1
|
Abdou HM, Saad AM, Abd Elkader HTAE, Essawy AE. Role of vitamin D 3 in mitigating sodium arsenite-induced neurotoxicity in male rats. Toxicol Res (Camb) 2024; 13:tfae203. [PMID: 39611054 PMCID: PMC11602150 DOI: 10.1093/toxres/tfae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/30/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024] Open
Abstract
Arsenic is associated with various neurological disorders, notably affecting memory and cognitive functions. The current study examined the protective effects of vitamin D3 (Vit. D3) in countering oxidative stress, neuroinflammation and apoptosis induced by sodium arsenite (SA) in the cerebral cortex of rats. Male Wistar rats were subjected to a daily oral administration of sodium arsenite (NaAsO2, SA) at a dosage of 5 mg/kg, along with 500 IU/kg of Vit. D3, and a combination of both substances for four weeks. The results indicated that Vit. D3 effectively mitigated the SA-induced increase in oxidative stress markers, thiobarbituric acid reactive substances (TBARS) and nitric oxide (NO), the decrease in antioxidants (reduced glutathione; GSH, superoxide dismutase; SOD, catalase; CAT, and glutathione peroxidase; GPx), as well as the increase in pro-inflammatory markers including, tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and amyloid-beta (Aβ)1-42. Furthermore, Vit. D3 reversed the alterations in the neurochemicals acetylcholinesterase (AchE), monoamine oxidase (MAO), dopamine (DA), and acetylcholine (Ach) and ameliorated the histopathological changes in the cerebral cortex. Moreover, immunohistochemical analyses revealed that Vit. D3 reduced the SA-induced overexpression of cerebral cysteine aspartate-specific protease-3 (caspase-3) and glial fibrillary acidic protein (GFAP) in the cerebral cortex of male rats. Consequently, the co-administration of Vit. D3 can protect the cerebral cortex against SA-induced neurotoxicity, primarily through its antioxidant, anti-inflammatory, anti-apoptotic, and anti-astrogliosis effects.
Collapse
Affiliation(s)
- Heba Mohamed Abdou
- Zoology Department, Faculty of Science, Alexandria University, Aflatoun St., El Shatby, Alexandria 21568, Egypt
| | - Alaa Mohamed Saad
- Zoology Department, Faculty of Science, Alexandria University, Aflatoun St., El Shatby, Alexandria 21568, Egypt
| | - Heba-Tallah Abd Elrahim Abd Elkader
- Zoology, Biological and Geological Sciences Department, Faculty of Education, Alexandria University, 22 El-Guish Road, El-Shatby, Alexandria 21526, Egypt
| | - Amina E Essawy
- Zoology Department, Faculty of Science, Alexandria University, Aflatoun St., El Shatby, Alexandria 21568, Egypt
| |
Collapse
|
2
|
Li Y, Liang K, Yuan L, Gao J, Wei L, Zhao L. The role of thioredoxin and glutathione systems in arsenic-induced liver injury in rats under glutathione depletion. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:547-563. [PMID: 36528894 DOI: 10.1080/09603123.2022.2159016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Antioxidant systems like thioredoxin (Trx) and glutaredoxin (Grx) maintain oxidative stress balance. These systems have cross-talk supported by some in vitro studies. We investigated the underlying mechanisms of arsenic-induced liver injury in glutathione-deficient rats and whether there was any cross-talk between the Trx and Grx systems. The rats in arsenic-treated groups were administered with sodium arsenite (10, 20 mg/kg b w/d) for four weeks. In buthionine sulfoximine (BSO, an inhibitor of GSH) and 20 mg/kg arsenic combined groups, rats were injected with 2 mmol/kg BSO intraperitoneally twice per week. BSO exacerbated arsenic-induced liver injury by increasing arsenic accumulation in urine, serum, and liver while decreasing glutathione activity and resulting in upregulated mRNA expression of the Trx system and downregulation of Grx mRNA expression. The impact of Trx lasted longer than that of the Grx. The Trx system remained highly expressed, while GSH, Grx1, and Grx2 levels were decreased. The inhibitory effect of only BSO treatment on Grx1 and Grx2 was not pronounced. However, the combined impact of arsenic and BSO upregulated Trx expression, primarily related to further reduction of GSH. As a result, the suppressed Grxs were protected by the upregulated Trxs, which serve as a backup antioxidant defense system in the liver.
Collapse
Affiliation(s)
- Yuanyuan Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health and Family Planning Commission (23618504), Harbin, China
| | - Kun Liang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health and Family Planning Commission (23618504), Harbin, China
- Department of Science and Education, Bayan Nur Hospital, Bayan Nur, China
| | - Lin Yuan
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health and Family Planning Commission (23618504), Harbin, China
| | - Jing Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health and Family Planning Commission (23618504), Harbin, China
- Department of Public Health, Dalian Health Development Center, Dalian, China
| | - Linquan Wei
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health and Family Planning Commission (23618504), Harbin, China
| | - Lijun Zhao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health and Family Planning Commission (23618504), Harbin, China
| |
Collapse
|
3
|
Nithyashree N, Prakash N, Waghe P, Santhosh CR, Pavithra BH, Rajashekaraiah R, Sathyanarayana ML, Sunilchandra U, Anjan Kumar KR, Manjunatha SS, Muralidhar Y, Shivaprasad GR. Nanocurcumin Restores Arsenic-Induced Disturbances in Neuropharmacological Activities in Wistar Rats. Toxicol Int 2022. [DOI: 10.18311/ti/2022/v29i3/30342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The present study was carried out to examine the ameliorative potential of nanocurcumin against arsenic induced (sub-chronic) alterations in central nervous system in male Wistar rats. Nanocurcumin was synthesised and the hydrodynamic diameter, zeta potential and particle size were~76.60 nm, (-) 30 mV and 95nm, respectively. Experimental rats sub-chronically exposed to sodium (meta) arsenite (As; 10 mg.kg-1; 70 days; p.o) induced significant (p<0.05) reduction in superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione and favoured free radical generation and induced lipid peroxidation in brain tissue. The exposure resulted in significant (p<0.05) decrease in voluntary- and involuntary motor activities and enhanced anxiety levels. However, experimental rats receiving nanocurcumin (15 mg.kg-1; p.o) showed significant (p<0.05) recovery in enzymatic - and non-enzymatic antioxidant defence system and restoration of redox balance and overcome arsenic induced depression in motor activities and elevated anxiety levels. Further, Arsenic induced elevation in pro-inflammatory cytokines, cyclooxygenase-2 activity and prostaglandin-E2 in brain and angiotensin-II levels (plasma) was significantly (p<0.05) ameliorated by nanocurcumin. Additionally, quantitative real -time polymerase chain reaction revealed a fivefold decrease in Nox2 expression in brain following nanocurcumin administration. Thus, the study concludes that nanocurcumin can serve as a potential therapeutic candidate to counter arsenic induced redox imbalance and neuropharmacological disturbances and there exists a vast scope to exploit its utility after appropriate clinical modelling.
Collapse
|
4
|
Gowda BR, Prakash N, Santhosh CR, Pavithra BH, Rajashekaraiah R, Sathyanarayana ML, Rao S, Waghe P, Kumar KRA, Shivaprasad GR, Muralidhar Y. Effect of Telmisartan on Arsenic-Induced (Sub-chronic) Perturbations in Redox Homeostasis, Pro-inflammatory Cascade and Aortic Dysfunction in Wistar Rats. Biol Trace Elem Res 2022; 200:1776-1790. [PMID: 34339004 DOI: 10.1007/s12011-021-02804-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/19/2021] [Indexed: 11/26/2022]
Abstract
An experimental study was conducted in male Wistar rats to explore the antioxidant potential of telmisartan (an AT1 receptor blocker) to overcome arsenic ('As')-induced perturbations in redox homeostasis pro-inflammatory cytokines, prostaglandin-E2 levels and aortic dysfunction in Wistar rats. Wistar rats were randomly divided into four groups of six each. Group-I served as untreated control, while group-II received sodium (meta) arsenite (NaAsO2) (10 mg/kg b.wt. p.o) for a period of 60 days. Experimental rats in group-III received treatment similar to group-II, but in addition received telmisartan (with 1% aqueous solution of Tween 80) @ 10 mg/kg b.wt. (p.o) for a similar duration, while rats in group-IV received telmisartan alone. Arsenic exposure resulted in significant (p < 0.05) elevation in the levels of superoxide anion ([Formula: see text]) radicals (control: 768.20 ± 126.77 vs group-II: 1232.75 ± 97.85 pmol of NBT reduced/min/mg protein). Telmisartan administration showed significant (p < 0.05) reduction in [Formula: see text] generation (815.34 ± 43.41 pmol of NBT reduced/min/mg protein). Sub-chronic exposure to 'As' significantly (p < 0.05) decreased the activities of SOD, CAT, GPx and GR activity and GSH levels in the aorta, thus induced lipid peroxidation (LPO) measured as measured in terms of thiobarbituric acid reactive substances (TBARS) called as malondialdehyde (MDA). However, the administration of telmisartan effectively countered the LPO (24.03 ± 1.18 nmol of MDA/g) on account of restoring the levels of aforesaid antioxidant defense system. Telmisartan administration effectively attenuated the 'As'-induced surge in pro-inflammatory cytokines (viz., IL-1β, IL-6 and TNF-α) levels, as well as countered the activity of cyclooxygenase (COX2) as indicated by a significant (p < 0.05) decrease in PGE2 level in the aorta. In addition to it, there was a significant (p < 0.05) decrease in plasma angiotensin II (Ang-II) levels in experimental rats receiving telmisartan. Quantitative RT-PCR studies revealed that sub-chronic exposure to 'As' upregulated the Nox2 mRNA expression, but there was a 1.2-fold reduction in expression level upon co-administration of telmisartan. Histopathological examination revealed marked recovery from 'As'-induced disruption of tunica adventitia and loss of connective tissue in experimental rats receiving telmisartan. The study concludes that telmisartan can overcome aortic dysfunction induced by sub-chronic exposure to arsenic through drinking water in experimental rats through restoration of redox balance, attenuation of pro-inflammatory cytokines and mediators and downregulation of Nox2 mRNA expression.
