1
|
Harkness JH, Bushana PN, Todd RP, Clegern WC, Sorg BA, Wisor JP. Sleep disruption elevates oxidative stress in parvalbumin-positive cells of the rat cerebral cortex. Sleep 2019; 42:5145871. [PMID: 30371896 DOI: 10.1093/sleep/zsy201] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Indexed: 11/13/2022] Open
Abstract
We used a novel automated sleep disruption (SD) apparatus to determine the impact of SD on sleep and molecular markers of oxidative stress in parvalbumin (PV) neurons in the rat prefrontal cortex (PFC). Rats were subjected to two 6 hr SD sessions from zeitgeber time (ZT) 0 to ZT6, one by the gentle handling method and the other by an automated agitator running the length of the rat's home cage floor (a novel SD method). The same rats were later subjected to a 12 hr SD session from ZT0 to ZT12. Sleep was disrupted with both methods, although rats slept less during gentle handling than during the automated condition. Immediately after both SD sessions, rats displayed compensatory sleep characterized by elevated slow-wave activity. We measured in the prelimbic prefrontal cortex (prelimbic PFC; 6 and 12 hr SD) and orbital frontal cortex (12 hr SD) the intensity of the oxidative stress marker, 8-oxo-2'-deoxyguanosine (8-oxo-dG) as well as the staining intensity of PV and the PV cell-associated perineuronal net marker, Wisteria floribunda agglutinin (WFA). In the prelimbic PFC, 6 hr SD increased the intensity of 8-oxo-dG, PV, and WFA. After 12 hr SD, the intensity of 8-oxo-dG was elevated in all neurons. PV intensity was elevated only in neurons colabeled with 8-oxo-dG or WFA, and no changes were found in WFA intensity. We conclude that in association with SD-induced sleep drive, PV neurons in the prelimbic PFC exhibit oxidative stress.
Collapse
Affiliation(s)
- John H Harkness
- Department of Integrative Physiology and Neuroscience, Translational Addiction Research Center, Washington State University, Vancouver, WA
| | - Priyanka N Bushana
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Spokane, WA
| | - Ryan P Todd
- Department of Integrative Physiology and Neuroscience, Translational Addiction Research Center, Washington State University, Vancouver, WA
| | - William C Clegern
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Spokane, WA
| | - Barbara A Sorg
- Department of Integrative Physiology and Neuroscience, Translational Addiction Research Center, Washington State University, Vancouver, WA
| | - Jonathan P Wisor
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Spokane, WA
| |
Collapse
|
2
|
Sex- and Age-dependent Differences in Sleep-wake Characteristics of Fisher-344 Rats. Neuroscience 2019; 427:29-42. [PMID: 31846749 DOI: 10.1016/j.neuroscience.2019.11.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 01/20/2023]
Abstract
Aging is a well-recognized risk factor for sleep disruption. The characteristics of sleep in aging include its disruption by frequent awakenings, a decline in both non-rapid eye movement (nonREM) and REM sleep amounts, and a weaker homeostatic response to sleep loss. Evidence also suggests that sleep in females is more sensitive to changes in the ovarian steroidal milieu. The Fischer-344 rats are commonly used experimental subjects in behavioral and physiological studies, including sleep and aging. Most sleep studies in Fischer-344 rats have used male subjects to avoid interactions between the estrus and sleep-waking cycles. The changes in the sleep-wake organization of female Fischer-344 rats, especially with advancing age, are not well-characterized. We determined sleep-waking features of cycling females across estrus stages. We also compared spontaneous and homeostatic sleep response profiles of young (3-4 months) and old (24-25 months) male and female Fischer-344 rats. The results suggest that: i) sleep-wake architectures across stages of estrus cycle in young females were largely comparable except for a significant suppression of REM sleep at proestrus night and an increase in REM sleep the following day; ii) despite hormonal differences, sleep-wake architecture in male and female rats of corresponding ages were comparable except for the suppression of REM sleep at proestrus night and higher nonREM delta power in recovery sleep; and iii) aging significantly affected sleep-wake amounts, sleep-wake stability, and homeostatic response to sleep loss in both male and female rats and that the adverse effects of aging were largely comparable in both sexes.
