1
|
Tanaka Y, Shindo A, Dong W, Nakamura T, Ogura K, Nomiyama K, Teraoka H. Tyrosinase inhibition prevents non-coplanar polychlorinated biphenyls and polybrominated diphenyl ethers-induced hyperactivity in developing zebrafish: Interaction between pigmentation and neurobehavior. Neurotoxicol Teratol 2024; 104:107373. [PMID: 39025421 DOI: 10.1016/j.ntt.2024.107373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/29/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Non-coplanar polychlorinated biphenyl (PCB) mixture Aroclor 1254 and polybrominated diphenyl ether (PBDE) BDE-47 are known to impede neurogenesis and neuronal development. We previously reported that exposure to PCB and PBDE leads to increased embryonic movement in zebrafish by decreasing dopamine levels. In this study, we studied the connection between the melanin and dopamine synthesis pathways in this context. Both genetic and chemical inhibition of tyrosinase, the rate-limiting enzyme in melanin synthesis, not only led to reduced pigmentation but also inhibit PCB/PBDE-induced embryonic hyperactivity. Furthermore, PCB and PBDE rarely affected tyrosinase expression in the potential pigment cells, suggesting that these compounds reduce dopamine through enzymatic regulation, including a competitive interaction for the substrate tyrosine. Our results provide new insights into the interactions between melanogenesis and dopaminergic neuronal activity, which may contribute to understanding the mechanisms underlying PCB/PBDE toxicity in developing organisms.
Collapse
Affiliation(s)
- Yasuaki Tanaka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Asako Shindo
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan; Department of Biological Sciences, Osaka University, Osaka 560-0043, Japan
| | - Wenjing Dong
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Tatsuro Nakamura
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Kyoko Ogura
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Hiroki Teraoka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan.
| |
Collapse
|
2
|
Shaw EL, Urban NR. What can we learn from 28 years of monitoring of fish tissue polychlorinated biphenyls in Michigan's rivers? INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:152-162. [PMID: 35446467 DOI: 10.1002/ieam.4613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Polychlorinated biphenyls (PCBs) are an important part of chemical legacies in the Laurentian Great Lakes basin. Used in industrial products worldwide, PCBs are now extensively monitored because of their potential toxicity to humans. Fish consumption is a major pathway for exposure. Edible portion (i.e., fish fillet) data from Michigan's fish tissue PCB monitoring program were evaluated using regression statistics, principal component analysis, and t-tests to answer three questions: (1) How do fish tissue total PCB concentrations vary across Michigan's rivers? (2) Are the PCB congener patterns uniformly distributed among tested sites and species? (3) Do monitoring methods limit our ability to discern trends in fish tissue PCB concentrations? Our results indicate that although contaminated sites have been successfully identified, based on higher PCB concentrations in samples from Areas of Concern (AOCs) compared to non-AOC sites, 77% of fish samples from 2010 to 2015 exceeded the safe fish tissue PCB concentration for unrestricted consumption (97 g/day) by sensitive populations. The PCB congener profiles vary among species and locations. Results demonstrate that these data are not useful for supplementing ongoing spatial and temporal trend analysis. Only 15 of the 83 species + waterbody pairs had adequate data for evaluating temporal trends with more than three data points. In general, the trends at each location varied based on the analytical method. Conclusions from this work can inform revisions to existing monitoring programs and improve our ability to protect human health. Integr Environ Assess Manag 2023;19:152-162. © 2022 SETAC.
Collapse
Affiliation(s)
- Emily L Shaw
- Michigan Technological University, Houghton, Michigan, USA
| | - Noel R Urban
- Michigan Technological University, Houghton, Michigan, USA
| |
Collapse
|
3
|
Shin ES, Park MK, Kim G, Barghi M, Choi SD, Yang J, Chang YS. Dietary exposure and potential human health risk of dioxins in South Korea: Application of deterministic and probabilistic methods. CHEMOSPHERE 2022; 291:133018. [PMID: 34861261 DOI: 10.1016/j.chemosphere.2021.133018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/11/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Following the reduction of incinerator emission, enacted by the Korean Government in 2001, the levels of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) in the air (-96%) have significantly decreased. However, their levels in the human serum of the general Korean population have not reduced at the same rate (-36%), indicating that humans may also be unintentionally exposed to these compounds, primarily through food ingestion. In this study, the risk of dietary exposure was assessed on a large scale, to provide toxicological information and guide the development of food safety policies. The food consumption data of the extreme (95th percentile) group and various subgroups (by age, pregnancy, and lactation), as well as the average group, were utilized. Compared to the tolerable daily intake (TDI) established by the World Health Organization (WHO), the average daily dietary exposure of the general Korean population, calculated using a deterministic method, was 11.9% of the WHO TDI (4 pg-TEQWHO05 kg body weight-1 d-1). For additional comparison, a probabilistic method using a Monte Carlo simulation was applied to the same data. Finally, the associated potential health risk was quantitatively characterized, and the results suggest the importance of non-dioxin-like congeners in future risk assessments.
Collapse
Affiliation(s)
- Eun-Su Shin
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Min-Kyu Park
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Gihae Kim
- Institute for Environmental Research, Yonsei University Health System, Seoul, 03722, South Korea
| | - Mandana Barghi
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Sung-Deuk Choi
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Jiyeon Yang
- Institute for Environmental Research, Yonsei University Health System, Seoul, 03722, South Korea
| | - Yoon-Seok Chang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea.
| |
Collapse
|
4
|
Slováčková J, Slavík J, Kulich P, Večeřa J, Kováč O, Paculová H, Straková N, Fedr R, Silva JP, Carvalho F, Machala M, Procházková J. Polychlorinated environmental toxicants affect sphingolipid metabolism during neurogenesis in vitro. Toxicology 2021; 463:152986. [PMID: 34627992 DOI: 10.1016/j.tox.2021.152986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/17/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
Sphingolipids (SLs) are important signaling molecules and functional components of cellular membranes. Although SLs are known as crucial regulators of neural cell physiology and differentiation, modulations of SLs by environmental neurotoxicants in neural cells and their neuronal progeny have not yet been explored. In this study, we used in vitro models of differentiated neuron-like cells, which were repeatedly exposed during differentiation to model environmental toxicants, and we analyzed changes in sphingolipidome, cellular morphology and gene expression related to SL metabolism or neuronal differentiation. We compared these data with the results obtained in undifferentiated neural cells with progenitor-like features. As model polychlorinated organic pollutants, we used 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 3,3'-dichlorobiphenyl (PCB11) and 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153). PCB153 revealed itself as the most prominent deregulator of SL metabolism and as potent toxicant during early phases of in vitro neurogenesis. TCDD exerted only minor changes in the levels of analysed lipid species, however, it significantly changed the rate of pro-neuronal differentiation and deregulated expression of neuronal markers during neurogenesis. PCB11 acted as a potent disruptor of in vitro neurogenesis, which induced significant alterations in SL metabolism and cellular morphology in both differentiated neuron-like models (differentiated NE4C and NG108-15 cells). We identified ceramide-1-phosphate, lactosylceramides and several glycosphingolipids to be the most sensitive SL species to exposure to polychlorinated pollutants. Additionally, we identified deregulation of several genes related to SL metabolism, which may be explored in future as potential markers of developmental neurotoxicity.