Collapse
Affiliation(s)
- B Rudresh Gowda
- Department of Veterinary Pharmacology and Toxicology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Hebbal, Bengaluru, Karnataka, 560 024, India
| | - N Prakash
- Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Vinobanagar, Shivamogga, Karnataka, 577 204, India.
| | - C R Santhosh
- Department of Veterinary Pharmacology and Toxicology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Hebbal, Bengaluru, Karnataka, 560 024, India
| | - B H Pavithra
- Department of Veterinary Pharmacology and Toxicology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Hebbal, Bengaluru, Karnataka, 560 024, India
| | - Rashmi Rajashekaraiah
- Department of Veterinary Pharmacology and Toxicology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Hebbal, Bengaluru, Karnataka, 560 024, India
| | - M L Sathyanarayana
- Department of Veterinary Pathology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Hebbal, Bengaluru, Karnataka, 560 024, India
| | - Suguna Rao
- Department of Veterinary Pathology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Hebbal, Bengaluru, Karnataka, 560 024, India
| | - Prashantkumar Waghe
- Department of Veterinary Pharmacology and Toxicology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Nandinagar, Bidar, Karnataka, 585 226, India
| | - K R Anjan Kumar
- Department of Veterinary Pathology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Hebbal, Bengaluru, Karnataka, 560 024, India
| | - G R Shivaprasad
- Department of Veterinary Pharmacology and Toxicology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Hebbal, Bengaluru, Karnataka, 560 024, India
| | - Y Muralidhar
- Department of Veterinary Pharmacology and Toxicology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Hebbal, Bengaluru, Karnataka, 560 024, India
| |
Collapse
|
5
|
Evaluation of ameliorative efficiency of vitamin E and Saccharomyces cerevisiae yeast on arsenic toxicity in Black Bengal kids. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2021.106473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Exposure to low doses of inorganic arsenic induces transgenerational changes on behavioral and epigenetic markers in zebrafish (Danio rerio). Toxicol Appl Pharmacol 2020; 396:115002. [PMID: 32277946 DOI: 10.1016/j.taap.2020.115002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/26/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023]
Abstract
The ability of environmental pollutants to alter the epigenome with resultant development of behavioral alterations has received more attention in recent years. These alterations can be transmitted and affect later generations that have not been directly in contact with the contaminant. Arsenic (As) is a neurotoxicant and potent epigenetic disruptor that is widespread in the environment; however, the precise potential of As to produce transgenerational effects is unknown. Our study focused on the possible transgenerational effects on behavior by ancestral exposure to doses relevant to the environment of As, and the epigenetic mechanisms that could be involved. Embryos of F0 (ancestral generation) were directly exposed to 50 or 500 ppb of As for 150 days. F0 adults were raised to produce the F1 generation (intergeneration) and subsequently the F2 generation (transgeneration). We evaluated motor and cognitive behavior, neurodevelopment-related genes, and epigenetic markers on the F0 and F2 generation. As proposed in our hypothesis, ancestral arsenic exposure altered motor activity through the development and increased anxiety-like behaviors which were transmitted to the F2 generation. Additionally, we found a reduction in brain-derived neurotrophic factor expression between the F0 and F2 generation, and an increase in methylation on histone H3K4me3 in the nervous system.
Collapse
|
7
|
Garza-Lombó C, Pappa A, Panayiotidis MI, Gonsebatt ME, Franco R. Arsenic-induced neurotoxicity: a mechanistic appraisal. J Biol Inorg Chem 2019; 24:1305-1316. [PMID: 31748979 DOI: 10.1007/s00775-019-01740-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022]
Abstract
Arsenic is a metalloid found in groundwater as a byproduct of soil/rock erosion and industrial and agricultural processes. This xenobiotic elicits its toxicity through different mechanisms, and it has been identified as a toxicant that affects virtually every organ or tissue in the body. In the central nervous system, exposure to arsenic can induce cognitive dysfunction. Furthermore, iAs has been linked to several neurological disorders, including neurodevelopmental alterations, and is considered a risk factor for neurodegenerative disorders. However, the exact mechanisms involved are still unclear. In this review, we aim to appraise the neurotoxic effects of arsenic and the molecular mechanisms involved. First, we discuss the epidemiological studies reporting on the effects of arsenic in intellectual and cognitive function during development as well as studies showing the correlation between arsenic exposure and altered cognition and mental health in adults. The neurotoxic effects of arsenic and the potential mechanisms associated with neurodegeneration are also reviewed including data from experimental models supporting epidemiological evidence of arsenic as a neurotoxicant. Next, we focused on recent literature regarding arsenic metabolism and the molecular mechanisms that begin to explain how arsenic damages the central nervous system including, oxidative stress, energy failure and mitochondrial dysfunction, epigenetics, alterations in neurotransmitter homeostasis and synaptic transmission, cell death pathways, and inflammation. Outlining the specific mechanisms by which arsenic alters the cell function is key to understand the neurotoxic effects that convey cognitive dysfunction, neurodevelopmental alterations, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Carla Garza-Lombó
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.,School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.,Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - María E Gonsebatt
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Rodrigo Franco
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA. .,School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| |
Collapse
|
8
|
Durappanavar PN, Nadoor P, Waghe P, Pavithra BH, Jayaramu GM. Melatonin Ameliorates Neuropharmacological and Neurobiochemical Alterations Induced by Subchronic Exposure to Arsenic in Wistar Rats. Biol Trace Elem Res 2019; 190:124-139. [PMID: 30306420 DOI: 10.1007/s12011-018-1537-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023]
Abstract
An experimental study was conducted in Wistar rats to characterize the arsenic ("As")-induced alterations in neurobiochemistry in brain and its impact on neuropharmacological activities with or without the melatonin (MLT) as an antioxidant given exogenously. Male Wistar rats were randomly divided in to four groups of six each. Group I served as untreated control, while group II received As [sodium (meta) arsenite; NaAsO2] at 10 mg/kg bw (p.o.) for a period of 56 days. Experimental rats in group III received treatment similar to group II but in addition received MLT at 10 mg/kg bw (p.o.) from day 32 onwards. Rats in group IV received MLT alone from day 32 onwards similar to group III. Sub-chronic exposure to As (group II) significantly reduced both voluntary locomotor and forced motor activities and melatonin supplementation (group III) showed a significant improvement in motor activities, when subjected to test on day 42 or 56. Rats exposed to As showed a significant increase in anxiety level and a marginal nonsignificant reduction in pain latency. Sub-chronic administration of As induced (group II) significant increase in the levels of thiobarbituric acid reactive substance (TBARS) called malondialdehyde (MDA) in the brain tissue (5.55 ± 0.57 nmol g-1), and their levels were significantly reduced by MLT supplementation (group III 3.96 ± 0.15 nmol g-1). The increase in 3-nitrotyrosine (3-NT) levels in As-exposed rats indicated nitrosative stress due to the formation of peroxynitrite (ONOO-). However, exogenously given MLT significantly reduced the 3-NT formation as well as prostaglandin (PGE2) levels in the brain. Similarly, MLT administration have suppressed the release of pro-inflammatory cytokines (viz., IL-1β, IL-6, and TNF-α) and amyloid-β1-40 (Aβ) deposition in the brain tissues of experimental rats. To conclude, exogenous administration of melatonin can overcome the sub-chronic As-induced oxidative and nitrosative stress in the CNS, suppressed pro-inflammatory cytokines, and restored certain disturbed neuropharmacological activities in Wistar rats.
Collapse
Affiliation(s)
- Prasada Ningappa Durappanavar
- Department of Veterinary Pharmacology and Toxicology; Karnataka Veterinary, Animal and Fisheries Sciences University; Veterinary College, Vinobanagar, Shivamogga, Karnataka, 577 204, India
| | - Prakash Nadoor
- Department of Veterinary Pharmacology and Toxicology; Karnataka Veterinary, Animal and Fisheries Sciences University, Veterinary College, Veterinary College, Hebbal, Bengaluru, Karnataka, 560 024, India.
| | - Prashantkumar Waghe
- Department of Veterinary Pharmacology and Toxicology Veterinary College, Nandinagar, Bidar, Karnataka, 585401, India
| | - B H Pavithra
- Department of Veterinary Pharmacology and Toxicology; Karnataka Veterinary, Animal and Fisheries Sciences University, Veterinary College, Veterinary College, Hebbal, Bengaluru, Karnataka, 560 024, India
| | - G M Jayaramu
- Department of Veterinary Pathology, Karnataka Veterinary, Animal and Fisheries Sciences University, Veterinary College, Vinobanagar, Shivamogga, Karnataka, 577 204, India
| |
Collapse
|
9
|
Sargis RM, Heindel JJ, Padmanabhan V. Interventions to Address Environmental Metabolism-Disrupting Chemicals: Changing the Narrative to Empower Action to Restore Metabolic Health. Front Endocrinol (Lausanne) 2019; 10:33. [PMID: 30778334 PMCID: PMC6369180 DOI: 10.3389/fendo.2019.00033] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/16/2019] [Indexed: 12/17/2022] Open
Abstract
Metabolic disease rates have increased dramatically over the last four decades. Classic understanding of metabolic physiology has attributed these global trends to decreased physical activity and caloric excess; however, these traditional risk factors insufficiently explain the magnitude and rapidity of metabolic health deterioration. Recently, the novel contribution of environmental metabolism-disrupting chemicals (MDCs) to various metabolic diseases (including obesity, diabetes, and non-alcoholic fatty liver disease) is becoming recognized. As this burgeoning body of evidence has matured, various organic and inorganic pollutants of human and natural origin have emerged as metabolic disease risk factors based on population-level and experimental data. Recognition of these heretofore underappreciated metabolic stressors now mandates that efforts to mitigate the devastating consequences of metabolic disease include dedicated efforts to address environmental drivers of disease risk; however, there have not been adequate recommendations to reduce exposures or to mitigate the effects of exposures on disease outcomes. To address this knowledge gap and advance the clinical translation of MDC science, herein discussed are behaviors that increase exposures to MDCs, interventional studies to reduce those exposures, and small-scale clinical trials to reduce the body burden of MDCs. Also, we discuss evidence from cell-based and animal studies that provide insights into MDC mechanisms of action, the influence of modifiable dietary factors on MDC toxicity, and factors that modulate MDC transplacental carriage as well as their impact on metabolic homeostasis. A particular emphasis of this discussion is on critical developmental windows during which short-term MDC exposure can elicit long-term disruptions in metabolic health with potential inter- and transgenerational effects. While data gaps remain and further studies are needed, the current state of evidence regarding interventions to address MDC exposures illuminates approaches to address environmental drivers of metabolic disease risk. It is now incumbent on clinicians and public health agencies to incorporate this knowledge into comprehensive strategies to address the metabolic disease pandemic.
