed in response to internal and external factors. In the human body, several biomolecules are under the influence of physiological rhythms and are therefore subject to ultradian, circadian and infradian fluctuations. In addition, most biomolecules are also characterized by random biological variations, which are referred to as biological fluctuations between subjects and within subjects/individuals. In routine practice, reference intervals based on population data are used, which by nature are not designed to capture physiological rhythms and random biological variations. To ensure safe and appropriate interpretation of patient laboratory data, reference intervals should be personalized and estimated using individual data in accordance with systematic and random variations. In this opinion paper, we outline (i) the main variations that contribute to the generation of personalized reference intervals (prRIs), (ii) the theoretical background of prRIs and (iii) propose new methods on how to harmonize prRIs with the systematic and random variations observed in metabolic activity, based on individuals' demography.
Collapse
Affiliation(s)
- Abdurrahman Coskun
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, 19051 University of Verona , Verona, Italy
| |
Collapse
|
5
|
Yamaguchi Y. Arginine vasopressin: Critical regulator of circadian homeostasis. Peptides 2024; 177:171229. [PMID: 38663583 DOI: 10.1016/j.peptides.2024.171229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/30/2024]
Abstract
Circadian rhythms optimally regulate numerous physiological processes in an organism and synchronize them with the external environment. The suprachiasmatic nucleus (SCN), the center of the circadian clock in mammals, is composed of multiple cell types that form a network that provides the basis for the remarkable stability of the circadian clock. Among the neuropeptides expressed in the SCN, arginine vasopressin (AVP) has attracted much attention because of its deep involvement in the function of circadian rhythms, as elucidated in particular by studies using genetically engineered mice. This review briefly summarizes the current knowledge on the peptidergic distribution and topographic neuronal organization in the SCN, the molecular mechanisms of the clock genes, and the relationship between the SCN and peripheral clocks. With respect to the physiological roles of AVP and AVP-expressing neurons, in addition to a sex-dependent action of AVP in the SCN, studies using AVP receptor knockout mice and mice genetically manipulated to alter the clock properties of AVP neurons are summarized here, highlighting its importance in maintaining circadian homeostasis and its potential as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Yoshiaki Yamaguchi
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Japan.
| |
Collapse
|
6
|
Sarkar S, Patranabis S. Emerging Role of Extracellular Vesicles in Intercellular Communication in the Brain: Implications for Neurodegenerative Diseases and Therapeutics. Cell Biochem Biophys 2024; 82:379-398. [PMID: 38300375 DOI: 10.1007/s12013-024-01221-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
Extracellular vesicles (EVs) are minute lipid-bilayer sacs discharged by cells, encompassing a diverse array of proteins, nucleic acids, and lipids. The identification of EVs as pivotal agents in intercellular communication has sparked compelling research pathways in the realms of cell biology and neurodegenerative diseases. Utilizing EVs for medicinal reasons has garnered interest due to the adaptability of EV-mediated communication. EVs can be classified based on their physical characteristics, biochemical composition, or cell of origin following purification. This review delves into the primary sub-types of EVs, providing an overview of the biogenesis of each type. Additionally, it explores the diverse environmental conditions triggering EV release and the originating cells, including stem cells and those from the Central Nervous System. Within the brain, EVs play a pivotal role as essential mediators of intercellular communication, significantly impacting synaptic plasticity, brain development, and the etiology of neurological diseases. Their potential diagnostic and therapeutic applications in various brain-related conditions are underscored, given their ability to carry specific cargo. Specially engineered EVs hold promise for treating diverse diseases, including neurodegenerative disorders. This study primarily emphasizes the diagnostic and potential therapeutic uses of EVs in neurological disorders such as Alzheimer's Disease, Huntington's Disease, Parkinson's Disease, Amyotrophic Lateral Sclerosis, and Prions disease. It also summarizes innovative techniques for detecting EVs in the brain, suggesting that EVs could serve as non-invasive biomarkers for early detection, disease monitoring, and prognosis in neurological disorders.
Collapse
|
7
|
Zhu P, Peek CB. Circadian timing of satellite cell function and muscle regeneration. Curr Top Dev Biol 2024; 158:307-339. [PMID: 38670711 DOI: 10.1016/bs.ctdb.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Recent research has highlighted an important role for the molecular circadian machinery in the regulation of tissue-specific function and stress responses. Indeed, disruption of circadian function, which is pervasive in modern society, is linked to accelerated aging, obesity, and type 2 diabetes. Furthermore, evidence supporting the importance of the circadian clock within both the mature muscle tissue and satellite cells to regulate the maintenance of muscle mass and repair capacity in response injury has recently emerged. Here, we review the discovery of circadian clocks within the satellite cell (a.k.a. adult muscle stem cell) and how they act to regulate metabolism, epigenetics, and myogenesis during both healthy and diseased states.
