1
|
Yotova AY, Li LL, O'Leary A, Tegeder I, Reif A, Courtney MJ, Slattery DA, Freudenberg F. Synaptic proteome perturbations after maternal immune activation: Identification of embryonic and adult hippocampal changes. Brain Behav Immun 2024; 121:351-364. [PMID: 39089536 DOI: 10.1016/j.bbi.2024.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/10/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Maternal immune activation (MIA) triggers neurobiological changes in offspring, potentially reshaping the molecular synaptic landscape, with the hippocampus being particularly vulnerable. However, critical details regarding developmental timing of these changes and whether they differ between males and females remain unclear. METHODS We induced MIA in C57BL/6J mice on gestational day nine using the viral mimetic poly(I:C) and performed mass spectrometry-based proteomic analyses on hippocampal synaptoneurosomes of embryonic (E18) and adult (20 ± 1 weeks) MIA offspring. RESULTS In the embryonic synaptoneurosomes, MIA led to lipid, polysaccharide, and glycoprotein metabolism pathway disruptions. In the adult synaptic proteome, we observed a dynamic shift toward transmembrane trafficking, intracellular signalling cascades, including cell death and growth, and cytoskeletal organisation. In adults, many associated pathways overlapped between males and females. However, we found distinct sex-specific enrichment of dopaminergic and glutamatergic pathways. We identified 50 proteins altered by MIA in both embryonic and adult samples (28 with the same directionality), mainly involved in presynaptic structure and synaptic vesicle function. We probed human phenome-wide association study data in the cognitive and psychiatric domains, and 49 of the 50 genes encoding these proteins were significantly associated with the investigated phenotypes. CONCLUSIONS Our data emphasise the dynamic effects of viral-like MIA on developing and mature hippocampi and provide novel targets for study following prenatal immune challenges. The 22 proteins that changed directionality from the embryonic to adult hippocampus, suggestive of compensatory over-adaptions, are particularly attractive for future investigations.
Collapse
Affiliation(s)
- Anna Y Yotova
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany; Goethe University Frankfurt, Faculty of Biological Sciences, Institute of Cell Biology and Neuroscience, Frankfurt, Germany
| | - Li-Li Li
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Turku Brain and Mind Center, University of Turku and Åbo Akademi University, 20014 Turku, Finland
| | - Aet O'Leary
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany; Department of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Irmgard Tegeder
- Goethe University Frankfurt, Faculty of Medicine, Institute of Clinical Pharmacology, Frankfurt, Germany
| | - Andreas Reif
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Michael J Courtney
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Turku Brain and Mind Center, University of Turku and Åbo Akademi University, 20014 Turku, Finland
| | - David A Slattery
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany
| | - Florian Freudenberg
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany; Goethe University Frankfurt, Faculty of Biological Sciences, Institute of Cell Biology and Neuroscience, Frankfurt, Germany.
| |
Collapse
|
2
|
Groh AMR, Caporicci-Dinucci N, Afanasiev E, Bigotte M, Lu B, Gertsvolf J, Smith MD, Garton T, Callahan-Martin L, Allot A, Hatrock DJ, Mamane V, Drake S, Tai H, Ding J, Fournier AE, Larochelle C, Calabresi PA, Stratton JA. Ependymal cells undergo astrocyte-like reactivity in response to neuroinflammation. J Neurochem 2024; 168:3449-3466. [PMID: 38702968 DOI: 10.1111/jnc.16120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 05/06/2024]
Abstract
Ependymal cells form a specialized brain-cerebrospinal fluid (CSF) interface and regulate local CSF microcirculation. It is becoming increasingly recognized that ependymal cells assume a reactive state in response to aging and disease, including conditions involving hypoxia, hydrocephalus, neurodegeneration, and neuroinflammation. Yet what transcriptional signatures govern these reactive states and whether this reactivity shares any similarities with classical descriptions of glial reactivity (i.e., in astrocytes) remain largely unexplored. Using single-cell transcriptomics, we interrogated this phenomenon by directly comparing the reactive ependymal cell transcriptome to the reactive astrocyte transcriptome using a well-established model of autoimmune-mediated neuroinflammation (MOG35-55 EAE). In doing so, we unveiled core glial reactivity-associated genes that defined the reactive ependymal cell and astrocyte response to MOG35-55 EAE. Interestingly, known reactive astrocyte genes from other CNS injury/disease contexts were also up-regulated by MOG35-55 EAE ependymal cells, suggesting that this state may be conserved in response to a variety of pathologies. We were also able to recapitulate features of the reactive ependymal cell state acutely using a classic neuroinflammatory cocktail (IFNγ/LPS) both in vitro and in vivo. Taken together, by comparing reactive ependymal cells and astrocytes, we identified a conserved signature underlying glial reactivity that was present in several neuroinflammatory contexts. Future work will explore the mechanisms driving ependymal reactivity and assess downstream functional consequences.
Collapse
Affiliation(s)
- Adam M R Groh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, Quebec, Canada
| | - Nina Caporicci-Dinucci
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, Quebec, Canada
| | - Elia Afanasiev
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, Quebec, Canada
| | - Maxime Bigotte
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, Quebec, Canada
| | - Brianna Lu
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, Quebec, Canada
| | - Joshua Gertsvolf
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, Quebec, Canada
| | - Matthew D Smith
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thomas Garton
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Liam Callahan-Martin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, Quebec, Canada
| | - Alexis Allot
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, Quebec, Canada
| | - Dale J Hatrock
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, Quebec, Canada
| | - Victoria Mamane
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Sienna Drake
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, Quebec, Canada
| | - Huilin Tai
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada
- Department of Medicine, McGill University Health Centre, Montréal, Quebec, Canada
| | - Jun Ding
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada
- Department of Medicine, McGill University Health Centre, Montréal, Quebec, Canada
| | - Alyson E Fournier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, Quebec, Canada
| | - Catherine Larochelle
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Peter A Calabresi
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
3
|
Takeda A, Tamano H. Insight into brain metallothioneins from bidirectional Zn2+ signaling in synaptic dynamics. Metallomics 2024; 16:mfae039. [PMID: 39223100 DOI: 10.1093/mtomcs/mfae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/01/2024] [Indexed: 09/04/2024]
Abstract
The basal levels as the labile Zn2+ pools in the extracellular and intracellular compartments are in the range of ∼10 nM and ∼100 pM, respectively. The influx of extracellular Zn2+ is used for memory via cognitive activity and is regulated for synaptic plasticity, a cellular mechanism of memory. When Zn2+ influx into neurons excessively occurs, however, it becomes a critical trigger for cognitive decline and neurodegeneration, resulting in acute and chronic pathogenesis. Aging, a biological process, generally accelerates vulnerability to neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). The basal level of extracellular Zn2+ is age relatedly increased in the rat hippocampus, and the influx of extracellular Zn2+ contributes to accelerating vulnerability to the AD and PD pathogenesis in experimental animals with aging. Metallothioneins (MTs) are Zn2+-binding proteins for cellular Zn2+ homeostasis and involved in not only supplying functional Zn2+ required for cognitive activity, but also capturing excess (toxic) Zn2+ involved in cognitive decline and neurodegeneration. Therefore, it is estimated that regulation of MT synthesis is involved in both neuronal activity and neuroprotection. The present report provides recent knowledge regarding the protective/preventive potential of MT synthesis against not only normal aging but also the AD and PD pathogenesis in experimental animals, focused on MT function in bidirectional Zn2+ signaling in synaptic dynamics.
Collapse
Affiliation(s)
- Atsushi Takeda
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Haruna Tamano
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
- Shizuoka Tohto Medical College, 1949 Minamiema, Izunokuni, Shizuoka 410-2221, Japan
| |
Collapse
|
4
|
Navarro-Sempere A, Martínez-Peinado P, Rodrigues AS, Garcia PV, Camarinho R, Grindlay G, Gras L, García M, Segovia Y. Metallothionein expression in the central nervous system in response to chronic heavy metal exposure: possible neuroprotective mechanism. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8257-8269. [PMID: 37580456 PMCID: PMC10611846 DOI: 10.1007/s10653-023-01722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023]
Abstract
It has been reported that volcanoes release several tonnes of mercury per year among other heavy metals through eruptions, fumaroles, or diffuse soil degassing. Since a high percentage of the world's population lives in the vicinity of an active volcano, the aim of this study is to evaluate the accumulation of these metals in the central nervous system and the presence of cellular mechanisms of heavy metal detoxification such as metallothioneins. To carry out this study, wild mice (Mus musculus) chronically exposed to an active volcanic environment were captured in Furnas village (Azores, Portugal) and compared with those trapped in a reference area (Rabo de Peixe, Azores, Portugal). On the one hand, the heavy metal load has been evaluated by analyzing brain and cerebellum using ICP-MS and a mercury analyzer and on the other hand, the presence of metallothionein 2A has been studied by immunofluorescence assays. Our results show a higher load of metals such as mercury, cadmium and lead in the central nervous system of exposed mice compared to non-exposed individuals and, in addition, a higher immunoreactivity for metallothionein 2A in different areas of the cerebrum and cerebellum indicating a possible neuroprotection process.
Collapse
Affiliation(s)
- A Navarro-Sempere
- Department of Biotechnology, Faculty of Science, University of Alicante, Apartado 99, 03080, Alicante, Spain
| | - P Martínez-Peinado
- Department of Biotechnology, Faculty of Science, University of Alicante, Apartado 99, 03080, Alicante, Spain
| | - A S Rodrigues
- Faculty of Sciences and Technology, University of the Azores, 9501-801, Ponta Delgada, Portugal
- IVAR, Research Institute for Volcanology and Risk Assessment, University of the Azores, 9501-801, Ponta Delgada, Portugal
| | - P V Garcia
- Faculty of Sciences and Technology, University of the Azores, 9501-801, Ponta Delgada, Portugal
- Centre for Ecology, Evolution and Environmental Changes and Azorean Biodiversity Group, CE3c, University of the Azores, 9501-801, Ponta Delgada, Portugal
| | - R Camarinho
- Faculty of Sciences and Technology, University of the Azores, 9501-801, Ponta Delgada, Portugal
- IVAR, Research Institute for Volcanology and Risk Assessment, University of the Azores, 9501-801, Ponta Delgada, Portugal
| | - G Grindlay
- Department of Analytical Chemistry, Nutrition and Food Sciences, University of Alicante, PO Box 99, 03080, Alicante, Spain
| | - L Gras
- Department of Analytical Chemistry, Nutrition and Food Sciences, University of Alicante, PO Box 99, 03080, Alicante, Spain
| | - M García
- Department of Biotechnology, Faculty of Science, University of Alicante, Apartado 99, 03080, Alicante, Spain
| | - Y Segovia
- Department of Biotechnology, Faculty of Science, University of Alicante, Apartado 99, 03080, Alicante, Spain.
| |
Collapse
|
5
|
Apostolopoulou EP, Raikos N, Vlemmas I, Michaelidis E, Brellou GD. Metallothionein I/II Expression and Metal Ion Levels in Correlation with Amyloid Beta Deposits in the Aged Feline Brain. Brain Sci 2023; 13:1115. [PMID: 37509045 PMCID: PMC10377600 DOI: 10.3390/brainsci13071115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Brain aging has been correlated with high metallothionein I-II (MT-I/II) expression, iron and zinc dyshomeostasis, and Aβ deposition in humans and experimental animals. In the present study, iron and zinc accumulation, the expression of MT-I/II and Aβ42, and their potential association with aging in the feline brain were assessed. Tissue sections from the temporal and frontal grey (GM) and white (WM) matter, hippocampus, thalamus, striatum, cerebellum, and dentate nucleus were examined histochemically for the presence of age-related histopathological lesions and iron deposits and distribution. We found, using a modified Perl's/DAB method, two types of iron plaques that showed age-dependent accumulation in the temporal GM and WM and the thalamus, along with the age-dependent increment in cerebellar-myelin-associated iron. We also demonstrated an age-dependent increase in MT-I/II immunoreactivity in the feline brain. In cats over 7 years old, Aβ immunoreactivity was detected in vessel walls and neuronal somata; extracellular Aβ deposits were also evident. Interestingly, Aβ-positive astrocytes were also observed in certain cases. ICP-MS analysis of brain content regarding iron and zinc concentrations showed no statistically significant association with age, but a mild increase in iron with age was noticed, while zinc levels were found to be higher in the Mature and Senior groups. Our findings reinforce the suggestion that cats could serve as a dependable natural animal model for brain aging and neurodegeneration; thus, they should be further investigated on the basis of metal ion concentration changes and their effects on aging.
