1
|
Ji Y, Wang Y, Wang X, Lv C, Zhou Q, Jiang G, Yan B, Chen L. Beyond the promise: Exploring the complex interactions of nanoparticles within biological systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133800. [PMID: 38368688 DOI: 10.1016/j.jhazmat.2024.133800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
The exploration of nanoparticle applications is filled with promise, but their impact on the environment and human health raises growing concerns. These tiny environmental particles can enter the human body through various routes, such as the respiratory system, digestive tract, skin absorption, intravenous injection, and implantation. Once inside, they can travel to distant organs via the bloodstream and lymphatic system. This journey often results in nanoparticles adhering to cell surfaces and being internalized. Upon entering cells, nanoparticles can provoke significant structural and functional changes. They can potentially disrupt critical cellular processes, including damaging cell membranes and cytoskeletons, impairing mitochondrial function, altering nuclear structures, and inhibiting ion channels. These disruptions can lead to widespread alterations by interfering with complex cellular signaling pathways, potentially causing cellular, organ, and systemic impairments. This article delves into the factors influencing how nanoparticles behave in biological systems. These factors include the nanoparticles' size, shape, charge, and chemical composition, as well as the characteristics of the cells and their surrounding environment. It also provides an overview of the impact of nanoparticles on cells, organs, and physiological systems and discusses possible mechanisms behind these adverse effects. Understanding the toxic effects of nanoparticles on physiological systems is crucial for developing safer, more effective nanoparticle-based technologies.
Collapse
Affiliation(s)
- Yunxia Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Changjun Lv
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
2
|
Zhou HL, Di DS, Cui ZB, Zhou TT, Yuan TT, Liu Q, Zhang JL, Luo X, Ling DY, Wang Q. Whole-body aging mediates the association between exposure to volatile organic compounds and osteoarthritis among U.S. middle-to-old-aged adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167728. [PMID: 37827324 DOI: 10.1016/j.scitotenv.2023.167728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Humans are constantly exposed to various volatile organic compounds (VOCs) because of their widespread sources and characteristic of easy evaporation. Existing evidence regarding the association between VOC exposure and osteoarthritis (OA) risk is limited. PURPOSE This study aimed to investigate the associations between individual urinary VOC metabolites (VOCMs) and the VOCM mixture, representing internal exposure levels of VOCs, with prevalent OA risk and to explore the mediating effect of aging and oxidative stress (OS) in these associations. METHODS Data from the National Health and Nutrition Examination Surveys 2005-2020 were analyzed. Weighted generalized linear regression was employed to explore the associations between individual VOCMs and OA risk, as well as aging and OS biomarkers. A five-repeated ten-fold cross-validation elastic net model was used to identify critical VOCMs for the weight quantile sum (WQS) analysis, which was performed to explore the VOCM mixture and OA risk association. Parallel and serial mediation analyses were conducted to identify the potential mediators and mediation pathways. RESULTS This study included 6578 American adults aged ≥40 years, among whom 1052 (16.0 %) individuals reported prevalent OA. Urinary levels of N-acetyl-S-(benzyl)-L-cysteine, mandelic acid and phenylglyoxylic acid were positively associated with OA risk. Eleven VOCMs with nonzero coefficients were identified and included in the WQS analysis, and results revealed an average increase of 24.4 % in OA risk (OR = 1.244, 95 % CI: 1.041, 1.486) per one-quantile increment in the VOCM mixture. Two aging biomarkers, phenotypic age and biological age, parallelly mediated the association between the VOCM mixture and OA risk, with mediation effect proportions of 9.0 % and 16.4 %, respectively. CONCLUSIONS Exposure to VOCs is associated with an increased OA risk in middle-to-old aged American adults. The mediating effect of aging contributes to the association between co-exposure to VOCs and OA risk. Further prospective studies are required to substantiate these findings.
