1
|
Gupta R, Ambasta RK, Kumar P. Multifaced role of protein deacetylase sirtuins in neurodegenerative disease. Neurosci Biobehav Rev 2021; 132:976-997. [PMID: 34742724 DOI: 10.1016/j.neubiorev.2021.10.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 01/07/2023]
Abstract
Sirtuins, a class III histone/protein deacetylase, is a central regulator of metabolic function and cellular stress response. This plays a pivotal role in the pathogenesis and progression of diseases such as cancer, neurodegeneration, metabolic syndromes, and cardiovascular disease. Sirtuins regulate biological and cellular processes, for instance, mitochondrial biogenesis, lipid and fatty acid oxidation, oxidative stress, gene transcriptional activity, apoptosis, inflammatory response, DNA repair mechanism, and autophagic cell degradation, which are known components for the progression of the neurodegenerative diseases (NDDs). Emerging evidence suggests that sirtuins are the useful molecular targets against NDDs like, Alzheimer's Disease (AD), Parkinson's Disease (PD), Huntington's Disease (HD), and Amyotrophic Lateral Sclerosis (ALS). However, the exact mechanism of neuroprotection mediated through sirtuins remains unsettled. The manipulation of sirtuins activity with its modulators, calorie restriction (CR), and micro RNAs (miR) is a novel therapeutic approach for the treatment of NDDs. Herein, we reviewed the current putative therapeutic role of sirtuins in regulating synaptic plasticity and cognitive functions, which are mediated through the different molecular phenomenon to prevent neurodegeneration. We also explained the implications of sirtuin modulators, and miR based therapies for the treatment of life-threatening NDDs.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
2
|
Identifying the culprits in neurological autoimmune diseases. J Transl Autoimmun 2019; 2:100015. [PMID: 32743503 PMCID: PMC7388404 DOI: 10.1016/j.jtauto.2019.100015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 12/16/2022] Open
Abstract
The target organ of neurological autoimmune diseases (NADs) is the central or peripheral nervous system. Multiple sclerosis (MS) is the most common NAD, whereas Guillain-Barré syndrome (GBS), myasthenia gravis (MG), and neuromyelitis optica (NMO) are less common NADs, but the incidence of these diseases has increased exponentially in the last few years. The identification of a specific culprit in NADs is challenging since a myriad of triggering factors interplay with each other to cause an autoimmune response. Among the factors that have been associated with NADs are genetic susceptibility, epigenetic mechanisms, and environmental factors such as infection, microbiota, vitamins, etc. This review focuses on the most studied culprits as well as the mechanisms used by these to trigger NADs. Neurological autoimmune diseases are caused by a complex interaction between genes, environmental factors, and epigenetic deregulation. Infectious agents can cause an autoimmune reaction to myelin epitopes through molecular mimicry and/or bystander activation. Gut microbiota dysbiosis contributes to neurological autoimmune diseases. Smoking increases the risk of NADs through inflammatory signaling pathways, oxidative stress, and Th17 differentiation. Deficiency in vitamin D favors NAD development through direct damage to the central and peripheral nervous system.
Collapse
|
3
|
Abstract
Mitochondria are essential organelles for many aspects of cellular homeostasis, including energy harvesting through oxidative phosphorylation. Alterations of mitochondrial function not only impact on cellular metabolism but also critically influence whole-body metabolism, health, and life span. Diseases defined by mitochondrial dysfunction have expanded from rare monogenic disorders in a strict sense to now also include many common polygenic diseases, including metabolic, cardiovascular, neurodegenerative, and neuromuscular diseases. This has led to an intensive search for new therapeutic and preventive strategies aimed at invigorating mitochondrial function by exploiting key components of mitochondrial biogenesis, redox metabolism, dynamics, mitophagy, and the mitochondrial unfolded protein response. As such, new findings linking mitochondrial function to the progression or outcome of this ever-increasing list of diseases has stimulated the discovery and development of the first true mitochondrial drugs, which are now entering the clinic and are discussed in this review.