Collapse
Affiliation(s)
- Emmanouela P Apostolopoulou
- Department of Pathology, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece
| | - Nikolaos Raikos
- Department of Forensic Medicine & Toxicology, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Vlemmas
- Department of Pathology, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece
| | - Efstratios Michaelidis
- Laboratories of the 3rd Army Veterinary Hospital, Chemical Department, 57001 Thessaloniki, Greece
| | - Georgia D Brellou
- Department of Pathology, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece
| |
Collapse
|
6
|
The Relationships Among Metal Homeostasis, Mitochondria, and Locus Coeruleus in Psychiatric and Neurodegenerative Disorders: Potential Pathogenetic Mechanism and Therapeutic Implications. Cell Mol Neurobiol 2023; 43:963-989. [PMID: 35635600 DOI: 10.1007/s10571-022-01234-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/15/2022] [Indexed: 11/03/2022]
Abstract
While alterations in the locus coeruleus-noradrenergic system are present during early stages of neuropsychiatric disorders, it is unclear what causes these changes and how they contribute to other pathologies in these conditions. Data suggest that the onset of major depressive disorder and schizophrenia is associated with metal dyshomeostasis that causes glial cell mitochondrial dysfunction and hyperactivation in the locus coeruleus. The effect of the overactive locus coeruleus on the hippocampus, amygdala, thalamus, and prefrontal cortex can be responsible for some of the psychiatric symptoms. Although locus coeruleus overactivation may diminish over time, neuroinflammation-induced alterations are presumably ongoing due to continued metal dyshomeostasis and mitochondrial dysfunction. In early Alzheimer's and Parkinson's diseases, metal dyshomeostasis and mitochondrial dysfunction likely induce locus coeruleus hyperactivation, pathological tau or α-synuclein formation, and neurodegeneration, while reduction of glymphatic and cerebrospinal fluid flow might be responsible for β-amyloid aggregation in the olfactory regions before the onset of dementia. It is possible that the overactive noradrenergic system stimulates the apoptosis signaling pathway and pathogenic protein formation, leading to further pathological changes which can occur in the presence or absence of locus coeruleus hypoactivation. Data are presented in this review indicating that although locus coeruleus hyperactivation is involved in pathological changes at prodromal and early stages of these neuropsychiatric disorders, metal dyshomeostasis and mitochondrial dysfunction are critical factors in maintaining ongoing neuropathology throughout the course of these conditions. The proposed mechanistic model includes multiple pharmacological sites that may be targeted for the treatment of neuropsychiatric disorders commonly.
Collapse
|
7
|
Impact of the Voltage-Gated Calcium Channel Antagonist Nimodipine on the Development of Oligodendrocyte Precursor Cells. Int J Mol Sci 2023; 24:ijms24043716. [PMID: 36835129 PMCID: PMC9960570 DOI: 10.3390/ijms24043716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). While most of the current treatment strategies focus on immune cell regulation, except for the drug siponimod, there is no therapeutic intervention that primarily aims at neuroprotection and remyelination. Recently, nimodipine showed a beneficial and remyelinating effect in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Nimodipine also positively affected astrocytes, neurons, and mature oligodendrocytes. Here we investigated the effects of nimodipine, an L-type voltage-gated calcium channel antagonist, on the expression profile of myelin genes and proteins in the oligodendrocyte precursor cell (OPC) line Oli-Neu and in primary OPCs. Our data indicate that nimodipine does not have any effect on myelin-related gene and protein expression. Furthermore, nimodipine treatment did not result in any morphological changes in these cells. However, RNA sequencing and bioinformatic analyses identified potential micro (mi)RNA that could support myelination after nimodipine treatment compared to a dimethyl sulfoxide (DMSO) control. Additionally, we treated zebrafish with nimodipine and observed a significant increase in the number of mature oligodendrocytes (* p≤ 0.05). Taken together, nimodipine seems to have different positive effects on OPCs and mature oligodendrocytes.
Collapse
|
8
|
Martin Molinero GD, Boldrini GG, Pérez Chaca MV, Moyano MF, Armonelli Fiedler S, Giménez MS, Gómez NN, López PHH, Álvarez SM. A soybean based-diet prevents Cadmium access to rat cerebellum, maintaining trace elements homeostasis and avoiding morphological alterations. Biometals 2023; 36:67-96. [PMID: 36374356 DOI: 10.1007/s10534-022-00462-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022]
Abstract
Cadmium (Cd) is one of the most dangerous heavy metals that exists. A prolonged exposure to Cd causes toxic effects in a variety of tissues, including Central Nervous System (CNS), where it can penetrate the Blood Brain Barrier (BBB). Cd exposure has been linked to neurotoxicity and neurodegenerative diseases. Soy isoflavones have a strong antioxidant capacity, and they have been shown to have positive effects on cognitive function in females. However, the mechanisms underlying Cd neurotoxicity remain completely unresolved. The purpose of this study was to characterize the potential protective effect of a soy-based diet vs. a casein-based diet against Cd toxicity in rat cerebellum. Female Wistar rats were fed with casein (Cas) or soybean (So) as protein sources for 60 days. Simultaneously, half of the animals were administered either 15 ppm of Cadmium (CasCd and SoCd groups) in water or regular tap water as control (Cas and So groups). We analyzed Cd exposure effects on trace elements, oxidative stress, cell death markers, GFAP expression and the histoarchitecture of rat cerebellum. We found that Cd tissue content only augmented in the Cas intoxicated group. Zn, Cu, Mn and Se levels showed modifications among the different diets. Expression of Nrf-2 and the activities of CAT and GPx decreased in Cas and So intoxicated groups,while 3-NT expression increased only in the CasCd group. Morphometry analyses revealed alterations in the purkinje and granular cells morphology, decreased number of granular cells and reduced thickness of the granular layer in Cd-intoxicated rats, whereas no alterations were observed in animals under a So diet. In addition, mRNA expression of apoptotic markers BAX/Bcl-2 ratio and p53 expression increased only in the CasCd group, a finding confirmed by positive TUNEL staining in the cerebellum granule cell layer in the same group. Also, Cd intoxication elicited overexpression of GFAP by astrocytes, which was prevented by soy. White matter alterations were only subtle and characterized by intramyelinic edema in the CasCd group. Overall, these results unmask an irreversible toxic effect of a subchronic Cd intoxication on the cerebellum, and identify a protective role by a soy-based diet with potential as a therapeutic strategy for those individuals exposed to this dangerous environmental contaminant.
Collapse
Affiliation(s)
- Glenda Daniela Martin Molinero
- Laboratory of Nutrition, Environment and Cell Metabolism, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, Argentina and IMIBIO-SL CONICET, San Luis, Argentina
- IMIBIO-SL CONICET, San Luis, Argentina
| | - Gabriel Giezi Boldrini
- Laboratory of Nutrition, Environment and Cell Metabolism, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, Argentina and IMIBIO-SL CONICET, San Luis, Argentina
- IMIBIO-SL CONICET, San Luis, Argentina
| | - María Verónica Pérez Chaca
- Laboratory of Morphophysiology, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina
| | - Mario Franco Moyano
- INQUISAL CONICET, Institute of Chemistry, Analytical Chemistry Area, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina
| | - Samanta Armonelli Fiedler
- Departamento de Química Biológica "Dr Ranwel Caputto"-CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Sofía Giménez
- Laboratory of Nutrition, Environment and Cell Metabolism, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, Argentina and IMIBIO-SL CONICET, San Luis, Argentina
- IMIBIO-SL CONICET, San Luis, Argentina
| | - Nidia Noemí Gómez
- IMIBIO-SL CONICET, San Luis, Argentina
- Laboratory of Morphophysiology, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina
| | - Pablo Héctor Horacio López
- Departamento de Química Biológica "Dr Ranwel Caputto"-CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Silvina Mónica Álvarez
- Laboratory of Nutrition, Environment and Cell Metabolism, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, Argentina and IMIBIO-SL CONICET, San Luis, Argentina.
- IMIBIO-SL CONICET, San Luis, Argentina.
| |
Collapse
|
9
|
Wahyudi LD, Yu SH, Cho MK. The effect of curcumin on the cadmium-induced mitochondrial apoptosis pathway by metallothionein 2A regulation. Life Sci 2022; 310:121076. [DOI: 10.1016/j.lfs.2022.121076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/01/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
|
10
|
Impact of Zinc on Oxidative Signaling Pathways in the Development of Pulmonary Vasoconstriction Induced by Hypobaric Hypoxia. Int J Mol Sci 2022; 23:ijms23136974. [PMID: 35805984 PMCID: PMC9266543 DOI: 10.3390/ijms23136974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Hypobaric hypoxia is a condition that occurs at high altitudes (>2500 m) where the partial pressure of gases, particularly oxygen (PO2), decreases. This condition triggers several physiological and molecular responses. One of the principal responses is pulmonary vascular contraction, which seeks to optimize gas exchange under this condition, known as hypoxic pulmonary vasoconstriction (HPV); however, when this physiological response is exacerbated, it contributes to the development of high-altitude pulmonary hypertension (HAPH). Increased levels of zinc (Zn2+) and oxidative stress (known as the “ROS hypothesis”) have been demonstrated in the vasoconstriction process. Therefore, the aim of this review is to determine the relationship between molecular pathways associated with altered Zn2+ levels and oxidative stress in HPV in hypobaric hypoxic conditions. The results indicate an increased level of Zn2+, which is related to increasing mitochondrial ROS (mtROS), alterations in nitric oxide (NO), metallothionein (MT), zinc-regulated, iron-regulated transporter-like protein (ZIP), and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-induced protein kinase C epsilon (PKCε) activation in the development of HPV. In conclusion, there is an association between elevated Zn2+ levels and oxidative stress in HPV under different models of hypoxia, which contribute to understanding the molecular mechanism involved in HPV to prevent the development of HAPH.
Collapse
|
11
|
Mehlenbacher MR, Elsiesy R, Lakha R, Villones RLE, Orman M, Vizcarra CL, Meloni G, Wilcox DE, Austin RN. Metal binding and interdomain thermodynamics of mammalian metallothionein-3: enthalpically favoured Cu + supplants entropically favoured Zn 2+ to form Cu 4 + clusters under physiological conditions. Chem Sci 2022; 13:5289-5304. [PMID: 35655557 PMCID: PMC9093145 DOI: 10.1039/d2sc00676f] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/01/2022] [Indexed: 01/02/2023] Open
Abstract
Metallothioneins (MTs) are a ubiquitous class of small metal-binding proteins involved in metal homeostasis and detoxification. While known for their high affinity for d10 metal ions, there is a surprising dearth of thermodynamic data on metals binding to MTs. In this study, Zn2+ and Cu+ binding to mammalian metallothionein-3 (MT-3) were quantified at pH 7.4 by isothermal titration calorimetry (ITC). Zn2+ binding was measured by chelation titrations of Zn7MT-3, while Cu+ binding was measured by Zn2+ displacement from Zn7MT-3 with competition from glutathione (GSH). Titrations in multiple buffers enabled a detailed analysis that yielded condition-independent values for the association constant (K) and the change in enthalpy (ΔH) and entropy (ΔS) for these metal ions binding to MT-3. Zn2+ was also chelated from the individual α and β domains of MT-3 to quantify the thermodynamics of inter-domain interactions in metal binding. Comparative titrations of Zn7MT-2 with Cu+ revealed that both MT isoforms have similar Cu+ affinities and binding thermodynamics, indicating that ΔH and ΔS are determined primarily by the conserved Cys residues. Inductively coupled plasma mass spectrometry (ICP-MS) analysis and low temperature luminescence measurements of Cu-replete samples showed that both proteins form two Cu4 +-thiolate clusters when Cu+ displaces Zn2+ under physiological conditions. Comparison of the Zn2+ and Cu+ binding thermodynamics reveal that enthalpically-favoured Cu+, which forms Cu4 +-thiolate clusters, displaces the entropically-favoured Zn2+. These results provide a detailed thermodynamic analysis of d10 metal binding to these thiolate-rich proteins and quantitative support for, as well as molecular insight into, the role that MT-3 plays in the neuronal chemistry of copper.