Collapse
Affiliation(s)
- Hao-Long Zhou
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dong-Sheng Di
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhang-Bo Cui
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ting-Ting Zhou
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ting-Ting Yuan
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Liu
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian-Li Zhang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiao Luo
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dan-Yang Ling
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qi Wang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
3
|
Li Z, Lu J, Ruan X, Wu Y, Zhao J, Jiao X, Sun J, Sun K. Exposure to volatile organic compounds induces cardiovascular toxicity that may involve DNA methylation. Toxicology 2024; 501:153705. [PMID: 38070821 DOI: 10.1016/j.tox.2023.153705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
Volatile organic compounds (VOCs) are common air pollutants and water contaminants. We previously found maternal exposure to VOCs was associated with offspring congenital heart disease (CHD). However, little information is available about the effects of VOCs on cardiovascular development at embryonic stage and the underlying mechanism remains unclear. In this study, we aimed to investigate the effects of a mixture of six VOCs on cardiovascular development in zebrafish embryos. Embryos were exposed to different concentrations of VOCs mixture (32 mg/L, 64 mg/L and 128 mg/L) for 96 h, cardiovascular abnormalities including elongated heart shape, increased distance between sinus venosus and bulbus arteriosus, slowed circulation and altered heart rate were observed in a dose- and time-dependent manner. Meanwhile, VOCs exposure increased global DNA methylation levels in embryos. Analysis identified hundreds of differentially methylated sites and the enrichment of differentially methylated sites on cardiovascular development. Two differentially methylated-associated genes involved in MAPK pathway, hgfa and ntrk1, were identified to be the potential genes mediating the effects of VOCs. By enzyme-linked immunosorbent assay, altered human serum hgf and ntrk1 levels were detected in abnormal pregnancies exposed to higher VOCs levels with fetal CHD. For the first time, our study revealed exposure to VOCs induced severe cardiovascular abnormalities in zebrafish embryos. The toxicity might result from alterations in DNA methylation and corresponding expression levels of genes involved in MAPK pathway. Our study provides important information for the risk of VOCs exposure on embryonic cardiovascular development.
Collapse
Affiliation(s)
- Zhuoyan Li
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieru Lu
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Children's Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xuehua Ruan
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yurong Wu
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianyuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xianting Jiao
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jing Sun
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Zhu Y, Ju Y, Wang M, Yang Y, Wu R. Association of volatile organic compounds exposure with the risk of depression in U.S. adults: a cross‑sectional study from NHANES 2013-2016. Int Arch Occup Environ Health 2023; 96:1101-1111. [PMID: 37368145 DOI: 10.1007/s00420-023-01993-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Volatile organic compounds (VOCs) are a broad class of chemicals, and previous studies showed that VOCs could increase the risk of central nervous system disorders. However, few studies have comprehensively explored their association with depression among general adults. OBJECTIVE We aimed to explore the association between blood VOCs and depression risk based on a large cross-sectional study of the National Health and Nutrition Examination Survey (NHANES). METHODS We analyzed data from 3449 American adults in the NHANES 2013-2016. Survey-weighted logistic regression model was used to explore the association of ten blood VOCs with depression. Subsequently, the relative importance of the selected VOCs was determined using the XGBoost model. The weighted quantile sum (WQS) regression model was used to explore the overall association of 10 blood VOCs with depression. Subgroup analyses were performed to identify high-risk populations. Finally, restricted cubic spline (RCS) analysis was utilized to explore the dose-response relationship between blood VOCs and the risk of depression. RESULTS XGBoost Algorithm model identified blood 2,5-dimethylfuran was the most critical variable in depression. The logistic regression model showed that blood benzene, blood 2,5-dimethylfuran, and blood furan showed a positive correlation with depression. In subgroup analysis, we found that the effects of the above VOCs on depression existed among the female, young middle-aged, and overweight-obese population. Mixture VOCs exposure was positively associated with depression risk (OR = 2.089, 95% CI: 1.299-3.361), and 2,5-dimethylfuran had the largest weights in WQS regression. RCS displayed that blood benzene, blood 2,5-dimethylfuran, and blood furan were positively associated with depression. CONCLUSION The results of this study indicated that VOCs exposure was associated with an increased prevalence of depression in U.S. adults. Women, young and middle-aged, and overweight-obese populations are more vulnerable to VOCs.