Collapse
Affiliation(s)
- Pei Zhu
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Department of Medicine-Endocrinology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| | - Clara B Peek
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Department of Medicine-Endocrinology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
8
|
Bussi IL, Neitz AF, Sanchez REA, Casiraghi LP, Moldavan M, Kunda D, Allen CN, Evans JA, de la Iglesia HO. Expression of the vesicular GABA transporter within neuromedin S + neurons sustains behavioral circadian rhythms. Proc Natl Acad Sci U S A 2023; 120:e2314857120. [PMID: 38019855 PMCID: PMC10710084 DOI: 10.1073/pnas.2314857120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus is the site of a central circadian clock that orchestrates overt rhythms of physiology and behavior. Circadian timekeeping requires intercellular communication among SCN neurons, and multiple signaling pathways contribute to SCN network coupling. Gamma-aminobutyric acid (GABA) is produced by virtually all SCN neurons, and previous work demonstrates that this transmitter regulates coupling in the adult SCN but is not essential for the nucleus to sustain overt circadian rhythms. Here, we show that the deletion of the gene that codes for the GABA vesicular transporter Vgat from neuromedin-S (NMS)+ neurons-a subset of neurons critical for SCN function-causes arrhythmia of locomotor activity and sleep. Further, NMS-Vgat deletion impairs intrinsic clock gene rhythms in SCN explants cultured ex vivo. Although vasoactive intestinal polypeptide (VIP) is critical for SCN function, Vgat deletion from VIP-expressing neurons did not lead to circadian arrhythmia in locomotor activity rhythms. Likewise, adult SCN-specific deletion of Vgat led to mild impairment of behavioral rhythms. Our results suggest that while the removal of GABA release from the adult SCN does not affect the pacemaker's ability to sustain overt circadian rhythms, its removal from a critical subset of neurons within the SCN throughout development removes the nucleus ability to sustain circadian rhythms. Our findings support a model in which SCN GABA release is critical for the developmental establishment of intercellular network properties that define the SCN as a central pacemaker.
Collapse
Affiliation(s)
- Ivana L. Bussi
- Department of Biology, University of Washington, Seattle, WA98195-1800
| | - Alexandra F. Neitz
- Department of Biology, University of Washington, Seattle, WA98195-1800
- Molecular and Cellular Biology in Seattle, University of Washington and Fred Hutch, Seattle, WA98195-7275
| | - Raymond E. A. Sanchez
- Department of Biology, University of Washington, Seattle, WA98195-1800
- Graduate Program in Neuroscience, University of Washington, Seattle, WA98195
| | | | - Michael Moldavan
- Oregon Institute for Occupational Health Sciences, Oregon Health & Science University, Portland, OR97239
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR97239
| | - Divya Kunda
- Department of Biology, University of Washington, Seattle, WA98195-1800
| | - Charles N. Allen
- Oregon Institute for Occupational Health Sciences, Oregon Health & Science University, Portland, OR97239
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR97239
| | - Jennifer A. Evans
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI53233
| | - Horacio O. de la Iglesia
- Department of Biology, University of Washington, Seattle, WA98195-1800
- Molecular and Cellular Biology in Seattle, University of Washington and Fred Hutch, Seattle, WA98195-7275
- Graduate Program in Neuroscience, University of Washington, Seattle, WA98195
| |
Collapse
|
9
|
Pan D, Wang Z, Chen Y, Cao J. Melanopsin-mediated optical entrainment regulates circadian rhythms in vertebrates. Commun Biol 2023; 6:1054. [PMID: 37853054 PMCID: PMC10584931 DOI: 10.1038/s42003-023-05432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023] Open
Abstract
Melanopsin (OPN4) is a light-sensitive protein that plays a vital role in the regulation of circadian rhythms and other nonvisual functions. Current research on OPN4 has focused on mammals; more evidence is needed from non-mammalian vertebrates to fully assess the significance of the non-visual photosensitization of OPN4 for circadian rhythm regulation. There are species differences in the regulatory mechanisms of OPN4 for vertebrate circadian rhythms, which may be due to the differences in the cutting variants, tissue localization, and photosensitive activation pathway of OPN4. We here summarize the distribution of OPN4 in mammals, birds, and teleost fish, and the classical excitation mode for the non-visual photosensitive function of OPN4 in mammals is discussed. In addition, the role of OPN4-expressing cells in regulating circadian rhythm in different vertebrates is highlighted, and the potential rhythmic regulatory effects of various neuropeptides or neurotransmitters expressed in mammalian OPN4-expressing ganglion cells are summarized among them.
Collapse
Affiliation(s)
- Deng Pan
- Laboratory of Anatomy of Domestic Animals, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, 100193, Beijing, China
| | - Zixu Wang
- Laboratory of Anatomy of Domestic Animals, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, 100193, Beijing, China
| | - Yaoxing Chen
- Laboratory of Anatomy of Domestic Animals, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, 100193, Beijing, China
| | - Jing Cao
- Laboratory of Anatomy of Domestic Animals, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, 100193, Beijing, China.
| |
Collapse
|
10
|
Akpınar Ş, Tek NA. Age-Related Changes in Circadian Rhythm and Association with Nutrition. Curr Nutr Rep 2023; 12:376-382. [PMID: 37195400 DOI: 10.1007/s13668-023-00474-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 05/18/2023]
Abstract
PURPOSE OF REVIEW Considering the increase in life expectancy, there is a time-related decline in biological functions. Age-related changes are also observed in the circadian clock which directly leads to appropriate rhythms in the endocrine and metabolic pathways required for organism homeostasis. Circadian rhythms are affected by the sleep/wake cycle, environmental changes, and nutrition. The aim of this review is to show the relationship between age-related changes in circadian rhythms of physiological and molecular processes and nutritional differences in the elderly. RECENT FINDINGS Nutrition is an environmental factor that is particularly effective on peripheral clocks. Age-related physiological changes have an impact on nutrient intake and circadian processes. Considering the known effects of amino acid and energy intakes on peripheral and circadian clocks, it is thought that the change in circadian clocks in aging may occur due to anorexia due to physiological changes.
