1
|
Dashti A, Shokrzadeh M, Karami M, Habibi E. Phytochemical identification, acute and subchronic oral toxicity assessments of hydroalcoholic extract of Acroptilon repens in BALB/c mice: A toxicological and mechanistic study. Heliyon 2022; 8:e08940. [PMID: 35198790 PMCID: PMC8850729 DOI: 10.1016/j.heliyon.2022.e08940] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/04/2021] [Accepted: 02/08/2022] [Indexed: 11/16/2022] Open
Abstract
Acroptilon repens (L.) DC, commonly known as Rhaponticum repens, is a popular traditional phytomedicine. The current study was conducted to evaluate the acute and subchronic toxicity of the hydroalcoholic extract of this herb with regard to its terpenoid contents in a BALB/c mice model and to investigate the toxicity of this medicinal herb. Identification of extract components of the plant was done using gas chromatography (GC)-mass spectrometry. In order to establish the acute toxicity model, a single dose of 2000 mg/kg of the extract was given orally to male mice and in the subchronic toxicity study, the extract was consecutively administered at doses 250, 500, and 1000 mg/kg for 28 days. After 28 and 42 days, signs of toxicity and mortality were observed. Organ weight changes and the toxicity-associated parameters such as biochemical indicators, oxidative stress indices, mitochondrial parameters, apoptosis-associated gene expression levels, and pro-inflammatory cytokines were evaluated along with the histopathological examination. GC analysis showed that the terpenoids are the major components of the extract. The LD50 value (2 g/kg) was obtained in the acute toxicity assay; the subchronic administration caused a significant elevation in the serum biomarkers as well as in the levels of lipid peroxidation, protein carbonyl, and ROS. Besides, significant reductions in the superoxide dismutase and catalase activities were observed. This toxic effect was further confirmed by histological studies, cytokine assay, and gene expression assays. Following the treatment discontinuation, the abnormalities in the values of biochemical parameters and histopathological changes returned to normal. These findings demonstrate that the subchronic administration of the hydroalcoholic extract of A. repens can reversibly cause toxicity by inducing oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ayat Dashti
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Shokrzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Karami
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Emran Habibi
- Department of Pharmacognosy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
2
|
Dashti A, Shokrzadeh M, Karami M, Habibi E. Phytochemical Identification, Acute and Subchronic Oral Toxicity Assessments of Hydroalcoholic Extract of <i>Acroptilon repens</i> in BALB/c Mice: A Toxicological and Mechanistic Study. SSRN ELECTRONIC JOURNAL 2021. [DOI: 10.2139/ssrn.3929849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
3
|
Yang YC, Wu WT, Mong MC, Wang ZH. Gynura bicolor aqueous extract attenuated H 2O 2 induced injury in PC12 cells. Biomedicine (Taipei) 2019; 9:12. [PMID: 31124458 PMCID: PMC6533937 DOI: 10.1051/bmdcn/2019090212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/01/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Protective effects of Gynura bicolor aqueous extract (GAE) at three concentrations upon nerve growth factor (NGF) differentiated-PC12 cells against H2O2 induced injury were examined. METHODS NGF differentiated-PC12 cells were treated with GAE at 0.25%, 0.5% or 1%. 100 μM H2O2 was used to treat cells with GAE pre-treatments. After incubating at 37 °C for 12 hr, experimental analyses were processed. RESULTS H2O2 exposure decreased cell viability, increased plasma membrane damage, suppressed Bcl-2 mRNA expression and enhanced Bax mRNA expression. GAE pre-treatments reversed these changes. H2O2 exposure reduced mitochondrial membrane potential, lowered Na+-K+-ATPase activity, and increased DNA fragmentation and Ca2+ release. GAE pre-treatments attenuated these alterations. H2O2 stimulated the production of reactive oxygen species (ROS), interleukin (IL)-1beta, IL-6 and tumor necrosis factor-alpha, lowered glutathione content, and reduced glutathione peroxidase (GPX) and catalase activities. GAE pretreatments maintained GPX and catalase activities; and concentration-dependently diminished the generation of ROS and inflammatory cytokines. H2O2 enhanced mRNA expression of nuclear factor kappa (NF-κ) B and p38. GAE pre-treatments decreased mRNA expression of NF-κB and p38. CONCLUSION These findings suggested that GAE might be a potent neuronal protective agent.