Collapse
Affiliation(s)
- Jana Slováčková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic
| | - Josef Slavík
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic
| | - Pavel Kulich
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic
| | - Josef Večeřa
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic
| | - Ondrej Kováč
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic
| | - Hana Paculová
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic
| | - Nicol Straková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic
| | - Radek Fedr
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic
| | - João Pedro Silva
- Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - Félix Carvalho
- Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic.
| | - Jiřina Procházková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic; Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic.
| |
Collapse
|
5
|
Brun NR, Panlilio JM, Zhang K, Zhao Y, Ivashkin E, Stegeman JJ, Goldstone JV. Developmental exposure to non-dioxin-like polychlorinated biphenyls promotes sensory deficits and disrupts dopaminergic and GABAergic signaling in zebrafish. Commun Biol 2021; 4:1129. [PMID: 34561524 PMCID: PMC8463681 DOI: 10.1038/s42003-021-02626-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/25/2021] [Indexed: 11/09/2022] Open
Abstract
The most abundant polychlorinated biphenyl (PCB) congeners found in the environment and in humans are neurotoxic. This is of particular concern for early life stages because the exposure of the more vulnerable developing nervous system to neurotoxic chemicals can result in neurobehavioral disorders. In this study, we uncover currently unknown links between PCB target mechanisms and neurobehavioral deficits using zebrafish as a vertebrate model. We investigated the effects of the abundant non-dioxin-like (NDL) congener PCB153 on neuronal morphology and synaptic transmission linked to the proper execution of a sensorimotor response. Zebrafish that were exposed during development to concentrations similar to those found in human cord blood and PCB contaminated sites showed a delay in startle response. Morphological and biochemical data demonstrate that even though PCB153-induced swelling of afferent sensory neurons, the disruption of dopaminergic and GABAergic signaling appears to contribute to PCB-induced motor deficits. A similar delay was observed for other NDL congeners but not for the potent dioxin-like congener PCB126. The effects on important and broadly conserved signaling mechanisms in vertebrates suggest that NDL PCBs may contribute to neurodevelopmental abnormalities in humans and increased selection pressures in vertebrate wildlife.
Collapse
Affiliation(s)
- Nadja R Brun
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - Jennifer M Panlilio
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Kun Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Yanbin Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Evgeny Ivashkin
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA.,A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - John J Stegeman
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - Jared V Goldstone
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| |
Collapse
|
6
|
Holland EB, Pessah IN. Non-dioxin-like polychlorinated biphenyl neurotoxic equivalents found in environmental and human samples. Regul Toxicol Pharmacol 2021; 120:104842. [PMID: 33346014 PMCID: PMC8366267 DOI: 10.1016/j.yrtph.2020.104842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/22/2020] [Accepted: 12/14/2020] [Indexed: 11/01/2022]
Abstract
Non-dioxin like polychlorinated biphenyls (NDL PCB) are recognized neurotoxicants with implications on altered neurodevelopment and neurodegeneration in exposed organisms. NDL PCB neurotoxic relative potency schemes have been developed for a single mechanism, namely activity toward the ryanodine receptor (RyR), or combined mechanisms including, but not limited to, alterations of RyR and dopaminergic pathways. We compared the applicability of the two neurotoxic equivalency (NEQ) schemes and applied each scheme to PCB mixtures found in environmental and human serum samples. A multiple mechanistic NEQ predicts higher neurotoxic exposure concentrations as compared to a scheme based on the RyR alone. Predictions based on PCB ortho categorization, versus homologue categorization, lead to a higher prediction of neurotoxic exposure concentrations, especially for the mMOA. The application of the NEQ schemes to PCB concentration data suggests that PCBs found in fish from US lakes represent a considerable NEQ exposure to fish consuming individuals, that indoor air of schools contained high NEQ concentrations representing an exposure concern when inhaled by children, and that levels already detected in the serum of adults and children may contribute to neurotoxicity. With further validation and in vivo exposure data the NEQ scheme would help provide a more inclusive measure of risk presented by PCB mixtures.
Collapse
Affiliation(s)
- E B Holland
- Department of Biological Sciences, California State University of Long Beach, Long Beach, CA, USA.
| | - I N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
7
|
Barraza AD, Komoroske LM, Allen CD, Eguchi T, Gossett R, Holland E, Lawson DD, LeRoux RA, Lorenzi V, Seminoff JA, Lowe CG. Persistent organic pollutants in green sea turtles (Chelonia mydas) inhabiting two urbanized Southern California habitats. MARINE POLLUTION BULLETIN 2020; 153:110979. [PMID: 32275536 PMCID: PMC7174570 DOI: 10.1016/j.marpolbul.2020.110979] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 05/24/2023]
Abstract
Within Southern California, east Pacific green sea turtles (Chelonia mydas) forage year-round, taking advantage of diverse food resources, including seagrass, marine algae, and invertebrates. Assessing persistent organic pollutants (POP) in green turtle aggregations in the Seal Beach National Wildlife Refuge (SBNWR, n = 17) and San Diego Bay (SDB, n = 25) can help quantify contamination risks for these populations. Blood plasma was analyzed for polychlorinated biphenyls (PCBs), organochlorinated pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs). PCBs and body size explained much of the separation of turtles by foraging aggregation in a principal component analysis. Turtles from SDB had significantly (p < 0.001) higher total PCBs than SBNWR turtles. Most PCBs detected in turtles were non-dioxin-like PCB congeners (153, 138, 99) that are associated with neurotoxicity. Recaptured turtles' POP levels changed significantly over time indicating significant variation in POP levels through time and space, even among adjacent foraging locations.