Collapse
Affiliation(s)
- Şerife Akpınar
- Faculty of Health Science, Department of Nutrition and Dietetic, Gazi University, Bişkek Main St. 6. St No: 2, 06490, Ankara, Emek, Turkey.
| | - Nilüfer Acar Tek
- Faculty of Health Science, Department of Nutrition and Dietetic, Gazi University, Bişkek Main St. 6. St No: 2, 06490, Ankara, Emek, Turkey
| |
Collapse
|
11
|
Tsuno Y, Peng Y, Horike SI, Wang M, Matsui A, Yamagata K, Sugiyama M, Nakamura TJ, Daikoku T, Maejima T, Mieda M. In vivo recording of suprachiasmatic nucleus dynamics reveals a dominant role of arginine vasopressin neurons in circadian pacesetting. PLoS Biol 2023; 21:e3002281. [PMID: 37643163 PMCID: PMC10465001 DOI: 10.1371/journal.pbio.3002281] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 07/28/2023] [Indexed: 08/31/2023] Open
Abstract
The central circadian clock of the suprachiasmatic nucleus (SCN) is a network consisting of various types of neurons and glial cells. Individual cells have the autonomous molecular machinery of a cellular clock, but their intrinsic periods vary considerably. Here, we show that arginine vasopressin (AVP) neurons set the ensemble period of the SCN network in vivo to control the circadian behavior rhythm. Artificial lengthening of cellular periods by deleting casein kinase 1 delta (CK1δ) in the whole SCN lengthened the free-running period of behavior rhythm to an extent similar to CK1δ deletion specific to AVP neurons. However, in SCN slices, PER2::LUC reporter rhythms of these mice only partially and transiently recapitulated the period lengthening, showing a dissociation between the SCN shell and core with a period instability in the shell. In contrast, in vivo calcium rhythms of both AVP and vasoactive intestinal peptide (VIP) neurons in the SCN of freely moving mice demonstrated stably lengthened periods similar to the behavioral rhythm upon AVP neuron-specific CK1δ deletion, without changing the phase relationships between each other. Furthermore, optogenetic activation of AVP neurons acutely induced calcium increase in VIP neurons in vivo. These results indicate that AVP neurons regulate other SCN neurons, such as VIP neurons, in vivo and thus act as a primary determinant of the SCN ensemble period.
Collapse
Affiliation(s)
- Yusuke Tsuno
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yubo Peng
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Shin-ichi Horike
- Division of Integrated Omics Research, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Japan
| | - Mohan Wang
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Ayako Matsui
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kanato Yamagata
- Child Brain Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Mizuki Sugiyama
- Laboratory of Animal Physiology, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Takahiro J. Nakamura
- Laboratory of Animal Physiology, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Takiko Daikoku
- Division of Animal Disease Model, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Japan
| | - Takashi Maejima
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Michihiro Mieda
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
12
|
Kuwano R, Katsura M, Iwata M, Yokosako T, Yoshii T. Pigment-dispersing factor and CCHamide1 in the Drosophila circadian clock network. Chronobiol Int 2023; 40:284-299. [PMID: 36786215 DOI: 10.1080/07420528.2023.2166416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Animals possess a circadian central clock in the brain, where circadian behavioural rhythms are generated. In the fruit fly (Drosophila melanogaster), the central clock comprises a network of approximately 150 clock neurons, which is important for the maintenance of a coherent and robust rhythm. Several neuropeptides involved in the network have been identified, including Pigment-dispersing factor (PDF) and CCHamide1 (CCHa1) neuropeptides. PDF signals bidirectionally to CCHa1-positive clock neurons; thus, the clock neuron groups expressing PDF and CCHa1 interact reciprocally. However, the role of these interactions in molecular and behavioural rhythms remains elusive. In this study, we generated Pdf 01 and CCHa1SK8 double mutants and examined their locomotor activity-related rhythms. The single mutants of Pdf 01 or CCHa1SK8 displayed free-running rhythms under constant dark conditions, whereas approximately 98% of the double mutants were arrhythmic. In light-dark conditions, the evening activity of the double mutants was phase-advanced compared with that of the single mutants. In contrast, both the single and double mutants had diminished morning activity. These results suggest that the effects of the double mutation varied in behavioural parameters. The double and triple mutants of per 01, Pdf 01, and CCHa1SK8 further revealed that PDF signalling plays a role in the suppression of activity during the daytime under a clock-less background. Our results provide insights into the interactions between PDF and CCHa1 signalling and their roles in activity rhythms.