Collapse
Affiliation(s)
- Vincenzo Sorrentino
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| | - Keir J Menzies
- Interdisciplinary School of Health Sciences, University of Ottawa Brain and Mind Research Institute and Centre for Neuromuscular Disease, Ottawa K1H 8M5, Canada;
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
4
|
Sharma R, Kumar D, Jha NK, Jha SK, Ambasta RK, Kumar P. Re-expression of cell cycle markers in aged neurons and muscles: Whether cells should divide or die? Biochim Biophys Acta Mol Basis Dis 2017; 1863:324-336. [DOI: 10.1016/j.bbadis.2016.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/01/2016] [Accepted: 09/13/2016] [Indexed: 02/08/2023]
|
5
|
Haq SA, Tournadre A. Idiopathic inflammatory myopathies: from immunopathogenesis to new therapeutic targets. Int J Rheum Dis 2015; 18:818-25. [PMID: 26385431 DOI: 10.1111/1756-185x.12736] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pathogenesis of idiopathic inflammatory myositis (IIM) involves strong interactions between dendritic cells (DCs), activated Th1 and Th17 cells, B cells, muscle cells, genes and environment. Local maturation of DCs permit the activation and polarization of CD4+ T cells into T(H)1 and T(H)17 that play a key role in maintaining chronic muscle inflammation. T-cell mediated myocytotoxicity promotes the liberation of specific muscle autoantigens from regenerating muscle cells with production of myositis-specific autoantibodies. Type I interferon signature is a key characteristic of IIM. Type I IFN that can be induced by immune complexes containing myositis-specific autoantibodies is produced by scattered plasmacytoid DCs but also by muscle cells particularly regenerating muscle cells. These immature muscle precursors appear to be critical in the pathogenesis of IIM as they up-regulate muscle autoantigens, type I IFN, HLA class I antigens and TLR3-7, all together involved in maintaining chronic muscle inflammation. In addition to the role of immune and muscle cells, genome-wide association studies have confirmed the importance of several MHC and non-MHC genes in IIM. Environmental factors can contribute to the pathogenesis of IIM. In sIBM, distinct features suggest both degenerative and inflammatory processes. In addition to our better understanding of the pathogenesis, identify molecular pathway leads to consider new targeted therapies including cytokine inhibition, B-cell and T-cell costimulation blockade, type I IFN neutralization or inhibition of the ubiquitin proteasome pathway.
Collapse
Affiliation(s)
- Syed A Haq
- BSM Medical University, Dhaka, Bangladesh
| | - Anne Tournadre
- Rheumatology department CHU Clermont-Ferrand and UMR 1019 INRA/ University of Auvergne, Clermont-Ferrand, France
| |
Collapse
|
6
|
Activation of the Unfolded Protein Response in Sporadic Inclusion-Body Myositis but Not in Hereditary GNE Inclusion-Body Myopathy. J Neuropathol Exp Neurol 2015; 74:538-46. [PMID: 25978849 DOI: 10.1097/nen.0000000000000196] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Muscle fibers in patients with sporadic inclusion-body myositis (s-IBM),the most common age-associated myopathy, are characterized by autophagic vacuoles and accumulation of ubiquitinated and congophilic multiprotein aggregates that contain amyloid-β and phosphorylated tau. Muscle fibers of autosomal-recessive hereditary inclusion-body myopathy caused by the GNE mutation (GNE-h-IBM) display similar pathologic features, except with less pronounced congophilia. Accumulation of unfolded/misfolded proteins inside the endoplasmic reticulum (ER) lumen leads to ER stress, which elicits the unfolded protein response (UPR) as a protective mechanism. Here we demonstrate for the first time that UPR is activated in s-IBM muscle biopsies, since there was 1) increased activating transcription factor 4 (ATF4) protein and increased mRNA of its target C/EBP homologous protein; 2) cleavage of the ATF6 and increased mRNA of its target glucose-regulated protein 78; and 3) an increase of the spliced form of X-box binding protein 1 and increased mRNA of ER degradation-enhancing α-mannosidase-like protein, target of heterodimer of cleaved ATF6 and spliced X-box binding protein 1. In contrast, we did not find similar evidence of the UPR induction in GNE-h-IBM patient muscle, suggesting that different intracellular mechanisms might lead to similar pathologic phenotypes. Interestingly, cultured GNE-h-IBM muscle fibers had a robust UPR response to experimental ER stress stimuli, suggesting that the GNE mutation per se is not responsible for the lack of UPR in GNE-h-IBM biopsied muscle.