Collapse
Affiliation(s)
- Ya-Chen Yang
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 413, Taiwan
| | - Wen-Tzu Wu
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 413, Taiwan
| | - Mei-Chin Mong
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 413, Taiwan
| | - Zhi-Hong Wang
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 413, Taiwan - Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
4
|
Abstract
A wide variety of toxins cause diseases in the horse and are investigated routinely by veterinarians and veterinary pathologists to identify the cause of illness and death. A complete investigation involves performing a thorough necropsy and requires macroscopic and microscopic examination of lesions and a variety of laboratory testing to obtain an accurate diagnosis. The identification of gross lesions by equine practitioners is often the first step in formulating a diagnostic plan. This article provides a description of selected common toxins producing detectable gross lesions in horses in North America. The article is useful to equine practitioners and veterinary pathologists investigating a toxicology-related death.
Collapse
Affiliation(s)
- Ahmad Al-Dissi
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada.
| |
Collapse
|
5
|
Abstract
The central nervous system's extrapyramidal system provides involuntary motor control to the muscles of the head, neck, and limbs. Toxicants that affect the extrapyramidal system are generally clinically characterized by impaired motor control, which is usually the result of basal ganglionic dysfunction. A variety of extrapyramidal syndromes are recognized in humans and include Parkinson's disease, secondary parkinsonism, other degenerative diseases of the basal ganglia, and clinical syndromes that result in dystonia, dyskinesia, essential tremor, and other forms of tremor and chorea. This chapter briefly reviews the anatomy of the extrapyramidal system and discusses several naturally occurring and experimental models that target the mammalian (nonhuman) extrapyramidal system. Topics discussed include extrapyramidal syndromes associated with antipsychotic drugs, carbon monoxide, reserpine, cyanide, rotenone, paraquat, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and manganese. In most cases, animals are used as experimental models to improve our understanding of the toxicity and pathogenesis of these agents. Another agent discussed in this chapter, yellowstar thistle poisoning in horses, however, represents an important spontaneous cause of parkinsonism that naturally occurs in animals. The central focus of the chapter is on animal models, especially the concordance between clinical signs, neurochemical changes, and neuropathology between animals and people.
Collapse
Affiliation(s)
- David Dorman
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
6
|
Amorim MHR, Gil da Costa RM, Lopes C, Bastos MMSM. Sesquiterpene lactones: adverse health effects and toxicity mechanisms. Crit Rev Toxicol 2014; 43:559-79. [PMID: 23875764 DOI: 10.3109/10408444.2013.813905] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Sesquiterpene lactones (STLs) present a wide range of biological activities, mostly based on their alkylating capabilities, which underlie their therapeutic potential. These compounds are the active constituents of a variety of plants, frequently used as herbal remedies. STLs such as artemisinin and its derivatives are in use as first-line antimalarials while others, such as parthenolide, have recently reached cancer clinical trials. However, the toxicological profile of these compounds must be thoroughly characterized, since the same properties that make STL useful medicines can also cause severe toxicity. STL-containing plants have long been known to induce a contact dermatitis in exposed farm workers, and also to cause several toxic syndromes in farm animals. More recently, concerns are been raised regarding the genotoxic potential of these compounds and the embryotoxicity of artemisinins. A growing number of STLs are being reported to be mutagenic in different in vitro and in vivo assays. As yet no systematic studies have been published, but the genotoxicity of STLs seems to depend not so much on direct DNA alkylation as on oxidative DNA damage and other partially elucidated mechanisms. As the medicinal use of these compounds increases, further studies of their toxic potential are needed, especially those focusing on the structural determinants of genotoxicity and embryotoxicity.