Collapse
Affiliation(s)
- Arthur D Barraza
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA.
| | - Lisa M Komoroske
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, USA; Department of Environmental Conservation, University of Massachusetts, Amherst, MA, USA
| | - Camryn D Allen
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, USA; The Joint Institute for Marine and Atmospheric Research, Protected Species Division, Pacific Islands Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Honolulu, HI, USA
| | - Tomoharu Eguchi
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, USA
| | - Rich Gossett
- Institute for Integrated Research on Materials, Environment, and Society, California State University Long Beach, Long Beach, CA, USA
| | - Erika Holland
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| | - Daniel D Lawson
- Long Beach Regional Office, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Long Beach, CA, USA
| | - Robin A LeRoux
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, USA
| | - Varenka Lorenzi
- Institute for Integrated Research on Materials, Environment, and Society, California State University Long Beach, Long Beach, CA, USA
| | - Jeffrey A Seminoff
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, USA
| | - Christopher G Lowe
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| |
Collapse
|
8
|
Pradeep P, Carlson LM, Judson R, Lehmann GM, Patlewicz G. Integrating data gap filling techniques: A case study predicting TEFs for neurotoxicity TEQs to facilitate the hazard assessment of polychlorinated biphenyls. Regul Toxicol Pharmacol 2019; 101:12-23. [PMID: 30359698 PMCID: PMC6756469 DOI: 10.1016/j.yrtph.2018.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/09/2018] [Accepted: 10/20/2018] [Indexed: 11/23/2022]
Abstract
The application of toxic equivalency factors (TEFs) or toxic units to estimate toxic potencies for mixtures of chemicals which contribute to a biological effect through a common mechanism is one approach for filling data gaps. Toxic Equivalents (TEQ) have been used to express the toxicity of dioxin-like compounds (i.e., dioxins, furans, and dioxin-like polychlorinated biphenyls (PCBs)) in terms of the most toxic form of dioxin: 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD). This study sought to integrate two data gap filling techniques, quantitative structure-activity relationships (QSARs) and TEFs, to predict neurotoxicity TEQs for PCBs. Simon et al. (2007) previously derived neurotoxic equivalent (NEQ) values for a dataset of 87 PCB congeners, of which 83 congeners had experimental data. These data were taken from a set of four different studies measuring different effects related to neurotoxicity, each of which tested overlapping subsets of the 83 PCB congeners. The goals of the current study were to: (i) evaluate an alternative neurotoxic equivalent factor (NEF) derivations from an expanded dataset, relative to those derived by Simon et al. and (ii) develop QSAR models to provide NEF estimates for the large number of untested PCB congeners. The models used multiple linear regression, support vector regression, k-nearest neighbor and random forest algorithms within a 5-fold cross validation scheme and position-specific chlorine substitution patterns on the biphenyl scaffold as descriptors. Alternative NEF values were derived but the resulting QSAR models had relatively low predictivity (RMSE ∼0.24). This was mostly driven by the large uncertainties in the underlying data and NEF values. The derived NEFs and the QSAR predicted NEFs to fill data gaps should be applied with caution.
Collapse
Affiliation(s)
- Prachi Pradeep
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA; National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Laura M Carlson
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Richard Judson
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Geniece M Lehmann
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Grace Patlewicz
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| |
Collapse
|
9
|
Kim M, Yang CH, Lee YS, Jang CG, Oh S, Lee S. Effects of aromatic ring-substituted phenethylamines on the release of dopamine and serotonin. Forensic Toxicol 2018. [DOI: 10.1007/s11419-018-0440-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Tanaka Y, Fujiwara M, Shindo A, Yin G, Kitazawa T, Teraoka H. Aroclor 1254 and BDE-47 inhibit dopaminergic function manifesting as changes in locomotion behaviors in zebrafish embryos. CHEMOSPHERE 2018; 193:1207-1215. [PMID: 29874750 DOI: 10.1016/j.chemosphere.2017.11.138] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 06/08/2023]
Abstract
Contamination with polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in the environment is a major concern due to their persistent bioaccumulative toxicity that can disturb neurobehavioral functions including movements. Recently, it was reported that some PBDE including BDE-47 stimulates locomotor activities of zebrafish embryos by unknown mechanism. In this study, motor movements of the zebrafish embryo were used as a model system to evaluate the neuronal toxicity of a non-coplanar PCB-dominant mixture (Aroclor 1254) and BDE-47. Both organohalogens increased tail shaking and rotation of embryos in a concentration-dependent manner. Chemical inhibition and gene knock-down of tyrosine hydroxylase and vesicular monoamine transporter 2 (VMAT2) also induced hyperactivities. Hyperactivities induced by these treatments were all inhibited by supplementation of l-tyrosine and l-dopa, precursors of dopamine synthesis. Both organohalogens reduced dopamine contents and increased the 3,4-dihydroxyphenylacetic acid (DOPAC)/dopamine ratio in whole embryos. The results suggest that functional inhibition of dopaminergic neurons is involved in hyperactivities of zebrafish embryos caused by Aroclor 1254 and BDE-47.
Collapse
Affiliation(s)
- Yasuaki Tanaka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Mari Fujiwara
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Asako Shindo
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan; Division of Biological Sciences, Department of Molecular Biology, Nagoya University Graduate School of Science, Nagoya, Japan
| | - Guojun Yin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Takio Kitazawa
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Hiroki Teraoka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan.
| |
Collapse
|
11
|
Narizzano R, Risso F, Magherini A, Cordone G, Ottonelli M, Smirnova E, Nadotti S, Rivara L, La Rocca R, Magi E, Lottici S, Maggiolo S, Pepe CE, Garbarino M. Extensive study on physicochemical properties of polychlorinated biphenyls in a commercial ion trap mass spectrometer, relevance in analytical and environmental chemistry. JOURNAL OF MASS SPECTROMETRY : JMS 2017; 52:837-847. [PMID: 28885748 DOI: 10.1002/jms.4028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 08/04/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Polychlorinated biphenyls (PCBs) exist as 209 congeners, consisting of biphenyl molecules, where the number and substitution positions of halogen atoms are known to affect industrial uses, environmental transport mechanisms, distribution, fate, and toxicity. The complexity of the problem requires accurate physicochemical studies of an increasing number of congeners in order to understand the environmental and biological processes at play. This work presents a systematic study on the thermodynamic and kinetic properties of PCBs by quadrupole ion trap mass spectrometry. A clear relationship between structure and behavior of PCBs in mass spectrometry experiments has been observed. Overall data demonstrate that di-ortho congeners show lower thermodynamic stability and higher fragmentation rate than non/mono-ortho. Congeners follow different fragmentation mechanisms according to the number of chlorine atoms in ortho position of the biphenyl system. Experimental kinetic curves of mono/non-ortho and di-ortho congeners show a strong similarity with classical first-order kinetics curves; in particular, di-ortho congeners follow a first-order consecutive reaction, while mono/non-ortho follow a first-order parallel reaction. For each studied congener, the kinetic constant of reaction (fragmentation) has been determined. Data support environmental levels and biochemical transformations described in literature. The general picture of the PCB behavior inside a quadrupole ion trap provides the basis for the development of reliable and cost-effective analytical methods to the determination of ultra-low level trace of PCB congeners.