Collapse
|
7
|
Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell Signal 2013; 25:1939-48. [DOI: 10.1016/j.cellsig.2013.06.007] [Citation(s) in RCA: 582] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 06/04/2013] [Indexed: 02/07/2023]
|
8
|
Radak Z, Koltai E, Taylor AW, Higuchi M, Kumagai S, Ohno H, Goto S, Boldogh I. Redox-regulating sirtuins in aging, caloric restriction, and exercise. Free Radic Biol Med 2013; 58:87-97. [PMID: 23339850 DOI: 10.1016/j.freeradbiomed.2013.01.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 01/03/2013] [Accepted: 01/05/2013] [Indexed: 02/07/2023]
Abstract
The consequence of decreased nicotinamide adenine dinucleotide (NAD(+)) levels as a result of oxidative challenge is altered activity of sirtuins, which, in turn, brings about a wide range of modifications in mammalian cellular metabolism. Sirtuins, especially SIRT1, deacetylate important transcription factors such as p53, forkhead homeobox type O proteins, nuclear factor κB, or peroxisome proliferator-activated receptor γ coactivator 1α (which controls the transcription of pro- and antioxidant enzymes, by which the cellular redox state is affected). The role of SIRT1 in DNA repair is enigmatic, because it activates Ku70 to cope with double-strand breaks, but deacetylation of apurinic/apyrimidinic endonuclease 1 and probably of 8-oxoguanine-DNA glycosylase 1 decreases the activity of these DNA repair enzymes. The protein-stabilizing effects of the NAD+-dependent lysine deacetylases are readily related to housekeeping and redox regulation. The role of sirtuins in caloric restriction (CR)-related longevity in yeast is currently under debate. However, in mammals, it seems certain that sirtuins are involved in many cellular processes that mediate longevity and disease prevention via the effects of CR through the vascular, neuronal, and muscular systems. Regular physical exercise-mediated health promotion also involves sirtuin-regulated pathways including the antioxidant-, macromolecular damage repair-, energy-, mitochondrial function-, and neuronal plasticity-associated pathways. This review critically evaluates these findings and points out the age-associated role of sirtuins.
Collapse
Affiliation(s)
- Zsolt Radak
- Research Institute of Sport Science, Semmelweis University, H-1085 Budapest, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Pathogenic considerations in sporadic inclusion-body myositis, a degenerative muscle disease associated with aging and abnormalities of myoproteostasis. J Neuropathol Exp Neurol 2012; 71:680-93. [PMID: 22805774 DOI: 10.1097/nen.0b013e31826183c8] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The pathogenesis of sporadic inclusion-body myositis (s-IBM) is complex; it involves multidimensional pathways and the most critical issues are still unresolved. The onset of muscle fiber damage is age related and the disease is slowly, but inexorably, progressive. Muscle fiber degeneration and mononuclear cell inflammation are major components of s-IBM pathology, but which is precedent and how they interrelate is not known. There is growing evidence that aging of the muscle fiber associated with intramyofiber accumulation of conformationally modified proteins plays a primary pathogenic role leading to muscle fiber destruction. Here, we review the presumably most important known molecular abnormalities that occur in s-IBM myofibers and that likely contribute to s-IBM pathogenesis. Abnormal accumulation within the fibers of multiprotein aggregates (several of which are congophilic and, therefore, generically called "amyloid") may result from increased transcription of several proteins, their abnormal posttranslational modifications and misfolding, and inadequate protein disposal, that is, abnormal "myoproteostasis," which is combined with and may be provoked or abetted by an aging intracellular milieu. The potential cytotoxicity of accumulated amyloid β protein (Aβ42) and its oligomers, phosphorylated tau in the form of paired helical filaments and α-synuclein, and the putative pathogenic role and cause of the mitochondrial abnormalities and oxidative stress are reviewed. On the basis of our experimental evidence, potential interventions in the complex, interwoven pathogenic cascade of s-IBM are suggested.