Collapse
Affiliation(s)
- Yue Zhu
- Hefei Ion Medical Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230088, People's Republic of China
| | - Yinghui Ju
- Hefei Ion Medical Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230088, People's Republic of China
| | - Menglin Wang
- Hefei Ion Medical Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230088, People's Republic of China
| | - Yuying Yang
- Hefei Ion Medical Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230088, People's Republic of China
| | - Rui Wu
- Hefei Ion Medical Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230088, People's Republic of China.
| |
Collapse
|
5
|
López LR, Dessì P, Cabrera-Codony A, Rocha-Melogno L, Kraakman B, Naddeo V, Balaguer MD, Puig S. CO 2 in indoor environments: From environmental and health risk to potential renewable carbon source. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159088. [PMID: 36181799 DOI: 10.1016/j.scitotenv.2022.159088] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/10/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
In the developed world, individuals spend most of their time indoors. Poor Indoor Air Quality (IAQ) has a wide range of effects on human health. The burden of disease associated with indoor air accounts for millions of premature deaths related to exposure to Indoor Air Pollutants (IAPs). Among them, CO2 is the most common one, and is commonly used as a metric of IAQ. Indoor CO2 concentrations can be significantly higher than outdoors due to human metabolism and activities. Even in presence of ventilation, controlling the CO2 concentration below the Indoor Air Guideline Values (IAGVs) is a challenge, and many indoor environments including schools, offices and transportation exceed the recommended value of 1000 ppmv. This is often accompanied by high concentration of other pollutants, including bio-effluents such as viruses, and the importance of mitigating the transmission of airborne diseases has been highlighted by the COVID-19 pandemic. On the other hand, the relatively high CO2 concentration of indoor environments presents a thermodynamic advantage for direct air capture (DAC) in comparison to atmospheric CO2 concentration. This review aims to describe the issues associated with poor IAQ, and to demonstrate the potential of indoor CO2 DAC to purify indoor air while generating a renewable carbon stream that can replace conventional carbon sources as a building block for chemical production, contributing to the circular economy.
Collapse
Affiliation(s)
- L R López
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain.
| | - P Dessì
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain
| | - A Cabrera-Codony
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain
| | - L Rocha-Melogno
- ICF, 2635 Meridian Parkway Suite 200, Durham, NC 27713, United States
| | - B Kraakman
- Jacobs Engineering, Templey Quay 1, Bristol BAS1 6DG, UK; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., 47011 Valladolid, Spain
| | - V Naddeo
- Sanitary Environmental Engineering Division, Department of Civil Engineering, University of Salerno, 84084 Fisciano, SA, Italy
| | - M D Balaguer
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain
| | - S Puig
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain
| |
Collapse
|
6
|
Zundel CG, Ryan P, Brokamp C, Heeter A, Huang Y, Strawn JR, Marusak HA. Air pollution, depressive and anxiety disorders, and brain effects: A systematic review. Neurotoxicology 2022; 93:272-300. [PMID: 36280190 PMCID: PMC10015654 DOI: 10.1016/j.neuro.2022.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
Abstract
Accumulating data suggest that air pollution increases the risk of internalizing psychopathology, including anxiety and depressive disorders. Moreover, the link between air pollution and poor mental health may relate to neurostructural and neurofunctional changes. We systematically reviewed the MEDLINE database in September 2021 for original articles reporting effects of air pollution on 1) internalizing symptoms and behaviors (anxiety or depression) and 2) frontolimbic brain regions (i.e., hippocampus, amygdala, prefrontal cortex). One hundred and eleven articles on mental health (76% human, 24% animals) and 92 on brain structure and function (11% human, 86% animals) were identified. For literature search 1, the most common pollutants examined were PM2.5 (64.9%), NO2 (37.8%), and PM10 (33.3%). For literature search 2, the most common pollutants examined were PM2.5 (32.6%), O3 (26.1%) and Diesel Exhaust Particles (DEP) (26.1%). The majority of studies (73%) reported higher internalizing symptoms and behaviors with higher air pollution exposure. Air pollution was consistently associated (95% of articles reported significant findings) with neurostructural and neurofunctional effects (e.g., increased inflammation and oxidative stress, changes to neurotransmitters and neuromodulators and their metabolites) within multiple brain regions (24% of articles), or within the hippocampus (66%), PFC (7%), and amygdala (1%). For both literature searches, the most studied exposure time frames were adulthood (48% and 59% for literature searches 1 and 2, respectively) and the prenatal period (26% and 27% for literature searches 1 and 2, respectively). Forty-three percent and 29% of studies assessed more than one exposure window in literature search 1 and 2, respectively. The extant literature suggests that air pollution is associated with increased depressive and anxiety symptoms and behaviors, and alterations in brain regions implicated in risk of psychopathology. However, there are several gaps in the literature, including: limited studies examining the neural consequences of air pollution in humans. Further, a comprehensive developmental approach is needed to examine windows of susceptibility to exposure and track the emergence of psychopathology following air pollution exposure.