Collapse
Affiliation(s)
- M Helena R Amorim
- Chemical Engineering Department, Faculty of Engineering, University of Porto, Portugal
| | | | | | | |
Collapse
|
7
|
Yamada T, Egashira N, Bando A, Nishime Y, Tonogai Y, Imuta M, Yano T, Oishi R. Activation of p38 MAPK by oxidative stress underlying epirubicin-induced vascular endothelial cell injury. Free Radic Biol Med 2012; 52:1285-93. [PMID: 22330067 DOI: 10.1016/j.freeradbiomed.2012.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 02/01/2012] [Accepted: 02/01/2012] [Indexed: 10/28/2022]
Abstract
Epirubicin, an anthracycline antitumor drug, often causes vascular injury such as vascular pain, phlebitis, and necrotizing vasculitis. However, an effective prevention for the epirubicin-induced vascular injury has not been established. The purpose of this study is to identify the mechanisms of cell injury induced by epirubicin in porcine aorta endothelial cells (PAECs). PAECs were exposed to epirubicin for 10 min followed by further incubation without epirubicin. The exposure to epirubicin (3-30 μM) decreased the cell viability concentration and time dependently. Epirubicin increased the activity of caspase-3/7, apoptotic cells, and intracellular lipid peroxide levels, and also induced depolarization of mitochondrial membranes. These intracellular events were reversed by glutathione (GSH) and N-acetylcysteine (NAC), while epirubicin rather increased intracellular GSH slightly and L-buthionine-(S,R)-sulfoximine, a specific inhibitor of GSH synthesis, had no effect on the epirubicin-induced cell injury. The epirubicin-induced cell injury and increase of caspase-3/7 activity were also attenuated by p38 mitogen-activated protein kinase (MAPK) inhibitors, SB203580 and PD169316. Moreover, epirubicin significantly enhanced the phosphorylation of p38 MAPK, and these effects were attenuated by GSH and NAC. In contrast, a c-Jun N-terminal kinase inhibitor SP600125, an extracellular signal-regulated kinase inhibitor PD98059, and a p53 inhibitor pifithrin α did not affect the epirubicin-induced cell injury and increase of caspase-3/7 activity. These results indicate that an activation of p38 MAPK by oxidative stress is involved in the epirubicin-induced endothelial cell injury.
Collapse
Affiliation(s)
- Takaaki Yamada
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Li M, Zhang L, Cai RL, Gao Y, Qi Y. Lipid-soluble Extracts from Salvia miltiorrhiza Inhibit Production of LPS-induced Inflammatory Mediators via NF-κB Modulation in RAW 264.7 Cells and Perform Antiinflammatory Effects In Vivo. Phytother Res 2012; 26:1195-204. [DOI: 10.1002/ptr.3680] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/13/2011] [Accepted: 09/18/2011] [Indexed: 01/09/2023]
Affiliation(s)
| | - Lei Zhang
- Center for Drug Evaluation of State Food and Drug Administration; Beijing; 100038; PR China
| | - Run-Lan Cai
- Institute of Medicinal Plant Development; Chinese Academy of Medical Science and Peking Union Medical College; Beijing; 100193; PR China
| | - Yuan Gao
- Institute of Medicinal Plant Development; Chinese Academy of Medical Science and Peking Union Medical College; Beijing; 100193; PR China
| | - Yun Qi
- Institute of Medicinal Plant Development; Chinese Academy of Medical Science and Peking Union Medical College; Beijing; 100193; PR China
| |
Collapse
|
9
|
Dawson DR. Toxins and adverse drug reactions affecting the equine nervous system. Vet Clin North Am Equine Pract 2011; 27:507-26. [PMID: 22100042 DOI: 10.1016/j.cveq.2011.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This article provides an overview of the more common toxins and adverse drug reactions, along with more rare toxins and reactions (Table 1), that result in neurologic dysfunction in horses. A wide variety of symptoms, treatments, and outcomes are seen with toxic neurologic disease in horses. An in-depth history and thorough physical examination are needed to determine if a toxin or adverse drug reaction is responsible for the clinical signs. Once a toxin or adverse drug reaction is identified, the specific antidote, if available, and supportive care should be administered promptly.