Collapse
|
3
|
Stanojlovic M, Pallais Yllescas JP, Mavanji V, Kotz C. Chemogenetic activation of orexin/hypocretin neurons ameliorates aging-induced changes in behavior and energy expenditure. Am J Physiol Regul Integr Comp Physiol 2019; 316:R571-R583. [PMID: 30726119 PMCID: PMC6589608 DOI: 10.1152/ajpregu.00383.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023]
Abstract
Aging affects numerous physiological processes, as well as behavior. A large number of these processes are regulated, at least partially, by hypothalamic orexin neurons, and orexin tone may decrease with normal aging. In this study, we hypothesized that designer receptors exclusively activated by designer drugs (DREADD) stimulation of orexin neuronal activity will ameliorate the effect of aging on behavioral and metabolic alterations in young and middle-aged mice. DREADD targeting was achieved by stereotaxic injection of AAV vectors (AAV2-hSyn-DIO-hM3D(Gq)-mCherry) into the lateral hypothalamus of 5- and 12-mo old orexin-cre female mice and was confirmed by immunohistochemistry (IHC) analysis of orexin A and mCherry expression. After recovery, animals were subjected to a behavioral test battery consisting of the elevated plus maze (EPM), open field (OFT), and novel object recognition tests (NORT) to assess effects of aging on anxiety-like behavior, general locomotion, and working memory. A comprehensive laboratory animal monitoring system (CLAMS) was used to measure spontaneous physical activity (SPA) and energy expenditure (EE). The results indicate that activation of orexin neurons mitigates aging-induced reductions in anxiety-like behavior in middle-aged mice (P < 0.005) and increases locomotion in both young and middle-aged mice (P < 0.05). Activation of orexin neurons increases SPA (P < 0.01) and EE (P < 0.005) in middle-aged mice, restoring the levels to that observed in young animals. Results from this study identify orexin neurons as potential therapeutic targets for age-related impairments in cognitive and anxiety-related behavior, and energy balance.
Collapse
Affiliation(s)
- Milos Stanojlovic
- Integrative Biology and Physiology, University of Minnesota , Minneapolis, Minnesota
| | | | - Vijaya Mavanji
- Minneapolis Veterans Affairs Health Care System, Geriatric Research Education and Clinical Center , Minneapolis, Minnesota
| | - Catherine Kotz
- Integrative Biology and Physiology, University of Minnesota , Minneapolis, Minnesota
- Minneapolis Veterans Affairs Health Care System, Geriatric Research Education and Clinical Center , Minneapolis, Minnesota
| |
Collapse
|
4
|
Kostin A, Alam MA, McGinty D, Szymusiak R, Alam MN. Chronic Suppression of Hypothalamic Cell Proliferation and Neurogenesis Induces Aging-Like Changes in Sleep–Wake Organization in Young Mice. Neuroscience 2019; 404:541-556. [DOI: 10.1016/j.neuroscience.2019.01.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 12/14/2018] [Accepted: 01/28/2019] [Indexed: 10/27/2022]
|
5
|
Latifi B, Adamantidis A, Bassetti C, Schmidt MH. Sleep-Wake Cycling and Energy Conservation: Role of Hypocretin and the Lateral Hypothalamus in Dynamic State-Dependent Resource Optimization. Front Neurol 2018; 9:790. [PMID: 30344503 PMCID: PMC6183196 DOI: 10.3389/fneur.2018.00790] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/31/2018] [Indexed: 12/23/2022] Open
Abstract
The hypocretin (Hcrt) system has been implicated in a wide range of physiological functions from sleep-wake regulation to cardiovascular, behavioral, metabolic, and thermoregulagtory control. These wide-ranging physiological effects have challenged the identification of a parsimonious function for Hcrt. A compelling hypothesis suggests that Hcrt plays a role in the integration of sleep-wake neurophysiology with energy metabolism. For example, Hcrt neurons promote waking and feeding, but are also sensors of energy balance. Loss of Hcrt function leads to an increase in REM sleep propensity, but a potential role for Hcrt linking energy balance with REM sleep expression has not been addressed. Here we examine a potential role for Hcrt and the lateral hypothalamus (LH) in state-dependent resource allocation as a means of optimizing resource utilization and, as a result, energy conservation. We review the energy allocation hypothesis of sleep and how state-dependent metabolic partitioning may contribute toward energy conservation, but with additional examination of how the loss of thermoregulatory function during REM sleep may impact resource optimization. Optimization of energy expenditures at the whole organism level necessitates a top-down network responsible for coordinating metabolic operations in a state-dependent manner across organ systems. In this context, we then specifically examine the potential role of the LH in regulating this output control, including the contribution from both Hcrt and melanin concentrating hormone (MCH) neurons among a diverse LH cell population. We propose that this hypothalamic integration system is responsible for global shifts in state-dependent resource allocations, ultimately promoting resource optimization and an energy conservation function of sleep-wake cycling.