Collapse
Affiliation(s)
- Clara G Zundel
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA.
| | - Patrick Ryan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Cole Brokamp
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Autumm Heeter
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA.
| | - Yaoxian Huang
- Department of Civil and Environmental Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, USA.
| | - Jeffrey R Strawn
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Anxiety Disorders Research Program, Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA.
| | - Hilary A Marusak
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA; Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, Detroit, MI, USA; Translational Neuroscience Program, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
7
|
Toxicopathological changes induced by combined exposure to noise and toluene in New Zealand White rabbits. Arh Hig Rada Toksikol 2022; 73:31-42. [PMID: 35390242 PMCID: PMC8999586 DOI: 10.2478/aiht-2022-73-3602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/01/2022] [Indexed: 11/20/2022] Open
Abstract
Noise and toluene can have significant adverse effects on different systems in the human body, but little is known about their combination. The aim of this study was to see how their combined action reflects on serum levels of inflammatory cytokines tumour necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β), body weight, and pathological changes in the heart, lung, stomach, and spleen tissues. To do that we exposed New Zealand rabbits to 1000 mg/L toluene and 100 dB of white noise in a chamber specifically designed for the purpose over two consecutive weeks. Serum levels of TNF-α and IL-1β were measured with the enzyme-linked immunosorbent assay (ELISA), whereas Bax and Bcl-2 expressions in tissues were determined with real-time polymerase chain reaction (PCR). Noise and toluene changed TNF-α and IL-1β serum levels on different days following the end of exposure and significantly increased the Bax/Bcl-2 ratio in the lung and spleen. In addition, they induced different pathological changes in the heart, lung, spleen, and stomach tissues. This study has confirmed that exposure to noise and toluene can induce a range of toxicopathological changes, probably by inducing inflammatory pathways and apoptosis, but their combined effects look weaker than those of its components, although histopathological findings suggest the opposite.
Collapse
|
8
|
Bernardini L, Barbosa E, Charão MF, Goethel G, Muller D, Bau C, Steffens NA, Santos Stein C, Moresco RN, Garcia SC, Souza Vencato M, Brucker N. Oxidative damage, inflammation, genotoxic effect, and global DNA methylation caused by inhalation of formaldehyde and the purpose of melatonin. Toxicol Res (Camb) 2020; 9:778-789. [PMID: 33447362 PMCID: PMC7786178 DOI: 10.1093/toxres/tfaa079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/09/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Formaldehyde (FA) exposure has been proven to increase the risk of asthma and cancer. This study aimed to evaluate for 28 days the FA inhalation effects on oxidative stress, inflammation process, genotoxicity, and global DNA methylation in mice as well as to investigate the potential protective effects of melatonin. For that, analyses were performed on lung, liver and kidney tissues, blood, and bone marrow. Bronchoalveolar lavage was used to measure inflammatory parameters. Lipid peroxidation (TBARS), protein carbonyl (PCO), non-protein thiols (NPSH), catalase activity (CAT), comet assay, micronuclei (MN), and global methylation were determined. The exposure to 5-ppm FA resulted in oxidative damage to the lung, presenting a significant increase in TBARS and NO levels and a decrease in NPSH levels, besides an increase in inflammatory cells recruited for bronchoalveolar lavage. Likewise, in the liver tissue, the exposure to 5-ppm FA increased TBARS and PCO levels and decreased NPSH levels. In addition, FA significantly induced DNA damage, evidenced by the increase of % tail moment and MN frequency. The pretreatment of mice exposed to FA applying melatonin improved inflammatory and oxidative damage in lung and liver tissues and attenuated MN formation in bone marrow cells. The pulmonary histological study reinforced the results observed in biochemical parameters, demonstrating the potential beneficial role of melatonin. Therefore, our results demonstrated that FA exposure with repeated doses might induce oxidative damage, inflammatory, and genotoxic effects, and melatonin minimized the toxic effects caused by FA inhalation in mice.