Collapse
|
10
|
D'Agostino C, Nogalska A, Cacciottolo M, Engel WK, Askanas V. Abnormalities of NBR1, a novel autophagy-associated protein, in muscle fibers of sporadic inclusion-body myositis. Acta Neuropathol 2011; 122:627-36. [PMID: 21935636 DOI: 10.1007/s00401-011-0874-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 09/10/2011] [Accepted: 09/11/2011] [Indexed: 12/21/2022]
Abstract
Intra-muscle fiber accumulation of ubiquitinated protein aggregates containing several conformationally modified proteins, including amyloid-β and phosphorylated tau, is characteristic of the pathologic phenotype of sporadic inclusion-body myositis (s-IBM), the most common progressive degenerative myopathy of older persons. Abnormalities of protein-degradation, involving both the 26S proteasome and autophagic-lysosomal pathways, were previously demonstrated in s-IBM muscle. NBR1 is a ubiquitin-binding scaffold protein importantly participating in autophagic degradation of ubiquitinated proteins. Whereas abnormalities of p62, a ubiquitin-binding protein, were previously described in s-IBM, abnormalities of NBR1 have not been reported in s-IBM. We have now identified in s-IBM muscle biopsies that NBR1, by: (a) immunohistochemistry, was strongly accumulated within s-IBM muscle-fiber aggregates, where it closely co-localized with p62, ubiquitin, and phosphorylated tau; (b) immunoblots, was increased threefold (p < 0.001); and (c) immunoprecipitation, was associated with p62 and LC3. By real-time PCR, NBR1 mRNA was increased twofold (p < 0.01). None of the various disease- and normal-control muscle biopsies had any NBR1 abnormality. In cultured human muscle fibers, NBR1 also physically associated with both p62 and LC3, and experimental inhibition of either the 26S proteasome or the lysosomal activity resulted in NBR1 increase. Our demonstration of NBR1 abnormalities in s-IBM provides further evidence that altered protein degradation pathways may be critically involved in the s-IBM pathogenesis. Accordingly, attempts to unblock defective protein degradation might be a therapeutic strategy for s-IBM patients.
Collapse
Affiliation(s)
- Carla D'Agostino
- Department of Neurology, USC Neuromuscular Center, University of Southern California Keck School of Medicine, Good Samaritan Hospital, Los Angeles, 90017-1912, USA
| | | | | | | | | |
Collapse
|
11
|
Askanas V, Engel WK. Sporadic inclusion-body myositis: conformational multifactorial ageing-related degenerative muscle disease associated with proteasomal and lysosomal inhibition, endoplasmic reticulum stress, and accumulation of amyloid-β42 oligomers and phosphorylated tau. Presse Med 2011; 40:e219-35. [PMID: 21392932 DOI: 10.1016/j.lpm.2010.11.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 11/08/2010] [Indexed: 10/18/2022] Open
Abstract
The pathogenesis of sporadic inclusion-body myositis (s-IBM), the most common muscle disease of older persons, is complex and multifactorial. Both the muscle fiber degeneration and the mononuclear-cell inflammation are components of the s-IBM pathology, but how each relates to the pathogenesis remains unsettled. We consider that the intramuscle fiber degenerative component plays the primary and the major pathogenic role leading to muscle fiber destruction and clinical weakness. In this article we review the newest research advances that provide a better understanding of the s-IBM pathogenesis. Cellular abnormalities occurring in s-IBM muscle fibers are discussed, including: several proteins that are accumulated in the form of aggregates within muscle fibers, including amyloid-β42 and its oligomers, and phosphorylated tau in the form of paired helical filaments, and we consider their putative detrimental influence; cellular mechanisms leading to protein misfolding and aggregation, including evidence of their inadequate disposal; pathogenic importance of endoplasmic reticulum stress and the unfolded protein response demonstrated in s-IBM muscle fibers; and decreased deacetylase activity of SIRT1. All these factors are combined with, and perhaps provoked by, an ageing intracellular milieu. Also discussed are the intriguing phenotypic similarities between s-IBM muscle fibers and the brains of Alzheimer and Parkinson's disease patients, the two most common neurodegenerative diseases associated with ageing. Muscle biopsy diagnostic criteria are also described and illustrated.