Collapse
Affiliation(s)
- Robert M. Sargis
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Jerrold J. Heindel
- Program on Endocrine Disruption Strategies, Commonweal, Bolinas, CA, United States
| | | |
Collapse
|
10
|
Dipp VR, Valles S, Ortiz-Kerbertt H, Suarez JV, Bardullas U. Neurobehavioral Alterations in Zebrafish Due to Long-Term Exposure to Low Doses of Inorganic Arsenic. Zebrafish 2018; 15:575-585. [PMID: 30183563 DOI: 10.1089/zeb.2018.1627] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Inorganic arsenic (As) is one of the most ubiquitous and toxic substances with widespread health effects on human populations and biodiversity. Although arsenic is a frequent surface water pollutant, there is scant evidence about neurotoxicity in aquatic species in different stages of development. In the present study, we investigated the neurobehavioral effects of chronic exposure to environmentally relevant doses of arsenic. We exposed zebrafish to 50 and 500 ppb during the larval, juvenile, and adult stage (from 4 h to 150 days postfertilization). We then used broad behavioral screening to evaluate motor function, social behavior, learning and memory, and anxiety-like behaviors. Our results show that arsenic exposure to 500 ppb alters motor function from the embryo to the adult stage. Furthermore, during the adult phase, associative learning and the sensorimotor response are affected with both high and low doses of As, respectively. Notably, exposure to 500 ppb of As induces behaviors associated with anxiety, during the juvenile and adult phase but not the larval stage, without changes in whole-body cortisol levels. These results indicate that chronic exposure to arsenic during their lifespan is capable of producing alterations in different behavioral markers in aquatic vertebrates.
Collapse
Affiliation(s)
- Víctor René Dipp
- Laboratorio de Biología Integrativa, Facultad de Ciencias, Universidad Autónoma de Baja California (UABC) , Ensenada, México
| | - Selma Valles
- Laboratorio de Biología Integrativa, Facultad de Ciencias, Universidad Autónoma de Baja California (UABC) , Ensenada, México
| | - Héctor Ortiz-Kerbertt
- Laboratorio de Biología Integrativa, Facultad de Ciencias, Universidad Autónoma de Baja California (UABC) , Ensenada, México
| | - Julio V Suarez
- Laboratorio de Biología Integrativa, Facultad de Ciencias, Universidad Autónoma de Baja California (UABC) , Ensenada, México
| | - Ulises Bardullas
- Laboratorio de Biología Integrativa, Facultad de Ciencias, Universidad Autónoma de Baja California (UABC) , Ensenada, México
| |
Collapse
|
11
|
Srivastava P, Dhuriya YK, Kumar V, Srivastava A, Gupta R, Shukla RK, Yadav RS, Dwivedi HN, Pant AB, Khanna VK. PI3K/Akt/GSK3β induced CREB activation ameliorates arsenic mediated alterations in NMDA receptors and associated signaling in rat hippocampus: Neuroprotective role of curcumin. Neurotoxicology 2018; 67:190-205. [PMID: 29723552 DOI: 10.1016/j.neuro.2018.04.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 04/26/2018] [Accepted: 04/29/2018] [Indexed: 12/20/2022]
Abstract
Protective efficacy of curcumin in arsenic induced NMDA receptor dysfunctions and PI3K/Akt/ GSK3β signalling in hippocampus has been investigated in vivo and in vitro. Exposure to sodium arsenite (in vivo - 20 mg/kg, body weight p.o. for 28 days; in vitro - 10 μM for 24 h) and curcumin (in vivo - 100 mg/kg body weight p.o. for 28 days; in vitro - 20 μM for 24 h) was carried out alone or simultaneously. Treatment with curcumin ameliorated sodium arsenite induced alterations in the levels of NMDA receptors, its receptor subunits and synaptic proteins - pCaMKIIα, PSD-95 and SynGAP both in vivo and in vitro. Decreased levels of BDNF, pAkt, pERK1/2, pGSK3β and pCREB on sodium arsenite exposure were also protected by curcumin. Curcumin was found to decrease sodium arsenite induced changes in hippocampus by modulating PI3K/Akt/GSK3β neuronal survival pathway, known to regulate various cellular events. Treatment of hippocampal cultures with pharmacological inhibitors for ERK1/2, GSK3β and Akt individually inhibited levels of CREB and proteins associated with PI3K/Akt/GSK3β pathway. Simultaneous treatment with curcumin was found to improve sodium arsenite induced learning and memory deficits in rats assessed by water maze and Y-maze. The results provide evidence that curcumin exercises its neuroprotective effect involving PI3K/Akt pathway which may affect NMDA receptors and downstream signalling through TrKβ and BDNF in arsenic induced cognitive deficits in hippocampus.
Collapse
Affiliation(s)
- Pranay Srivastava
- Developmental Toxicology and NeuroToxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, UP, India; School of Pharmacy, Babu Banarsi Das University, Faizabad Road, Lucknow, 226 028, UP, India
| | - Yogesh K Dhuriya
- Developmental Toxicology and NeuroToxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, UP, India
| | - Vivek Kumar
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, Brazil
| | - Akriti Srivastava
- Developmental Toxicology and NeuroToxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, UP, India
| | - Richa Gupta
- Developmental Toxicology and NeuroToxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, UP, India; School of Pharmacy, Babu Banarsi Das University, Faizabad Road, Lucknow, 226 028, UP, India
| | - Rajendra K Shukla
- Developmental Toxicology and NeuroToxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, UP, India
| | - Rajesh S Yadav
- Department of Criminology and Forensic Science, Dr. Harisingh Gour Central University, Sagar, 470003, MP, India
| | - Hari N Dwivedi
- School of Pharmacy, Babu Banarsi Das University, Faizabad Road, Lucknow, 226 028, UP, India
| | - Aditya B Pant
- Developmental Toxicology and NeuroToxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, UP, India.
| | - Vinay K Khanna
- Developmental Toxicology and NeuroToxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, UP, India.
| |
Collapse
|
12
|
Garza-Lombó C, Posadas Y, Quintanar L, Gonsebatt ME, Franco R. Neurotoxicity Linked to Dysfunctional Metal Ion Homeostasis and Xenobiotic Metal Exposure: Redox Signaling and Oxidative Stress. Antioxid Redox Signal 2018; 28:1669-1703. [PMID: 29402131 PMCID: PMC5962337 DOI: 10.1089/ars.2017.7272] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE Essential metals such as copper, iron, manganese, and zinc play a role as cofactors in the activity of a wide range of processes involved in cellular homeostasis and survival, as well as during organ and tissue development. Throughout our life span, humans are also exposed to xenobiotic metals from natural and anthropogenic sources, including aluminum, arsenic, cadmium, lead, and mercury. It is well recognized that alterations in the homeostasis of essential metals and an increased environmental/occupational exposure to xenobiotic metals are linked to several neurological disorders, including neurodegeneration and neurodevelopmental alterations. Recent Advances: The redox activity of essential metals is key for neuronal homeostasis and brain function. Alterations in redox homeostasis and signaling are central to the pathological consequences of dysfunctional metal ion homeostasis and increased exposure to xenobiotic metals. Both redox-active and redox-inactive metals trigger oxidative stress and damage in the central nervous system, and the exact mechanisms involved are starting to become delineated. CRITICAL ISSUES In this review, we aim to appraise the role of essential metals in determining the redox balance in the brain and the mechanisms by which alterations in the homeostasis of essential metals and exposure to xenobiotic metals disturb the cellular redox balance and signaling. We focus on recent literature regarding their transport, metabolism, and mechanisms of toxicity in neural systems. FUTURE DIRECTIONS Delineating the specific mechanisms by which metals alter redox homeostasis is key to understand the pathological processes that convey chronic neuronal dysfunction in neurodegenerative and neurodevelopmental disorders. Antioxid. Redox Signal. 28, 1669-1703.
Collapse
Affiliation(s)
- Carla Garza-Lombó
- 1 Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln , Lincoln, Nebraska.,2 Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas , Universidad Nacional Autónoma de México, Mexico City, México
| | - Yanahi Posadas
- 3 Departamentos de Farmacología y de, Centro de Investigación y de Estudios Avanzados (CINVESTAV) , Mexico City, México .,4 Departamentos de Química, Centro de Investigación y de Estudios Avanzados (CINVESTAV) , Mexico City, México
| | - Liliana Quintanar
- 4 Departamentos de Química, Centro de Investigación y de Estudios Avanzados (CINVESTAV) , Mexico City, México
| | - María E Gonsebatt
- 2 Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas , Universidad Nacional Autónoma de México, Mexico City, México
| | - Rodrigo Franco
- 1 Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln , Lincoln, Nebraska
| |
Collapse
|
13
|
Firdaus F, Zafeer MF, Ahmad M, Afzal M. Anxiolytic and anti-inflammatory role of thymoquinone in arsenic-induced hippocampal toxicity in Wistar rats. Heliyon 2018; 4:e00650. [PMID: 29984327 PMCID: PMC6024171 DOI: 10.1016/j.heliyon.2018.e00650] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/20/2018] [Accepted: 06/05/2018] [Indexed: 12/05/2022] Open
Abstract
Arsenic (As) is a widely existing metalloid in the biosphere. Drinking water contamination by arsenic is a major route of human exposure, either by natural means or through industrial pollution. Numerous evidence form earlier reports suggest that arsenic exposure causes cerebral neurodegeneration which initiates behavioral disturbances concomitant to psychiatric disorders. Also, mood disorders in humans as well as in animals correlate with arsenic exposure; the present study is carried out to implore the neuroprotective potential of thymoquinone (TQ) in arsenic-stressed rats. TQ is an active component of Nigella sativa (Kalonji) seed oil. Arsenic exposure in the form of sodium arsenate (10 mg/kg/day; p.o) caused neurobehavioral deficits as evidenced by changes in locomotion and exploratory behavior in open-field and elevated plus maze tasks. Alongside this, arsenate also elevated hippocampal oxidative stress parameters like lipid peroxidation (TBARS) and protein carbonyl formation with a decrease in superoxide dismutase (SOD) and reduced glutathione (GSH) content. Genotoxicity assessment by Comet assay also showed prominent levels of DNA damage. Furthermore, arsenic also elevated hippocampal cytokine levels, TNF-α and INF-γ. However, TQ supplementation (2.5 and 5 mg/kg/day, p.o) preceded three days before arsenic administration, significantly attenuated arsenic-associated anxiogenic changes which majorly attributed to its antioxidant and anxiolytic potential. Also, TQ pre-treated rats expressed positive shifts in the hippocampal oxidative stress and cytokine levels with decreased DNA fragmentation. Thus, this study concludes that TQ might serve as a strong therapeutic agent for management of anxiety and depressive outcomes of arsenic intoxication.