Collapse
Affiliation(s)
| | - Rahma Elsiesy
- Department of Chemistry, Barnard College of Columbia University New York NY 10027 USA
| | - Rabina Lakha
- Department of Chemistry, Barnard College of Columbia University New York NY 10027 USA
| | - Rhiza Lyne E Villones
- Department of Chemistry and Biochemistry, University of Texas at Dallas Richardson TX 75080 USA
| | - Marina Orman
- Department of Chemistry, Barnard College of Columbia University New York NY 10027 USA
| | - Christina L Vizcarra
- Department of Chemistry, Barnard College of Columbia University New York NY 10027 USA
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry, University of Texas at Dallas Richardson TX 75080 USA
| | - Dean E Wilcox
- Department of Chemistry, Dartmouth College Hanover NH 03755 USA
| | - Rachel N Austin
- Department of Chemistry, Barnard College of Columbia University New York NY 10027 USA
| |
Collapse
|
12
|
Smit T, Ormel PR, Sluijs JA, Hulshof LA, Middeldorp J, de Witte LD, Hol EM, Donega V. Transcriptomic and functional analysis of Aβ 1-42 oligomer-stimulated human monocyte-derived microglia-like cells. Brain Behav Immun 2022; 100:219-230. [PMID: 34896594 DOI: 10.1016/j.bbi.2021.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/19/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Dysregulation of microglial function contributes to Alzheimer's disease (AD) pathogenesis. Several genetic and transcriptome studies have revealed microglia specific genetic risk factors, and changes in microglia expression profiles in AD pathogenesis, viz. the human-Alzheimer's microglia/myeloid (HAM) profile in AD patients and the disease-associated microglia profile (DAM) in AD mouse models. The transcriptional changes involve genes in immune and inflammatory pathways, and in pathways associated with Aβ clearance. Aβ oligomers have been suggested to be the initial trigger of microglia activation in AD. To study the direct response to Aβ oligomers exposure, we assessed changes in gene expression in an in vitro model for microglia, the human monocyte-derived microglial-like (MDMi) cells. We confirmed the initiation of an inflammatory profile following LPS stimulation, based on increased expression of IL1B, IL6, and TNFα. In contrast, the Aβ1-42 oligomers did not induce an inflammatory profile or a classical HAM profile. Interestingly, we observed a specific increase in the expression of metallothioneins in the Aβ1-42 oligomer treated MDMi cells. Metallothioneins are involved in metal ion regulation, protection against reactive oxygen species, and have anti-inflammatory properties. In conclusion, our data suggests that exposure to Aβ1-42 oligomers may initially trigger a protective response in vitro.
Collapse
Affiliation(s)
- Tamar Smit
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Paul R Ormel
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Jacqueline A Sluijs
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Lianne A Hulshof
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Jinte Middeldorp
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Lot D de Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elly M Hol
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands.
| | - Vanessa Donega
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
13
|
Adhikari UK, Sakiz E, Habiba U, Mikhael M, Senesi M, David MA, Guillemin GJ, Ooi L, Karl T, Collins S, Tayebi M. Treatment of microglia with Anti-PrP monoclonal antibodies induces neuronal apoptosis in vitro. Heliyon 2021; 7:e08644. [PMID: 35005289 PMCID: PMC8715334 DOI: 10.1016/j.heliyon.2021.e08644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/23/2021] [Accepted: 12/16/2021] [Indexed: 11/04/2022] Open
Abstract
Previous reports highlighted the neurotoxic effects caused by some motif-specific anti-PrPC antibodies in vivo and in vitro. In the current study, we investigated the detailed alterations of the proteome with liquid chromatography–mass spectrometry following direct application of anti-PrPC antibodies on mouse neuroblastoma cells (N2a) and mouse primary neuronal (MPN) cells or by cross-linking microglial PrPC with anti-PrPC antibodies prior to co-culture with the N2a/MPN cells. Here, we identified 4 (3 upregulated and 1 downregulated) and 17 (11 upregulated and 6 downregulated) neuronal apoptosis-related proteins following treatment of the N2a and N11 cell lines respectively when compared with untreated cells. In contrast, we identified 1 (upregulated) and 4 (2 upregulated and 2 downregulated) neuronal apoptosis-related proteins following treatment of MPN cells and N11 when compared with untreated cells. Furthermore, we also identified 3 (2 upregulated and 1 downregulated) and 2 (1 upregulated and 1 downregulated) neuronal apoptosis-related related proteins following treatment of MPN cells and N11 when compared to treatment with an anti-PrP antibody that lacks binding specificity for mouse PrP. The apoptotic effect of the anti-PrP antibodies was confirmed with flow cytometry following labelling of Annexin V-FITC. The toxic effects of the anti-PrP antibodies was more intense when antibody-treated N11 were co-cultured with the N2a and the identified apoptosis proteome was shown to be part of the PrPC-interactome. Our observations provide a new insight into the prominent role played by microglia in causing neurotoxic effects following treatment with anti-PrPC antibodies and might be relevant to explain the antibody mediated toxicity observed in other related neurodegenerative diseases such as Alzheimer. Antibody cross-linking neuronal PrPC induces apoptosis. Antibody cross-linking microglial PrPC induces neuronal apoptosis. Different apoptotic pathways were triggered by specific anti-PrP antibody treatments.
Collapse
|
14
|
Mohamad Najib NH, Yahaya MF, Das S, Teoh SL. The effects of metallothionein in paraquat-induced Parkinson disease model of zebrafish. Int J Neurosci 2021:1-12. [PMID: 34623211 DOI: 10.1080/00207454.2021.1990916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Parkinson's disease (PD) is the second most common neurodegenerative disease caused by selective degeneration of dopaminergic neurons in the substantia nigra. Metallothionein has been shown to act as a neuroprotectant in various brain injury. Thus, this study aims to identify the effects of full-length human metallothionein 2 peptide (hMT2) in paraquat-induced brain injury in the zebrafish. METHODOLOGY A total of 80 adult zebrafish were divided into 4 groups namely control, paraquat-treated, pre-hMT2-treated, and post-hMT2-treated groups. Fish were treated with paraquat intraperitoneally every 3 days for 15 days. hMT2 were injected intracranially on day 0 (pre-treated group) and day 16 (post-treated group). Fish were sacrificed on day 22 and the brains were collected for qPCR, ELISA and immunohistochemistry analysis. RESULTS qPCR analysis showed that paraquat treatment down-regulated the expression of genes related to dopamine activity and biosynthesis (dat and th1) and neuroprotective agent (bdnf). Paraquat treatment also up-regulated the expression of the mt2, smtb and proinflammatory genes (il-1α, il-1β, tnf-α and cox-2). hMT2 treatment was able to reverse the effects of paraquat. Lipid peroxidation decreased in the paraquat and pre-hMT2-treated groups. However, lipid peroxidation increased in the post-hMT2-treated group. Paraquat treatment also led to a reduction of dopaminergic neurons while their numbers showed an increase following hMT2 treatment. CONCLUSION Paraquat has been identified as one of the pesticides that can cause the death of dopaminergic neurons and affect dopamine biosynthesis. Treatment with exogenous hMT2 could reverse the effects of paraquat in the zebrafish brain.
Collapse
Affiliation(s)
- Nor Haliza Mohamad Najib
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia.,Department of Anatomy, Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Srijit Das
- Department of Human and Clinical Anatomy, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Yildirim F, Foddis M, Blumenau S, Müller S, Kajetan B, Holtgrewe M, Kola V, Beule D, Sassi C. Shared and oppositely regulated transcriptomic signatures in Huntington's disease and brain ischemia confirm known and unveil novel potential neuroprotective genes. Neurobiol Aging 2021; 104:122.e1-122.e17. [PMID: 33875290 DOI: 10.1016/j.neurobiolaging.2021.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 02/13/2021] [Accepted: 03/02/2021] [Indexed: 11/20/2022]
Abstract
Huntington's disease and subcortical vascular dementia display similar dementing features, shaped by different degrees of striatal atrophy, deep white matter degeneration and tau pathology. To investigate the hypothesis that Huntington's disease transcriptomic hallmarks may provide a window into potential protective genes upregulated during brain acute and subacute ischemia, we compared RNA sequencing signatures in the most affected brain areas of 2 widely used experimental mouse models: Huntington's disease, (R6/2, striatum and cortex and Q175, hippocampus) and brain ischemia-subcortical vascular dementia (BCCAS, striatum, cortex and hippocampus). We identified a cluster of 55 shared genes significantly differentially regulated in both models and we screened these in 2 different mouse models of Alzheimer's disease, and 96 early-onset familial and apparently sporadic small vessel ischemic disease patients. Our data support the prevalent role of transcriptional regulation upon genetic coding variability of known neuroprotective genes (Egr2, Fos, Ptgs2, Itga5, Cdkn1a, Gsn, Npas4, Btg2, Cebpb) and provide a list of potential additional ones likely implicated in different dementing disorders and worth further investigation.
Collapse
Affiliation(s)
- Ferah Yildirim
- Department of Neuropsychiatry, Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marco Foddis
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sonja Blumenau
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Susanne Müller
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Bentele Kajetan
- Berlin Institute of Health, BIH, Core Unit Bioinformatics, Berlin, Germany
| | - Manuel Holtgrewe
- Berlin Institute of Health, BIH, Core Unit Bioinformatics, Berlin, Germany
| | - Vasilis Kola
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Dieter Beule
- Berlin Institute of Health, BIH, Core Unit Bioinformatics, Berlin, Germany
| | - Celeste Sassi
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
16
|
Chun KJ, Lee CH, Kim KW, Lee SM, Kim SY. Effects of Androgen Receptor Inhibition on Kanamycin-Induced Hearing Loss in Rats. Int J Mol Sci 2021; 22:ijms22105307. [PMID: 34070066 PMCID: PMC8158097 DOI: 10.3390/ijms22105307] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Megalin has been proposed as an endocytic receptor for aminoglycosides as well as estrogen and androgen. We aimed to investigate the otoprotective effects of antiandrogens (flutamide, FM) on kanamycin (KM)-induced hearing loss in rats. Rats were divided into four groups. The KM group was administered KM (20 mg/kg/day) for 5 days, while the FM group received FM (15 mg/kg/day) for 10 days. In the KM + FM group, KM and FM (15 mg/kg/day) were simultaneously injected for 5 days and then FM was injected for 5 days. Auditory brainstem responses were measured. Western blotting and/or quantitative reverse transcriptase-polymerase chain reaction were performed for megalin, cytochrome P450 1A1 (Cyp1a1), Cyp1b1, metallothionein 1A (MT1A), MT2A, tumor necrosis factor (TNF)-α, caspase 3, and cleaved caspase 3. The FM + KM group showed attenuated auditory thresholds when compared with the KM group at 4, 8, 16, and 32 kHz (all p < 0.05). The KM + FM group showed lower megalin and Cyp1b1 levels than the KM group (all p < 0.05). The KM + FM group revealed lower MT1A, TNFα, and caspase 3 protein levels, compared with those in the KM group (all p < 0.05). Androgen receptor inhibition protects against cochlear injuries in KM-induced hearing loss rats by attenuating megalin expression, revealing anti-inflammatory and anti-apoptotic effects.
Collapse
|
17
|
Metallothionein-3 promotes cisplatin chemoresistance remodelling in neuroblastoma. Sci Rep 2021; 11:5496. [PMID: 33750814 PMCID: PMC7943580 DOI: 10.1038/s41598-021-84185-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Metallothionein-3 has poorly characterized functions in neuroblastoma. Cisplatin-based chemotherapy is a major regimen to treat neuroblastoma, but its clinical efficacy is limited by chemoresistance. We investigated the impact of human metallothionein-3 (hMT3) up-regulation in neuroblastoma cells and the mechanisms underlying the cisplatin-resistance. We confirmed the cisplatin-metallothionein complex formation using mass spectrometry. Overexpression of hMT3 decreased the sensitivity of neuroblastoma UKF-NB-4 cells to cisplatin. We report, for the first time, cisplatin-sensitive human UKF-NB-4 cells remodelled into cisplatin-resistant cells via high and constitutive hMT3 expression in an in vivo model using chick chorioallantoic membrane assay. Comparative proteomic analysis demonstrated that several biological pathways related to apoptosis, transport, proteasome, and cellular stress were involved in cisplatin-resistance in hMT3 overexpressing UKF-NB-4 cells. Overall, our data confirmed that up-regulation of hMT3 positively correlated with increased cisplatin-chemoresistance in neuroblastoma, and a high level of hMT3 could be one of the causes of frequent tumour relapses.