Collapse
Affiliation(s)
- Letícia Bernardini
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Eduardo Barbosa
- Graduate Program on Toxicology and Analytical Toxicology, University Feevale, Novo Hamburgo, RS 93525-075, Brazil
| | - Mariele Feiffer Charão
- Graduate Program on Toxicology and Analytical Toxicology, University Feevale, Novo Hamburgo, RS 93525-075, Brazil
| | - Gabriela Goethel
- Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
| | - Diana Muller
- Department of Genetics, Instituto de Biociências, Federal University of Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
| | - Claiton Bau
- Department of Genetics, Instituto de Biociências, Federal University of Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
| | - Nadine Arnold Steffens
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Carolina Santos Stein
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Rafael Noal Moresco
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Solange Cristina Garcia
- Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
| | - Marina Souza Vencato
- Departament of Morphology, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Natália Brucker
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| |
Collapse
|
9
|
Hopper CP, De La Cruz LK, Lyles KV, Wareham LK, Gilbert JA, Eichenbaum Z, Magierowski M, Poole RK, Wollborn J, Wang B. Role of Carbon Monoxide in Host-Gut Microbiome Communication. Chem Rev 2020; 120:13273-13311. [PMID: 33089988 DOI: 10.1021/acs.chemrev.0c00586] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nature is full of examples of symbiotic relationships. The critical symbiotic relation between host and mutualistic bacteria is attracting increasing attention to the degree that the gut microbiome is proposed by some as a new organ system. The microbiome exerts its systemic effect through a diverse range of metabolites, which include gaseous molecules such as H2, CO2, NH3, CH4, NO, H2S, and CO. In turn, the human host can influence the microbiome through these gaseous molecules as well in a reciprocal manner. Among these gaseous molecules, NO, H2S, and CO occupy a special place because of their widely known physiological functions in the host and their overlap and similarity in both targets and functions. The roles that NO and H2S play have been extensively examined by others. Herein, the roles of CO in host-gut microbiome communication are examined through a discussion of (1) host production and function of CO, (2) available CO donors as research tools, (3) CO production from diet and bacterial sources, (4) effect of CO on bacteria including CO sensing, and (5) gut microbiome production of CO. There is a large amount of literature suggesting the "messenger" role of CO in host-gut microbiome communication. However, much more work is needed to begin achieving a systematic understanding of this issue.
Collapse
Affiliation(s)
- Christopher P Hopper
- Institute for Experimental Biomedicine, University Hospital Wuerzburg, Wuerzburg, Bavaria DE 97080, Germany.,Department of Medicinal Chemistry, College of Pharmacy, The University of Florida, Gainesville, Florida 32611, United States
| | - Ladie Kimberly De La Cruz
- Department of Chemistry & Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Kristin V Lyles
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Lauren K Wareham
- The Vanderbilt Eye Institute and Department of Ophthalmology & Visual Sciences, The Vanderbilt University Medical Center and School of Medicine, Nashville, Tennessee 37232, United States
| | - Jack A Gilbert
- Department of Pediatrics, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Marcin Magierowski
- Cellular Engineering and Isotope Diagnostics Laboratory, Department of Physiology, Jagiellonian University Medical College, Cracow PL 31-531, Poland
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Sheffield S10 2TN, U.K
| | - Jakob Wollborn
- Department of Anesthesiology and Critical Care, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg DE 79085, Germany.,Department of Anesthesiology, Perioperative and Pain Management, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Binghe Wang