Collapse
Affiliation(s)
- Valerie Askanas
- University of Southern California Keck School of Medicine, Good Samaritan Hospital, USC Neuromuscular Centre, Department of Neurology, Los Angeles, CA 90017, USA.
| | | |
Collapse
|
12
|
Wang Y, Liang Y, Vanhoutte PM. SIRT1 and AMPK in regulating mammalian senescence: a critical review and a working model. FEBS Lett 2010; 585:986-94. [PMID: 21130086 DOI: 10.1016/j.febslet.2010.11.047] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 11/26/2010] [Accepted: 11/26/2010] [Indexed: 01/14/2023]
Abstract
Ageing in mammals remains an unsolved mystery. Anti-ageing is a recurring topic in the history of scientific research. Lifespan extension evoked by Sir2 protein in lower organisms has attracted a large amount of interests in the last decade. This review summarizes recent evidence supporting the role of a Sir2 mammalian homologue, SIRT1 (Silent information regulator T1), in regulating ageing and cellular senescence. The various signaling networks responsible for the anti-ageing and anti-senescence activity of SIRT1 have been discussed. In particular, a counter-balancing model involving the cross-talks between SIRT1 and AMP-activated protein kinase (AMPK), another stress and energy sensor, is suggested for controlling the senescence program in mammalian cells.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China.
| | | | | |
Collapse
|
13
|
Nogalska A, D'Agostino C, Terracciano C, Engel WK, Askanas V. Impaired autophagy in sporadic inclusion-body myositis and in endoplasmic reticulum stress-provoked cultured human muscle fibers. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1377-87. [PMID: 20616343 DOI: 10.2353/ajpath.2010.100050] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The hallmark pathologies of sporadic inclusion-body myositis (s-IBM) muscle fibers are autophagic vacuoles and accumulation of ubiquitin-positive multiprotein aggregates that contain amyloid-beta or phosphorylated tau in a beta-pleated sheet amyloid configuration. Endoplasmic reticulum stress (ERS) and 26S proteasome inhibition, also associated with s-IBM, putatively aggrandize the accumulation of misfolded proteins. However, autophagosomal-lysosomal pathway formation and function, indicated by autophagosome maturation, have not been previously analyzed in this system. Here we studied the autophagosomal-lysosomal pathway using 14 s-IBM and 30 disease control and normal control muscle biopsy samples and our cultured human muscle fibers in a microenvironment modified to resemble aspects of s-IBM pathology. We report for the first time that in s-IBM, lysosomal enzyme activities of cathepsin D and B were decreased 60% (P < 0.01) and 40% (P < 0.05), respectively. We also detected two indicators of increased autophagosome maturation, the presence of LC3-II and decreased mammalian target of rapamycin-mediated phosphorylation of p70S6 kinase. Moreover, in cultured human muscle fibers, ERS induction significantly decreased activities of cathepsins D and B, increased levels of LC3-II, decreased phosphorylation of p70S6 kinase, and decreased expression of VMA21, a chaperone for assembly of lysosomal V-ATPase. We conclude that in s-IBM muscle, decreased lysosomal proteolytic activity might enhance accumulation of misfolded proteins, despite increased maturation of autophagosomes, and that ERS is a possible cause of s-IBM-impaired lysosomal function. Thus, unblocking protein degradation in s-IBM muscle fibers may be a desirable therapeutic strategy.