Collapse
|
18
|
Song B, Xiong G, Luo H, Zuo Z, Zhou Z, Chang X. Single-cell RNA sequencing of mouse neural stem cell differentiation reveals adverse effects of cadmium on neurogenesis. Food Chem Toxicol 2021; 148:111936. [PMID: 33387572 DOI: 10.1016/j.fct.2020.111936] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/16/2020] [Accepted: 12/15/2020] [Indexed: 12/21/2022]
Abstract
Cadmium (Cd) is a toxic heavy metal and widely exists in the environment. Extensive studies have revealed that Cd exposure can elicit neurotoxicity and potentially interfere with neurogenesis. However, underlying mechanisms by which Cd exposure affects neurogenesis remain unclear. In this study, we performed single-cell RNA sequencing (scRNA-seq) of the differentiated mixture from neonatal mouse Neural Stem Cells (mNSCs) that were exposed to Cd for 24 h and differentiated for 7 days. Our results showed that Cd exposure led to an increase in the differentiation of NSCs into astrocytes while a decrease into neurons. Besides, Cd induced subtype-specific response and dysregulated cell-to-cell communication. Collectively, our scRNA-seq data suggested that Cd had toxic effects on NSCs differentiation at the single-cell level, which offered insight into the potential molecular mechanism of Cd on neurogenesis. Furthermore, our findings provided a new method for assessing the neurodevelopmental toxicity of environmental pollutants.
Collapse
Affiliation(s)
- Bo Song
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China.
| | - Guiya Xiong
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China.
| | - Huan Luo
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China.
| | - Zhenzi Zuo
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China.
| | - Zhijun Zhou
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China.
| | - Xiuli Chang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China.
| |
Collapse
|
19
|
Ruan SL, Xie L, Ou JW, Sun XS, Zhang YP, Hu JR. Molecular cloning, the characterization of metallothionein and catalase, and the evaluation of testicular toxicity of Cd in the Chinese fire-bellied newt (Cynops orientalis). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111731. [PMID: 33396062 DOI: 10.1016/j.ecoenv.2020.111731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is an environmental toxicant and a nonessential metal. Cd can attack a wide range of organs, such as the liver, kidney, lung, ovary, testis, brain, and muscle in vertebrates. Among these organs, the testis might be the most sensitive organ to Cd toxicity. Metallothionein (MT) is a cysteine-rich protein with a low molecular weight, that can bind with Cd and eliminate reactive oxygen species (ROSs). Hydrogen peroxide, which as a crucial type of ROS that is induced by Cd, can be eliminated by catalase (CAT) in the self-protection of cells and to realize Cd toxicity resistance. To investigate the functions of MT and CAT in the testis of Cynops orientalis, we cloned the full-length MT and CAT genes of C. orientalis for the first time. Immunofluorescence results demonstrated that MT and CAT were expressed in Sertoli cells and all spermatogenic cells in the testis of C. orientalis. The results of the ultrastructural damage assay demonstrated that there were various impairments, which included organelle vacuolization, abnormal chromatin distribution, and apoptotic bodies, in somatic cells that were exposed to Cd. However, the anomalies of spermatozoa were located mainly in the mid-piece and head, many of which showed severely impaired structures. The results demonstrated that MT and CAT expression had distinct patterns in response to various Cd concentrations: an increase in MT mRNA levels with elevated Cd levels and a persistent increase in CAT mRNA levels with elevated Cd levels. These results suggested that MT and CAT play roles in Cd toxicity resistance in the testis and that the expression of CAT may be a better biomarker than the expression of MT for assessing Cd pollution.
Collapse
Affiliation(s)
- Shi-Long Ruan
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, PR China
| | - Lei Xie
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, PR China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 325035, PR China
| | - Jun-Wei Ou
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, PR China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 325035, PR China
| | - Xue-Song Sun
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, PR China
| | - Yong-Pu Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, PR China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 325035, PR China.
| | - Jian-Rao Hu
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, PR China.
| |
Collapse
|
20
|
Álvarez-Barrios A, Álvarez L, García M, Artime E, Pereiro R, González-Iglesias H. Antioxidant Defenses in the Human Eye: A Focus on Metallothioneins. Antioxidants (Basel) 2021; 10:89. [PMID: 33440661 PMCID: PMC7826537 DOI: 10.3390/antiox10010089] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
The human eye, the highly specialized organ of vision, is greatly influenced by oxidants of endogenous and exogenous origin. Oxidative stress affects all structures of the human eye with special emphasis on the ocular surface, the lens, the retina and its retinal pigment epithelium, which are considered natural barriers of antioxidant protection, contributing to the onset and/or progression of eye diseases. These ocular structures contain a complex antioxidant defense system slightly different along the eye depending on cell tissue. In addition to widely studied enzymatic antioxidants, including superoxide dismutase, glutathione peroxidase, catalase, peroxiredoxins and selenoproteins, inter alia, metallothioneins (MTs) are considered antioxidant proteins of growing interest with further cell-mediated functions. This family of cysteine rich and low molecular mass proteins captures and neutralizes free radicals in a redox-dependent mechanism involving zinc binding and release. The state of the art of MTs, including the isoforms classification, the main functions described to date, the Zn-MT redox cycle as antioxidant defense system, and the antioxidant activity of Zn-MTs in the ocular surface, lens, retina and its retinal pigment epithelium, dependent on the number of occupied zinc-binding sites, will be comprehensively reviewed.
Collapse
Affiliation(s)
- Ana Álvarez-Barrios
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería, 8, 33006 Oviedo, Spain
| | - Lydia Álvarez
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
| | - Montserrat García
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
- Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012 Oviedo, Spain
| | - Enol Artime
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
| | - Rosario Pereiro
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería, 8, 33006 Oviedo, Spain
| | - Héctor González-Iglesias
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
- Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012 Oviedo, Spain
| |
Collapse
|
21
|
Miller HC, Louw R, Mereis M, Venter G, Boshoff JD, Mienie L, van Reenen M, Venter M, Lindeque JZ, Domínguez-Martínez A, Quintana A, van der Westhuizen FH. Metallothionein 1 Overexpression Does Not Protect Against Mitochondrial Disease Pathology in Ndufs4 Knockout Mice. Mol Neurobiol 2021; 58:243-262. [PMID: 32918239 DOI: 10.1007/s12035-020-02121-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/05/2020] [Indexed: 01/24/2023]
Abstract
Mitochondrial diseases (MD), such as Leigh syndrome (LS), present with severe neurological and muscular phenotypes in patients, but have no known cure and limited treatment options. Based on their neuroprotective effects against other neurodegenerative diseases in vivo and their positive impact as an antioxidant against complex I deficiency in vitro, we investigated the potential protective effect of metallothioneins (MTs) in an Ndufs4 knockout mouse model (with a very similar phenotype to LS) crossed with an Mt1 overexpressing mouse model (TgMt1). Despite subtle reductions in the expression of neuroinflammatory markers GFAP and IBA1 in the vestibular nucleus and hippocampus, we found no improvement in survival, growth, locomotor activity, balance, or motor coordination in the Mt1 overexpressing Ndufs4-/- mice. Furthermore, at a cellular level, no differences were detected in the metabolomics profile or gene expression of selected one-carbon metabolism and oxidative stress genes, performed in the brain and quadriceps, nor in the ROS levels of macrophages derived from these mice. Considering these outcomes, we conclude that MT1, in general, does not protect against the impaired motor activity or improve survival in these complex I-deficient mice. The unexpected absence of increased oxidative stress and metabolic redox imbalance in this MD model may explain these observations. However, tissue-specific observations such as the mildly reduced inflammation in the hippocampus and vestibular nucleus, as well as differential MT1 expression in these tissues, may yet reveal a tissue- or cell-specific role for MTs in these mice.
Collapse
Affiliation(s)
- Hayley Christy Miller
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Roan Louw
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Michelle Mereis
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Gerda Venter
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - John-Drew Boshoff
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Liesel Mienie
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Mari van Reenen
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Marianne Venter
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Jeremie Zander Lindeque
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Adán Domínguez-Martínez
- Institut de Neurociències i Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Albert Quintana
- Institut de Neurociències i Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francois Hendrikus van der Westhuizen
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa.
| |
Collapse
|
22
|
Kikuoka R, Miyazaki I, Kubota N, Maeda M, Kagawa D, Moriyama M, Sato A, Murakami S, Kitamura Y, Sendo T, Asanuma M. Mirtazapine exerts astrocyte-mediated dopaminergic neuroprotection. Sci Rep 2020; 10:20698. [PMID: 33244123 PMCID: PMC7693322 DOI: 10.1038/s41598-020-77652-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/13/2020] [Indexed: 11/17/2022] Open
Abstract
Mirtazapine, a noradrenergic and specific serotonergic antidepressant (NaSSA), is known to activate serotonin (5-HT) 1A receptor. Our recent study demonstrated that stimulation of astrocytic 5-HT1A receptors promoted astrocyte proliferation and upregulated antioxidative property in astrocytes to protect dopaminergic neurons against oxidative stress. Here, we evaluated the neuroprotective effects of mirtazapine against dopaminergic neurodegeneration in models of Parkinson’s disease (PD). Mirtazapine administration attenuated the loss of dopaminergic neurons in the substantia nigra and increased the expression of the antioxidative molecule metallothionein (MT) in the striatal astrocytes of 6-hydroxydopamine (6-OHDA)-injected parkinsonian mice via 5-HT1A receptors. Mirtazapine protected dopaminergic neurons against 6-OHDA-induced neurotoxicity in mesencephalic neuron and striatal astrocyte cocultures, but not in enriched neuronal cultures. Mirtazapine-treated neuron-conditioned medium (Mir-NCM) induced astrocyte proliferation and upregulated MT expression via 5-HT1A receptors on astrocytes. Furthermore, treatment with medium from Mir-NCM-treated astrocytes protected dopaminergic neurons against 6-OHDA neurotoxicity, and these effects were attenuated by treatment with a MT-1/2-specific antibody or 5-HT1A antagonist. Our study suggests that mirtazapine could be an effective disease-modifying drug for PD and highlights that astrocytic 5-HT1A receptors may be a novel target for the treatment of PD.
Collapse
Affiliation(s)
- Ryo Kikuoka
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Ikuko Miyazaki
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Natsuki Kubota
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Megumi Maeda
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Daiki Kagawa
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Masaaki Moriyama
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Asuka Sato
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Shinki Murakami
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yoshihisa Kitamura
- Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiaki Sendo
- Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masato Asanuma
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| |
Collapse
|
23
|
Hraběta J, Belhajová M, Šubrtová H, Merlos Rodrigo MA, Heger Z, Eckschlager T. Drug Sequestration in Lysosomes as One of the Mechanisms of Chemoresistance of Cancer Cells and the Possibilities of Its Inhibition. Int J Mol Sci 2020; 21:ijms21124392. [PMID: 32575682 PMCID: PMC7352242 DOI: 10.3390/ijms21124392] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
Resistance to chemotherapeutics and targeted drugs is one of the main problems in successful cancer therapy. Various mechanisms have been identified to contribute to drug resistance. One of those mechanisms is lysosome-mediated drug resistance. Lysosomes have been shown to trap certain hydrophobic weak base chemotherapeutics, as well as some tyrosine kinase inhibitors, thereby being sequestered away from their intracellular target site. Lysosomal sequestration is in most cases followed by the release of their content from the cell by exocytosis. Lysosomal accumulation of anticancer drugs is caused mainly by ion-trapping, but active transport of certain drugs into lysosomes was also described. Lysosomal low pH, which is necessary for ion-trapping is achieved by the activity of the V-ATPase. This sequestration can be successfully inhibited by lysosomotropic agents and V-ATPase inhibitors in experimental conditions. Clinical trials have been performed only with lysosomotropic drug chloroquine and their results were less successful. The aim of this review is to give an overview of lysosomal sequestration and expression of acidifying enzymes as yet not well known mechanism of cancer cell chemoresistance and about possibilities how to overcome this form of resistance.