- Department of Chemistry & Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
10
|
Braunscheidel KM, Wayman WN, Okas MP, Woodward JJ. Self-Administration of Toluene Vapor in Rats. Front Neurosci 2020; 14:880. [PMID: 32973434 PMCID: PMC7461949 DOI: 10.3389/fnins.2020.00880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/28/2020] [Indexed: 02/05/2023] Open
Abstract
Inhalants, including volatile organic solvents such as toluene, continue to be one of the most prevalent, and often first substances abused by adolescents. Like other drugs of abuse, toluene affects the function of neurons within key brain reward circuits including the prefrontal cortex, ventral tegmental area, and nucleus accumbens. However, preclinical models used to study these toluene-induced adaptations generally employ passive exposure paradigms that do not mirror voluntary patterns of solvent exposure observed in humans. To address this shortcoming, we developed an inhalation chamber containing active and inactive nose pokes, cue lights, flow-through vaporizers, and software-controlled valves to test the hypothesis that rats will voluntarily self-administer toluene vapor. Following habituation and self-administration (SA) training rats achieve vapor concentrations associated with rewarding effects of toluene, and maintain responding for toluene vapor, but not for air. During extinction trials, rats showed an initial burst of drug-seeking behavior similar to that of other addictive drugs and then reduced responding to Air SA levels. Responding on the active nose poke recovered during cue-induced reinstatement but not following a single passive exposure to toluene vapor. The results from these studies establish a viable toluene SA protocol that will be useful in assessing toluene-induced changes in addiction neurocircuitry.
Collapse
Affiliation(s)
| | | | | | - John J. Woodward
- Department of Neuroscience, The Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
11
|
Minocycline prevents neuronal hyperexcitability and neuroinflammation in medial prefrontal cortex, as well as memory impairment caused by repeated toluene inhalation in adolescent rats. Toxicol Appl Pharmacol 2020; 395:114980. [PMID: 32234516 DOI: 10.1016/j.taap.2020.114980] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/12/2020] [Accepted: 03/27/2020] [Indexed: 02/04/2023]
Abstract
Toluene can be intentionally misused by adolescents to experience psychoactive effects. Toluene has a complex mechanism of action and broad behavioral effects, among which memory impairment is reported consistently. We have previously reported that repeated toluene inhalation (8000 ppm) increases layer 5 prelimbic pyramidal cells' excitability in the medial prefrontal cortex (mPFC) of adolescent rats. Toluene also produces reactive oxygen species (ROS), which activate glial cells. Here, we tested the hypothesis that the anti-inflammatory agent minocycline would decrease toluene's effects because it inhibits NF-κB (nuclear factor enhancer of the kappa light chains of activated B cells) and reduces pro-inflammatory cytokine and ROS production. Our results show that minocycline (50 mg/kg, ip, for 10 days) prevents the hyperexcitability of mPFC neurons observed after repeated 8000 ppm toluene exposure (30 min/day, 2×/day for 10 days). Minocycline prevents toluene-induced hyperexcitability by a mechanism that averts the loss of the slow calcium-dependent potassium current, and normalizes mPFC neurons' firing frequency. These effects are accompanied by significant decreased expression of astrocytes and activated microglia in the mPFC, reduced NLRP3 inflammasome activation and mRNA expression levels of the pro-inflammatory cytokine interleukin 1β (IL-1β), as well as increased mRNA expression of the anti-inflammatory cytokine transforming growth factor β (TGF-β). Minocycline also prevents toluene-induced memory impairment in adolescent rats in the passive avoidance task and the temporal order memory test in which the mPFC plays a central role. These results show that neuroinflammation produces several effects of repeated toluene administration at high concentrations, and minocycline can significantly prevent them.