Collapse
Affiliation(s)
- R Narizzano
- Department of Genoa, Laboratory Division-Gas Chromatography Unit, Regional Agency for Environmental Protection-Liguria (ARPAL), Via Bombrini 8, 16149, Genoa, Italy
| | - F Risso
- Department of Genoa, Laboratory Division-Gas Chromatography Unit, Regional Agency for Environmental Protection-Liguria (ARPAL), Via Bombrini 8, 16149, Genoa, Italy
| | - A Magherini
- Department of Genoa, Laboratory Division-Gas Chromatography Unit, Regional Agency for Environmental Protection-Liguria (ARPAL), Via Bombrini 8, 16149, Genoa, Italy
| | - G Cordone
- Department of Genoa, Laboratory Division-Gas Chromatography Unit, Regional Agency for Environmental Protection-Liguria (ARPAL), Via Bombrini 8, 16149, Genoa, Italy
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146, Genoa, Italy
| | - M Ottonelli
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146, Genoa, Italy
| | - E Smirnova
- Department of Genoa, Laboratory Division-Gas Chromatography Unit, Regional Agency for Environmental Protection-Liguria (ARPAL), Via Bombrini 8, 16149, Genoa, Italy
| | - S Nadotti
- Department of Genoa, Laboratory Division-Gas Chromatography Unit, Regional Agency for Environmental Protection-Liguria (ARPAL), Via Bombrini 8, 16149, Genoa, Italy
| | - L Rivara
- Department of Genoa, Laboratory Division-Gas Chromatography Unit, Regional Agency for Environmental Protection-Liguria (ARPAL), Via Bombrini 8, 16149, Genoa, Italy
| | - R La Rocca
- Department of Genoa, Laboratory Division-Gas Chromatography Unit, Regional Agency for Environmental Protection-Liguria (ARPAL), Via Bombrini 8, 16149, Genoa, Italy
| | - E Magi
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146, Genoa, Italy
| | - S Lottici
- Scientific Directorate, Regional Agency for Environmental Protection-Liguria (ARPAL), Via Bombrini 8, 16149, Genoa, Italy
| | - S Maggiolo
- Scientific Directorate, Regional Agency for Environmental Protection-Liguria (ARPAL), Via Bombrini 8, 16149, Genoa, Italy
| | - C E Pepe
- General Directorate, Regional Agency for Environmental Protection-Liguria (ARPAL), Via Bombrini 8, 16149, Genoa, Italy
| | - M Garbarino
- Department of Genoa, Laboratory DivisionRegional Agency for Environmental Protection-Liguria (ARPAL), Via Bombrini 8, 16149, Genoa, Italy
| |
Collapse
|
12
|
Nyffeler J, Chovancova P, Dolde X, Holzer AK, Purvanov V, Kindinger I, Kerins A, Higton D, Silvester S, van Vugt-Lussenburg BMA, Glaab E, van der Burg B, Maclennan R, Legler DF, Leist M. A structure-activity relationship linking non-planar PCBs to functional deficits of neural crest cells: new roles for connexins. Arch Toxicol 2017; 92:1225-1247. [PMID: 29164306 DOI: 10.1007/s00204-017-2125-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 11/15/2017] [Indexed: 12/14/2022]
Abstract
Migration of neural crest cells (NCC) is a fundamental developmental process, and test methods to identify interfering toxicants have been developed. By examining cell function endpoints, as in the 'migration-inhibition of NCC (cMINC)' assay, a large number of toxicity mechanisms and protein targets can be covered. However, the key events that lead to the adverse effects of a given chemical or group of related compounds are hard to elucidate. To address this issue, we explored here, whether the establishment of two overlapping structure-activity relationships (SAR)-linking chemical structure on the one hand to a phenotypic test outcome, and on the other hand to a mechanistic endpoint-was useful as strategy to identify relevant toxicity mechanisms. For this purpose, we chose polychlorinated biphenyls (PCB) as a large group of related, but still toxicologically and physicochemically diverse structures. We obtained concentration-dependent data for 26 PCBs in the cMINC assay. Moreover, the test chemicals were evaluated by a new high-content imaging method for their effect on cellular re-distribution of connexin43 and for their capacity to inhibit gap junctions. Non-planar PCBs inhibited NCC migration. The potency (1-10 µM) correlated with the number of ortho-chlorine substituents; non-ortho-chloro (planar) PCBs were non-toxic. The toxicity to NCC partially correlated with gap junction inhibition, while it fully correlated (p < 0.0004) with connexin43 cellular re-distribution. Thus, our double-SAR strategy revealed a mechanistic step tightly linked to NCC toxicity of PCBs. Connexin43 patterns in NCC may be explored as a new endpoint relevant to developmental toxicity screening.
Collapse
Affiliation(s)
- Johanna Nyffeler
- In vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457, Konstanz, Germany.,Research Training Group RTG1331, 78457, Konstanz, Germany
| | - Petra Chovancova
- In vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457, Konstanz, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), 78457, Konstanz, Germany
| | - Xenia Dolde
- In vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457, Konstanz, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), 78457, Konstanz, Germany
| | - Anna-Katharina Holzer
- In vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457, Konstanz, Germany
| | - Vladimir Purvanov
- Biotechnology Institute Thurgau at the University of Konstanz, 8280, Kreuzlingen, Switzerland
| | - Ilona Kindinger
- Biotechnology Institute Thurgau at the University of Konstanz, 8280, Kreuzlingen, Switzerland
| | - Anna Kerins
- Cyprotex Discovery, No 24 Mereside, Alderley Park, Cheshire, SK10 4TG, UK
| | - David Higton
- Cyprotex Discovery, No 24 Mereside, Alderley Park, Cheshire, SK10 4TG, UK
| | - Steve Silvester
- Cyprotex Discovery, No 24 Mereside, Alderley Park, Cheshire, SK10 4TG, UK
| | | | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362, Esch-sur-Alzette, Luxembourg
| | - Bart van der Burg
- BioDetection Systems bv, Science Park 406, 1098XH, Amsterdam, The Netherlands
| | - Richard Maclennan
- Cyprotex Discovery, No 24 Mereside, Alderley Park, Cheshire, SK10 4TG, UK
| | - Daniel F Legler
- Research Training Group RTG1331, 78457, Konstanz, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), 78457, Konstanz, Germany.,Biotechnology Institute Thurgau at the University of Konstanz, 8280, Kreuzlingen, Switzerland
| | - Marcel Leist
- In vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457, Konstanz, Germany. .,Research Training Group RTG1331, 78457, Konstanz, Germany. .,Konstanz Research School Chemical Biology (KoRS-CB), 78457, Konstanz, Germany.