Collapse
Affiliation(s)
- Jan Hraběta
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, CZ-150 06 Prague, Czech Republic; (J.H.); (M.B.)
| | - Marie Belhajová
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, CZ-150 06 Prague, Czech Republic; (J.H.); (M.B.)
| | - Hana Šubrtová
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic; (H.Š.); (M.A.M.R.); (Z.H.)
| | - Miguel Angel Merlos Rodrigo
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic; (H.Š.); (M.A.M.R.); (Z.H.)
- Central European Institute of Technologies, Brno University of Technology, CZ-612 00 Brno, Czech Republic
| | - Zbyněk Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic; (H.Š.); (M.A.M.R.); (Z.H.)
- Central European Institute of Technologies, Brno University of Technology, CZ-612 00 Brno, Czech Republic
| | - Tomáš Eckschlager
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, CZ-150 06 Prague, Czech Republic; (J.H.); (M.B.)
- Correspondence: ; Tel.: +420-606-364-730
| |
Collapse
|
24
|
A role of metallothionein-3 in radiation-induced autophagy in glioma cells. Sci Rep 2020; 10:2015. [PMID: 32029749 PMCID: PMC7005189 DOI: 10.1038/s41598-020-58237-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 01/13/2020] [Indexed: 11/08/2022] Open
Abstract
Although metallothionein-3 (MT3), a brain-enriched form of metallothioneins, has been linked to Alzheimer's disease, little is known regarding the role of MT3 in glioma. As MT3 plays a role in autophagy in astrocytes, here, we investigated its role in irradiated glioma cells. Irradiation increased autophagy flux in GL261 glioma cells as evidenced by increased levels of LC3-II but decreased levels of p62 (SQSTM1). Indicating that autophagy plays a cytoprotective role in glioma cell survival following irradiation, measures inhibiting autophagy flux at various steps decreased their clonogenic survival of irradiated GL261 as well as SF295 and U251 glioma cells. Knockdown of MT3 with siRNA in irradiated glioma cells induced arrested autophagy, and decreased cell survival. At the same time, the accumulation of labile zinc in lysosomes was markedly attenuated by MT3 knockdown. Indicating that such zinc accumulation was important in autophagy flux, chelation of zinc with tetrakis-(2-pyridylmethyl)ethylenediamine (TPEN), induced arrested autophagy in and reduced survival of GL261 cells following irradiation. Suggesting a possible mechanism for arrested autophagy, MT3 knockdown and zinc chelation were found to impair lysosomal acidification. Since autophagy flux plays a cytoprotective role in irradiated glioma cells, present results suggest that MT3 and zinc may be regarded as possible therapeutic targets to sensitize glioma cells to ionizing radiation therapy.
Collapse
|
25
|
Payán-Gómez C, Rodríguez D, Amador-Muñoz D, Ramírez-Clavijo S. Integrative Analysis of Global Gene Expression Identifies Opposite Patterns of Reactive Astrogliosis in Aged Human Prefrontal Cortex. Brain Sci 2018; 8:brainsci8120227. [PMID: 30572619 PMCID: PMC6317157 DOI: 10.3390/brainsci8120227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/28/2018] [Accepted: 12/04/2018] [Indexed: 12/14/2022] Open
Abstract
The prefrontal cortex (PFC) is one of the brain regions with more prominent changes in human aging. The molecular processes related to the cognitive decline and mood changes during aging are not completely understood. To improve our knowledge, we integrated transcriptomic data of four studies of human PFC from elderly people (58–80 years old) compared with younger people (20–40 years old) using a meta-analytic approximation combined with molecular signature analysis. We identified 1817 differentially expressed genes, 561 up-regulated and 1256 down-regulated. Pathway analysis revealed down-regulation of synaptic genes with conservation of gene expression of other neuronal regions. Additionally, we identified up-regulation of markers of astrogliosis with transcriptomic signature compatible with A1 neurotoxic astrocytes and A2 neuroprotective astrocytes. Response to interferon is related to A1 astrocytes and the A2 phenotype is mediated in aging by activation of sonic hedgehog (SHH) pathway and up-regulation of metallothioneins I and genes of the family ERM (ezrin, radixin, and moesin). The main conclusions of our study are the confirmation of a global dysfunction of the synapses in the aged PFC and the evidence of opposite phenotypes of astrogliosis in the aging brain, which we report for the first time in the present article.
Collapse
Affiliation(s)
- César Payán-Gómez
- Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá 111221, Colombia.
| | - Diego Rodríguez
- Neuroscience (NEUROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, Bogotá 111221, Colombia.
| | - Diana Amador-Muñoz
- Neuroscience (NEUROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, Bogotá 111221, Colombia.
| | - Sandra Ramírez-Clavijo
- Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá 111221, Colombia.
| |
Collapse
|
26
|
Licciardi F, Lhakhang T, Kramer YG, Zhang Y, Heguy A, Tsirigos A. Human blastocysts of normal and abnormal karyotypes display distinct transcriptome profiles. Sci Rep 2018; 8:14906. [PMID: 30297919 PMCID: PMC6175822 DOI: 10.1038/s41598-018-33279-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022] Open
Abstract
Unveiling the transcriptome of human blastocysts can provide a wealth of important information regarding early embryonic ontology. Comparing the mRNA production of embryos with normal and abnormal karyotypes allows for a deeper understanding of the protein pathways leading to viability and aberrant fetal development. In addition, identifying transcripts specific for normal or abnormal chromosome copy number could aid in the search for secreted substances that could be used to non-invasively identify embryos best suited for IVF embryo transfer. Using RNA-seq, we characterized the transcriptome of 71 normally developing human blastocysts that were karyotypically normal vs. trisomic or monosomic. Every monosomy and trisomy of the autosomal and sex chromosomes were evaluated, mostly in duplicate. We first mapped the transcriptome of three normal embryos and found that a common core of more than 3,000 genes is expressed in all embryos. These genes represent pathways related to actively dividing cells, such as ribosome biogenesis and function, spliceosome, oxidative phosphorylation, cell cycle and metabolic pathways. We then compared transcriptome profiles of aneuploid embryos to those of normal embryos. We observed that non-viable embryos had a large number of dysregulated genes, some showing a hundred-fold difference in expression. On the contrary, sex chromosome abnormalities, XO and XXX displayed transcriptomes more closely mimicking those embryos with 23 normal chromosome pairs. Intriguingly, we identified a set of commonly deregulated genes in the majority of both trisomies and monosomies. This is the first paper demonstrating a comprehensive transcriptome delineation of karyotypic abnormalities found in the human pre-implantation embryo. We believe that this information will contribute to the development of new pre-implantation genetic screening methods as well as a better understanding of the underlying developmental abnormalities of abnormal embryos, fetuses and children.
Collapse
Affiliation(s)
- Frederick Licciardi
- Department of Obstetrics and Gynecology, NYU School of Medicine, New York, 10016, USA.
| | - Tenzin Lhakhang
- Applied Bioinformatics Laboratories, NYU School of Medicine, New York, 10016, USA
| | - Yael G Kramer
- NYU Fertility Center, NYU School of Medicine, New York, 10016, USA
| | - Yutong Zhang
- Genome Technology Center, NYU School of Medicine, New York, 10016, USA
| | - Adriana Heguy
- Genome Technology Center, NYU School of Medicine, New York, 10016, USA. .,Department of Pathology, NYU School of Medicine, New York, 10016, USA. .,Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, 10016, USA.
| | - Aristotelis Tsirigos
- Applied Bioinformatics Laboratories, NYU School of Medicine, New York, 10016, USA. .,Department of Pathology, NYU School of Medicine, New York, 10016, USA. .,Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, 10016, USA.
| |
Collapse
|
27
|
Togno-Peirce C, Limón-Morales O, Montes-López S, Rojas-Castañeda J, Márquez-Aguiluz D, Bonilla-Jaime H, Arteaga-Silva M. Pleiotropic Effects of Cadmium Toxicity on the Neuroendocrine-Immune Network. ACTA ACUST UNITED AC 2018. [DOI: 10.3233/nib-180138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Cristián Togno-Peirce
- Department of Biology of Reproduction, DCBS, The Metropolitan Autonomous University-Iztapalapa, Mexico City, Mexico
| | - Ofelia Limón-Morales
- Department of Biology of Reproduction, DCBS, The Metropolitan Autonomous University-Iztapalapa, Mexico City, Mexico
| | - Sergio Montes-López
- Department of Neurochemistry, National Institute of Neurology and Neurosurgery “Dr. Manuel Velasco Suarez”, Mexico City, Mexico
| | | | - Darla Márquez-Aguiluz
- Department of Biology of Reproduction, DCBS, The Metropolitan Autonomous University-Iztapalapa, Mexico City, Mexico
| | - Herlinda Bonilla-Jaime
- Department of Biology of Reproduction, DCBS, The Metropolitan Autonomous University-Iztapalapa, Mexico City, Mexico
| | - Marcela Arteaga-Silva
- Department of Biology of Reproduction, DCBS, The Metropolitan Autonomous University-Iztapalapa, Mexico City, Mexico
| |
Collapse
|
28
|
Effect of Metallothionein-III on Mercury-Induced Chemokine Gene Expression. TOXICS 2018; 6:toxics6030048. [PMID: 30103553 PMCID: PMC6161308 DOI: 10.3390/toxics6030048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 11/16/2022]
Abstract
Mercury compounds are known to cause central nervous system disorders; however the detailed molecular mechanisms of their actions remain unclear. Methylmercury increases the expression of several chemokine genes, specifically in the brain, while metallothionein-III (MT-III) has a protective role against various brain diseases. In this study, we investigated the involvement of MT-III in chemokine gene expression changes in response to methylmercury and mercury vapor in the cerebrum and cerebellum of wild-type mice and MT-III null mice. No difference in mercury concentration was observed between the wild-type mice and MT-III null mice in any brain tissue examined. The expression of Ccl3 in the cerebrum and of Cxcl10 in the cerebellum was increased by methylmercury in the MT-III null but not the wild-type mice. The expression of Ccl7 in the cerebellum was increased by mercury vapor in the MT-III null mice but not the wild-type mice. However, the expression of Ccl12 and Cxcl12 was increased in the cerebrum by methylmercury only in the wild-type mice and the expression of Ccl3 in the cerebellum was increased by mercury vapor only in the wild-type mice. These results indicate that MT-III does not affect mercury accumulation in the brain, but that it affects the expression of some chemokine genes in response to mercury compounds.