Collapse
Affiliation(s)
- Dominic R Dawson
- William Pritchard Veterinary Medical Teaching Hospital, University of California, Davis, One Garrod Avenue, Davis, CA 95616, USA.
| |
Collapse
|
10
|
Chang HT, Rumbeiha WK, Patterson JS, Puschner B, Knight AP. Toxic Equine Parkinsonism: An Immunohistochemical Study of 10 Horses With Nigropallidal Encephalomalacia. Vet Pathol 2011; 49:398-402. [DOI: 10.1177/0300985811406885] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chronic ingestion of yellow star thistle ( Centaurea solstitialis) or Russian knapweed ( Acroptilon repens) causes nigropallidal encephalomalacia (NPE) in horses with an abrupt onset of neurologic signs characterized by dystonia of lips and tongue, inability to prehend food, depression, and locomotor deficits. The objectives of this study were to reexamine the pathologic alterations of NPE and to conduct an immunohistochemistry study using antibodies to tyrosine hydroxylase and α-synuclein, to determine whether NPE brains show histopathologic features resembling those in human Parkinson disease. Results confirm that the NPE lesions are located within the substantia nigra pars reticulata, sparing the cell bodies of the dopaminergic neurons in the substantia nigra pars compacta, and in the rostral portion of the globus pallidus, with partial disruption of dopaminergic (tyrosine hydroxylase–positive) fibers passing through the globus pallidus. No abnormal cytoplasmic inclusions like the Lewy bodies of human Parkinson disease were seen in these NPE brains. These findings indicate that equine NPE may serve as a large animal model of environmentally acquired toxic parkinsonism, with clinical phenotype directly attributable to lesions in globus pallidus and substantia nigra pars reticulata rather than to the destruction of dopaminergic neurons.
Collapse
Affiliation(s)
- H. T. Chang
- Department of Neurology and Ophthalmology, Michigan State University, East Lansing, Michigan
| | - W. K. Rumbeiha
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan
| | - J. S. Patterson
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan
| | - B. Puschner
- California Animal Health and Food Safety Toxicology Laboratory, School of Veterinary Medicine, University of California at Davis, Davis, California
| | - A. P. Knight
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
11
|
Wang Y, Jiang X, Liu J, Zhao M, Kang G, Wu J, Peng L, Peng S. HPLC-MS aided PC12 cell systems: to quantitatively monitor the conversion of nitronyl nitroxide in biological systems with and without NO. MOLECULAR BIOSYSTEMS 2011; 7:1678-83. [PMID: 21403950 DOI: 10.1039/c1mb05037k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitronyl nitroxides are capable of preventing cells, tissues, and organs from radical-induced damage through scavenging NO˙, ˙O(2)(-) and ˙OH. In order to explore the conversions of nitronyl nitroxides in biological systems with and without NO˙, HPLC-MS aided PC12 cell systems were developed, and the conversions of 2-(3'-nitrophenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl -3-oxide (3-nitro-PTIO), 1-oxyl-2-(3'-nitrophenyl)-4,4,5,5-tetramethylimidazoline (3-nitro-PTI), and 1-hydroxyl-2-(3'-nitrophenyl)-4,4,5,5-tetramethylimidazoline (3-nitro-PTIH) were quantitatively monitored. In these systems 3-nitro-PTIO and 3-nitro-PTI were time-dependently converted to 3-nitro-PTIH, while no conversion of 3-nitro-PTIH was detected. Free radical NO˙ donors (sodium nitroprusside, SNP) accelerated the conversions, but had no effect upon the conversion product. In the in vitro and in vivo assays the 3-nitro-PTIH treated cells and mice exhibited no toxic response.