| |
Collapse
|
13
|
Holland EB, Goldstone JV, Pessah IN, Whitehead A, Reid NM, Karchner SI, Hahn ME, Nacci DE, Clark BW, Stegeman JJ. Ryanodine receptor and FK506 binding protein 1 in the Atlantic killifish (Fundulus heteroclitus): A phylogenetic and population-based comparison. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 192:105-115. [PMID: 28942070 PMCID: PMC5662517 DOI: 10.1016/j.aquatox.2017.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/01/2017] [Accepted: 09/02/2017] [Indexed: 05/12/2023]
Abstract
Non-dioxin-like polychlorinated biphenyls (NDL PCBs) activate ryanodine receptors (RyR), microsomal Ca2+ channels of broad significance. Teleost fish may be important models for NDL PCB neurotoxicity, and we used sequencing databases to characterize teleost RyR and FK506 binding protein 12 or 12.6kDa (genes FKBP1A; FKBP1B), which promote NDL PCB-triggered Ca2+ dysregulation. Particular focus was placed on describing genes in the Atlantic killifish (Fundulus heteroclitus) genome and searching available RNA-sequencing datasets for single nucleotide variants (SNV) between PCB tolerant killifish from New Bedford Harbor (NBH) versus sensitive killifish from Scorton Creek (SC), MA. Consistent with the teleost whole genome duplication (tWGD), killifish have six RyR genes, corresponding to a and b paralogs of mammalian RyR1, 2 and 3. The presence of six RyR genes was consistent in all teleosts investigated including zebrafish. Killifish have four FKBP1; one FKBP1b and three FKBP1a named FKBP1aa, FKBP1ab, likely from the tWGD and a single gene duplicate FKBP1a3 suggested to have arisen in Atherinomorphae. The RyR and FKBP1 genes displayed tissue and developmental stage-specific mRNA expression, and the previously uncharacterized RyR3, herein named RyR3b, and all FKBP1 genes were prominent in brain. We identified a SNV in RyR3b encoding missense mutation E1458D. In NBH killifish, 57% were heterozygous and 28% were homozygous for this SNV, whereas almost all SC killifish (94%) lacked the variant (n≥39 per population). The outlined sequence differences between mammalian and teleost RyR and FKBP1 together with outlined population differences in SNV frequency may contribute to our understanding of NDL PCB neurotoxicity.
Collapse
Affiliation(s)
- Erika B Holland
- Department of Biological Sciences, California State University of Long Beach, Long Beach, CA, USA; Department of Biology, Woods Hole Oceanographic Institution, Woods Hole MA, USA; Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
| | - Jared V Goldstone
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole MA, USA
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Andrew Whitehead
- Department of Environmental Toxicology, College of Agricultural and Environmental Sciences,University of California Davis, Davis, CA, USA
| | - Noah M Reid
- Department of Environmental Toxicology, College of Agricultural and Environmental Sciences,University of California Davis, Davis, CA, USA
| | - Sibel I Karchner
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole MA, USA
| | - Mark E Hahn
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole MA, USA
| | - Diane E Nacci
- Atlantic Ecology Division, Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA
| | - Bryan W Clark
- Oak Ridge Institute for Science and Education at the United States Environmental Protection Agency, Office of Research and Development, Narragansett, RI, 02882, USA
| | - John J Stegeman
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole MA, USA
| |
Collapse
|
14
|
Miller MM, Sprowles JLN, Voeller JN, Meyer AE, Sable HJK. Cocaine sensitization in adult Long-Evans rats perinatally exposed to polychlorinated biphenyls. Neurotoxicol Teratol 2017; 62:34-41. [PMID: 28465083 DOI: 10.1016/j.ntt.2017.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/20/2017] [Accepted: 04/25/2017] [Indexed: 11/15/2022]
Abstract
Polychlorinated biphenyls (PCBs) are ubiquitous environmental toxicants known to adversely affect the nervous system and more specifically the dopamine system. Developmental PCB exposure in rats has been shown to produce alterations in dopaminergic signaling that persist into adulthood. The reinforcing properties of psychostimulants are typically modulated via the dopaminergic system, so this project used a behavioral sensitization paradigm to evaluate whether perinatal PCB exposure altered sensitization to the psychostimulant cocaine. Long-Evans rats were perinatally exposed to 0, 3 or 6mg/kg/day of PCBs throughout gestation and lactation. One male and female pup from each litter was retained for behavioral testing. Both horizontal and vertical activity were used to measure cocaine sensitization following repeated injections of 10mg/kg cocaine (IP) on post-natal day (PND) 91-96 and again after a week in the home cage on PND 103. A final locomotor activity session following a challenge injection of 20mg/kg was given on PND 110 to further evaluate the availability of presynaptic dopamine stores. The PCB-exposed rats appeared to be pre-sensitized to cocaine as they exhibited a greater degree of cocaine-induced locomotor activation to the initial injections of cocaine and therefore demonstrated a more rapid onset of cocaine behavioral sensitization compared to non-exposed controls. These results add to the literature detailing how perinatal exposure to dopamine-disrupting contaminants can change the developing brain, thereby producing permanent changes in the neurobehavioral response to psychostimulants later in life.