Collapse
Affiliation(s)
- Blerina Latifi
- Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Antoine Adamantidis
- Department of Neurology, Center for Experimental Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of Biomedical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Claudio Bassetti
- Department of Neurology, Center for Experimental Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Markus H Schmidt
- Department of Neurology, Center for Experimental Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Ohio Sleep Medicine Institute, Dublin, OH, United States
| |
Collapse
|
6
|
Seok BS, Cao F, Bélanger-Nelson E, Provost C, Gibbs S, Jia Z, Mongrain V. The effect of Neuroligin-2 absence on sleep architecture and electroencephalographic activity in mice. Mol Brain 2018; 11:52. [PMID: 30231918 PMCID: PMC6146600 DOI: 10.1186/s13041-018-0394-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/06/2018] [Indexed: 02/06/2023] Open
Abstract
Sleep disorders are comorbid with most psychiatric disorders, but the link between these is not well understood. Neuroligin-2 (NLGN2) is a cell adhesion molecule that plays roles in synapse formation and neurotransmission. Moreover, NLGN2 has been associated with psychiatric disorders, but its implication in sleep remains underexplored. In the present study, the effect of Nlgn2 knockout (Nlgn2−/−) on sleep architecture and electroencephalographic (EEG) activity in mice has been investigated. The EEG and electromyogram (EMG) were recorded in Nlgn2−/− mice and littermates for 24 h from which three vigilance states (i.e., wakefulness, rapid eye movement [REM] sleep, non-REM [NREM] sleep) were visually identified. Spectral analysis of the EEG was performed for the three states. Nlgn2−/− mice showed more wakefulness and less NREM and REM sleep compared to wild-type (Nlgn2+/+) mice, especially during the dark period. This was accompanied by changes in the number and duration of individual episodes of wakefulness and sleep, indexing changes in state consolidation, as well as widespread changes in EEG spectral activity in all states. Abnormal ‘hypersynchronized’ EEG events have also been observed predominantly in Nlgn2−/− mice. These events were mainly observed during wakefulness and REM sleep. In addition, Nlgn2−/− mice showed alterations in the daily time course of NREM sleep delta (1–4 Hz) activity, pointing to modifications in the dynamics of sleep homeostasis. These data suggest that NLGN2 participates in the regulation of sleep duration as well as EEG activity during wakefulness and sleep.
Collapse
Affiliation(s)
- Bong Soo Seok
- Research Center and Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal (CIUSSS-NIM), 5400 Gouin West blvd, Montréal, QC, H4J 1C5, Canada.,Department of Neuroscience, Université de Montréal, 2960 chemin de la Tour, Montreal, QC, H3T 1J4, Canada
| | | | - Erika Bélanger-Nelson
- Research Center and Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal (CIUSSS-NIM), 5400 Gouin West blvd, Montréal, QC, H4J 1C5, Canada
| | - Chloé Provost
- Research Center and Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal (CIUSSS-NIM), 5400 Gouin West blvd, Montréal, QC, H4J 1C5, Canada
| | - Steve Gibbs
- Research Center and Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal (CIUSSS-NIM), 5400 Gouin West blvd, Montréal, QC, H4J 1C5, Canada.,Department of Neuroscience, Université de Montréal, 2960 chemin de la Tour, Montreal, QC, H3T 1J4, Canada
| | | | - Valérie Mongrain
- Research Center and Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal (CIUSSS-NIM), 5400 Gouin West blvd, Montréal, QC, H4J 1C5, Canada. .,Department of Neuroscience, Université de Montréal, 2960 chemin de la Tour, Montreal, QC, H3T 1J4, Canada.