Collapse
Affiliation(s)
- Yuji Wang
- College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Wang T, Si Y, Shirihai OS, Si H, Schultz V, Corkey RF, Hu L, Deeney JT, Guo W, Corkey BE. Respiration in adipocytes is inhibited by reactive oxygen species. Obesity (Silver Spring) 2010; 18:1493-502. [PMID: 20035277 PMCID: PMC6154476 DOI: 10.1038/oby.2009.456] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
It is a desirable goal to stimulate fuel oxidation in adipocytes and shift the balance toward less fuel storage and more burning. To understand this regulatory process, respiration was measured in primary rat adipocytes, mitochondria, and fat-fed mice. Maximum O(2) consumption, in vitro, was determined with a chemical uncoupler of oxidative phosphorylation (carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP)). The adenosine triphosphate/adenosine diphosphate (ATP/ADP) ratio was measured by luminescence. Mitochondria were localized by confocal microscopy with MitoTracker Green and their membrane potential (Delta psi(M)) measured using tetramethylrhodamine ethyl ester perchlorate (TMRE). The effect of N-acetylcysteine (NAC) on respiration and body composition in vivo was assessed in mice. Addition of FCCP collapsed Delta psi(M) and decreased the ATP/ADP ratio. However, we demonstrated the same rate of adipocyte O(2) consumption in the absence or presence of fuels and FCCP. Respiration was only stimulated when reactive oxygen species (ROS) were scavenged by pyruvate or NAC: other fuels or fuel combinations had little effect. Importantly, the ROS scavenging role of pyruvate was not affected by rotenone, an inhibitor of mitochondrial complex I. In addition, mice that consumed NAC exhibited increased O(2) consumption and decreased body fat in vivo. These studies suggest for the first time that adipocyte O(2) consumption may be inhibited by ROS, because pyruvate and NAC stimulated respiration. ROS inhibition of O(2) consumption may explain the difficulty to identify effective strategies to increase fat burning in adipocytes. Stimulating fuel oxidation in adipocytes by decreasing ROS may provide a novel means to shift the balance from fuel storage to fuel burning.
Collapse
Affiliation(s)
- Tong Wang
- Obesity Research Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Yaguang Si
- Obesity Research Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Orian S. Shirihai
- Obesity Research Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Huiqing Si
- Obesity Research Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Vera Schultz
- Obesity Research Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Richard F. Corkey
- Obesity Research Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Liping Hu
- Obesity Research Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jude T. Deeney
- Obesity Research Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Wen Guo
- Obesity Research Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Barbara E. Corkey
- Obesity Research Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Chan KC, Mong MC, Yin MC. Antioxidative and anti-inflammatory neuroprotective effects of astaxanthin and canthaxanthin in nerve growth factor differentiated PC12 cells. J Food Sci 2010; 74:H225-31. [PMID: 19895474 DOI: 10.1111/j.1750-3841.2009.01274.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nerve growth factor differentiated PC12 cells were used to examine the antioxidative and anti-inflammatory effects of astaxanthin (AX) and canthaxanthin (CX). PC12 cells were pretreated with AX or CX at 10 or 20 muM, and followed by exposure of hydrogen peroxide (H(2)O(2)) or 1-methyl-4-phenylpyridinium ion (MPP(+)) to induce cell injury. H(2)O(2) or MPP(+) treatment significantly decreased cell viability, increased lactate dehydrogenase (LDH) release, enhanced DNA fragmentation, and lowered mitochondrial membrane potential (MMP) (P < 0.05). The pretreatments from AX or CX concentration-dependently alleviated H(2)O(2) or MPP(+)-induced cell death, LDH release, DNA fragmentation, and MMP reduction (P < 0.05). Either H(2)O(2) or MPP(+) treatment significantly increased malonyldialdehyde (MDA) and reactive oxygen species (ROS) formations, decreased glutathione content, and lowered glutathione peroxidase (GPX) and catalase activities (P < 0.05). The pretreatments from AX or CX significantly retained GPX and catalase activities, and decreased MDA and ROS formations (P < 0.05). H(2)O(2) or MPP(+) treatment significantly decreased Na(+)-K(+)-ATPase activity, elevated caspase-3 activity and levels of interleukin (IL)-1, IL-6, and tumor necrosis factor (TNF)-alpha (P < 0.05); and the pretreatments from these agents significantly restored Na(+)-K(+)-ATPase activity, suppressed caspase-3 activity and release of IL-1, IL-6, and TNF-alpha (P < 0.05). Based on the observed antioxidative and anti-inflammatory protection from AX and CX, these 2 compounds were potent agents against neurodegenerative disorder.