Collapse
Affiliation(s)
- Mellessa M Miller
- Department of Psychology, University of Memphis, Memphis, TN 38152, USA
| | - Jenna L N Sprowles
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jason N Voeller
- Department of Psychology, University of Memphis, Memphis, TN 38152, USA
| | - Abby E Meyer
- Department of Psychological Science, University of North, Georgia, Dahlonega, GA 30597
| | - Helen J K Sable
- Department of Psychology, University of Memphis, Memphis, TN 38152, USA.
| |
Collapse
|
15
|
Drummond J, Williamson SM, Fitchett AE, Wright GA, Judge SJ. Spontaneous honeybee behaviour is altered by persistent organic pollutants. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:141-150. [PMID: 27933553 PMCID: PMC5241328 DOI: 10.1007/s10646-016-1749-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/20/2016] [Indexed: 06/06/2023]
Abstract
The effect of environmental pollutants on honeybee behaviour has focused mainly on currently used pesticides. However, honeybees are also exposed to persistent organic pollutants (POPs). The aim of this laboratory based study was to determine if exposure to sublethal field-relevant concentrations of POPs altered the spontaneous behaviour of foraging-age worker honeybees. Honeybees (Apis mellifera) were orally exposed to either a sublethal concentration of the polychlorinated biphenyl (PCB) mixture Aroclor 1254 (100 ng/ml), the organochlorine insecticide lindane (2.91 ng/ml) or vehicle (0.01% DMSO, 0.00015% ethanol in 1M sucrose) for 1-4 days. The frequency of single event behaviours and the time engaged in one of four behavioural states (walking, flying, upside down and stationary) were monitored for 15 min after 1, 2, 3 and 4 days exposure. Exposure to Aroclor 1254 but not lindane increased the frequency and time engaged in honeybee motor activity behaviours in comparison to vehicle. The Aroclor 1254-induced hyperactivity was evident after 1 day of exposure and persisted with repeated daily exposure. In contrast, 1 day of exposure to lindane elicited abdominal spasms and increased the frequency of grooming behaviours in comparison to vehicle exposure. After 4 days of exposure, abdominal spasms and increased grooming behaviours were also evident in honeybees exposed to Aroclor 1254. These data demonstrate that POPs can induce distinct behavioural patterns, indicating different toxicokinetic and toxicodynamic properties. The changes in spontaneous behaviour, particularly the PCB-induced chronic hyperactivity and the associated energy demands, may have implications for colony health.
Collapse
Affiliation(s)
- Jade Drummond
- Medical Toxicology Centre, Newcastle University, Newcastle upon Tyne, NE2 4AA, UK
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Sally M Williamson
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Ann E Fitchett
- Medical Toxicology Centre, Newcastle University, Newcastle upon Tyne, NE2 4AA, UK
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Geraldine A Wright
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Sarah J Judge
- Medical Toxicology Centre, Newcastle University, Newcastle upon Tyne, NE2 4AA, UK.
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
16
|
Holland EB, Feng W, Zheng J, Dong Y, Li X, Lehmler HJ, Pessah IN. An Extended Structure-Activity Relationship of Nondioxin-Like PCBs Evaluates and Supports Modeling Predictions and Identifies Picomolar Potency of PCB 202 Towards Ryanodine Receptors. Toxicol Sci 2016; 155:170-181. [PMID: 27655348 DOI: 10.1093/toxsci/kfw189] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Nondioxin-like polychlorinated biphenyls (NDL PCBs) activate ryanodine-sensitive Ca2+ channels (RyRs) and this activation has been associated with neurotoxicity in exposed animals. RyR-active congeners follow a distinct structure-activity relationship and a quantitative structure-activity relationship (QSAR) predicts that a large number of PCBs likely activate the receptor, which requires validation. Additionally, previous structural based conclusions have been established using receptor ligand binding assays but the impact of varying PCB structures on ion channel gating behavior is not understood. We used [3H]Ryanodine ([3H]Ry) binding to assess the RyR-activity of 14 previously untested PCB congeners evaluating the predictability of the QSAR. Congeners determined to display widely varying potency were then assayed with single channel voltage clamp analysis to assess direct influences on channel gating kinetics. The RyR-activity of individual PCBs assessed in in vitro assays followed the general pattern predicted by the QSAR but binding and lipid bilayer experiments demonstrated higher potency than predicted. Of the 49 congeners tested to date, tetra-ortho PCB 202 was found to be the most potent RyR-active congener increasing channel open probability at 200 pM. Shifting meta-substitutions to the para-position resulted in a > 100-fold reduction in potency as seen with PCB 197. Non-ortho PCB 11 was found to lack activity at the receptor supporting a minimum mono-ortho substitution for PCB RyR activity. These findings expand and support previous SAR assessments; where out of the 49 congeners tested to date 42 activate the receptor demonstrating that the RyR is a sensitive and common target of PCBs.
Collapse
Affiliation(s)
- Erika B Holland
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California; .,Department of Biological Sciences, California State University of Long Beach, Long Beach, California.,Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California
| | - Wei Feng
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California
| | - Jing Zheng
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California.,Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing 211198, China
| | - Yao Dong
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California
| | - Xueshu Li
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California.,The Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Medical Center, Sacramento, California.,UC Davis Center for Children's Environmental Health and Disease Prevention, Davis, California
| |
Collapse
|
17
|
Pinson A, Bourguignon JP, Parent AS. Exposure to endocrine disrupting chemicals and neurodevelopmental alterations. Andrology 2016; 4:706-22. [PMID: 27285165 DOI: 10.1111/andr.12211] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/25/2016] [Accepted: 04/05/2016] [Indexed: 01/24/2023]
Abstract
The developing brain is remarkably malleable as neural circuits are formed and these circuits are strongly dependent on hormones for their development. For those reasons, the brain is very vulnerable to the effects of endocrine-disrupting chemicals (EDCs) during critical periods of development. This review focuses on three ubiquitous endocrine disruptors that are known to disrupt the thyroid function and are associated with neurobehavioral deficits: polychlorinated biphenyls, polybrominated diphenyl ethers, and bisphenol A. The human and rodent data suggesting effects of those EDCs on memory, cognition, and social behavior are discussed. Their mechanisms of action go beyond relative hypothyroidism with effects on neurotransmitter release and calcium signaling.
Collapse
Affiliation(s)
- A Pinson
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liege, Liège, Belgium
| | - J P Bourguignon
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liege, Liège, Belgium
| | - A S Parent
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liege, Liège, Belgium
| |
Collapse
|
18
|
Risso F, Magherini A, Ottonelli M, Magi E, Lottici S, Maggiolo S, Garbarino M, Narizzano R. A comprehensive approach to actual polychlorinated biphenyls environmental contamination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:8770-8780. [PMID: 26805927 DOI: 10.1007/s11356-016-6108-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 01/12/2016] [Indexed: 06/05/2023]
Abstract
Worldwide polychlorinated biphenyls (PCBs) pollution is due to complex mixtures with high number of congeners, making the determination of total PCBs in the environment an open challenge. Because the bulk of PCBs production was made of Aroclor mixtures, this analysis is usually faced by the empirical mixture identification via visual inspection of the chromatogram. However, the identification reliability is questionable, as patterns in real samples are strongly affected by the frequent occurrence of more than one mixture. Our approach is based on the determination of a limited number of congeners chosen to enable objective criteria for Aroclor identification, summing up the advantages of congener-specific analysis with the ones of total PCBs determination. A quantitative relationship is established between congeners and any single mixture, or mixtures combination, leading to the identification of the actual contamination composition. The approach, due to its generality, allows the use of different sets of congeners and any technical mixture, including the non-Aroclor ones. The results confirm that PCB environmental pollution in northern Italy is based on Aroclor. Our methodology represents an important tool to understand the source and fate of the PCBs contamination.