Collapse
Affiliation(s)
- Fakiha Firdaus
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohd Faraz Zafeer
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Masood Ahmad
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohammad Afzal
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
14
|
Thymoquinone alleviates arsenic induced hippocampal toxicity and mitochondrial dysfunction by modulating mPTP in Wistar rats. Biomed Pharmacother 2018; 102:1152-1160. [PMID: 29710533 DOI: 10.1016/j.biopha.2018.03.159] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 12/11/2022] Open
Abstract
Arsenic is a pervasive environmental pollutant that is found in ground waters globally and is related to numerous morbidities in the high-risk population areas in countries including Bangladesh, India, and the USA. Arsenic exposure has been ubiquitously reported for exacerbating free radical generation, mitochondrial dysfunction, and apoptosis by interfering with the mPTP functioning. Over the past decades, nutraceuticals with antioxidant properties have shown promising efficacy in arsenic poisoning. In the present study, we have examined, the protective efficacy of thymoquinone (TQ), an active component of seed oil of Nigella sativa with antioxidant and anti-inflammatory activity on arsenic-induced toxicity in hippocampi of Wistar rats. In our results, arsenic conditioning (10 mg/kg b.wt.; p.o.) for 8 days has caused a significant increase in intracellular ROS generation, mitochondrial dysfunction and apoptotic events. On the contrary pretreatment with TQ (2.5 and 5 mg/kg b.wt.; p.o.) inhibited arsenic-induced mitochondrial dysfunction such as lowering of mitochondrial membrane potential (Δψm). Our results indicated that the neuroprotective efficacy of TQ in arsenic-induced stress is mediated through or in part by inhibition of mPTP opening. Demonstration of neuroprotective action of TQ provides insight into the pathogenesis of arsenic-related neuropathological morbidities.
Collapse
|
15
|
The possible neuroprotective effect of ellagic acid on sodium arsenate-induced neurotoxicity in rats. Life Sci 2018; 198:38-45. [DOI: 10.1016/j.lfs.2018.02.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/05/2018] [Accepted: 02/14/2018] [Indexed: 12/11/2022]
|
16
|
Zhao F, Liao Y, Tang H, Piao J, Wang G, Jin Y. Effects of developmental arsenite exposure on hippocampal synapses in mouse offspring. Metallomics 2018; 9:1394-1412. [PMID: 28901367 DOI: 10.1039/c7mt00053g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
arsenite. The thickness of the postsynaptic density (PSD) decreased, whereas the width of the synaptic cleft widened significantly in arsenite exposure groups. Moreover, protein expression of both PSD-95 and SYP decreased significantly in arsenite exposure groups. In conclusion, the results of this study demonstrated that developmental arsenite exposure could depress the expression of synaptic proteins, subsequently cause alteration in synaptic structures, and finally contribute to arsenite-induced deficits in spatial learning and memory ability in mouse offspring.
Collapse
Affiliation(s)
- Fenghong Zhao
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
17
|
Zubair M, Martyniuk CJ. A review on hemato-biochemical, accumulation and patho-morphological responses of arsenic toxicity in ruminants. TOXIN REV 2018. [DOI: 10.1080/15569543.2018.1442347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Muhammad Zubair
- Faculty of Veterinary Sciences, University of Poonch, Rawalakot Azad Kashmir, Pakistan
| | - Christopher Joseph Martyniuk
- Center for Environmental and Human Toxicology & Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
18
|
Tocopherol and selenite modulate the transplacental effects induced by sodium arsenite in hamsters. Reprod Toxicol 2017; 74:204-211. [DOI: 10.1016/j.reprotox.2017.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 09/22/2017] [Accepted: 10/17/2017] [Indexed: 11/20/2022]
|
19
|
Kharroubi W, Nury T, Ahmed SH, Andreoletti P, Sakly R, Hammami M, Lizard G. Induction by arsenate of cell-type-specific cytotoxic effects in nerve and hepatoma cells. Hum Exp Toxicol 2017; 36:1256-1269. [PMID: 28071239 DOI: 10.1177/0960327116687893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of the study was to compare the effect of sodium arsenate (AsV) on two different cell types: 158N murine oligodendrocytes and HepG2 human hepatoma cells. Exposure of 158N cells to AsV (0.1-400 µM; 48 h) induced a biphasic cytoxic effect defined as hormesis. Thus, low concentrations of AsV stimulate cell proliferation, as shown by phase-contrast microscopy, cell counting with trypan blue, and crystal violet assay, whereas high concentrations induce cell death associated with a loss of cell adhesion. These side effects were confirmed by staining with propidium iodide and cell cycle analysis, characterized by the presence of a subG1 peak, a criterion of apoptosis. The effects of AsV on mitochondrial function, as determined by the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay, the measurement of mitochondrial transmembrane potential with 3,3'-dihexyloxacarbocyanine iodide, and the rate of mitochondrial adenosine triphosphate confirm the impact of AsV on the mitochondria. In contrast to 158N cells, HepG2 cells were susceptible to all AsV concentrations as shown by microscopic observations, by counting with trypan blue. However, no alteration is noted in the cell membrane integrity, which indicated an apoptotic mode of cell death, and this side effect is confirmed by the cycle analysis, which revealed a subG1 peak. Of note, there was a loss of MTT, suggesting that AsV induces mitochondrial complex II dysfunction. Altogether, our data show that the cytotoxic characteristics of AsV depend on the cell type considered.
Collapse
Affiliation(s)
- Wafa Kharroubi
- 1 Laboratory Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism EA7270/INSERM, Faculty of Sciences Gabriel, University of Bourgogne Franche Comté, Dijon, France.,2 Laboratory of Nutrition-Functional Foods and Vascular Diseases, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Thomas Nury
- 1 Laboratory Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism EA7270/INSERM, Faculty of Sciences Gabriel, University of Bourgogne Franche Comté, Dijon, France
| | - Samia Haj Ahmed
- 1 Laboratory Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism EA7270/INSERM, Faculty of Sciences Gabriel, University of Bourgogne Franche Comté, Dijon, France.,2 Laboratory of Nutrition-Functional Foods and Vascular Diseases, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Pierre Andreoletti
- 1 Laboratory Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism EA7270/INSERM, Faculty of Sciences Gabriel, University of Bourgogne Franche Comté, Dijon, France
| | - Rachid Sakly
- 2 Laboratory of Nutrition-Functional Foods and Vascular Diseases, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Mohamed Hammami
- 2 Laboratory of Nutrition-Functional Foods and Vascular Diseases, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Gérard Lizard
- 1 Laboratory Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism EA7270/INSERM, Faculty of Sciences Gabriel, University of Bourgogne Franche Comté, Dijon, France
| |
Collapse
|
20
|
Pu X, Wang Z, Zhou S, Klaunig JE. Protective effects of antioxidants on acrylonitrile-induced oxidative stress in female F344 rats. ENVIRONMENTAL TOXICOLOGY 2016; 31:1808-1818. [PMID: 26332274 DOI: 10.1002/tox.22182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 07/30/2015] [Accepted: 08/05/2015] [Indexed: 06/05/2023]
Abstract
The induction of oxidative stress and damage appears to be involved in acrylonitrile induction of brain astrocytomas in rat. The present study examined the effects of dietary antioxidant supplementation on acrylonitrile-induced oxidative stress and oxidative damage in rats in vivo. To assess the effects of antioxidants on biomarkers of acrylonitrile-induced oxidative stress, female F344 rats were provided with diets containing vitamin E (0.05%), green tea polyphenols (GTP, 0.4%), N-acetyl cysteine (NAC, 0.3%), sodium selenite (0.1mg/kg), and taurine (10g/kg) for 7 days, and then co-administered with 0 and 100 ppm acrylonitrile in drinking water for 28 days. Significant increase in oxidative DNA damage in brain, evidenced by elevated 8OHdG levels, was seen in acrylonitrile-exposed rats. Supplementation with vitamin E, GTP, and NAC reduced acrylonitrile-induced oxidative DNA damage in brain while no protective effects were seen with the selenium or taurine supplementation. Acrylonitrile increased oxidative DNA damage, measured by the fpg-modified alkaline Comet assay in rat WBCs, which was reduced by supplementation of Vitamin E, GTP, NAC, selenium, and taurine. In addition to stimulation of oxidative DNA damage, acrylonitrile triggered induction of pro-inflammatory cytokines Tnfα, Il-1β, and Ccl2, and the growth stimulatory cyclin D1 and cyclin D2 genes, which were effectively down-regulated with antioxidant treatment. Antioxidant treatment also was able to stimulate the pro-apoptotic genes Bad, Bax, and FasL and DNA repair genes Xrcc6 and Gadd45α. The results of this study support the involvement of oxidative stress in the development of acrylonitrile-induced astrocytomas and suggest that antioxidants block acrylonitrile-mediated damage through mechanisms that may involve in the suppression of inflammatory responses, inhibition of cell proliferation and stimulation of apoptosis. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1808-1818, 2016.