| |
Collapse
|
7
|
Locus Coeruleus and Tuberomammillary Nuclei Ablations Attenuate Hypocretin/Orexin Antagonist-Mediated REM Sleep. eNeuro 2016; 3:eN-NWR-0018-16. [PMID: 27022631 PMCID: PMC4801942 DOI: 10.1523/eneuro.0018-16.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 01/13/2023] Open
Abstract
Hypocretin 1 and 2 (Hcrts; also known as orexin A and B), excitatory neuropeptides synthesized in cells located in the tuberal hypothalamus, play a central role in the control of arousal. Hcrt inputs to the locus coeruleus norepinephrine (LC NE) system and the posterior hypothalamic histaminergic tuberomammillary nuclei (TMN HA) are important efferent pathways for Hcrt-induced wakefulness. The LC expresses Hcrt receptor 1 (HcrtR1), whereas HcrtR2 is found in the TMN. Although the dual Hcrt/orexin receptor antagonist almorexant (ALM) decreases wakefulness and increases NREM and REM sleep time, the neural circuitry that mediates these effects is currently unknown. To test the hypothesis that ALM induces sleep by selectively disfacilitating subcortical wake-promoting populations, we ablated LC NE neurons (LCx) or TMN HA neurons (TMNx) in rats using cell-type-specific saporin conjugates and evaluated sleep/wake following treatment with ALM and the GABAA receptor modulator zolpidem (ZOL). Both LCx and TMNx attenuated the promotion of REM sleep by ALM without affecting ALM-mediated increases in NREM sleep. Thus, eliminating either HcrtR1 signaling in the LC or HcrtR2 signaling in the TMN yields similar effects on ALM-induced REM sleep without affecting NREM sleep time. In contrast, neither lesion altered ZOL efficacy on any measure of sleep–wake regulation. These results contrast with those of a previous study in which ablation of basal forebrain cholinergic neurons attenuated ALM-induced increases in NREM sleep time without affecting REM sleep, indicating that Hcrt neurotransmission influences distinct aspects of NREM and REM sleep at different locations in the sleep–wake regulatory network.
Collapse
|
8
|
Abstract
Cortical electroencephalographic activity arises from corticothalamocortical interactions, modulated by wake-promoting monoaminergic and cholinergic input. These wake-promoting systems are regulated by hypothalamic hypocretin/orexins, while GABAergic sleep-promoting nuclei are found in the preoptic area, brainstem and lateral hypothalamus. Although pontine acetylcholine is critical for REM sleep, hypothalamic melanin-concentrating hormone/GABAergic cells may "gate" REM sleep. Daily sleep-wake rhythms arise from interactions between a hypothalamic circadian pacemaker and a sleep homeostat whose anatomical locus has yet to be conclusively defined. Control of sleep and wakefulness involves multiple systems, each of which presents vulnerability to sleep/wake dysfunction that may predispose to physical and/or neuropsychiatric disorders.
Collapse
Affiliation(s)
- Michael D Schwartz
- Biosciences Division, Center for Neuroscience, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Thomas S Kilduff
- Biosciences Division, Center for Neuroscience, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA.
| |
Collapse
|
9
|
Nixon JP, Mavanji V, Butterick TA, Billington CJ, Kotz CM, Teske JA. Sleep disorders, obesity, and aging: the role of orexin. Ageing Res Rev 2015; 20:63-73. [PMID: 25462194 DOI: 10.1016/j.arr.2014.11.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 09/19/2014] [Accepted: 11/14/2014] [Indexed: 02/03/2023]
Abstract
The hypothalamic neuropeptides orexin A and B (hypocretin 1 and 2) are important homeostatic mediators of central control of energy metabolism and maintenance of sleep/wake states. Dysregulation or loss of orexin signaling has been linked to narcolepsy, obesity, and age-related disorders. In this review, we present an overview of our current understanding of orexin function, focusing on sleep disorders, energy balance, and aging, in both rodents and humans. We first discuss animal models used in studies of obesity and sleep, including loss of function using transgenic or viral-mediated approaches, gain of function models using exogenous delivery of orexin receptor agonist, and naturally-occurring models in which orexin responsiveness varies by individual. We next explore rodent models of orexin in aging, presenting evidence that orexin loss contributes to age-related changes in sleep and energy balance. In the next section, we focus on clinical importance of orexin in human obesity, sleep, and aging. We include discussion of orexin loss in narcolepsy and potential importance of orexin in insomnia, correlations between animal and human studies of age-related decline, and evidence for orexin involvement in age-related changes in cognitive performance. Finally, we present a summary of recent studies of orexin in neurodegenerative disease. We conclude that orexin acts as an integrative homeostatic signal influencing numerous brain regions, and that this pivotal role results in potential dysregulation of multiple physiological processes when orexin signaling is disrupted or lost.