Collapse
Affiliation(s)
- F Risso
- Regional Agency for Environmental Protection-Liguria (ARPAL), Via Bombrini 8, 16149, Genoa, Italy.
| | - A Magherini
- Regional Agency for Environmental Protection-Liguria (ARPAL), Via Bombrini 8, 16149, Genoa, Italy
| | - M Ottonelli
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146, Genoa, Italy
| | - E Magi
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146, Genoa, Italy
| | - S Lottici
- Regional Agency for Environmental Protection-Liguria (ARPAL), Via Bombrini 8, 16149, Genoa, Italy
| | - S Maggiolo
- Regional Agency for Environmental Protection-Liguria (ARPAL), Via Bombrini 8, 16149, Genoa, Italy
| | - M Garbarino
- Regional Agency for Environmental Protection-Liguria (ARPAL), Via Bombrini 8, 16149, Genoa, Italy
| | - R Narizzano
- Regional Agency for Environmental Protection-Liguria (ARPAL), Via Bombrini 8, 16149, Genoa, Italy.
| |
Collapse
|
19
|
Shin ES, Nguyen KH, Kim J, Kim CI, Chang YS. Progressive risk assessment of polychlorinated biphenyls through a Total Diet Study in the Korean population. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 207:403-412. [PMID: 26470055 DOI: 10.1016/j.envpol.2015.08.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 06/05/2023]
Abstract
Human exposure to polychlorinated biphenyls (PCBs) from foods was investigated through a Total Diet Study (TDS) for the first time in Korea. A representative food list was developed from food intake data. Non-selected foods were also included in the TDS through the mapping process to anticipate practical risk assessment. For better representativeness, data (2008-2011) from the Korea National Health and Nutrition Examination Survey (KNHANES) were combined with the TDS data set. And also, we estimated the dietary exposure to PCBs from various food items using a 'best-fit' mapping process and assessed the differences in PCB exposures by sex and age. In this study, we examined total PCBs (62 congeners) including dioxin-like PCBs (DL-PCBs) and indicator PCBs, which are congeners that are mainly detected in various environmental matrices. The average dietary exposure (3.94 ng/kg body weight/day) that was estimated through food intake was 19.7% of the World Health Organization (WHO) recommendation.
Collapse
Affiliation(s)
- Eun-su Shin
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea
| | - Khanh-Hoang Nguyen
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea
| | - Jongchul Kim
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea
| | - Cho-il Kim
- Department of Anti-Aging, Korea Health Industry Development Institute (KHIDI), Chueongju, 363-951, Republic of Korea
| | - Yoon-Seok Chang
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea.
| |
Collapse
|
20
|
Dervola KSN, Johansen EB, Walaas SI, Fonnum F. Gender-dependent and genotype-sensitive monoaminergic changes induced by polychlorinated biphenyl 153 in the rat brain. Neurotoxicology 2015. [PMID: 26215117 DOI: 10.1016/j.neuro.2015.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polychlorinated biphenyls (PCBs) are present as ortho- and non-ortho-substituted PCBs, with most of the ortho-substituted congeners being neurotoxic. The present study examined effects of the ortho-substituted PCB 153 on dopamine, serotonin and amino acid neurotransmitters in the neostriatum of both male and female Wistar Kyoto (WKY) and spontaneously hypertensive rat (SHR) genotypes. PCB 153 exposure at p8, p14 and p20 had no effects on levels of these transmitters when examined at p55, but led to increased levels of both homovanillic acid and 5-hydroxyindoleacetic acid, the degradation products of dopamine and serotonin, respectively, in all groups except the female SHR. Immunoblotting showed that PCB exposure induced gender-specific decreases in dopaminergic synaptic proteins. These included a novel finding of decreased levels of the dopamine D5 receptor in both genders and genotypes, whereas male-specific changes included decreases in the postsynaptic density (PSD)-95 protein in the WKY and SHRs and a decrease in the presynaptic dopamine transporter in both the WKY and, less clearly in the male SHR. A female-specific tendency of increased vesicular monoamine transporter-2 was observed in the SHRs after PCB exposure. No changes were seen in tyrosine hydroxylase, the cytoskeletal neurotubulin or the plasma membrane marker Na(+)/K(+)-ATPase in any strain. Hence, PCB-exposure led to increases in monoamine transmitter turnover in both male and female animals, whereas decreases in both pre- and postsynaptic dopaminergic proteins were predominantly seen in male animals. PCB 153 may therefore induce neostriatal toxicity through both presynaptic and postsynaptic mechanisms in both genotypes and genders, including effects on the aspiny interneurons, which employ the D5 receptor to mediate dopamine effects on interneurons in the basal ganglia.
Collapse
Affiliation(s)
- Kine S N Dervola
- Department of Biochemistry, Division of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, Norway
| | - Espen B Johansen
- Oslo and Akershus University College of Applied Sciences, Oslo, Norway
| | - S Ivar Walaas
- Department of Biochemistry, Division of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, Norway.
| | - Frode Fonnum
- Department of Biochemistry, Division of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, Norway
| |
Collapse
|
21
|
Rodenburg LA, Delistraty D, Meng Q. Polychlorinated biphenyl congener patterns in fish near the Hanford Site (Washington State, USA). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:2767-2775. [PMID: 25621866 DOI: 10.1021/es504961a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
It is well-known that absorption, distribution, metabolism, and excretion (ADME) processes in fish can alter polychlorinated biphenyl (PCB) congener patterns in fish, but these patterns have never been investigated using an advanced source-apportionment tool. In this work, PCB congener patterns in freshwater fish were examined with positive matrix factorization (PMF). PCB congeners were quantified via EPA Method 1668 in fillet and carcass of six species in four study areas in the Columbia River near the Hanford Site. Six factors were resolved with PMF2 software. Depletion and enhancement of PCB congeners in factors, relative to Aroclor 1254, suggested biotransformation (via cytochrome P450) and bioaccumulation in fish, respectively. Notable differences were observed among species and across study locations. For example, sturgeon and whitefish exhibited congener patterns consistent with Aroclor weathering, suggesting potential PCB metabolism in these species. In terms of location, average concentration of total PCBs for all species combined was significantly higher (P < 0.05) at Hanford 100 and 300 areas, relative to upriver and downriver study sites. Furthermore, a distinct PCB signature in sturgeon and whitefish, collected at Hanford study areas, suggests that Hanford is a unique PCB source.