Collapse
Affiliation(s)
- Xinzhu Pu
- Biomolecular Research Center, Boise State University, Idaho, USA, 47408
| | - Zemin Wang
- Department of Environmental Health, Indiana University School of Public Health, Bloomington, Indiana, 47408
| | - Shaoyu Zhou
- Department of Environmental Health, Indiana University School of Public Health, Bloomington, Indiana, 47408
- Department of Pharmacology, Zunyi Medical College, Zunyi, 563000, China
| | - James E Klaunig
- Department of Environmental Health, Indiana University School of Public Health, Bloomington, Indiana, 47408
| |
Collapse
|
21
|
Inorganic Arsenic Induces NRF2-Regulated Antioxidant Defenses in Both Cerebral Cortex and Hippocampus in Vivo. Neurochem Res 2016; 41:2119-28. [PMID: 27165637 DOI: 10.1007/s11064-016-1927-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/15/2016] [Accepted: 04/18/2016] [Indexed: 10/21/2022]
Abstract
Inorganic arsenic is reported to induce the reactive oxygen species-mediated oxidative stress, which is supposed to be one of the main mechanisms of arsenic-related neurological diseases. Nuclear factor erythroid 2-related factor 2 (NRF2), a master regulator of antioxidant defense systems, up-regulates the expression of target genes to fight against oxidative damages caused by harmful substances, including metals. In the present study, mice were used as a model to investigate the oxidative stress levels and the expressions of NRF2-regulated antioxidant substances in both cerebral cortex and hippocampus with 5, 10 and 20 mg/kg NaAsO2 exposure intra-gastrically. Our results showed that acute NaAsO2 treatment resulted in decreased total anti-oxidative capacity (T-AOC) and increased maleic dialdehyde production in the nervous system. We also detected rapidly elevation of NRF2 protein levels by enhancement of Nrf2 transcription, especially at 20 mg/kg NaAsO2 exposure group. In the meantime, mRNA and protein levels of Nrf2 encoding antioxidant enzymes heme oxygenase-1 (HO-1), NAD(P)H: quinine oxidoreductase 1 (NQO1) and glutathione S-transferase (GST) were consistently elevated time- and dose-dependently both in the cerebral cortex and hippocampus. Taken together, the presence study demonstrated the activation of NRF2 pathway, an early antioxidant defensive response, in both cerebral cortex and hippocampus upon inorganic arsenic (iAs) exposure in vivo. A better knowledge on the roles of NRF2 pathway in maintaining cellular redox homeostasis would be helpful for the strategies on improvement of neurotoxicity related to this metalloid.
Collapse
|
22
|
Abstract
High levels of arsenic are found in many parts of the world and more than 100 million people may have been exposed to it. There is growing evidence to indicate that arsenic has a deleterious effect on the auditory system. This paper provides the general information of arsenic and its ototoxic effects.
Collapse
Affiliation(s)
- Gülin Gökçen Kesici
- Yenimahalle Education and Research Hospital, Department of Otolaryngology Head and Neck Surgery, Turkey
| |
Collapse
|
23
|
Kumar M, Lalit M, Thakur R. Natural Antioxidants Against Arsenic-Induced Genotoxicity. Biol Trace Elem Res 2016; 170:84-93. [PMID: 26242483 DOI: 10.1007/s12011-015-0448-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/15/2015] [Indexed: 01/30/2023]
Abstract
Arsenic is present in water, soil, and air in organic as well as in inorganic forms. However, inorganic arsenic is more toxic than organic and can cause many diseases including cancers in humans. Its genotoxic effect is considered as one of its carcinogenic actions. Arsenic can cause DNA strand breaks, deletion mutations, micronuclei formation, DNA-protein cross-linking, sister chromatid exchange, and DNA repair inhibition. Evidences indicate that arsenic causes DNA damage by generation of reactive free radicals. Nutritional supplementation of antioxidants has been proven highly beneficial against arsenic genotoxicity in experimental animals. Recent studies suggest that antioxidants protect mainly by reducing excess free radicals via restoring the activities of cellular enzymatic as well as non-enzymatic antioxidants and decreasing the oxidation processes such as lipid peroxidation and protein oxidation. The purpose of this review is to summarize the recent literature on arsenic-induced genotoxicity and its mitigation by naturally derived antioxidants in various biological systems.
Collapse
Affiliation(s)
- Munesh Kumar
- Guru Jambhehswar University of Science and Technology, Hisar, Haryana, India
| | - Minakshi Lalit
- Guru Jambhehswar University of Science and Technology, Hisar, Haryana, India
| | - Rajesh Thakur
- Guru Jambhehswar University of Science and Technology, Hisar, Haryana, India.
| |
Collapse
|
24
|
Mirhoseiny Z, Amiri A, Shabani M, Esmaeilpour K, Alizadeh F, Sheibani V. Chelation therapy improves spatial learning and memory impairment in gallium arsenide intoxicated rats. TOXIN REV 2016. [DOI: 10.3109/15569543.2015.1127259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
25
|
Andrade VL, Mateus ML, Batoréu MC, Aschner M, Marreilha dos Santos AP. Lead, Arsenic, and Manganese Metal Mixture Exposures: Focus on Biomarkers of Effect. Biol Trace Elem Res 2015; 166:13-23. [PMID: 25693681 PMCID: PMC4470849 DOI: 10.1007/s12011-015-0267-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/04/2015] [Indexed: 10/24/2022]
Abstract
The increasing exposure of human populations to excessive levels of metals continues to represent a matter of public health concern. Several biomarkers have been studied and proposed for the detection of adverse health effects induced by lead (Pb), arsenic (As), and manganese (Mn); however, these studies have relied on exposures to each single metal, which fails to replicate real-life exposure scenarios. These three metals are commonly detected in different environmental, occupational, and food contexts and they share common neurotoxic effects, which are progressive and once clinically apparent may be irreversible. Thus, chronic exposure to low levels of a mixture of these metals may represent an additive risk of toxicity. Building upon their shared mechanisms of toxicity, such as oxidative stress, interference with neurotransmitters, and effects on the hematopoietic system, we address putative biomarkers, which may assist in assessing the onset of neurological diseases associated with exposure to this metal mixture.
Collapse
Affiliation(s)
- VL Andrade
- Instituto de Investigação do Medicamento, iMed.UL, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - ML Mateus
- Instituto de Investigação do Medicamento, iMed.UL, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - MC Batoréu
- Instituto de Investigação do Medicamento, iMed.UL, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - M Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 10461 NY, USA
| | - AP Marreilha dos Santos
- Instituto de Investigação do Medicamento, iMed.UL, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Corresponding author – , Tel – 351217946400, Fax - 351217946470
| |
Collapse
|
26
|
Muthumani M, Miltonprabu S. Ameliorative efficacy of tetrahydrocurcumin against arsenic induced oxidative damage, dyslipidemia and hepatic mitochondrial toxicity in rats. Chem Biol Interact 2015; 235:95-105. [DOI: 10.1016/j.cbi.2015.04.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 03/10/2015] [Accepted: 04/07/2015] [Indexed: 12/14/2022]
|
27
|
Das TK, Mani V, Kaur H, Kewalramani N, Agarwal A. Effect of Vitamin E Supplementation on Hematological and Plasma Biochemical Parameters during Long Term Exposure of Arsenic in Goats. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 25:1262-8. [PMID: 25049689 PMCID: PMC4092933 DOI: 10.5713/ajas.2012.12043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/30/2012] [Accepted: 03/23/2012] [Indexed: 11/27/2022]
Abstract
The present investigation was designed to determine whether supplementation of different level of vitamin E for 12 months to arsenic exposed goats (50 ppm as sodium arsenite) affords protection against the blood hemato-biochemical parameters caused by the metalloid. A total of 24 crossbred (Alpine×Beetal) lactating goats were assigned randomly into 4 equal groups (control, T1, T2 and T3) of 6 in each, on the basis of average body weight (36.10±0.11 kg) and milk yield (1.61±0.04 kg/d). The animals in T1, T2 and T3 were given 50 ppm arsenic, while in T2 and T3, additionally; vitamin E at the rate of 100 IU and 150 IU/kg dry matter (DM) respectively was additionally supplemented for the period of 12 months. Hemoglobin (Hb), total leukocyte (TLC) and blood lymphocyte % were decreased (p<0.05) in arsenic fed groups and vitamin E supplementation in the experimental group showed a protective potential. Significant increases (p<0.05) in aspertate transaminase (AST) and alanine transaminase (ALT) activities among arsenic supplemented groups were recorded, however vitamin E supplementation at higher doses showed a protective effect (p<0.05) against AST but in the case of ALT no ameliorating effect was found in either of the doses. Plasma total protein was decreased (p>0.05) but creatinine level was periodically increased in all As supplemented groups and vitamin E supplementation did not produce any protective effect. It can be concluded that arsenic exposure resulted in varying degree of changes in hemato-biochemical parameters and activities of antioxidant enzymes in goats but concomitant treatment with Vitamin E is partially helpful in reducing the burden of arsenic induced effect.
Collapse
|
28
|
Sankar P, Telang AG, Kalaivanan R, Karunakaran V, Suresh S, Kesavan M. Oral nanoparticulate curcumin combating arsenic-induced oxidative damage in kidney and brain of rats. Toxicol Ind Health 2013; 32:410-21. [DOI: 10.1177/0748233713498455] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Arsenic exposure through drinking water causes oxidative stress and tissue damage in the kidney and brain. Curcumin (CUR) is a good antioxidant with limited clinical application because of its hydrophobic nature and limited bioavailability, which can be overcome by the encapsulation of CUR with nanoparticles (NPs). The present study investigates the therapeutic efficacy of free CUR and NP-encapsulated CUR (CUR-NP) against sodium arsenite-induced renal and neuronal oxidative damage in rat. The CUR-NP prepared by emulsion technique and particle size ranged between 120 and 140 nm, with the mean particle size being 130.8 nm. Rats were divided into five groups (groups 1–5) with six animals in each group. Group 1 served as control. Group 2 rats were exposed to sodium arsenite (25 ppm) daily through drinking water for 42 days. Groups 3, 4, and 5 were treated with arsenic as in Group 2; however, these animals were also administered with empty NPs, CUR (100 mg/kg body weight), and CUR-NP (100 mg/kg), respectively, by oral gavage during the last 14 days of arsenic exposure. Arsenic exposure significantly increased serum urea nitrogen and creatinine levels. Arsenic increased lipid peroxidation (LPO), reduced glutathione content and the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase were depleted significantly in both kidney and brain. Treatment with free CUR and CUR-NP decreased the LPO and increased the enzymatic and nonenzymatic antioxidant system in kidney and brain. Histopathological examination showed that kidney and brain injury mediated by arsenic was ameliorated by treatment. However, the amelioration percentage indicates that CUR-NP had marked therapeutic effect on arsenic-induced oxidative damage in kidney and brain tissues.