Collapse
Affiliation(s)
- Riko Kuwano
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Maki Katsura
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Mai Iwata
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Tatsuya Yokosako
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
13
|
Smies CW, Bodinayake KK, Kwapis JL. Time to learn: The role of the molecular circadian clock in learning and memory. Neurobiol Learn Mem 2022; 193:107651. [PMID: 35697314 PMCID: PMC9903177 DOI: 10.1016/j.nlm.2022.107651] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/18/2022] [Accepted: 06/07/2022] [Indexed: 12/27/2022]
Abstract
The circadian system plays an important role in aligning biological processes with the external time of day. A range of physiological functions are governed by the circadian cycle, including memory processes, yet little is understood about how the clock interfaces with memory at a molecular level. The molecular circadian clock consists of four key genes/gene families, Period, Clock, Cryptochrome, and Bmal1, that rhythmically cycle in an ongoing transcription-translation negative feedback loop that maintains an approximately 24-hour cycle within cells of the brain and body. In addition to their roles in generating the circadian rhythm within the brain's master pacemaker (the suprachiasmatic nucleus), recent research has suggested that these clock genes may function locally within memory-relevant brain regions to modulate memory across the day/night cycle. This review will discuss how these clock genes function both within the brain's central clock and within memory-relevant brain regions to exert circadian control over memory processes. For each core clock gene, we describe the current research that demonstrates a potential role in memory and outline how these clock genes might interface with cascades known to support long-term memory formation. Together, the research suggests that clock genes function locally within satellite clocks across the brain to exert circadian control over long-term memory formation and possibly other biological processes. Understanding how clock genes might interface with local molecular cascades in the hippocampus and other brain regions is a critical step toward developing treatments for the myriad disorders marked by dysfunction of both the circadian system and cognitive processes.
Collapse
Affiliation(s)
- Chad W Smies
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Kasuni K Bodinayake
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Janine L Kwapis
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
14
|
Reinhard N, Schubert FK, Bertolini E, Hagedorn N, Manoli G, Sekiguchi M, Yoshii T, Rieger D, Helfrich-Förster C. The Neuronal Circuit of the Dorsal Circadian Clock Neurons in Drosophila melanogaster. Front Physiol 2022; 13:886432. [PMID: 35574472 PMCID: PMC9100938 DOI: 10.3389/fphys.2022.886432] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/28/2022] [Indexed: 11/30/2022] Open
Abstract
Drosophila’s dorsal clock neurons (DNs) consist of four clusters (DN1as, DN1ps, DN2s, and DN3s) that largely differ in size. While the DN1as and the DN2s encompass only two neurons, the DN1ps consist of ∼15 neurons, and the DN3s comprise ∼40 neurons per brain hemisphere. In comparison to the well-characterized lateral clock neurons (LNs), the neuroanatomy and function of the DNs are still not clear. Over the past decade, numerous studies have addressed their role in the fly’s circadian system, leading to several sometimes divergent results. Nonetheless, these studies agreed that the DNs are important to fine-tune activity under light and temperature cycles and play essential roles in linking the output from the LNs to downstream neurons that control sleep and metabolism. Here, we used the Flybow system, specific split-GAL4 lines, trans-Tango, and the recently published fly connectome (called hemibrain) to describe the morphology of the DNs in greater detail, including their synaptic connections to other clock and non-clock neurons. We show that some DN groups are largely heterogenous. While certain DNs are strongly connected with the LNs, others are mainly output neurons that signal to circuits downstream of the clock. Among the latter are mushroom body neurons, central complex neurons, tubercle bulb neurons, neurosecretory cells in the pars intercerebralis, and other still unidentified partners. This heterogeneity of the DNs may explain some of the conflicting results previously found about their functionality. Most importantly, we identify two putative novel communication centers of the clock network: one fiber bundle in the superior lateral protocerebrum running toward the anterior optic tubercle and one fiber hub in the posterior lateral protocerebrum. Both are invaded by several DNs and LNs and might play an instrumental role in the clock network.
Collapse
Affiliation(s)
- Nils Reinhard
- Julius Maximilian University of Würzburg, Würzburg, Germany
| | | | - Enrico Bertolini
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Würzburg, Germany
| | | | - Giulia Manoli
- Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Manabu Sekiguchi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Dirk Rieger
- Julius Maximilian University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
15
|
Senesi P, Ferrulli A, Luzi L, Terruzzi I. Chrono-communication and cardiometabolic health: The intrinsic relationship and therapeutic nutritional promises. Front Endocrinol (Lausanne) 2022; 13:975509. [PMID: 36176473 PMCID: PMC9513421 DOI: 10.3389/fendo.2022.975509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Circadian rhythm, an innate 24-h biological clock, regulates several mammalian physiological activities anticipating daily environmental variations and optimizing available energetic resources. The circadian machinery is a complex neuronal and endocrinological network primarily organized into a central clock, suprachiasmatic nucleus (SCN), and peripheral clocks. Several small molecules generate daily circadian fluctuations ensuring inter-organ communication and coordination between external stimuli, i.e., light, food, and exercise, and body metabolism. As an orchestra, this complex network can be out of tone. Circadian disruption is often associated with obesity development and, above all, with diabetes and cardiovascular disease onset. Moreover, accumulating data highlight a bidirectional relationship between circadian misalignment and cardiometabolic disease severity. Food intake abnormalities, especially timing and composition of meal, are crucial cause of circadian disruption, but evidence from preclinical and clinical studies has shown that food could represent a unique therapeutic approach to promote circadian resynchronization. In this review, we briefly summarize the structure of circadian system and discuss the role playing by different molecules [from leptin to ghrelin, incretins, fibroblast growth factor 21 (FGF-21), growth differentiation factor 15 (GDF15)] to guarantee circadian homeostasis. Based on the recent data, we discuss the innovative nutritional interventions aimed at circadian re-synchronization and, consequently, improvement of cardiometabolic health.