Collapse
Affiliation(s)
- Anna Nogalska
- USC Neuromuscular Center, Department of Neurology, University of Southern California Keck School of Medicine, Good Samaritan Hospital, Los Angeles, CA 90017-1912, USA
| | | | | | | | | |
Collapse
|
14
|
Nogalska A, Engel WK, Askanas V. Increased BACE1 mRNA and noncoding BACE1-antisense transcript in sporadic inclusion-body myositis muscle fibers--possibly caused by endoplasmic reticulum stress. Neurosci Lett 2010; 474:140-143. [PMID: 20236612 DOI: 10.1016/j.neulet.2010.03.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 03/05/2010] [Accepted: 03/05/2010] [Indexed: 10/19/2022]
Abstract
Sporadic inclusion-body myositis (s-IBM) is the most common muscle disease of older persons. Its muscle-fiber phenotype shares several molecular similarities with Alzheimer-disease (AD) brain, including increased AbetaPP, accumulation of amyloid-beta (Abeta), and increased BACE1 protein. Abeta42 is prominently increased in AD brain and within s-IBM fibers, and its oligomers are putatively toxic to both tissues--accordingly, minimizing Abeta42 production can be a therapeutic objective in both tissues. The pathogenic development of s-IBM is unknown, including the mechanisms of BACE1 protein increase. BACE1 is an enzyme essential for production from AbetaPP of Abeta42 and Abeta40, which are proposed to be detrimental within s-IBM muscle fibers. Novel noncoding BACE1-antisense (BACE1-AS) was recently shown (a) to be increased in AD brain, and (b) to increase BACE1 mRNA and BACE1 protein. We studied BACE1-AS and BACE1 transcripts by real-time PCR (a) in 10 s-IBM and 10 age-matched normal muscle biopsies; and (b) in our established ER-Stress-Human-Muscle-Culture-IBM Model, in which we previously demonstrated increased BACE1 protein. Our study demonstrated for the first time that (a) in s-IBM biopsies BACE1-AS and BACE1 transcripts were significantly increased, suggesting that their increased expression can be responsible for the increase of BACE1 protein; and (b) experimental induction of ER stress significantly increased both BACE1-AS and BACE1 transcripts, suggesting that ER stress can participate in their induction in s-IBM muscle. Accordingly, decreasing BACE1 through a targeted downregulation of its regulatory BACE1-AS, or reducing ER stress, might be therapeutic strategies in s-IBM, assuming that it would not impair any normal cellular functions of BACE1.
Collapse
Affiliation(s)
- Anna Nogalska
- USC Neuromuscular Center, Department of Neurology, University of Southern California Keck School of Medicine, Good Samaritan Hospital, Los Angeles, CA, USA
| | - W King Engel
- USC Neuromuscular Center, Department of Neurology, University of Southern California Keck School of Medicine, Good Samaritan Hospital, Los Angeles, CA, USA
| | - Valerie Askanas
- USC Neuromuscular Center, Department of Neurology, University of Southern California Keck School of Medicine, Good Samaritan Hospital, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Exercise alters SIRT1, SIRT6, NAD and NAMPT levels in skeletal muscle of aged rats. Mech Ageing Dev 2009; 131:21-8. [PMID: 19913571 DOI: 10.1016/j.mad.2009.11.002] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 10/29/2009] [Accepted: 11/06/2009] [Indexed: 12/19/2022]
Abstract
Silent information regulators are potent NAD(+)-dependent protein deacetylases, which have been shown to regulate gene silencing, muscle differentiation and DNA damage repair. Here, changes in the level and activity of sirtuin 1 (SIRT1) in response to exercise in groups of young and old rats were studied. There was an age-related increase in SIRT1 level, while exercise training significantly increased the relative activity of SIRT1. A strong inverse correlation was found between the nuclear activity of SIRT1 and the level of acetylated proteins. Exercise training induced SIRT1 activity due to the positive effect of exercise on the activity of nicotinamide phosphoribosyltransferase (NAMPT) and thereby the production of sirtuin-fueling NAD(+). Exercise training normalized the age-associated shift in redox balance, since exercised animals had significantly lower levels of carbonylated proteins, expression of hypoxia-inducible factor-1 alpha and vascular endothelial growth factor. The age-associated increase in the level of SIRT6 was attenuated by exercise training. On the other hand, aging did not significantly increase the level of DNA damage, which was in line with the activity of 8-oxoguanine DNA glycosylase, while exercise training increased the level of this enzyme. Regular exercise decelerates the deleterious effects of the aging process via SIRT1-dependent pathways through the stimulation of NAD(+) biosynthesis by NAMPT.