Collapse
|
10
|
Zink AN, Perez-Leighton CE, Kotz CM. The orexin neuropeptide system: physical activity and hypothalamic function throughout the aging process. Front Syst Neurosci 2014; 8:211. [PMID: 25408639 PMCID: PMC4219460 DOI: 10.3389/fnsys.2014.00211] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/07/2014] [Indexed: 12/18/2022] Open
Abstract
There is a rising medical need for novel therapeutic targets of physical activity. Physical activity spans from spontaneous, low intensity movements to voluntary, high-intensity exercise. Regulation of spontaneous and voluntary movement is distributed over many brain areas and neural substrates, but the specific cellular and molecular mechanisms responsible for mediating overall activity levels are not well understood. The hypothalamus plays a central role in the control of physical activity, which is executed through coordination of multiple signaling systems, including the orexin neuropeptides. Orexin producing neurons integrate physiological and metabolic information to coordinate multiple behavioral states and modulate physical activity in response to the environment. This review is organized around three questions: (1) How do orexin peptides modulate physical activity? (2) What are the effects of aging and lifestyle choices on physical activity? (3) What are the effects of aging on hypothalamic function and the orexin peptides? Discussion of these questions will provide a summary of the current state of knowledge regarding hypothalamic orexin regulation of physical activity during aging and provide a platform on which to develop improved clinical outcomes in age-associated obesity and metabolic syndromes.
Collapse
Affiliation(s)
- Anastasia N Zink
- Graduate Program in Neuroscience, School of Medicine, University of Minnesota Minneapolis, MN, USA
| | | | - Catherine M Kotz
- Graduate Program in Neuroscience, School of Medicine, University of Minnesota Minneapolis, MN, USA ; GRECC (11G), Minneapolis VA Healthcare System Minneapolis, MN, USA ; Department of Food Science and Nutrition, University of Minnesota Saint Paul, MN, USA
| |
Collapse
|
11
|
A role for cortical nNOS/NK1 neurons in coupling homeostatic sleep drive to EEG slow wave activity. Proc Natl Acad Sci U S A 2013; 110:20272-7. [PMID: 24191004 DOI: 10.1073/pnas.1314762110] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although the neural circuitry underlying homeostatic sleep regulation is little understood, cortical neurons immunoreactive for neuronal nitric oxide synthase (nNOS) and the neurokinin-1 receptor (NK1) have been proposed to be involved in this physiological process. By systematically manipulating the durations of sleep deprivation and subsequent recovery sleep, we show that activation of cortical nNOS/NK1 neurons is directly related to non-rapid eye movement (NREM) sleep time, NREM bout duration, and EEG δ power during NREM sleep, an index of preexisting homeostatic sleep drive. Conversely, nNOS knockout mice show reduced NREM sleep time, shorter NREM bouts, and decreased power in the low δ range during NREM sleep, despite constitutively elevated sleep drive. Cortical NK1 neurons are still activated in response to sleep deprivation in these mice but, in the absence of nNOS, they are unable to up-regulate NREM δ power appropriately. These findings support the hypothesis that cortical nNOS/NK1 neurons translate homeostatic sleep drive into up-regulation of NREM δ power through an NO-dependent mechanism.
Collapse
|
12
|
Wang W, Pan Y, Li Q, Wang L. Orexin: a potential role in the process of obstructive sleep apnea. Peptides 2013; 42:48-54. [PMID: 23313149 DOI: 10.1016/j.peptides.2013.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 12/28/2012] [Accepted: 01/02/2013] [Indexed: 02/07/2023]
Abstract
Obstructive sleep apnea (OSA) is a complicated disease with an unrecognized mechanism. Obesity, sex, age, and smoking have been found to be independent correlates of OSA. Orexin (also named hypocretin) mainly secreted by lateral hypothalamus neurons has a wide array of biological functions like regulating sleep, energy levels and breathing. Several clinical studies found ties between orexin and OSA. Because of the close correlation between orexin and obesity, sex, age and smoking (which are the key risk factors for OSA patients), we hypothesize that orexin may play a key role in the pathogenesis of OSA.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Stomatology, Nanjing Medical University, Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | | | | | | |
Collapse
|