Collapse
Affiliation(s)
- Pamela Senesi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Anna Ferrulli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Livio Luzi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Ileana Terruzzi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
- *Correspondence: Ileana Terruzzi,
| |
Collapse
|
16
|
Reinhard N, Bertolini E, Saito A, Sekiguchi M, Yoshii T, Rieger D, Helfrich-Förster C. The lateral posterior clock neurons (LPN) of Drosophila melanogaster express three neuropeptides and have multiple connections within the circadian clock network and beyond. J Comp Neurol 2021; 530:1507-1529. [PMID: 34961936 DOI: 10.1002/cne.25294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/12/2022]
Abstract
Drosophila's lateral posterior neurons (LPNs) belong to a small group of circadian clock neurons that is so far not characterized in detail. Thanks to a new highly specific split-Gal4 line, here we describe LPNs' morphology in fine detail, their synaptic connections, daily bimodal expression of neuropeptides, and propose a putative role of this cluster in controlling daily activity and sleep patterns. We found that the three LPNs are heterogeneous. Two of the neurons with similar morphology arborize in the superior medial and lateral protocerebrum and most likely promote sleep. One unique, possibly wakefulness-promoting, neuron with wider arborizations extends from the superior lateral protocerebrum toward the anterior optic tubercle. Both LPN types exhibit manifold connections with the other circadian clock neurons, especially with those that control the flies' morning and evening activity (M- and E-neurons, respectively). In addition, they form synaptic connections with neurons of the mushroom bodies, the fan-shaped body, and with many additional still unidentified neurons. We found that both LPN types rhythmically express three neuropeptides, Allostatin A, Allostatin C, and Diuretic Hormone 31 with maxima in the morning and the evening. The three LPN neuropeptides may, furthermore, signal to the insect hormonal center in the pars intercerebralis and contribute to rhythmic modulation of metabolism, feeding, and reproduction. We discuss our findings in the light of anatomical details gained by the recently published hemibrain of a single female fly on the electron microscopic level and of previous functional studies concerning the LPN. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nils Reinhard
- Neurobiology and Genetics, Biocenter, University of Würzburg, Germany
| | - Enrico Bertolini
- Neurobiology and Genetics, Biocenter, University of Würzburg, Germany
| | - Aika Saito
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Manabu Sekiguchi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Dirk Rieger
- Neurobiology and Genetics, Biocenter, University of Würzburg, Germany
| | | |
Collapse
|
17
|
Wang S, Wang S, Wang C, Feng D, Feng X. Exposure to melamine cyanuric acid in adult mice induced thyroid dysfunction and circadian rhythm disorder. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112992. [PMID: 34808512 DOI: 10.1016/j.ecoenv.2021.112992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
MCA is a halogen-free flame retardant. It can cause damage to other tissues such as the kidneys and liver. However, the effects on the circadian rhythm and thyroid in adult mice have not been studied. In this article, adult male mice received MCA at concentrations of 0, 10, 20, 30 mg/kg. The results showed that the time spending on wheel-running and rest bouts changed in different period after MCA exposure. MCA disrupted the T3 and T4 hormone homeostasis and decreased the expression of thyroid hormone synthesis genes. The histological morphology of the thyroid gland was damaged. It was suggested that MCA exposure caused circadian rhythm disorder and thyroid dysfunction.
Collapse
Affiliation(s)
- Sijie Wang
- The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Songdi Wang
- The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Chenxi Wang
- The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Daofu Feng
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin 300052, China.
| | - Xizeng Feng
- The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin 300071, China.
| |
Collapse
|
18
|
Dopamine D1 Receptor-Mediated Regulation of Per1, Per2, CLOCK, and BMAL1 Expression in the Suprachiasmatic Nucleus in Adult Male Rats. J Mol Neurosci 2021; 72:618-625. [PMID: 34751875 DOI: 10.1007/s12031-021-01923-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/22/2021] [Indexed: 10/19/2022]
Abstract
Photic and non-photic inputs are reported to affect clock gene expressions and behavioral activities in the SCN. However, it is not known whether dopaminergic input mediates these regulatory effects on clock genes. The present study examined the molecular effects of dopamine D1 agonist on Per1, Per2, CLOCK, and Bmal1 expressions in the SCN and its effect on behavioral activities to determine the role of dopamine D1 receptor in regulation of these gene expressions and behavioral activities in adult male Wistar rats. To examine the molecular effects of dopamine D1 agonist day and night, we injected 20 mg/kg SKF38393 to the first group of rats at 6 a.m. and the second group at 6 p.m. We also injected saline to the third and fourth groups of rats at 6 a.m. and 6 p.m. as control groups. All rats were sacrificed 2 h following the injections. The real-time PCR technique was used to evaluate the clock gene expression. In addition, to examine the effects of dopamine D1 agonists on behavioral activities, we injected 20 mg/kg SKF38393 to SKF receiving group and saline to control group. The behavioral activities of the rats were monitored on the running wheel for 21 days, 1 week following the injections. SKF injections increased the Per2 and CLOCK expressions in the daytime and significantly decreased the Per1 and Bmal1 expressions. However, at night, SKF injections increased only Per2 expressions significantly and decreased the Per1, CLOCK, and Bmal1 genes expressions. Both saline receiving groups showed that all gene expressions were significantly higher except Per2 during nighttime. SKF injection increased the running wheel activity during nighttime significantly. Based on the obtained result, clock gene expression and behavioral activities in adult male Wistar rats may be altered or monitored by administration of exogenous dopamine.