Collapse
Affiliation(s)
- Palanisamy Sankar
- Division of Veterinary Pharmacology and Toxicology, Veterinary College and Veterinary Research Institute, Bareilly, India
| | - Avinash Gopal Telang
- Division of Veterinary Pharmacology and Toxicology, Veterinary College and Veterinary Research Institute, Bareilly, India
| | - Ramya Kalaivanan
- Department of Veterinary Epidemiology and Preventive Medicine, Veterinary College and Research Institute, Namakkal, India
| | - Vijayakaran Karunakaran
- Division of Veterinary Pharmacology and Toxicology, Veterinary College and Veterinary Research Institute, Bareilly, India
| | - Subramaniyam Suresh
- Division of Veterinary Pharmacology and Toxicology, Veterinary College and Veterinary Research Institute, Bareilly, India
| | - Manickam Kesavan
- Division of Veterinary Pharmacology and Toxicology, Veterinary College and Veterinary Research Institute, Bareilly, India
| |
Collapse
|
29
|
Das TK, Mani V, De S, Banerjee D, Mukherjee A, Polley S, Kewalramani N, Kaur H. Effect of vitamin E supplementation on mRNA expression of superoxide dismutase and interleukin-2 in arsenic exposed goat leukocytes. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 89:1133-1137. [PMID: 23052575 DOI: 10.1007/s00128-012-0825-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 08/30/2012] [Indexed: 06/01/2023]
Abstract
The aim of this study was to quantify the expression level of genes involved in antioxidant defenses during inorganic arsenic (iAs) exposure in the blood of goats and to evaluate the regulative activity on these genes of antioxidant vitamin E in the diet. Twenty-four crossbred lactating goats (Alpine × Beetal) were distributed randomly into four equal groups (Control, T(1), T(2) and T(3)) of six in each, on the basis of average body weight (36.10 ± 0.11 kg) and milk yield (1.61 ± 0.004 kg/day). The animals in T(1), T(2) and T(3) were given 50 mg/kg dry matter arsenic daily, while in T(2) and T(3), vitamin E @100 IU and 150 IU/kg dry matter, respectively, was also supplemented additionally for the period of 12 months. Blood was sampled at 0 day then at 3 months interval and analyzed for the expression level of superoxide dismutase (Cu/Zn SOD) and interleukin-2 (IL-2) using real-time PCR technique. Initially there was no difference (p > 0.05) in relative expression of the two genes. But, at 3 months, relative expression of Cu/Zn SOD increased (p < 0.05) in T(1) groups then, at 6 and 9 months expression was decreased (p < 0.05) in all the iAs treated groups whereas at 12 months, vitamin E supplementation increased (p < 0.05) the expression which is comparable to control groups. IL-2 mRNA expression was decreased (p < 0.05) at 6 months in all iAs treated groups, at 9 months there was decline trend but not significantly different whereas at 12 months decline trend was less (p < 0.05) in vitamin E supplemented groups. The result suggests that vitamin E may have a controlling effect on oxidative stress through modulation of SOD and IL-2 expression.
Collapse
Affiliation(s)
- T K Das
- National Dairy Research Institute, Karnal, 132001 Haryana, India.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Ozsoy O, Hacioglu G, Savcioglu F, Kucukatay V, Yargicoglu P, Agar A. The effect of sodium metabisulphite on active avoidance performance in hypercholesterolemic rats. ENVIRONMENTAL TOXICOLOGY 2012; 27:453-460. [PMID: 20882594 DOI: 10.1002/tox.20657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 08/02/2010] [Accepted: 08/09/2010] [Indexed: 05/29/2023]
Abstract
The purpose of this study was to investigate the effects of hypercholesterolemia and sulphite on active avoidance learning. Male Wistar rats were divided into eight groups as follows: Control (C), Sulphite (S), Vitamin E (E), Sulphite + Vitamin E (SE), Hypercholesterolemia (H), Hypercholesterolemia + Sulphite (HS), Hypercholesterolemia + Vitamin E (HE), and Hypercholesterolemia + Sulphite + Vitamin E (HSE). At the end of the experimental period, the serum cholesterol level (mean ± SD) was significantly higher in H group (111.5 ± 11.11 mg dL(-1) ) as compared to C group (63.5 ± 4.9 mg dL(-1) ). Levels of thiobarbituric acid reactive substances (TBARS) were increased in HS group as compared to C, H, and S groups. Vitamin E reduced TBARS levels in HSE group compared with HS group. Active avoidance results indicated that hypercholesterolemia was associated with learning impairment. Our data clearly revealed that the combination of hypercholesterolemia and sulphite results in exaggerated impairment of active avoidance. Vitamin E improved active avoidance in HSE group compared with HS group. Therefore, the synergistic effect of hypercholesterolemia and sulphite may be associated with a considerable health risk.
Collapse
Affiliation(s)
- Ozlem Ozsoy
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | | | | | | | | | | |
Collapse
|
31
|
Das TK, Mani V, Kaur H, Kewalramani N, De S, Hossain A, Banerjee D, Datta BK. Effect of vitamin E supplementation on arsenic induced oxidative stress in goats. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 89:61-66. [PMID: 22465959 DOI: 10.1007/s00128-012-0620-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 03/21/2012] [Indexed: 05/31/2023]
Abstract
The present study was designed to assess whether supplementation of different levels of vitamin E to long-term arsenic exposed goats affords protection against the oxidative stress caused by the metalloid. Twenty-four crossbred lactating goats were distributed randomly into four groups (control, T(1), T(2) and T(3)) of six in each. The animals in T(1), T(2) and T(3) were given 50 mg/kg DM arsenic daily, while in T(2) and T(3), vitamin E @100 IU and 150 IU/kg DM, respectively, was also supplemented additionally for the period of 12 months. Compared to control, significant (p < 0.05) decline in SOD (45 %), CAT activities of erythrocytes (63 %), plasma total Ig (22 %) and total antioxidant activity (24 %) was observed in only arsenic treated groups and vitamin E supplementation in both doses produced partial mitigation effect against SOD (23 %, 20 %) and CAT (39 %, 48 %) while complete mitigation against total Ig (16 %, 7 %) and antioxidant activity (10 %, 8 %) was found. Average lymphocyte stimulation index at the end of experiment was (p < 0.05) lower in arsenic exposed groups (1.003 ± 0.01) and significant (p < 0.05) recovery was observed in response of vitamin E supplementation at higher doses (1.138 ± 0.03). So, vitamin E is helpful in reducing the burden of arsenic induced oxidative stress and activities of antioxidant enzymes in goats.
Collapse
Affiliation(s)
- T K Das
- National Dairy Research Institute, Karnal, 132001, Haryana, India.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Bharti VK, Srivastava RS, Sharma B, Malik JK. Buffalo (Bubalus bubalis) epiphyseal proteins counteract arsenic-induced oxidative stress in brain, heart, and liver of female rats. Biol Trace Elem Res 2012; 146:224-9. [PMID: 22095291 DOI: 10.1007/s12011-011-9245-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 10/24/2011] [Indexed: 11/25/2022]
Abstract
Arsenic (As) toxicity through induction of oxidative stress is a well-known mechanism of organ toxicity. To address this problem, buffalo epiphyseal proteins (BEP, at 100 μg/kg BW, i.p. for 28 days) were administered intraperitoneally to female Wistar rats exposed to As (100 ppm sodium arsenite via drinking water for 28 days). Arsenic exposure resulted in marked elevation in lipid peroxidation in brain, cardiac, and hepatic tissues, whereas significant (p < 0.05) adverse change in catalase, superoxide dismutase, glutathione reductase, glutathione peroxidase, and reduced glutathione level were observed in cardiac, hepatic, and brain tissues of As-administered animals. BEP significantly (p < 0.05) counteracted all the adverse changes in antioxidant defense system brought about by As administration. Based on these results, we consider BEP as a potent antioxidant to be used for protection from arsenic-induced oxidative stress related damage of vital organs.
Collapse
Affiliation(s)
- Vijay K Bharti
- Neurophysiology Laboratory Division of Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, 243122 Uttar Pradesh, India.
| | | | | | | |
Collapse
|
33
|
Azevedo Costa CL, Chaves IS, Ventura-Lima J, Ferreira JLR, Ferraz L, de Carvalho LM, Monserrat JM. In vitro evaluation of co-exposure of arsenium and an organic nanomaterial (fullerene, C₆₀) in zebrafish hepatocytes. Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:206-12. [PMID: 21889614 DOI: 10.1016/j.cbpc.2011.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/15/2011] [Accepted: 08/15/2011] [Indexed: 01/30/2023]
Abstract
Taking into account the concept of the "Trojan Horse", where contaminants may have its entry into specific organs potentiated by its association with nanomaterials, the aim of this study was to analyze the joint toxic effects induced by an organic nanomaterial, fullerene (C(60)) with the metalloid arsenic (As(III)). Hepatocytes of zebrafish Danio rerio were exposed to As(III) (2.5 or 100 μM), C(60) or As+C(60) for 4h, not altering cells viability. Intracellular reactive oxygen species concentration was reduced in cells exposed only to the C(60) (1mg/L) and in the treatment of 100 μM As(III)+C(60). Co-exposure with C(60) abolished the peak of the antioxidant glutathione (GSH) registered in cells exposed to the lowest As(III) concentration (2.5 μM). A similar result was observed in terms of lipid damage (TBARS). Total antioxidant capacity was significantly higher at both As(III) concentrations co-exposed to C(60) when compared with the control group. Activity of glutathione-S-transferase omega, a limiting enzyme in the methylation pathway of As(III), was reduced in the 100 μM As(III)+C(60) treatment. Cells co-exposed to C(60) had a significantly higher accumulation of As(III), showing a "Trojan Horse" effect which did not result in higher cell toxicity. Instead, co-exposure of As(III) with C(60) showed to reduce cellular injury.