Collapse
|
16
|
Terracciano C, Nogalska A, Engel WK, Askanas V. In AbetaPP-overexpressing cultured human muscle fibers proteasome inhibition enhances phosphorylation of AbetaPP751 and GSK3beta activation: effects mitigated by lithium and apparently relevant to sporadic inclusion-body myositis. J Neurochem 2009; 112:389-96. [PMID: 19878439 DOI: 10.1111/j.1471-4159.2009.06461.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Muscle fiber degeneration in sporadic inclusion-body myositis (s-IBM) is characterized by accumulation of multiprotein aggregates, including aggregated amyloid-beta (Abeta)-precursor protein 751 (AbetaPP751), Abeta, phosphorylated tau, and other 'Alzheimer-characteristic' proteins. Proteasome inhibition is an important component of the s-IBM pathogenesis. In brains of Alzheimer's disease (AD) patients and AD transgenic-mouse models, phosphorylation of neuronal AbetaPP695 (p-AbetaPP) on Thr668 (equivalent to T724 of AbetaPP751) is considered detrimental because it increases generation of cytotoxic Abeta and induces tau phosphorylation. Activated glycogen synthase kinase3beta (GSK3beta) is involved in phosphorylation of both AbetaPP and tau. Lithium, an inhibitor of GSK3beta, was reported to reduce levels of both the total AbetaPP and p-AbetaPP in AD animal models. In relation to s-IBM, we now show for the first time that (1) In AbetaPP-overexpressing cultured human muscle fibers (human muscle culture IBM model: (a) proteasome inhibition significantly increases GSK3beta activity and AbetaPP phosphorylation, (b) treatment with lithium decreases (i) phosphorylated-AbetaPP, (ii) total amount of AbetaPP, (iii) Abeta oligomers, and (iv) GSK3beta activity; and (c) lithium improves proteasome function. (2) In biopsied s-IBM muscle fibers, GSK3beta is significantly activated and AbetaPP is phosphorylated on Thr724. Accordingly, treatment with lithium, or other GSK3beta inhibitors, might benefit s-IBM patients.
Collapse
Affiliation(s)
- Chiara Terracciano
- Department of Neurology, USC Neuromuscular Center, University of Southern California Keck, School of Medicine, Good Samaritan Hospital, Los Angeles, California 90017, USA
| | | | | | | |
Collapse
|
17
|
Askanas V, Engel WK, Nogalska A. Inclusion body myositis: a degenerative muscle disease associated with intra-muscle fiber multi-protein aggregates, proteasome inhibition, endoplasmic reticulum stress and decreased lysosomal degradation. Brain Pathol 2009; 19:493-506. [PMID: 19563541 PMCID: PMC8094750 DOI: 10.1111/j.1750-3639.2009.00290.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 03/12/2009] [Indexed: 12/31/2022] Open
Abstract
Sporadic inclusion body myositis (s-IBM), the most common muscle disease of older persons, is of unknown cause, and there is no enduring treatment. Abnormal accumulation of intracellular multi-protein inclusions is a characteristic feature of the s-IBM phenotype, and as such s-IBM can be considered a "conformational disorder," caused by protein unfolding/misfolding combined with the formation of inclusion bodies. Abnormal intracellular accumulation of unfolded proteins may lead to their aggregation and inclusion body formation. The present article is focusing on the multiple proteins that are accumulated in the form of aggregates within s-IBM muscle fibers, and it explores the most recent research advances directed toward a better understanding of mechanisms causing their impaired degradation and abnormal aggregation. We illustrate that, among other factors, abnormal misfolding, accumulation and aggregation of proteins are associated with their inadequate disposal-and these factors are combined with, and perhaps provoked by, an aging intracellular milieu. Other concurrent and possibly provocative phenomena known within s-IBM muscle fibers are: endoplasmic reticulum stress and unfolded protein response, mitochondrial abnormalities, proteasome inhibition, lysosome abnormality and endodissolution. Together, these appear to lead to the s-IBM-specific vacuolar degeneration, and muscle fiber atrophy, concluding with muscle fiber death.