Collapse
|
19
|
Whylings J, Rigney N, de Vries GJ, Petrulis A. Reduction in vasopressin cells in the suprachiasmatic nucleus in mice increases anxiety and alters fluid intake. Horm Behav 2021; 133:104997. [PMID: 34062279 PMCID: PMC8529700 DOI: 10.1016/j.yhbeh.2021.104997] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/21/2021] [Accepted: 05/10/2021] [Indexed: 11/19/2022]
Abstract
Central vasopressin (AVP) has been implicated in the control of multiple behaviors, including social behavior, anxiety-like behavior, and sickness behavior. The extent to which the different AVP-producing cell groups contribute to regulating these behaviors has not been extensively investigated. Here we test the role of AVP cells in the suprachiasmatic nucleus (SCN) in these behaviors by ablating these cells using viral-mediated, Cre-dependent caspase in male and female AVP-Cre + mice and Cre-controls. We compared anxiety and social behaviors, as well as sickness behaviors (lethargy, anhedonia (indexed by sucrose consumption), and changes in anxiety-like- and social behavior) induced via injection of bacterial lipopolysaccharide (LPS). We found that SCN AVP cell ablation increased anxiety-like behavior and sucrose consumption in both sexes, as well as increased urine marking by males in a non-social context, but did not alter behavioral responses to sickness. Our data suggest that SCN AVP does not strongly affect LPS-induced behavioral changes, but may contribute to anxiety-like behavior, and may play a role in ingestive reward/motivation and fluid intake.
Collapse
Affiliation(s)
- Jack Whylings
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA.
| | - Nicole Rigney
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Geert J de Vries
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA; Department of Biology, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Aras Petrulis
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| |
Collapse
|
20
|
Hosono T, Ono M, Daikoku T, Mieda M, Nomura S, Kagami K, Iizuka T, Nakata R, Fujiwara T, Fujiwara H, Ando H. Time-Restricted Feeding Regulates Circadian Rhythm of Murine Uterine Clock. Curr Dev Nutr 2021; 5:nzab064. [PMID: 33981944 PMCID: PMC8099714 DOI: 10.1093/cdn/nzab064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Skipping breakfast is associated with dysmenorrhea in young women. This suggests that the delay of food intake in the active phase impairs uterine functions by interfering with circadian rhythms. OBJECTIVES To examine the relation between the delay of feeding and uterine circadian rhythms, we investigated the effects of the first meal occasion in the active phase on the uterine clock. METHODS Zeitgeber time (ZT) was defined as ZT0 (08:45) with lights on and ZT12 (20:45) with lights off. Young female mice (8 wk of age) were divided into 3 groups: group I (ad libitum consumption), group II (time-restricted feeding during ZT12-16, initial 4 h of the active period), and group III (time-restricted feeding during ZT20-24, last 4 h of the active period, a breakfast-skipping model). After 2 wk of dietary restriction, mice in each group were killed at 4-h intervals and the expression profiles of uterine clock genes, Bmal1 (brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1), Per1 (period circadian clock 1), Per2, and Cry1 (cryptochrome 1), were examined. RESULTS qPCR and western blot analyses demonstrated synchronized circadian clock gene expression within the uterus. Immunohistochemical analysis confirmed that BMAL1 protein expression was synchronized among the endometrium and myometrium. In groups I and II, mRNA expression of Bmal1 was elevated after ZT12 at the start of the active phase. In contrast, Bmal1 expression was elevated just after ZT20 in group III, showing that the uterine clock rhythm had shifted 8 h backward. The changes in BMAL1 protein expression were confirmed by western blot analysis. CONCLUSIONS This study is the first to indicate that time-restricted feeding regulates a circadian rhythm of the uterine clock that is synchronized throughout the uterine body. These findings suggest that the uterine clock system is a new candidate to explain the etiology of breakfast skipping-induced uterine dysfunction.
Collapse
Affiliation(s)
- Takashi Hosono
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Masanori Ono
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Takiko Daikoku
- Institute for Experimental Animals, Advanced Science Research Center, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Michihiro Mieda
- Department of Integrative Neurophysiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Satoshi Nomura
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Kyosuke Kagami
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Takashi Iizuka
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Rieko Nakata
- Department of Food Science and Nutrition, Nara Women's University, Nara, Japan
| | - Tomoko Fujiwara
- Department of Social Work and Life Design, Kyoto Notre Dame University, Kyoto, Japan
| | - Hiroshi Fujiwara
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Hitoshi Ando
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
21
|
Masunaga Y, Kagami M, Kato F, Usui T, Yonemoto T, Mishima K, Fukami M, Aoto K, Saitsu H, Ogata T. Parthenogenetic mosaicism: generation via second polar body retention and unmasking of a likely causative PER2 variant for hypersomnia. Clin Epigenetics 2021; 13:73. [PMID: 33827678 PMCID: PMC8028705 DOI: 10.1186/s13148-021-01062-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/24/2021] [Indexed: 11/10/2022] Open
Abstract
Background Parthenogenetic mosaicism is an extremely rare condition identified only in five subjects to date. The previous studies indicate that this condition is mediated by parthenogenetic activation and is free from a specific phenotype ascribed to unmaking of a maternally inherited recessive variant in the parthenogenetic cell lineage. Results We examined a 28-year-old Japanese 46,XX female with Silver-Russell syndrome and idiopathic hypersomnia. The results revealed (1) predominance of maternally derived alleles for all the differentially methylated regions examined; (2) no disease-related copy-number variant; (3) two types of regions for all chromosomes, i.e., four BAF (B-allele frequency) band regions with single major microsatellite peaks of maternal origin and single minor microsatellite peaks of non-maternal (paternal) origin, and six BAF band regions with single major microsatellite peaks of maternal origin and two minor microsatellite peaks of maternal and non-maternal (paternal) origin; (4) an unmasked extremely rare PER2 variant (c.1403G>A:p.(Arg468Gln)) with high predicted pathogenicity; (5) mildly affected local structure with altered hydrogen bonds of the p.Arg468Gln-PER2 protein; and (6) nucleus-dominant subcellular distribution of the p.Arg468Gln-PER2 protein. Conclusions The above findings imply that the second polar body retention occurred around fertilization, resulting in the generation of the parthenogenetic cell lineage by endoreplication of a female pronucleus and the normal cell lineage by fusion of male and female pronuclei, and that the homozygous PER2 variant in the parthenogenetic cells is the likely causative factor for idiopathic hypersomnia. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01062-0.