Collapse
Affiliation(s)
- Carmen L Azevedo Costa
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
34
|
Messarah M, Saoudi M, Boumendjel A, Kadeche L, Boulakoud MS, Feki AE. Green tea extract alleviates arsenic-induced biochemical toxicity and lipid peroxidation in rats. Toxicol Ind Health 2012; 29:349-59. [DOI: 10.1177/0748233711433934] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The present work was undertaken to evaluate the protective effect of an aqueous extract of green tea (GT, Camellia sinensis) leaves against arsenic (NaAsO2)-induced biochemical toxicity and lipid peroxidation production in experimental rats. The treatment with arsenic exhibited a significant increase in some serum hepatic and renal biochemical parameters (alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total protein, albumin, bilirubin, cholesterol, urea and creatinine). But the co-administration of GT has increased the level of plasmatic concentration of biochemical parameters. Exposure of rats to arsenic caused also a significant increase in liver, kidney and testicular thiobarbituric acid reactive substances compared to control. However, the co-administration of GT was effective in reducing its level. To conclude, our data suggest that arsenic exposure enhanced an oxidative stress by disturbing the tissue antioxidant defense system, but the GT co-administration alleviates the toxicity induced by arsenic exposure.
Collapse
Affiliation(s)
- Mahfoud Messarah
- Animal Ecophysiology Laboratory, Faculty of Sciences, Badji Mokhtar University, Algeria
| | - Mongi Saoudi
- Animal Ecophysiology Laboratory, Faculty of Sciences, Sfax, Tunisia
| | - Amel Boumendjel
- Applied Biochemistry and Microbiology Laboratory, Faculty of Sciences, Badji Mokhtar University, Algeria
| | - Lilia Kadeche
- Animal Ecophysiology Laboratory, Faculty of Sciences, Badji Mokhtar University, Algeria
| | | | | |
Collapse
|
35
|
Bharti VK, Srivastava RS, Anand AK, Kusum K. Buffalo (Bubalus bubalis) epiphyseal proteins give protection from arsenic and fluoride-induced adverse changes in acetylcholinesterase activity in rats. J Biochem Mol Toxicol 2011; 26:10-5. [DOI: 10.1002/jbt.20407] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/07/2011] [Accepted: 07/22/2011] [Indexed: 11/10/2022]
|
36
|
Pari L, Mohamed Jalaludeen A. Protective role of sinapic acid against arsenic: induced toxicity in rats. Chem Biol Interact 2011; 194:40-7. [PMID: 21864513 DOI: 10.1016/j.cbi.2011.08.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/05/2011] [Accepted: 08/06/2011] [Indexed: 12/26/2022]
Abstract
Arsenic compounds are classified as toxicants and human carcinogens. Environmental exposure to arsenic imposes a big health issue worldwide. Sinapic acid is a phenylpropanoid compound and is found in various herbal materials and high-bran cereals. It has been reported that sinapic acid has antioxidant efficacy as metal chelators due to the orientation of functional groups. However, it has not yet been examined in experimental animals. In light of this fact, the purpose of this study was to characterize the protective role of sinapic acid against arsenic induced toxicity in rats. Rats were orally treated with arsenic alone (5mg/kg body weight (bw)/day) plus sinapic acid at different doses (10, 20 and 40mg/kg bw/day) for 30days. Hepatotoxicity was measured by the increased activities of serum hepatospecific enzymes namely aspartate transaminase, alanine transaminase, alkaline phosphatase, gamma glutamyl transferase, lactate dehydrogenase and total bilirubin along with increased elevation of lipid peroxidative markers, thiobarbituric acid reactive substances, lipid hydroperoxides, protein carbonyl content and conjugated dienes. The toxic effect of arsenic was also indicated by significantly decreased activities of enzymatic antioxidants like superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, glutathione reductase and glucose-6-phosphate dehydrogenase along with non-enzymatic antioxidant like reduced glutathione. Administration of sinapic acid exhibited significant reversal of arsenic induced toxicity in hepatic tissue. The effect at a dose of 40mg/kgbw/day was more pronounced than the other two doses (10 and 20mg/kgbw/day). All these changes were supported by reduction of arsenic concentration and histopathological observations of the liver. These results suggest that sinapic acid has a protective effect over arsenic induced toxicity in rat.
Collapse
Affiliation(s)
- L Pari
- Department of Biochemistry and Biotechnology, Annamalai University, Tamil Nadu, India.
| | | |
Collapse
|
37
|
Xi S, Guo L, Qi R, Sun W, Jin Y, Sun G. Prenatal and early life arsenic exposure induced oxidative damage and altered activities and mRNA expressions of neurotransmitter metabolic enzymes in offspring rat brain. J Biochem Mol Toxicol 2010; 24:368-78. [DOI: 10.1002/jbt.20349] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Saha S, Ghosh M. Ameliorative role of conjugated linolenic acid isomers against oxidative DNA damage induced by sodium arsenite in rat model. Food Chem Toxicol 2010; 48:3398-405. [DOI: 10.1016/j.fct.2010.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 08/13/2010] [Accepted: 09/07/2010] [Indexed: 11/26/2022]
|
39
|
Asit Kumar Bera, Rana T, Das S, Bhattacharya D, Pan D, Bandyopadhyay S, Subrata Kumar Das. Mitigation of arsenic-mediated renal oxidative stress in rat by Pleurotus florida lectin. Hum Exp Toxicol 2010; 30:940-51. [DOI: 10.1177/0960327110384521] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Oyster mushroom, Pleurotus florida is regarded as one of the popular food with biopharmaceutical properties. Here, the study aimed to investigate the antioxidative effects of mushroom (Pleurotus florida) lectin against arsenic-induced nephrotoxicity in rats. Animals were divided into four groups; Group 1 was control. Groups 2, 3 and 4 were exposed to arsenic (20 parts per million [ppm] in drinking water), arsenic plus oral supplementation of ascorbic acid (25 mg/kg body weight) and arsenic plus oral supplementation of mushroom lectin (150 mg/kg body weight) respectively. Both ascorbic acid and mushroom lectin prevented the arsenic-mediated growth retardation and normalized the elevated kidney weight. Disrupted activities of superoxide dismutase (SOD) and catalase (CAT) and enhanced lipid peroxidation (LPO), protein carbonyl (PC) and nitric oxides (NO) production in kidney caused by arsenic could also be maintained towards normalcy by supplementation of mushroom lectin and ascorbic acid. These antioxidative effects were exhibited in a time-dependant manner. Further, arsenic-mediated down-regulation of messenger RNA (mRNA) expression of superoxide dismutase 2 (SOD2) gene was obstructed by these agents. Thus it was found that mushroom lectin reversed the effect of arsenic-mediated oxidative stress in a time-dependent manner.
Collapse
Affiliation(s)
- Asit Kumar Bera
- Indian Veterinary Research Institute, Eastern Regional Station, Kolkata, India,
| | - Tanmoy Rana
- Indian Veterinary Research Institute, Eastern Regional Station, Kolkata, India
| | - Subhashree Das
- Indian Veterinary Research Institute, Eastern Regional Station, Kolkata, India
| | | | - Diganta Pan
- Indian Veterinary Research Institute, Eastern Regional Station, Kolkata, India
| | | | - Subrata Kumar Das
- Indian Veterinary Research Institute, Eastern Regional Station, Kolkata, India
| |
Collapse
|
40
|
Messarah M, Klibet F, Boumendjel A, Abdennour C, Bouzerna N, Boulakoud MS, El Feki A. Hepatoprotective role and antioxidant capacity of selenium on arsenic-induced liver injury in rats. ACTA ACUST UNITED AC 2010; 64:167-74. [PMID: 20851583 DOI: 10.1016/j.etp.2010.08.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 06/30/2010] [Accepted: 08/10/2010] [Indexed: 11/30/2022]
Abstract
The present study was undertaken to evaluate the protective effect of selenium against arsenic-induced oxidative damage in experimental rats. Males were randomly divided into four groups where the first was served as a control, whereas the remaining groups were respectively treated with sodium selenite (3 mg/kg b.w.), sodium arsenite (5.55 mg/kg b.w.) and a combination of sodium arsenite and sodium selenite. Changes in liver enzyme activities, thiobarbituric acid reactive substances (TBARS) level, antioxidants and reduced glutathione (GSH) contents were determined after 3 weeks experimental period. Exposure of rats to As caused a significant increase in liver TBARS compared to control, but the co-administration of Se was effective in reducing its level. The activities of glutathione peroxidase (GPx) and glutathione-S-transferase (GST) of As-treated group were found lower compared to the control and the Se-treated group. The co-administration of Se had an additive protective effect on liver enzyme activities compared to As-treated animals. On the other hand, a significant increase in plasmatic activities of AST, ALT and ALP was observed in As-treated group. The latter was also exhibited a decrease in body weight and an increase in liver weight compared to the control. The co-administration of Se has decreased the activities of AST, AST and ALP and improved the antioxidant status as well. Liver histological studies have confirmed the changes observed in biochemical parameters and proved the beneficial role of Se. To conclude, results suggest that As exposure enhanced an oxidative stress by disturbing the tissue antioxidant defense system, but the Se co-administration protected liver tissues against As intoxication probably owing to its antioxidant properties.
Collapse
Affiliation(s)
- Mahfoud Messarah
- Animal Ecophysiology Laboratory, Faculty of Sciences, Badji Mokhtar University, BP 12 Sidi Amar, Annaba, Algeria.
| | | | | | | | | | | | | |
Collapse
|
41
|
Rai A, Maurya SK, Khare P, Srivastava A, Bandyopadhyay S. Characterization of developmental neurotoxicity of As, Cd, and Pb mixture: synergistic action of metal mixture in glial and neuronal functions. Toxicol Sci 2010; 118:586-601. [PMID: 20829427 DOI: 10.1093/toxsci/kfq266] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neurotoxicity of individual metals is well investigated but that of metal mixture (MM), an environmental reality, in the developing brain is relatively obscure. We investigated the combinatorial effect of arsenic (As), cadmium (Cd), and lead (Pb) on rat brain development, spanning in utero to postnatal development. MM was administered by gavage to pregnant and lactating rats, and to postweaning pups till 2 months. The pups exhibited behavioral disturbances characterized by hyperlocomotion, increased grip strength, and learning-memory deficit. Disruption of the blood-brain barrier (BBB) was associated with dose-dependent increase in deposition of the metals in developing brain. Astrocytes were affected by MM treatment as evident from their reduced density, area, perimeter, compactness, and number of processes, and increased apoptosis in cerebral cortex and cerebellum. The metals induced synergistic reduction in glial fibrillary acidic protein (GFAP) expression during brain development; however, postweaning withdrawal of MM partially restored the levels of GFAP in adults. To characterize the toxic mechanism, we treated rat primary astrocytes with MM at concentrations ranging from lethal concentration (LC)(10) to LC(75) of the metals. We observed synergistic downregulation in viability and increase in apoptosis of the astrocytes, which were induced by proximal activation of extra cellular signal-regulated kinase (ERK) signaling and downstream activation of Jun N-terminal kinase (JNK) pathway. Furthermore, rise in intracellular calcium ion ([Ca(2+)](i)) and reactive oxygen species generation promoted apoptosis in the astrocytes. Taken together, these observations are the first to show that mixture of As, Cd, and Pb has the capacity to induce synergistic toxicity in astrocytes that may compromise the BBB and may cause behavioral dysfunction in developing rats.