Collapse
Affiliation(s)
- Kung-chi Chan
- Dept of Food and Nutrition, Providence Univ, Taichung County, Taiwan
| | | | | |
Collapse
|
14
|
Yamada T, Egashira N, Imuta M, Yano T, Yamauchi Y, Watanabe H, Oishi R. Role of oxidative stress in vinorelbine-induced vascular endothelial cell injury. Free Radic Biol Med 2010; 48:120-7. [PMID: 19837156 DOI: 10.1016/j.freeradbiomed.2009.10.032] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Revised: 09/30/2009] [Accepted: 10/12/2009] [Indexed: 01/09/2023]
Abstract
Vinorelbine (VNR), a vinca alkaloid anticancer drug, often causes vascular injury such as venous irritation, vascular pain, phlebitis, and necrotizing vasculitis. The purpose of this study was to identify the mechanisms that mediate the cell injury induced by VNR in porcine aorta endothelial cells (PAECs). PAECs were exposed to VNR for 10 min followed by further incubation in serum-free medium without VNR. The exposure to VNR (0.3-30 microM) decreased the cell viability concentration and time dependently. The incidence of apoptotic cells significantly increased at 12 h after transient exposure to VNR. At the same time, VNR increased the activity of caspases. Interestingly, VNR rapidly depleted intracellular glutathione (GSH) and increased intracellular reactive oxygen species (ROS) production. Moreover, VNR depolarized the mitochondrial membrane potential and decreased cellular ATP levels. These VNR-induced cell abnormalities were almost completely inhibited by GSH and N-acetylcysteine. On the other hand, L-buthionine-(S,R)-sulfoximine, a specific inhibitor of GSH synthesis, aggravated the VNR-induced loss of cell viability. These results clearly demonstrate that VNR induces oxidative stress by depleting intracellular GSH and increasing ROS production in PAECs, and oxidative stress plays an important role in the VNR-induced cell injury.
Collapse
Affiliation(s)
- Takaaki Yamada
- Department of Pharmacy, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Jiang Y, Pei L, Li S, Wang M, Liu F. Extracellular dopamine induces the oxidative toxicity of SH-SY5Y cells. Synapse 2009; 62:797-803. [PMID: 18720420 DOI: 10.1002/syn.20554] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dopamine-induced neuronal cytotoxicity has been proposed as a leading pathological mechanism underlying many neuronal degenerative disorders including Parkinson disease. Various hypotheses have been proposed including oxidative stress and dopamine (DA)-induced intracellular signal disorder via DA D1 and D2 receptors. The exact mechanism involved in this process is far from clear. In this study, employing a neuronal blastoma cell line, SH-SY5Y, we tried to elucidate the roles of these different suggested mechanisms in this pathological process. The results showed that DA induced cell toxicity in a dose- and time-dependent way. Selective D1 and D2 DA receptor antagonist could not block the cytotoxic effects, whereas reductive reagent ascorbic acid but not GSH could effectively rescue the cell death, suggesting that DA-induced cell toxicity was caused by an extracellular oxidative stress. This was further supported by the enhancing effects of DA transporter blocker, GBR, which could increase the cell death when pretreated. Finally, ascorbic acid could also protect SY5Y cells from DA-induced cellular apoptotic signal changes including PARP and P53. Our studies suggested that DA exerted its cytotoxic effects via an extracellular metabolism, whereas intracellular transportation could reduce its oxidative stress. Cytotoxicity effects induced by extracellular DA could be protected by reductive agents as ascorbic acid. These results help to broaden our understanding of the mechanisms of DA-induced cell death and may provide potentially therapeutical alternative for the neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuhua Jiang