Collapse
Affiliation(s)
- Yohei Masunaga
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Fumiko Kato
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takeshi Usui
- Department of Medical Genetics, Shizuoka General Hospital, Shizuoka, Japan
| | - Takako Yonemoto
- Department of Diabetes and Endocrinology, Shizuoka General Hospital, Shizuoka, Japan
| | - Kazuo Mishima
- Department of Psychiatry Section of Neuro and Locomoter Science, Akita University School of Medicine, Akita, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kazushi Aoto
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan. .,Administration Department, Hamamatsu Medical Center, Hamamatsu, Japan.
| |
Collapse
|
22
|
Georg B, Fahrenkrug J, Jørgensen HL, Hannibal J. The Circadian Clock Is Sustained in the Thyroid Gland of VIP Receptor 2 Deficient Mice. Front Endocrinol (Lausanne) 2021; 12:737581. [PMID: 34539582 PMCID: PMC8441547 DOI: 10.3389/fendo.2021.737581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
VIP/VPAC2-receptor signaling is crucial for functioning of the circadian clock in the suprachiasmatic nucleus (SCN) since the lack results in disrupted synchrony between SCN cells and altered locomotor activity, body temperature, hormone secretion and heart rhythm. Endocrine glands, including the thyroid, show daily oscillations in clock gene expression and hormone secretion, and SCN projections target neurosecretory hypothalamic thyroid-stimulating hormone (TSH)-releasing hormone cells. The aim of the study was to gain knowledge of mechanisms important for regulation of the thyroid clock by evaluating the impact of VIP/VPAC2-receptor signaling. Quantifications of mRNAs of three clock genes (Per1, Per2 and Bmal1) in thyroids of wild type (WT) and VPAC2-receptor deficient mice were done by qPCR. Tissues were taken every 4th h during 24-h 12:12 light-dark (LD) and constant darkness (DD) periods, both genders were used. PER1 immunoreactivity was visualized on sections of both WT and VPAC2 lacking mice during a LD cycle. Finally, TSH and the thyroid hormone T4 levels were measured in the sera by commercial ELISAs. During LD, rhythmic expression of all three mRNA was found in both the WT and knockout animals. In VPAC2-receptor knockout animals, the amplitudes were approximately halved compared to the ones in the WT mice. In the WT, Per1 mRNA peaked around "sunset", Per2 mRNA followed with approximately 2 h, while Bmal1 mRNA was in antiphase with Per1. In the VPAC2 knockout mice, the phases of the mRNAs were advanced approximately 5 h compared to the WT. During DD, the phases of all the mRNAs were identical to the ones found during LD in both groups of mice. PER1 immunoreactivity was delayed compared to its mRNA and peaked during the night in follicular cells of both the thyroid and parathyroid glands in the WT animals. In WT animals, TSH was high around the transition to darkness compared to light-on, while T4 did not change during the 24 h cycle. In conclusion, sustained and identical rhythms (phases and amplitudes) of three clock genes were found in VPAC2 deficient mice during LD and DD suggesting high degree of independence of the thyroid clock from the master SCN clock.
Collapse
Affiliation(s)
- Birgitte Georg
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Birgitte Georg,
| | - Jan Fahrenkrug
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik L. Jørgensen
- Department of Clinical Biochemistry, Amager and Hvidovre Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
von Schantz M, Leocadio-Miguel MA, McCarthy MJ, Papiol S, Landgraf D. Genomic perspectives on the circadian clock hypothesis of psychiatric disorders. ADVANCES IN GENETICS 2020; 107:153-191. [PMID: 33641746 DOI: 10.1016/bs.adgen.2020.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Circadian rhythm disturbances are frequently described in psychiatric disorders such as major depressive disorder, bipolar disorder, and schizophrenia. Growing evidence suggests a biological connection between mental health and circadian rhythmicity, including the circadian influence on brain function and mood and the requirement for circadian entrainment by external factors, which is often impaired in mental illness. Mental (as well as physical) health is also adversely affected by circadian misalignment. The marked interindividual differences in this combined susceptibility, in addition to the phenotypic spectrum in traits related both to circadian rhythms and mental health, suggested the possibility of a shared genetic background and that circadian clock genes may also be candidate genes for psychiatric disorders. This hypothesis was further strengthened by observations in animal models where clock genes had been knocked out or mutated. The introduction of genome-wide association studies (GWAS) enabled hypothesis-free testing. GWAS analysis of chronotype confirmed the prominent role of circadian genes in these phenotypes and their extensive polygenicity. However, in GWAS on psychiatric traits, only one clock gene, ARNTL (BMAL1) was identified as one of the few loci differentiating bipolar disorder from schizophrenia, and macaque monkeys where the ARNTL gene has been knocked out display symptoms similar to schizophrenia. Another lesson from genomic analyses is that chronotype has an important genetic correlation with several psychiatric disorders and that this effect is unidirectional. We conclude that the effect of circadian disturbances on psychiatric disorders probably relates to modulation of rhythm parameters and extend beyond the core clock genes themselves.