Collapse
|
29
|
Waller R, Murphy M, Garwood CJ, Jennings L, Heath PR, Chambers A, Matthews FE, Brayne C, Ince PG, Wharton SB, Simpson JE. Metallothionein‐I/II expression associates with the astrocyte DNA damage response and not Alzheimer‐type pathology in the aging brain. Glia 2018; 66:2316-2323. [DOI: 10.1002/glia.23465] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Rachel Waller
- Sheffield Institute for Translational NeuroscienceUniversity of Sheffield Sheffield United Kingdom
| | - Mark Murphy
- Sheffield Institute for Translational NeuroscienceUniversity of Sheffield Sheffield United Kingdom
| | - Claire J Garwood
- Sheffield Institute for Translational NeuroscienceUniversity of Sheffield Sheffield United Kingdom
| | - Luke Jennings
- Sheffield Institute for Translational NeuroscienceUniversity of Sheffield Sheffield United Kingdom
| | - Paul R Heath
- Sheffield Institute for Translational NeuroscienceUniversity of Sheffield Sheffield United Kingdom
| | - Annabelle Chambers
- Sheffield Institute for Translational NeuroscienceUniversity of Sheffield Sheffield United Kingdom
| | - Fiona E Matthews
- MRC Biostatistics UnitUniversity of Cambridge Cambridge United Kingdom
- Institute of Health and SocietyUniversity of Newcastle Newcastle United Kingdom
| | - Carol Brayne
- Institute of Public HealthUniversity of Cambridge Cambridge United Kingdom
| | - Paul G Ince
- Sheffield Institute for Translational NeuroscienceUniversity of Sheffield Sheffield United Kingdom
| | - Stephen B Wharton
- Sheffield Institute for Translational NeuroscienceUniversity of Sheffield Sheffield United Kingdom
| | - Julie E Simpson
- Sheffield Institute for Translational NeuroscienceUniversity of Sheffield Sheffield United Kingdom
| | | |
Collapse
|
30
|
Jakovac H, Grubić Kezele T, Radošević-Stašić B. Expression Profiles of Metallothionein I/II and Megalin in Cuprizone Model of De- and Remyelination. Neuroscience 2018; 388:69-86. [PMID: 30025861 DOI: 10.1016/j.neuroscience.2018.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/20/2018] [Accepted: 07/05/2018] [Indexed: 11/15/2022]
Abstract
Copper chelator cuprizone (CPZ) is neurotoxicant, which selectively disrupts oligodendroglial respiratory chain, leading to oxidative stress and subsequent apoptosis. Demyelination is, however, followed by spontaneous remyelination owing to the activation of intrinsic CNS repair mechanisms. To explore the participation of metallothioneins (MTs) in these processes, in this study we analyzed the expression profiles of MT-I/II and their receptor megalin (low-density lipoprotein receptor related protein-2) in the brain of mice subjected to different protocols of CPZ feeding. Experiments were performed in female C57BL/6 mice fed with 0.25% CPZ during 1, 3 and 5 weeks. They were sacrificed immediately after feeding with CPZ or 2 weeks after the withdrawal of CPZ. The data showed that CPZ-induced demyelination was followed by high astrogliosis and enhanced expression of MTs and megalin in white (corpus callosum and internal capsule) and gray matter of the brain (cortex, hippocampus, and cerebellum). Moreover, in numerous cortical neurons and progenitor cells the signs of MT/megalin interactions and Akt1 phosphorylation was found supporting the hypothesis that MTs secreted from the astrocytes might directly affect the neuronal differentiation and survival. Furthermore, in mice treated with CPZ for 5 weeks the prominent MTs and megalin immunoreactivities were found on several neural stem cells and oligodendrocyte progenitors in subgranular zone of dentate gyrus and subventricular zone of lateral ventricles pointing to high modulatory effect of MTs on adult neuro- and oligodendrogenesis. The data show that MT I/II perform important cytoprotective and growth-regulating functions in remyelinating processes activated after toxic demyelinating insults.
Collapse
Affiliation(s)
- Hrvoje Jakovac
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, B. Branchetta 20, 51 000 RIJEKA, Croatia
| | - Tanja Grubić Kezele
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, B. Branchetta 20, 51 000 RIJEKA, Croatia
| | - Biserka Radošević-Stašić
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, B. Branchetta 20, 51 000 RIJEKA, Croatia.
| |
Collapse
|
31
|
Gómez-Pinedo U, Galán L, Yañez M, Matias-Guiu J, Valencia C, Guerrero-Sola A, Lopez-Sosa F, Brin J, Benito-Martin M, Leon-Espinosa G, Vela-Souto A, Lendinez C, Guillamón-Vivancos T, Matias-Guiu J, Arranz-Tagarro J, Barcia J, Garcia A. Histological changes in the rat brain and spinal cord following prolonged intracerebroventricular infusion of cerebrospinal fluid from amyotrophic lateral sclerosis patients are similar to those caused by the disease. NEUROLOGÍA (ENGLISH EDITION) 2018. [DOI: 10.1016/j.nrleng.2016.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
32
|
The exceptional sensitivity of brain mitochondria to copper. Toxicol In Vitro 2018; 51:11-22. [PMID: 29715505 DOI: 10.1016/j.tiv.2018.04.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/27/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023]
Abstract
Wilson disease (WD) is characterized by a disrupted copper homeostasis resulting in dramatically increased copper levels, mainly in liver and brain. While copper damage to mitochondria is an established feature in WD livers, much less is known about such detrimental copper effects in other organs. We therefore assessed the mitochondrial sensitivity to copper in a tissue specific manner, namely of isolated rat liver, kidney, heart, and brain mitochondria. Brain mitochondria presented with exceptional copper sensitivity, as evidenced by a comparatively early membrane potential loss, profound structural changes already at low copper dose, and a dose-dependent reduced capacity to produce ATP. This sensitivity was likely due to a copper-dependent attack on free protein thiols and due to a decreased copper reactive defense system, as further evidenced in neuroblastoma SHSY5Y cells. In contrast, an increased production of reactive oxygen species was found to be a late-stage event, only occurring in destroyed mitochondria. We therefore propose mitochondrial protein thiols as major targets of mitochondrial copper toxicity.
Collapse
|
33
|
Sheykhansari S, Kozielski K, Bill J, Sitti M, Gemmati D, Zamboni P, Singh AV. Redox metals homeostasis in multiple sclerosis and amyotrophic lateral sclerosis: a review. Cell Death Dis 2018; 9:348. [PMID: 29497049 PMCID: PMC5832817 DOI: 10.1038/s41419-018-0379-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/13/2017] [Accepted: 12/27/2017] [Indexed: 12/12/2022]
Abstract
The effect of redox metals such as iron and copper on multiple sclerosis and amyotrophic lateral sclerosis has been intensively studied. However, the origin of these disorders remains uncertain. This review article critically describes the physiology of redox metals that produce oxidative stress, which in turn leads to cascades of immunomodulatory alteration of neurons in multiple sclerosis and amyotrophic lateral sclerosis. Iron and copper overload has been well established in motor neurons of these diseases’ lesions. On the other hand, the role of other metals like cadmium participating indirectly in the redox cascade of neurobiological mechanism is less studied. In the second part of this review, we focus on this less conspicuous correlation between cadmium as an inactive-redox metal and multiple sclerosis and amyotrophic lateral sclerosis, providing novel treatment modalities and approaches as future prospects.
Collapse
Affiliation(s)
- Sahar Sheykhansari
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, Stuttgart, 70569, Germany
| | - Kristen Kozielski
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, Stuttgart, 70569, Germany
| | - Joachim Bill
- Institute for Materials Science, University of Stuttgart, Heisenbergstr. 3, Stuttgart, 70569, Germany
| | - Metin Sitti
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, Stuttgart, 70569, Germany
| | - Donato Gemmati
- Hemostasis & Thrombosis Center - Azienda Ospedaliera-Universitaria di Ferrara, Ferrara, Italy
| | - Paolo Zamboni
- Translational Surgery Unit, Azienda Ospedaliera Universitaria di Ferrara, via Aldo Moro 8, 44124, Ferrara, Italy.
| | - Ajay Vikram Singh
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, Stuttgart, 70569, Germany.
| |
Collapse
|
34
|
Cavalca E, Cesani M, Gifford JC, Sena-Esteves M, Terreni MR, Leoncini G, Peviani M, Biffi A. Metallothioneins are neuroprotective agents in lysosomal storage disorders. Ann Neurol 2018; 83:418-432. [DOI: 10.1002/ana.25161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 11/07/2017] [Accepted: 01/24/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Eleonora Cavalca
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center; Boston MA
- Vita Salute San Raffaele University; Milan Italy
- San Raffaele Telethon Institute for Gene Therapy; San Raffaele Scientific Institute; Milan Italy
| | - Martina Cesani
- San Raffaele Telethon Institute for Gene Therapy; San Raffaele Scientific Institute; Milan Italy
| | - Jennifer C. Gifford
- Department of Neurology and Horae Gene Therapy Center; University of Massachusetts Medical School; Worcester MA
| | - Miguel Sena-Esteves
- Department of Neurology and Horae Gene Therapy Center; University of Massachusetts Medical School; Worcester MA
| | | | - Giuseppe Leoncini
- Pathology Department; San Raffaele Scientific Institute; Milan Italy
| | - Marco Peviani
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center; Boston MA
| | - Alessandra Biffi
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center; Boston MA
- San Raffaele Telethon Institute for Gene Therapy; San Raffaele Scientific Institute; Milan Italy
- Harvard Medical School; Boston MA
| |
Collapse
|
35
|
Merlos Rodrigo MA, Dostalova S, Buchtelova H, Strmiska V, Michalek P, Krizkova S, Vicha A, Jencova P, Eckschlager T, Stiborova M, Heger Z, Adam V. Comparative gene expression profiling of human metallothionein-3 up-regulation in neuroblastoma cells and its impact on susceptibility to cisplatin. Oncotarget 2017; 9:4427-4439. [PMID: 29435113 PMCID: PMC5796984 DOI: 10.18632/oncotarget.23333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/08/2017] [Indexed: 01/09/2023] Open
Abstract
Human metallothionein-3 (hMT-3), also known as growth inhibitory factor, is predominantly expressed in the central nervous system. hMT-3 is presumed to participate in the processes of heavy metal detoxification, regulation of metabolism and protection against oxidative damage of free radicals in the central nervous system; thus, it could play important neuromodulatory and neuroprotective roles. However, the primary functions of hMT-3 and the mechanism underlying its multiple functions in neuroblastoma have not been elucidated so far. First, we confirmed relatively high expression of hMT-3 encoding mRNA in biopsies (n = 23) from high-risk neuroblastoma subjects. Therefore, we focused on investigation of the impact of hMT-3 up-regulation in N-Myc amplifying neuroblastoma cells. The differentially up-regulated genes involved in biological pathways related to cellular senescence and cell cycle were identified using electrochemical microarray with consequent bioinformatic processing. Further, as experimental verification of microarray data, the cytotoxicity of the cisplatin (CDDP) was examined in hMT-3 and mock cells by MTT and clonogenic assays. Overall, our data strongly suggest that up-regulation of hMT-3 positively correlates with the genes involved in oncogene-induced senescence (CDKN2B and ANAPC5) or apoptosis (CASP4). Moreover, we identified a significant increase in chemoresistance to cisplatin (CDDP) due to hMT-3 up-regulation (24IC50: 7.5 vs. 19.8 μg/ml), indicating its multipurpose biological significance.
Collapse
Affiliation(s)
- Miguel Angel Merlos Rodrigo
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic
| | - Simona Dostalova
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic
| | - Hana Buchtelova
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic
| | - Vladislav Strmiska
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic
| | - Petr Michalek
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic
| | - Sona Krizkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic
| | - Ales Vicha
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, CZ-150 06 Prague 5, Czech Republic
| | - Pavla Jencova
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, CZ-150 06 Prague 5, Czech Republic
| | - Tomas Eckschlager
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, CZ-150 06 Prague 5, Czech Republic
| | - Marie Stiborova
- Department of Biochemistry, Faculty of Science, Charles University, CZ-128 40 Prague 2, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic
| |
Collapse
|
36
|
Carpenter MC, Shami Shah A, DeSilva S, Gleaton A, Su A, Goundie B, Croteau ML, Stevenson MJ, Wilcox DE, Austin RN. Thermodynamics of Pb(ii) and Zn(ii) binding to MT-3, a neurologically important metallothionein. Metallomics 2017; 8:605-17. [PMID: 26757944 DOI: 10.1039/c5mt00209e] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Isothermal titration calorimetry (ITC) was used to quantify the thermodynamics of Pb(2+) and Zn(2+) binding to metallothionein-3 (MT-3). Pb(2+) binds to zinc-replete Zn7MT-3 displacing each zinc ion with a similar change in free energy (ΔG) and enthalpy (ΔH). EDTA chelation measurements of Zn7MT-3 and Pb7MT-3 reveal that both metal ions are extracted in a tri-phasic process, indicating that they bind to the protein in three populations with different binding thermodynamics. Metal binding is entropically favoured, with an enthalpic penalty that reflects the enthalpic cost of cysteine deprotonation accompanying thiolate ligation of the metal ions. These data indicate that Pb(2+) binding to both apo MT-3 and Zn7MT-3 is thermodynamically favourable, and implicate MT-3 in neuronal lead biochemistry.