Collapse
|
12
|
Liao F, Chu L, Guo C, Guo Y, Ke Q, Guo Y. Ytterbium Doped TiO
2
Nanofibers on Activated Carbon Fibers Enhances Adsorption and Photocatalytic Activities for Toluene Removal. ChemistrySelect 2019. [DOI: 10.1002/slct.201902002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fang Liao
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional MaterialsShanghai Normal University No.100 Guilin Rd. Shanghai China, 200234
| | - Lian‐Feng Chu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional MaterialsShanghai Normal University No.100 Guilin Rd. Shanghai China, 200234
| | - Cui‐Xiang Guo
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional MaterialsShanghai Normal University No.100 Guilin Rd. Shanghai China, 200234
| | - Ya‐Jun Guo
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional MaterialsShanghai Normal University No.100 Guilin Rd. Shanghai China, 200234
| | - Qin‐Fei Ke
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional MaterialsShanghai Normal University No.100 Guilin Rd. Shanghai China, 200234
| | - Ya‐Ping Guo
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional MaterialsShanghai Normal University No.100 Guilin Rd. Shanghai China, 200234
| |
Collapse
|
13
|
Ratner MH, Jabre JF, Ewing WM, Abou-Donia M, Oliver LC. Amyotrophic lateral sclerosis-A case report and mechanistic review of the association with toluene and other volatile organic compounds. Am J Ind Med 2018; 61:251-260. [PMID: 29125194 DOI: 10.1002/ajim.22791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2017] [Indexed: 12/11/2022]
Abstract
Unmasking of latent neurodegenerative disease has been reported following exposure to chemicals that share one or more mechanisms of action in common with those implicated in the specific disease. For example, unmasking of latent Parkinson's disease (PD) has been associated with exposure to anti-dopaminergic agents, while the progression of pre-existing mild cognitive impairment and unmasking of latent Alzheimer's disease has been associated with exposure to general anesthetic agents which promote Aβ protein aggregation. This literature review and clinical case report about a 45-year-old man with no family history of motor neuron disease who developed overt symptoms of a neuromuscular disorder in close temporal association with his unwitting occupational exposure to volatile organic compounds (VOCs) puts forth the hypothesis that exposure to VOCs such as toluene, which disrupt motor function and increase oxidative stress, can unmask latent ALS type neuromuscular disorder in susceptible individuals.
Collapse
Affiliation(s)
- Marcia H Ratner
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| | - Joe F Jabre
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | | | - Mohamed Abou-Donia
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - L Christine Oliver
- Department of Medicine (Pulmonary and Critical Care Division), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
14
|
Nikseresht S, Khodagholi F, Dargahi L, Ahmadiani A. Necroptosis Resumes Apoptosis in Hippocampus but Not in Frontal Cortex. J Cell Biochem 2017; 118:4628-4638. [DOI: 10.1002/jcb.26127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/08/2017] [Indexed: 02/02/2023]
Affiliation(s)
- Sara Nikseresht
- Neuroscience Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Fariba Khodagholi
- Neuroscience Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Leila Dargahi
- Neurobiology Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Abolhassan Ahmadiani
- Neuroscience Research CenterShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
15
|
Singh P, Ojha A, Borthakur A, Singh R, Lahiry D, Tiwary D, Mishra PK. Emerging trends in photodegradation of petrochemical wastes: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:22340-22364. [PMID: 27566154 DOI: 10.1007/s11356-016-7373-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/01/2016] [Indexed: 06/06/2023]
Abstract
Various human activities like mining and extraction of mineral oils have been used for the modernization of society and well-beings. However, the by-products such as petrochemical wastes generated from such industries are carcinogenic and toxic, which had increased environmental pollution and risks to human health several folds. Various methods such as physical, chemical and biological methods have been used to degrade these pollutants from wastewater. Advance oxidation processes (AOPs) are evolving techniques for efficient sequestration of chemically stable and less biodegradable organic pollutants. In the present review, photocatalytic degradation of petrochemical wastes containing monoaromatic and poly-aromatic hydrocarbons has been studied using various heterogeneous photocatalysts (such as TiO2, ZnO and CdS. The present article seeks to offer a scientific and technical overview of the current trend in the use of the photocatalyst for remediation and degradation of petrochemical waste depending upon the recent advances in photodegradation of petrochemical research using bibliometric analysis. We further outlined the effect of various heterogeneous catalysts and their ecotoxicity, various degradation pathways of petrochemical wastes, the key regulatory parameters and the reactors used. A critical analysis of the available literature revealed that TiO2 is widely reported in the degradation processes along with other semiconductors/nanomaterials in visible and UV light irradiation. Further, various degradation studies have been carried out at laboratory scale in the presence of UV light. However, further elaborative research is needed for successful application of the laboratory scale techniques to pilot-scale operation and to develop environmental friendly catalysts which support the sustainable treatment technology with the "zero concept" of industrial wastewater. Nevertheless, there is a need to develop more effective methods which consume less energy and are more efficient in pilot scale for the demineralization of pollutant.