Collapse
Affiliation(s)
- Lisa A Rodenburg
- Department of Environmental Science, Rutgers University , 14 College Farm Road, New Brunswick, New Jersey 08901, United States
| | | | | |
Collapse
|
22
|
Shrestha S, Bloom MS, Yucel R, Seegal RF, Wu Q, Kannan K, Rej R, Fitzgerald EF. Perfluoroalkyl substances and thyroid function in older adults. ENVIRONMENT INTERNATIONAL 2015; 75:206-14. [PMID: 25483837 PMCID: PMC4272864 DOI: 10.1016/j.envint.2014.11.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/26/2014] [Accepted: 11/28/2014] [Indexed: 05/22/2023]
Abstract
Current understanding of the thyroid disruptive properties of perfluoroalkyl substances (PFASs), particularly in aging populations, is limited. The objectives of this study were to (i) assess associations between thyroid function, as measured by serum thyrotropin (thyroid stimulating hormone, TSH), free thyroxine (fT4), total thyroxine (T4), and total triiodothyronine (T3), and serum perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in an aging population and (ii) determine if other persistent organic pollutants with thyroid disruptive properties including polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) modify such associations. We conducted a cross-sectional study of 87 men and women 55 to 74years of age, without clinically-diagnosed thyroid disease, who resided in upper Hudson River communities in New York. Geometric means (standard deviations) of serum PFOS and PFOA were 31.6 (1.7) ng/mL and 9.17 (1.72) ng/mL, respectively. Multivariable linear regression analyses indicated that one interquartile range difference in PFOS corresponded to 4% and 9% increases in fT4 and T4 respectively. We detected statistical interactions between PFOA and age for effects on fT4 and T4; joint increases in PFOA and age were associated with increases in fT4 and T4, of 3% and 7%, respectively. We also detected statistical interactions between PFOS and total PCBs for the effect on T3 and between PFOA and total PBDEs for the effect on TSH. Our results suggest that PFASs are associated with subtle alterations in thyroid hormone levels in this population, and that these associations are likely to vary by age, and levels of PCBs and PBDEs.
Collapse
Affiliation(s)
- Srishti Shrestha
- Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, State University of New York, One University Place, Rensselaer, NY 12144, USA
| | - Michael S Bloom
- Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, State University of New York, One University Place, Rensselaer, NY 12144, USA; Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, One University Place, Rensselaer, NY 12144, USA
| | - Recai Yucel
- Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, State University of New York, One University Place, Rensselaer, NY 12144, USA
| | - Richard F Seegal
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, One University Place, Rensselaer, NY 12144, USA; Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Empire State Plaza, P.O. Box 509, Albany, NY 12201, USA
| | - Qian Wu
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, One University Place, Rensselaer, NY 12144, USA; Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Empire State Plaza, P.O. Box 509, Albany, NY 12201, USA
| | - Kurunthachalam Kannan
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, One University Place, Rensselaer, NY 12144, USA; Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Empire State Plaza, P.O. Box 509, Albany, NY 12201, USA
| | - Robert Rej
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, P.O. Box 509, Albany, NY 12201, USA; Department of Biomedical Sciences, School of Public Health, University at Albany, State University of New York, One University Place, Rensselaer, NY 12144, USA
| | - Edward F Fitzgerald
- Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, State University of New York, One University Place, Rensselaer, NY 12144, USA; Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, One University Place, Rensselaer, NY 12144, USA.
| |
Collapse
|
23
|
Developmental exposure to purity-controlled polychlorinated biphenyl congeners (PCB74 and PCB95) in rats: effects on brainstem auditory evoked potentials and catalepsy. Toxicology 2014; 327:22-31. [PMID: 25449634 DOI: 10.1016/j.tox.2014.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/11/2014] [Accepted: 11/11/2014] [Indexed: 01/12/2023]
Abstract
Whereas the effects of dioxin-like polychlorinated biphenyls (DL-PCBs) are well described, less is known about non-dioxin-like PCBs (NDL-PCBs), including influences on the nervous system and related behavioral effects after developmental exposure. Following the examination of the highly purified NDL congeners PCB52 and PCB180, we report here the results of experiments with PCB74 and PCB95. Rat dams were orally exposed to equimolar doses of either congener (40μmol/kg bw - 11.68mg PCB74/kg bw or 13.06mg PCB95/kg bw) from gestational day (GD) 10 to postnatal day (PND) 7. Control dams were given the vehicle. Adult offspring were tested for cataleptic behavior after induction with haloperidol, a classical neuroleptic drug, and brainstem auditory evoked potentials (BAEPs), using clicks and tone pips of different frequencies for stimulation. Results revealed slight effects on latencies to movement onset in female offspring exposed to PCB74, whereas PCB74 males and offspring exposed to PCB95 were not affected. Pronounced changes were observed in BAEPs at low frequencies in PCB74 offspring, with elevated thresholds in both sexes. PCB95 increased thresholds in males, but not females. Small effects were detected on latency of the late wave IV in both sexes after developmental exposure to PCB74 or PCB95. Compared with the other NDL-PCB congeners tested, PCB74 caused the most pronounced effects on BAEPs.
Collapse
|
24
|
Endocrine-disrupting actions of PCBs on brain development and social and reproductive behaviors. Curr Opin Pharmacol 2014; 19:134-44. [PMID: 25310366 DOI: 10.1016/j.coph.2014.09.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 09/24/2014] [Accepted: 09/24/2014] [Indexed: 11/20/2022]
Abstract
Polychlorinated biphenyls are among the most well-studied endocrine-disrupting chemicals (EDCs) for their neurobehavioral effects, especially neurodevelopment and cognitive performance. In addition, past research has demonstrated effects of PCBs on circulating hormones and associated changes in reproductive behaviors. This article will focus on recent advances that have been made in characterizing developmental PCB effects on reproductive function, broader social and affective behaviors, and the neuroendocrine mechanisms behind such changes. In general, PCBs seem to inhibit reproductive function by suppressing multiple aspects of the associated hypothalamic circuitry. Additionally, PCBs may also reduce motivation for social behaviors and induce depressive-like symptoms via overall reductions in dopaminergic and glutamatergic functions in the limbic system. However, more work with human-relevant exposure paradigms is needed to fully support these conclusions.
Collapse
|
25
|
Westerink RH. Do we really want to REACH out to in vitro? Neurotoxicology 2013; 39:169-72. [DOI: 10.1016/j.neuro.2013.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/02/2013] [Accepted: 10/02/2013] [Indexed: 11/24/2022]
|