Collapse
Affiliation(s)
- M C Carpenter
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA.
| | - A Shami Shah
- Department of Chemistry, Bates College, Lewiston, ME 04240, USA
| | - S DeSilva
- Department of Chemistry, Bates College, Lewiston, ME 04240, USA
| | - A Gleaton
- Department of Chemistry, Bates College, Lewiston, ME 04240, USA
| | - A Su
- Department of Chemistry, Bates College, Lewiston, ME 04240, USA
| | - B Goundie
- Department of Chemistry, Bates College, Lewiston, ME 04240, USA
| | - M L Croteau
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA.
| | - M J Stevenson
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA.
| | - D E Wilcox
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA.
| | - R N Austin
- Department of Chemistry, Bates College, Lewiston, ME 04240, USA and Department of Chemistry, Barnard College, Columbia University, NY, NY 10027, USA.
| |
Collapse
|
37
|
Bjørklund G, Dadar M, Mutter J, Aaseth J. The toxicology of mercury: Current research and emerging trends. ENVIRONMENTAL RESEARCH 2017; 159:545-554. [PMID: 28889024 DOI: 10.1016/j.envres.2017.08.051] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/27/2017] [Accepted: 08/30/2017] [Indexed: 05/16/2023]
Abstract
Mercury (Hg) is a persistent bio-accumulative toxic metal with unique physicochemical properties of public health concern since their natural and anthropogenic diffusions still induce high risk to human and environmental health. The goal of this review was to analyze scientific literature evaluating the role of global concerns over Hg exposure due to human exposure to ingestion of contaminated seafood (methyl-Hg) as well as elemental Hg levels of dental amalgam fillings (metallic Hg), vaccines (ethyl-Hg) and contaminated water and air (Hg chloride). Mercury has been recognized as a neurotoxicant as well as immunotoxic and designated by the World Health Organization as one of the ten most dangerous chemicals to public health. It has been shown that the half-life of inorganic Hg in human brains is several years to several decades. Mercury occurs in the environment under different chemical forms as elemental Hg (metallic), inorganic and organic Hg. Despite the raising understanding of the Hg toxicokinetics, there is still fully justified to further explore the emerging theories about its bioavailability and adverse effects in humans. In this review, we describe current research and emerging trends in Hg toxicity with the purpose of providing up-to-date information for a better understanding of the kinetics of this metal, presenting comprehensive knowledge on published data analyzing its metabolism, interaction with other metals, distribution, internal doses and targets, and reservoir organs.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610 Mo i Rana, Norway.
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | | - Jan Aaseth
- Innlandet Hospital Trust and Inland Norway University of Applied Sciences, Elverum, Norway
| |
Collapse
|
38
|
Saleh HM, El-Sayed YS, Naser SM, Eltahawy AS, Onoda A, Umezawa M. Efficacy of α-lipoic acid against cadmium toxicity on metal ion and oxidative imbalance, and expression of metallothionein and antioxidant genes in rabbit brain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:24593-24601. [PMID: 28913608 DOI: 10.1007/s11356-017-0158-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
To explore the protective efficacy of α-lipoic acid (ALA) against Cd-prompted neurotoxicity, young male New Zealand rabbits (Oryctolagus cuniculus) were divided randomly into four groups. Group 1 (control) received demineralized water. Group 2 (Cd) administered cadmium chloride (CdCl2) 3 mg/kg bwt. Group 3 (ALA) administered ALA 100 mg/kg bwt. Group 4 (Cd + ALA) administered ALA 1 h after Cd. The treatments were administered orally for 30 consecutive days. Cd-induced marked disturbances in neurochemical parameters were indicated by the reduction in micro- and macro-elements (Zn, Fe, Cu, P, and Ca), with the highest reduction in Cd-exposed rabbits, followed by Cd + ALA group and then ALA group. In the brain tissues, Cd has significantly augmented the lipid hydroperoxides (LPO) and reduced the glutathione (GSH) and total antioxidant capacity (TAC), and glutathione peroxidase and glutathione S-transferase enzyme activities but had an insignificant effect on the antioxidant redox enzymes. Administration of ALA effectively restored LPO and sustained GSH and TAC contents. Moreover, Cd downregulated the transcriptional levels of Nrf2, MT3, and SOD1 genes, and upregulated that of Keap1 gene. ALA treatment, shortly following Cd exposure, downregulated Keap1, and upregulated Nrf2 and GPx1, while maintained MT3 and SOD1 mRNA gene expression in the rabbits' brain. These data indicated the ALA effectiveness in protecting against Cd-induced oxidative stress and the depletion of cellular antioxidants in the brain of rabbits perhaps due to its antioxidant, free radical scavenging, and chelating properties.
Collapse
Affiliation(s)
- Hamida M Saleh
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Yasser S El-Sayed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt.
| | - Sherif M Naser
- Department of Veterinary Genetics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Abdelgawad S Eltahawy
- Department of Veterinary Economics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Atsuto Onoda
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
- Department of Hygienic Chemistry, Graduate School of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Masakazu Umezawa
- Department of Materials Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika, Tokyo, Japan
| |
Collapse
|
39
|
Dexamethasone Inhibits Copper-Induced Alpha-Synuclein Aggregation by a Metallothionein-Dependent Mechanism. Neurotox Res 2017; 33:229-238. [DOI: 10.1007/s12640-017-9825-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 09/14/2017] [Accepted: 10/05/2017] [Indexed: 12/14/2022]
|
40
|
Brain and Hepatic Mt mRNA Is Reduced in Response to Mild Energy Restriction and n-3 Polyunsaturated Fatty Acid Deficiency in Juvenile Rats. Nutrients 2017; 9:nu9101145. [PMID: 29048374 PMCID: PMC5691761 DOI: 10.3390/nu9101145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/10/2017] [Accepted: 10/13/2017] [Indexed: 02/06/2023] Open
Abstract
Metallothioneins (MTs) perform important regulatory and cytoprotective functions in tissues including the brain. While it is known that energy restriction (ER) and dietary n-3 polyunsaturated fatty acid (PUFA) deficiency impact postnatal brain growth and development, little data exist regarding the impact of undernutrition upon MT expression in growing animals. We tested the hypothesis that ER with and without dietary n-3 PUFA deficiency reduces MT expression in juvenile rats. ER rats were individually pair-fed at 75% of the ad libitum (AL) intake of control rats provided diets consisting of either soybean oil (SO) that is α-linolenic acid (ALA; 18:3n-3) sufficient or corn oil (CO; ALA-deficient). Fatty acids (FA) and metal concentrations of liver and brain regions were analyzed. Tissue expression of MTs (Mt1-3) and modulators of MT expression including glucocorticoid receptors (Nr3c1 and Nr3c2) and several mediators of thyroid hormone regulation (Dio1-3, Mct8, Oatp1c1, Thra, and Thrb) were measured. Plasma corticosterone and triiodothyronine levels were also evaluated. ER, but not metal deficiency, reduced Mt2 expression in the cerebellum (50%) and cerebral cortex (23%). In liver, a reduction in dietary n-3 PUFA reduced Mt1, Mt2, Nr3c1, Mct8, and Thrb. ER elevated Nr3c1, Dio1, and Thrb and reduced Thra in the liver. Given MT’s role in cellular protection, further studies are needed to evaluate whether ER or n-3 PUFA deficiency may leave the juvenile brain and/or liver more susceptible to endogenous or environmental stressors.
Collapse
|
41
|
Metallothionein in Brain Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5828056. [PMID: 29085556 PMCID: PMC5632493 DOI: 10.1155/2017/5828056] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/17/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022]
Abstract
Metallothioneins are a family of proteins which are able to bind metals intracellularly, so their main function is to regulate the cellular metabolism of essential metals. There are 4 major isoforms of MTs (I-IV), three of which have been localized in the central nervous system. MT-I and MT-II have been localized in the spinal cord and brain, mainly in astrocytes, whereas MT-III has been found mainly in neurons. MT-I and MT-II have been considered polyvalent proteins whose main function is to maintain cellular homeostasis of essential metals such as zinc and copper, but other functions have also been considered: detoxification of heavy metals, regulation of gene expression, processes of inflammation, and protection against free radicals generated by oxidative stress. On the other hand, the MT-III has been related in events of pathogenesis of neurodegenerative diseases such as Parkinson and Alzheimer. Likewise, the participation of MTs in other neurological disorders has also been reported. This review shows recent evidence about the role of MT in the central nervous system and its possible role in neurodegenerative diseases as well as in brain disorders.
Collapse
|
42
|
Corvitin restores metallothionein and glial fibrillary acidic protein levels in rat brain affected by pituitrin-izadrin. UKRAINIAN BIOCHEMICAL JOURNAL 2017. [DOI: 10.15407/ubj89.03.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
43
|
Mammalian Metallothionein-3: New Functional and Structural Insights. Int J Mol Sci 2017; 18:ijms18061117. [PMID: 28538697 PMCID: PMC5485941 DOI: 10.3390/ijms18061117] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 12/25/2022] Open
Abstract
Metallothionein-3 (MT-3), a member of the mammalian metallothionein (MT) family, is mainly expressed in the central nervous system (CNS). MT-3 possesses a unique neuronal growth inhibitory activity, and the levels of this intra- and extracellularly occurring metalloprotein are markedly diminished in the brain of patients affected by a number of metal-linked neurodegenerative disorders, including Alzheimer’s disease (AD). In these pathologies, the redox cycling of copper, accompanied by the production of reactive oxygen species (ROS), plays a key role in the neuronal toxicity. Although MT-3 shares the metal-thiolate clusters with the well-characterized MT-1 and MT-2, it shows distinct biological, structural and chemical properties. Owing to its anti-oxidant properties and modulator function not only for Zn, but also for Cu in the extra- and intracellular space, MT-3, but not MT-1/MT-2, protects neuronal cells from the toxicity of various Cu(II)-bound amyloids. In recent years, the roles of zinc dynamics and MT-3 function in neurodegeneration are slowly emerging. This short review focuses on the recent developments regarding the chemistry and biology of MT-3.
Collapse
|
44
|
Okita Y, Rcom-H'cheo-Gauthier AN, Goulding M, Chung RS, Faller P, Pountney DL. Metallothionein, Copper and Alpha-Synuclein in Alpha-Synucleinopathies. Front Neurosci 2017; 11:114. [PMID: 28420950 PMCID: PMC5380005 DOI: 10.3389/fnins.2017.00114] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/22/2017] [Indexed: 12/14/2022] Open
Abstract
Metallothioneins (MTs) are proteins that function by metal exchange to regulate the bioavailability of metals, such as zinc and copper. Copper functions in the brain to regulate mitochondria, neurotransmitter production, and cell signaling. Inappropriate copper binding can result in loss of protein function and Cu(I)/(II) redox cycling can generate reactive oxygen species. Copper accumulates in the brain with aging and has been shown to bind alpha-synuclein and initiate its aggregation, the primary aetiological factor in Parkinson's disease (PD), and other alpha-synucleinopathies. In PD, total tissue copper is decreased, including neuromelanin-bound copper and there is a reduction in copper transporter CTR-1. Conversely cerebrospinal fluid (CSF) copper is increased. MT-1/2 expression is increased in activated astrocytes in alpha-synucleinopathies, yet expression of the neuronal MT-3 isoform may be reduced. MTs have been implicated in inflammatory states to perform one-way exchange of copper, releasing free zinc and recent studies have found copper bound to alpha-synuclein is transferred to the MT-3 isoform in vitro and MT-3 is found bound to pathological alpha-synuclein aggregates in the alpha-synucleinopathy, multiple systems atrophy. Moreover, both MT and alpha-synuclein can be released and taken up by neural cells via specific receptors and so may interact both intra- and extra-cellularly. Here, we critically review the role of MTs in copper dyshomeostasis and alpha-synuclein aggregation, and their potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yuho Okita
- Menzies Health Institute Queensland, Griffith UniversityGold Coast, QLD, Australia
| | | | - Michael Goulding
- Menzies Health Institute Queensland, Griffith UniversityGold Coast, QLD, Australia
| | - Roger S Chung
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Peter Faller
- Centre National de la Recherche Scientifique, Institut de Chimie UMR 7177, Université de StrasbourgStrasbourg, France.,University of Strasbourg Institute for Advanced StudyStrasbourg, France
| | - Dean L Pountney
- Menzies Health Institute Queensland, Griffith UniversityGold Coast, QLD, Australia
| |
Collapse
|
45
|
Comes G, Manso Y, Escrig A, Fernandez-Gayol O, Sanchis P, Molinero A, Giralt M, Carrasco J, Hidalgo J. Influence of Transgenic Metallothionein-1 on Gliosis, CA1 Neuronal Loss, and Brain Metal Levels of the Tg2576 Mouse Model of Alzheimer's Disease. Int J Mol Sci 2017; 18:ijms18020251. [PMID: 28134760 PMCID: PMC5343787 DOI: 10.3390/ijms18020251] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 12/26/2022] Open
Abstract
The mouse model of Alzheimer’s disease (AD), Tg2576 mice (APP), has provided valuable information, such as the role of the metallothionein (MT) family in their behavioral and amyloidosis phenotypes. In this study, we further characterize the role of MT-1 by crossing Mt1-overexpressing mice with Tg2576 mice (APPTgMT). In 14-month-old mice, MT-1(/2) protein levels were dramatically increased by Mt1 overexpression throughout the cortex (Cx), which showed a prominent caudal-rostral gradient, and the hippocampus (HC). There was a trend for MT-1(/2) immunostaining to be increased in the areas surrounding the amyloid plaques in control male mice but not in Mt1-overexpressing mice. Gliosis was elicited by the amyloid plaques, but the effects of Mt1 overexpression were modest. However, in hippocampal western blots the microglial marker Iba-1 was increased in old male APPTgMT mice compared to APP-wild type (APPWT) mice, and the opposite was observed in young mice. Hippocampal CA1 neuronal loss was observed in Tg2576 mice, but was unaffected by Mt1 overexpression. Aging increased Zn and Cu levels differently depending on brain area, sex, and genotype. Thus, the effects of Mt1 overexpression on the phenotype of Tg2576 mice here studied are modest.