Collapse
Affiliation(s)
- Malcolm von Schantz
- Faculty of Health and Medical Sciences, University of Surrey, Surrey, United Kingdom; Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| | - Mario A Leocadio-Miguel
- Faculty of Health and Medical Sciences, University of Surrey, Surrey, United Kingdom; Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Michael J McCarthy
- Department of Psychiatry, University of California San Diego, San Diego, CA, United States
| | - Sergi Papiol
- Department of Psychiatry, University Hospital, Munich, Germany; Institute of Psychiatric Phenomics and Genomics (IPPG), Munich, Germany
| | - Dominic Landgraf
- Circadian Biology Group, Department of Molecular Neurobiology, Clinic of Psychiatry and Psychotherapy, University Hospital, Munich, Germany
| |
Collapse
|
24
|
Affiliation(s)
- Atsushi Nambu
- Division of System Neurophysiology, National Institute for Physiological Sciences, Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan.
| | - Ichiro Tsuda
- Chubu University Academy of Emerging Sciences, Kasugai, Aichi 487-8501, Japan
| | - Tatsuya Mima
- The Graduate School of Core Ethics and Frontier Sciences, Ritsumeikan University, Kyoto, 603-8577, Japan
| |
Collapse
|
25
|
Breakfast Skipping in Female College Students Is a Potential and Preventable Predictor of Gynecologic Disorders at Health Service Centers. Diagnostics (Basel) 2020; 10:diagnostics10070476. [PMID: 32668795 PMCID: PMC7400274 DOI: 10.3390/diagnostics10070476] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 11/23/2022] Open
Abstract
Inadequate dietary habits in youth are known to increase the risk of onset of various diseases in adulthood. Previously, we found that female college students who skipped breakfast had higher incidences of dysmenorrhea, suggesting that breakfast skipping interferes with ovarian and uterine functions. Since dietary habits can be managed by education, it is preferable to establish a convenient screening system for meal skipping that is associated with dysmenorrhea as part of routine services of health service centers. In this study, we recruited 3172 female students aged from 18 to 25 at Kanazawa University and carried out an annual survey of the status of students’ health and lifestyle in 2019, by a questionnaire. We obtained complete responses from 3110 students and analyzed the relationship between dietary habits, such as meal skipping and history of dieting, and menstrual disorders, such as troubles or worries with menstruation, menstrual irregularity, menstrual pain, and use of oral contraceptives. The incidence of troubles or worries with menstruation was significantly higher in those with breakfast skipping (p < 0.05) and a history of dieting (p < 0.001). This survey successfully confirmed the positive relationship between breakfast skipping and menstrual pain (p < 0.001), indicating that this simple screening test is suitable for picking up breakfast skippers who are more prone to gynecologic disorders. In conclusions, since dysmenorrhea is one of the important clinical signs, breakfast skipping may become an effective marker to predict the subsequent onset of gynecological diseases at health service centers. Considering educational correction of meal skipping, breakfast skipping is a potential and preventable predictor that will contribute to managing menstrual disorders from a preventive standpoint in the future.
Collapse
|
26
|
Adolescent Dietary Habit-induced Obstetric and Gynecologic Disease (ADHOGD) as a New Hypothesis-Possible Involvement of Clock System. Nutrients 2020; 12:nu12051294. [PMID: 32370105 PMCID: PMC7282263 DOI: 10.3390/nu12051294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022] Open
Abstract
There are growing concerns that poor dietary behaviors at young ages will increase the future risk of chronic diseases in adulthood. We found that female college students who skipped breakfast had higher incidences of dysmenorrhea and irregular menstruation, suggesting that meal skipping affects ovarian and uterine functions. Since dysmenorrhea is more prevalent in those with a past history of dieting, we proposed a novel concept that inadequate dietary habits in adolescence become a trigger for the subsequent development of organic gynecologic diseases. Since inadequate feeding that was limited during the non-active phase impaired reproductive functions in post-adolescent female rats, we hypothesize that circadian rhythm disorders due to breakfast skipping disrupts the hypothalamic–pituitary–ovarian axis, impairs the reproductive rhythm, and leads to ovarian and uterine dysfunction. To explain how reproductive dysfunction is memorized from adolescence to adulthood, we hypothesize that the peripheral clock system also plays a critical role in the latent progression of reproductive diseases together with the central system, and propose naming this concept “adolescent dietary habit-induced obstetric and gynecologic disease (ADHOGD)”. This theory will contribute to analyzing the etiologies of and developing prophylaxes for female reproductive diseases from novel aspects. In this article, we describe the precise outline of the above hypotheses with the supporting evidence in the literature.
Collapse
|