Collapse
Affiliation(s)
- Asit Rai
- Developmental Toxicology Division, Indian Institute of Toxicology Research, Council of Scientific and Industrial Research, Lucknow 226001, India
| | | | | | | | | |
Collapse
|
42
|
Rana T, Bera AK, Das S, Bhattacharya D, Bandyopadhyay S, Pan D, Kumar Das S. Effect of chronic intake of arsenic-contaminated water on blood oxidative stress indices in cattle in an arsenic-affected zone. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2010; 73:1327-1332. [PMID: 20655591 DOI: 10.1016/j.ecoenv.2010.06.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 06/01/2010] [Accepted: 06/05/2010] [Indexed: 05/29/2023]
Abstract
This study aimed to determine the hemato-biochemical picture and blood oxidative stress in zebu cattle in an arsenic-contaminated zone. Significant decline in total erythrocyte count, packed cell volume, and total plasma protein was observed in cattle of that area in comparison to uncontaminated zone. There was significant elevation of plasma enzyme activities of both alanine aminotransaminase and aspertate aminotransaminase. Increased corpuscular osmotic fragility also proved to be a mechanism for deviation from normal functioning of erythrocytes. Cattle in the affected zone showed a significantly higher arsenic burden in blood. Those animals further showed decreased superoxide dismutase, catalase activities of erythrocytes, and plasma nitrite level, but increased lipid peroxidation and protein carbonyl level. Our finding concluded that cattle of the arsenic-contaminated zone is suffering from a subclinical form of arsenic toxicity, which is proved through altered hemato-biochemical indices and a certain extent of oxidative stress with higher arsenic concentration in blood.
Collapse
Affiliation(s)
- Tanmoy Rana
- Indian Veterinary Research Institute, Eastern Regional Station, 37, Belgachia Road, Kolkata 700 037, India
| | | | | | | | | | | | | |
Collapse
|
43
|
Torres-Avila M, Leal-Galicia P, Sánchez-Peña LC, Del Razo LM, Gonsebatt ME. Arsenite induces aquaglyceroporin 9 expression in murine livers. ENVIRONMENTAL RESEARCH 2010; 110:443-447. [PMID: 19733843 DOI: 10.1016/j.envres.2009.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 08/05/2009] [Accepted: 08/11/2009] [Indexed: 05/28/2023]
Abstract
Mice exposed to sodium arsenite show a dose-related accumulation of inorganic arsenic (iAs) and its methylated metabolites in the liver. While the accumulation of iAs forms increased linearly with dose in liver cells, a different pattern was observed in other tissues such as the brain and lung, as well as in the peripheral nerves of the rat. As such, trivalent iAs enters the cells, using aquaglyceroporin transporters to modulate cell arsenic accumulation and cytotoxicity. We investigated here if the dose-related accumulation of arsenic in the liver was related to the expression of aquaglyceroporin 9 (AQP9) in the same organ. CD1 male mice were treated with different concentrations (0, 2.5, 5 or 10mg/kg/day) of sodium arsenite during 1, 3 or 9 days. A significant dose-related, up-regulation of AQP9 mRNA and protein was observed and which was verified by immunohistochemistry in liver sections using specific antibodies. The increased transcription of AQP9 has been observed in fasting and diabetic rats, suggesting that this channel could play a role in the diabetogenic effect of arsenic.
Collapse
Affiliation(s)
- Manuel Torres-Avila
- Dep de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, A.P. 70-228, Ciudad Universitaria, 04510 México D.F., Mexico
| | | | | | | | | |
Collapse
|
44
|
Effect of ascorbic acid on blood oxidative stress in experimental chronic arsenicosis in rodents. Food Chem Toxicol 2010; 48:1072-7. [DOI: 10.1016/j.fct.2010.01.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 12/22/2009] [Accepted: 01/27/2010] [Indexed: 11/23/2022]
|
45
|
Yadav RS, Sankhwar ML, Shukla RK, Chandra R, Pant AB, Islam F, Khanna VK. Attenuation of arsenic neurotoxicity by curcumin in rats. Toxicol Appl Pharmacol 2009; 240:367-76. [DOI: 10.1016/j.taap.2009.07.017] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 07/15/2009] [Accepted: 07/15/2009] [Indexed: 12/22/2022]
|
46
|
Flora SJ, Bhatt K, Mehta A. Arsenic moiety in gallium arsenide is responsible for neuronal apoptosis and behavioral alterations in rats. Toxicol Appl Pharmacol 2009; 240:236-44. [DOI: 10.1016/j.taap.2009.05.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 05/10/2009] [Accepted: 05/12/2009] [Indexed: 10/20/2022]
|
47
|
Abstract
Arsenic, which is commonly found in drinking water, is a potent toxicant, but little is known about its effects on maternal health. Arsenic's modes of action include enzyme inhibition and oxidative stress as well as immune, endocrine, and epigenetic effects. A couple of studies reported increased blood pressure and anemia during pregnancy. Susceptibility to arsenic is dependent on the biomethylation, which occurs via one-carbon metabolism. Methylarsonic acid and dimethylarsinic acid are main metabolites in urine, and elevated methylarsonic acid is considered a general risk factor. Arsenic easily passes the placenta, and a few human studies indicate a moderately increased risk of impaired fetal growth and increased fetal and infant mortality. The fetus and infant are probably partly protected by the increased methylation of arsenic during pregnancy and lactation; the infant is also protected by low arsenic excretion in breast milk. Early-life exposure may induce changes that will become apparent much later in life.
Collapse
Affiliation(s)
- Marie Vahter
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
48
|
Sharma A, Sharma MK, Kumar M. Modulatory role of Emblica officinalis fruit extract against arsenic induced oxidative stress in Swiss albino mice. Chem Biol Interact 2009; 180:20-30. [DOI: 10.1016/j.cbi.2009.01.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 01/22/2009] [Accepted: 01/23/2009] [Indexed: 10/21/2022]
|
49
|
Xi S, Sun W, Wang F, Jin Y, Sun G. Transplacental and early life exposure to inorganic arsenic affected development and behavior in offspring rats. Arch Toxicol 2009; 83:549-56. [DOI: 10.1007/s00204-009-0403-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 01/15/2009] [Indexed: 11/29/2022]
|
50
|
Krüger K, Straub H, Hirner AV, Hippler J, Binding N, Musshoff U. Effects of monomethylarsonic and monomethylarsonous acid on evoked synaptic potentials in hippocampal slices of adult and young rats. Toxicol Appl Pharmacol 2009; 236:115-23. [PMID: 19371632 DOI: 10.1016/j.taap.2008.12.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 12/03/2008] [Accepted: 12/22/2008] [Indexed: 11/27/2022]
Abstract
Arsenite and its metabolites, dimethylarsinic or dimethylarsinous acid, have previously been shown to disturb synaptic transmission in hippocampal slices of rats (Krüger, K., Gruner, J., Madeja, M., Hartmann, L.M., Hirner, A.V., Binding, N., Mubetahoff, U., 2006a. Blockade and enhancement of glutamate receptor responses in Xenopus oocytes by methylated arsenicals. Arch. Toxicol. 80, 492-501, Krüger, K., Straub, H., Binding, N., Mubetahoff, U., 2006b. Effects of arsenite on long-term potentiation in hippocampal slices from adult and young rats. Toxicol. Lett. 165, 167-173, Krüger, K., Repges, H., Hippler, J., Hartmann, L.M., Hirner, A.V., Straub, H., Binding, N., Mubetahoff, U., 2007. Effects of dimethylarsinic and dimethylarsinous acid on evoked synaptic potentials in hippocampal slices of young and adult rats. Toxicol. Appl. Pharmacol. 225, 40-46). The present experiments investigate, whether the important arsenic metabolites monomethylarsonic acid (MMA(V)) and monomethylarsonous acid (MMA(III)) also influence the synaptic functions of the hippocampus. In hippocampal slices of young (14-21 days-old) and adult (2-4 months-old) rats, evoked synaptic field potentials from the Schaffer collateral-CA1 synapse were measured under control conditions and during and after 30 and 60 min of application of the arsenic compounds. MMA(V) had no effect on the synapse functions neither in slices of adult nor in those from young rats. However, MMA(III) strongly influenced the synaptic transmission: it totally depressed the amplitudes of fEPSPs at concentrations of 50 micromol/l (adult rats) and 25 micromol/l (young rats) and LTP amplitudes at concentrations of 25 micromol/l (adult rats) and 10 micromol/l (young rats), respectively. In contrast, application of 1 micromol/l MMA(III) led to an enhancement of the LTP amplitude in young rats, which is interpretable by an enhancing effect on NMDA receptors and a lack of the blocking effect on AMPA receptors at this concentration (Krüger, K., Gruner, J., Madeja, M., Hartmann, L.M., Hirner, A.V., Binding, N., Mubetahoff, U., 2006a. Blockade and enhancement of glutamate receptor responses in Xenopus oocytes by methylated arsenicals. Arch. Toxicol. 80, 492-501). These effects are probably not mediated by changes in cell excitability or in presynaptic glutamate release rates, since antidromically induced population spikes and paired-pulse facilitation failed to show any MMA(III) effect. The impairment of the excitatory CA1 synapse is more likely caused by the action of MMA(III) on postsynaptic glutamatergic receptors and may be jointly responsible for dysfunctions of cognitive effects in arsenic toxicity.
Collapse
Affiliation(s)
- Katharina Krüger
- Institut für Physiologie I, Universitätsklinikum Münster, Robert-Koch-Strabetae 27a, D-48149 Münster, Germany.
| | | | | | | | | | | |
Collapse
|