Collapse
Affiliation(s)
- Gemma Comes
- Department of Cellular Biology, Physiology and Immunology, and Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
| | - Yasmina Manso
- Department of Cellular Biology, Physiology and Immunology, and Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
| | - Anna Escrig
- Department of Cellular Biology, Physiology and Immunology, and Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
| | - Olaya Fernandez-Gayol
- Department of Cellular Biology, Physiology and Immunology, and Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
| | - Paula Sanchis
- Department of Cellular Biology, Physiology and Immunology, and Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
| | - Amalia Molinero
- Department of Cellular Biology, Physiology and Immunology, and Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
| | - Mercedes Giralt
- Department of Cellular Biology, Physiology and Immunology, and Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
| | - Javier Carrasco
- Department of Cellular Biology, Physiology and Immunology, and Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
| | - Juan Hidalgo
- Department of Cellular Biology, Physiology and Immunology, and Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
| |
Collapse
|
46
|
Öhrvik H, Aaseth J, Horn N. Orchestration of dynamic copper navigation – new and missing pieces. Metallomics 2017; 9:1204-1229. [DOI: 10.1039/c7mt00010c] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A general principle in all cells in the body is that an essential metal – here copper – is taken up at the plasma membrane, directed through cellular compartments for use in specific enzymes and pathways, stored in specific scavenging molecules if in surplus, and finally expelled from the cells.
Collapse
Affiliation(s)
- Helena Öhrvik
- Medical Biochemistry and Microbiology
- Uppsala University
- Sweden
| | - Jan Aaseth
- Innlandet Hospital Trust and Inland Norway University of Applied Sciences
- Norway
| | | |
Collapse
|
47
|
Manso Y, Comes G, López-Ramos JC, Belfiore M, Molinero A, Giralt M, Carrasco J, Adlard PA, Bush AI, Delgado-García JM, Hidalgo J. Overexpression of Metallothionein-1 Modulates the Phenotype of the Tg2576 Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2016; 51:81-95. [PMID: 26836194 DOI: 10.3233/jad-151025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease (AD) is the most commonly diagnosed dementia, where signs of neuroinflammation and oxidative stress are prominent. In this study we intend to further characterize the roles of the antioxidant, anti-inflammatory, and heavy metal binding protein, metallothionein-1 (MT-1), by crossing Mt1 overexpressing mice with a well-known mouse model of AD, Tg2576 mice, which express the human amyloid-β protein precursor (hAβPP) with the Swedish K670N/M671L mutations. Mt1 overexpression increased overall perinatal survival, but did not affect significantly hAβPP-induced mortality and weight loss in adult mice. Amyloid plaque burden in ∼14-month-old mice was increased by Mt1 overexpression in the hippocampus but not the cortex. Despite full length hAβPP levels and amyloid plaques being increased by Mt1 overexpression in the hippocampus of both sexes, oligomeric and monomeric forms of Aβ, which may contribute more to toxicity, were decreased in the hippocampus of females and increased in males. Several behavioral traits such as exploration, anxiety, and learning were altered in Tg2576 mice to various degrees depending on the age and the sex. Mt1 overexpression ameliorated the effects of hAβPP on exploration in young females, and potentiated those on anxiety in old males, and seemed to improve the rate of spatial learning (Morris water maze) and the learning elicited by a classical conditioning procedure (eye-blink test). These results clearly suggest that MT-1 may be involved in AD pathogenesis.
Collapse
Affiliation(s)
- Yasmina Manso
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences Bellaterra, Barcelona, Spain.,Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Gemma Comes
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences Bellaterra, Barcelona, Spain.,Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | - Mónica Belfiore
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences Bellaterra, Barcelona, Spain.,Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Amalia Molinero
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences Bellaterra, Barcelona, Spain.,Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Mercedes Giralt
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences Bellaterra, Barcelona, Spain.,Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Javier Carrasco
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences Bellaterra, Barcelona, Spain.,Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Paul A Adlard
- The Florey Institute of Neuroscience and Mental Health and The University of Melbourne, Parkville, Victoria, Australia
| | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health and The University of Melbourne, Parkville, Victoria, Australia
| | | | - Juan Hidalgo
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences Bellaterra, Barcelona, Spain.,Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
48
|
Scudiero R, Cigliano L, Verderame M. Age-related changes of metallothionein 1/2 and metallothionein 3 expression in rat brain. C R Biol 2016; 340:13-17. [PMID: 27939232 DOI: 10.1016/j.crvi.2016.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 12/13/2022]
Abstract
Neurodegeneration is one of the main physiological consequences of aging on brain. Metallothioneins (MTs), low molecular weight, cysteine-rich proteins that bind heavy-metal ions and oxygen-free radicals, are commonly expressed in various tissues of mammals. MTs are involved in the regulation of cell proliferation and protection, and may be engaged in aging. Expression of the ubiquitous MTs (1 and 2) and the brain specific MT3 have been studied in many neurodegenerative disorders. The research results indicate that MTs may play important, although not yet fully known, roles in brain diseases; in addition, data lack the ability to identify the MT isoforms functionally involved. The aim of this study was to analyse the level of gene expression of selected MT isoforms during brain aging. By using real-time PCR analysis, we determined the MT1/2 and MT3 expression profiles in cerebral cortex and hippocampus of adolescent (2months), adult (4 and 8months), and middle-aged (16months) rats. We show that the relative abundance of all types of MT transcripts changes during aging in both hippocampus and cortex; the first effect is a generalized decrease in the content of MTs transcripts from 2- to 8-months-old rats. After passing middle age, at 16months, we observe a huge increase in MT3 transcripts in both cortical and hippocampal areas, while the MT1/2 mRNA content increases slightly, returning to the levels measured in adolescent rats. These findings demonstrate an age-related expression of the MT3 gene. A possible link between the increasing amount of MT3 in brain aging and its different metal-binding behaviour is discussed.
Collapse
Affiliation(s)
- Rosaria Scudiero
- Department of Biology, University of Naples Federico II, via Mezzocannone 8, 80134 Napoli, Italy.
| | - Luisa Cigliano
- Department of Biology, University of Naples Federico II, via Mezzocannone 8, 80134 Napoli, Italy
| | - Mariailaria Verderame
- Department of Biology, University of Naples Federico II, via Mezzocannone 8, 80134 Napoli, Italy
| |
Collapse
|
49
|
Gómez-Pinedo U, Galán L, Yañez M, Matias-Guiu J, Valencia C, Guerrero-Sola A, Lopez-Sosa F, Brin JR, Benito-Martin MS, Leon-Espinosa G, Vela-Souto A, Lendinez C, Guillamon-Vivancos T, Matias-Guiu JA, Arranz-Tagarro JA, Barcia JA, Garcia AG. Histological changes in the rat brain and spinal cord following prolonged intracerebroventricular infusion of cerebrospinal fluid from amyotrophic lateral sclerosis patients are similar to those caused by the disease. Neurologia 2016; 33:211-223. [PMID: 27570180 DOI: 10.1016/j.nrl.2016.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Cerebrospinal fluid (CSF) from amyotrophic lateral sclerosis (ALS) patients induces cytotoxic effects in in vitro cultured motor neurons. MATERIAL AND METHODS We selected CSF with previously reported cytotoxic effects from 32 ALS patients. Twenty-eight adult male rats were intracerebroventricularly implanted with osmotic mini-pumps and divided into 3 groups: 9 rats injected with CSF from non-ALS patients, 15 rats injected with cytotoxic ALS-CSF, and 4 rats injected with a physiological saline solution. CSF was intracerebroventricularly and continuously infused for periods of 20 or 43days after implantation. We conducted clinical assessments and electromyographic examinations, and histological analyses were conducted in rats euthanised 20, 45, and 82days after surgery. RESULTS Immunohistochemical studies revealed tissue damage with similar characteristics to those found in the sporadic forms of ALS, such as overexpression of cystatinC, transferrin, and TDP-43 protein in the cytoplasm. The earliest changes observed seemed to play a protective role due to the overexpression of peripherin, AKTpan, AKTphospho, and metallothioneins; this expression had diminished by the time we analysed rats euthanised on day 82, when an increase in apoptosis was observed. The first cellular changes identified were activated microglia followed by astrogliosis and overexpression of GFAP and S100B proteins. CONCLUSION Our data suggest that ALS could spread through CSF and that intracerebroventricular administration of cytotoxic ALS-CSF provokes changes similar to those found in sporadic forms of the disease.
Collapse
Affiliation(s)
- U Gómez-Pinedo
- Laboratorio de Neurobiología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España.
| | - L Galán
- Servicio de Neurología, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - M Yañez
- Servicio de Neurocirugía, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - J Matias-Guiu
- Servicio de Neurología, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - C Valencia
- Servicio de Neurología, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - A Guerrero-Sola
- Servicio de Neurología, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - F Lopez-Sosa
- Laboratorio de Neurobiología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - J R Brin
- Servicio de Neurocirugía, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - M S Benito-Martin
- Laboratorio de Neurobiología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - G Leon-Espinosa
- Laboratorio de Neurobiología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - A Vela-Souto
- Servicio de Neurología, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - C Lendinez
- Servicio de Neurocirugía, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - T Guillamon-Vivancos
- Laboratorio de Neurobiología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - J A Matias-Guiu
- Laboratorio de Neurobiología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España; Servicio de Neurología, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - J A Arranz-Tagarro
- Instituto Teófilo Hernando, Departamento de Farmacología Terapéutica, Universidad Autónoma de Madrid, Madrid, España
| | - J A Barcia
- Servicio de Neurocirugía, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - A G Garcia
- Instituto Teófilo Hernando, Departamento de Farmacología Terapéutica, Universidad Autónoma de Madrid, Madrid, España
| |
Collapse
|
50
|
Copper Homeostasis as a Therapeutic Target in Amyotrophic Lateral Sclerosis with SOD1 Mutations. Int J Mol Sci 2016; 17:ijms17050636. [PMID: 27136532 PMCID: PMC4881462 DOI: 10.3390/ijms17050636] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/03/2016] [Accepted: 04/22/2016] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease affecting both upper and lower motor neurons, and currently, there is no cure or effective treatment. Mutations in a gene encoding a ubiquitous antioxidant enzyme, Cu,Zn-superoxide dismutase (SOD1), have been first identified as a cause of familial forms of ALS. It is widely accepted that mutant SOD1 proteins cause the disease through a gain in toxicity but not through a loss of its physiological function. SOD1 is a major copper-binding protein and regulates copper homeostasis in the cell; therefore, a toxicity of mutant SOD1 could arise from the disruption of copper homeostasis. In this review, we will briefly review recent studies implying roles of copper homeostasis in the pathogenesis of SOD1-ALS and highlight the therapeutic interventions focusing on pharmacological as well as genetic regulations of copper homeostasis to modify the pathological process in SOD1-ALS.
Collapse
|