- Department of Neuroscience, Centre for Addiction and Mental Health, Clarke Division, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
16
|
Chi L, Ke Y, Luo C, Gozal D, Liu R. Depletion of reduced glutathione enhances motor neuron degeneration in vitro and in vivo. Neuroscience 2006; 144:991-1003. [PMID: 17150307 PMCID: PMC1944995 DOI: 10.1016/j.neuroscience.2006.09.064] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 09/27/2006] [Accepted: 09/29/2006] [Indexed: 10/23/2022]
Abstract
The mechanism of selective and age-dependent motor neuron degeneration in human amyotrophic lateral sclerosis (ALS) has not been defined and the role of glutathione (GSH) in association with motor neuron death remains largely unknown. A motor neuron-like cell culture system and a transgenic mouse model were used to study the effect of cellular GSH alteration on motor neuron cell death. Exposure of NSC34 motor neuron-like cells to ethacrynic acid (EA) or l-buthionine sulfoximine (BSO) dramatically reduced the cellular GSH levels, and was accompanied by increased production of reactive oxygen species (ROS) measured by the dichlorofluorescin (DCF) fluorescent oxidation assay. In addition, GSH depletion enhanced oxidative stress markers, AP-1 transcriptional activation, c-Jun, c-Fos and heme oxygenase-1 (HO-1) expression in NSC34 cells analyzed by a luciferase reporter, Western blotting and quantitative PCR assays respectively. Furthermore, depletion of GSH decreased mitochondrial function, facilitated apoptosis inducing factor (AIF) translocation, cytochrome c release, and caspase 3 activation, and consequently led to motor neuron-like cell apoptosis. In an ALS-like transgenic mouse model overexpressing mutant G93A-Cu, Zn-superoxide dismutase (SOD1) gene, we showed that the reduction of GSH in the spinal cord and motor neuron cells is correlated with AIF translocation, caspase 3 activation, and motor neuron degeneration during ALS-like disease onset and progression. Taken together, the in vitro and in vivo data presented in the current report demonstrated that decreased GSH promotes multiple apoptotic pathways contributing, at least partially, to motor neuron degeneration in ALS.
Collapse
Affiliation(s)
- Liying Chi
- Department of Anatomy and Cell Biology, University of North Dakota School of Medicine, 501 N. Columbia Road, Grand Forks, ND 58202
| | - Yan Ke
- Kosair Children Hospital Research Institute, Department of Pediatrics, University of Louisville, 570 S. Preston St., Suite 204, Louisville, KY 40202
| | - Chun Luo
- Department of Anatomy and Cell Biology, University of North Dakota School of Medicine, 501 N. Columbia Road, Grand Forks, ND 58202
| | - David Gozal
- Kosair Children Hospital Research Institute, Department of Pediatrics, University of Louisville, 570 S. Preston St., Suite 204, Louisville, KY 40202
| | - Rugao Liu
- Department of Anatomy and Cell Biology, University of North Dakota School of Medicine, 501 N. Columbia Road, Grand Forks, ND 58202
- *Corresponding author: Rugao Liu, Ph.D., Associate Professor, Department of Anatomy and Cell Biology, University of North Dakota School of Medicine, 501 N. Columbia Road, Grand Forks, ND 58202, Telephone: (701)-777-2559, Fax: (701)-777-2477, E-mail:
| |
Collapse
|
17
|
Wang YM, Peng SQ, Zhou Q, Wang MW, Yan CH, Yang HY, Wang GQ. Depletion of intracellular glutathione mediates butenolide-induced cytotoxicity in HepG2 cells. Toxicol Lett 2006; 164:231-8. [PMID: 16495022 DOI: 10.1016/j.toxlet.2006.01.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 01/10/2006] [Accepted: 01/11/2006] [Indexed: 01/18/2023]