Collapse
Affiliation(s)
- Valerie Askanas
- USC Neuromuscular Center, Department of Neurology, University of Southern California Keck School of Medicine, Good Samaritan Hospital, Los Angeles, CA 90017-1912, USA.
| | | | | |
Collapse
|
18
|
Gurd BJ, Yoshida Y, Lally J, Holloway GP, Bonen A. The deacetylase enzyme SIRT1 is not associated with oxidative capacity in rat heart and skeletal muscle and its overexpression reduces mitochondrial biogenesis. J Physiol 2009; 587:1817-28. [PMID: 19237425 DOI: 10.1113/jphysiol.2008.168096] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Deacetylation of PGC-1alpha by SIRT1 is thought to be an important step in increasing PGC-1alpha transcriptional activity, since in muscle cell lines SIRT1 induces PGC-1alpha protein expression and mitochondrial biogenesis. We examined the relationship between SIRT1 protein and activity, PGC-1alpha and markers of mitochondrial density, (a) across a range of metabolically heterogeneous skeletal muscles and the heart, and when mitochondrial biogenesis was stimulated by (b) chronic muscle stimulation (7 days) and (c) AICAR administration (5 days), and finally, (d) we also examined the effects of SIRT1 overexpression on mitochondrial biogenesis and PGC-1alpha. SIRT1 protein and activity were correlated (r = 0.97). There were negative correlations between SIRT1 protein and PGC-1alpha (r = -0.95), COX IV (r = -0.94) and citrate synthase (r = -0.97). Chronic muscle stimulation and AICAR upregulated PGC-1alpha protein (22-159%) and oxidative capacity (COX IV, 20-69%); in each instance SIRT1 protein was downregulated by 20-40%, while SIRT1 intrinsic activity was increased. SIRT1 overexpression in rodent muscle increased SIRT1 protein (+240%) and doubled SIRT1 activity, but PGC-1alpha (-25%), mtTFA (-14%) and COX IV (-10%) proteins were downregulated. Taken altogether these experiments are not consistent with the notion that SIRT1 protein plays an obligatory regulatory role in the process of PGC-1alpha-mediated mitochondrial biogenesis in mammalian muscle.
Collapse
Affiliation(s)
- Brendon J Gurd
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | | | | | | | | |
Collapse
|
19
|
Askanas V, Engel WK. Inclusion-body myositis: muscle-fiber molecular pathology and possible pathogenic significance of its similarity to Alzheimer's and Parkinson's disease brains. Acta Neuropathol 2008; 116:583-95. [PMID: 18974994 DOI: 10.1007/s00401-008-0449-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 10/19/2008] [Accepted: 10/19/2008] [Indexed: 11/29/2022]
Abstract
Sporadic inclusion-body myositis (s-IBM), the most common muscle disease of older persons, is of unknown cause and lacks successful treatment. Here we summarize diagnostic criteria and discuss our current understanding of the steps in the pathogenic cascade. While it is agreed that both degeneration and mononuclear-cell inflammation are components of the s-IBM pathology, how each relates to the pathogenesis remains unsettled. We suggest that the intra-muscle-fiber degenerative component plays the primary role, leading to muscle-fiber destruction and clinical weakness, since anti-inflammatory treatments are not of sustained benefit. We discuss possible treatment strategies aimed toward ameliorating a degenerative component, for example, lithium and resveratrol. Also discussed are the intriguing phenotypic similarities between s-IBM muscle fibers and the brains of Alzheimer and Parkinson's diseases, the most common neurodegenerative diseases associated with aging. Similarities include, in the respective tissues, cellular aging, mitochondrial abnormalities, oxidative and endoplasmic-reticulum stresses, proteasome inhibition and multiprotein aggregates.
Collapse
Affiliation(s)
- Valerie Askanas
- Department of Neurology, USC Neuromuscular Center, Good Samaritan Hospital, University of Southern California Keck School of Medicine, 637 South Lucas Avenue, Los Angeles, CA 90017-1912, USA.
| | | |
Collapse
|