Collapse
Affiliation(s)
- Pardeep Singh
- Department of Chemistry, Indian Institute of Technology (IIT-BHU), Varanasi, 221005, India.
- Department of Environmental Studies, PGDAV College, University of Delhi, New Delhi, 110068, India.
| | - Ankita Ojha
- Department of Chemistry, Indian Institute of Technology (IIT-BHU), Varanasi, 221005, India
| | - Anwesha Borthakur
- Centre for Studies in Science Policy, Jawaharlal Nehru University (JNU), New Delhi, 110067, India
| | - Rishikesh Singh
- Institute of Environment and Sustainable Development (IESD), Banaras Hindu University, Varanasi, 221005, India
| | - D Lahiry
- Rajghat Education Centre, KFI, Varanasi, 221005, India
| | - Dhanesh Tiwary
- Department of Chemistry, Indian Institute of Technology (IIT-BHU), Varanasi, 221005, India
| | - Pradeep Kumar Mishra
- Department of Chemical Engineering and Technology, Indian Institute of Technology (IIT-BHU), Varanasi, 221005, India
| |
Collapse
|
16
|
Toluene inhalation exposure for 13 weeks causes persistent changes in electroretinograms of Long-Evans rats. Neurotoxicology 2016; 53:257-270. [PMID: 26899397 DOI: 10.1016/j.neuro.2016.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/12/2016] [Accepted: 02/15/2016] [Indexed: 11/22/2022]
Abstract
Studies of humans chronically exposed to volatile organic solvents have reported impaired visual functions, including low contrast sensitivity and reduced color discrimination. These reports, however, lacked confirmation from controlled laboratory experiments. To address this question experimentally, we examined visual function by recording visual evoked potentials (VEP) and/or electroretinograms (ERG) from four sets of rats exposed repeatedly to toluene. In addition, eyes of the rats were examined with an ophthalmoscope and some of the retinal tissues were evaluated for rod and M-cone photoreceptor immunohistochemistry. The first study examined rats following exposure to 0, 10, 100 or 1000ppm toluene by inhalation (6hr/d, 5d/wk) for 13 weeks. One week after the termination of exposure, the rats were implanted with chronically indwelling electrodes and the following week pattern-elicited VEPs were recorded. VEP amplitudes were not significantly changed by toluene exposure. Four to five weeks after completion of exposure, rats were dark-adapted overnight, anesthetized, and several sets of electroretinograms (ERG) were recorded. In dark-adapted ERGs recorded over a 5-log (cd-s/m(2)) range of flash luminance, b-wave amplitudes were significantly reduced at high stimulus luminance values in rats previously exposed to 1000ppm toluene. A second set of rats, exposed concurrently with the first set, was tested approximately one year after the termination of 13 weeks of exposure to toluene. Again, dark-adapted ERG b-wave amplitudes were reduced at high stimulus luminance values in rats previously exposed to 1000ppm toluene. A third set of rats was exposed to the same concentrations of toluene for only 4 weeks, and a fourth set of rats exposed to 0 or 1000ppm toluene for 4 weeks were tested approximately 1year after the completion of exposure. No statistically significant reductions of ERG b-wave amplitude were observed in either set of rats exposed for 4 weeks. No significant changes were observed in ERG a-wave amplitude or latency, b-wave latency, UV- or green-flicker ERGs, or in photopic flash ERGs. There were no changes in the density of rod or M-cone photoreceptors. The ERG b-wave reflects the firing patterns of on-bipolar cells. The reductions of b-wave amplitude after 13 weeks of exposure and persisting for 1year suggest that alterations may have occurred in the inner nuclear layer of the retina, where the bipolar cells reside, or the outer or inner plexiform layers where the bipolar cells make synaptic connections. These data provide experimental evidence that repeated exposure to toluene may lead to subtle persistent changes in visual function. The fact that toluene affected ERGs, but not VEPs, suggests that elements in the rat retina may be more sensitive to organic solvent exposure than the rat visual cortex.
Collapse
|