Abstract
Butenolide, 4-acetamido-4-hydroxy-2-butenoic acid gamma-lactone is one of the mycotoxins produced by Fusarium species which are often found on cereal grains and animal feeds throughout the world. It has been implicated as the etiology of some diseases both in animals and in humans. Though butenolide represents a potential threat to animal and human heath, there are few studies on its toxicity so far, especially on the toxic mechanisms. In this study, we investigated the cytotoxicity of butenolide on HepG2 cells and its possible mechanism from the viewpoint of oxidative stress. Butenolide reduced cell viability in a concentration- and time-dependent manner. A rapid depletion of intracellular glutathione (GSH) was observed after exposure cells to butenolide, concomitantly an increase in intracellular reactive oxygen species (ROS) production prior to cell death, indicating that oxidative stress was involved in butenolide cytotoxicity. To elucidate the role of GSH in the cytotoxicity of butenolide, intracellular GSH content was modulated before exposure to butenolide. l-buthionine-[S,R]-sulfoximine (BSO), a well-known inhibitor of GSH synthesis, aggravated butenolide-induced GSH depletion, ROS production and the loss in cell viability; in contrast, GSH depletion and ROS production was strongly inhibited, and the loss in cell viability was completely abrogated by thiol-containing compounds GSH, N-acetylcysteine (NAC) and dithiothreitol (DTT). Furthermore, a ROS scavenger catalase obviously abated ROS production and cytotoxicity induced by butenolide. Together, these results clearly demonstrate that oxidative stress plays an important role in butenolide cytotoxicity, and intracellular GSH depletion may be an original trigger of the onset of butenolide cytotoxicity.
Collapse
Affiliation(s)
- Yi-Mei Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | | | | | | | | | | | | |
Collapse
|
18
|
Nabemoto M, Ohsawa K, Nakamura H, Hirabayashi T, Saito T, Okuma Y, Nomura Y, Murayama T. Reversible activation of secretory phospholipase A2 by sulfhydryl reagents. Arch Biochem Biophys 2005; 436:145-53. [PMID: 15752719 DOI: 10.1016/j.abb.2005.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Revised: 01/31/2005] [Indexed: 10/25/2022]
Abstract
Secretory phospholipase A(2)s (sPLA(2)s) have been implicated in physiological and pathological events, but the regulatory mechanism(s) of their activities in cells remains to be solved. Previously, we reported that phenylarsine oxide (PAO), a sulfhydryl reagent, stimulated arachidonic acid (AA) release in rat pheochromocytoma PC12 cells. In this study, we examined the effects of thimerosal, another sulfhydryl reagent, to clarify the sulfhydryl modification and activation of sPLA(2) molecules in cells. Like PAO, thimerosal-stimulated AA release in an irreversible manner and the responses were not additive. Dithiol compounds such as dithiothreitol inhibited AA release from both the thimerosal- and the PAO-treated cells, and monothiol compounds (l-Cys and glutathione) decreased the thimerosal response. Both sulfhydryl reagents stimulated AA release from the HEK293T cells expressing human sPLA(2)X, and stimulated the sPLA(2) activities of bee venom sPLA(2) and the soluble fraction of sPLA(2)X-expressing cells. Our results suggest that the sPLA(2)s in cells are inactive and modification of disulfide bonds in the molecules can be a trigger of sPLA(2) activation in cells. Sulfhydryl reagents are useful tools for studying the regulatory mechanism(s) of sPLA(2) activity in cells.
Collapse
Affiliation(s)
- Maiko Nabemoto
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | | | | | | | | | | | | | | |
Collapse
|